JP2012234808A - リチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法、これによって製造された正極活物質及びこれを含むリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法、これによって製造された正極活物質及びこれを含むリチウムイオン二次電池 Download PDF

Info

Publication number
JP2012234808A
JP2012234808A JP2012095748A JP2012095748A JP2012234808A JP 2012234808 A JP2012234808 A JP 2012234808A JP 2012095748 A JP2012095748 A JP 2012095748A JP 2012095748 A JP2012095748 A JP 2012095748A JP 2012234808 A JP2012234808 A JP 2012234808A
Authority
JP
Japan
Prior art keywords
manganese oxide
positive electrode
active material
lithium
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012095748A
Other languages
English (en)
Inventor
Nim-Joo Song
ニム ジョー ソン
Mi-Sang Yi
サン イ ミ
Hae In Cho
イン チョー ヘ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Precision Materials Co Ltd
Original Assignee
Samsung Corning Precision Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Corning Precision Materials Co Ltd filed Critical Samsung Corning Precision Materials Co Ltd
Publication of JP2012234808A publication Critical patent/JP2012234808A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】体積エネルギ密度が向上されたリチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法を提供する。
【解決手段】本発明は、球状の互いに大きさが異なる二種類以上のスピネル型リチウムマンガンオキサイド粒子が混合されたリチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法であり、互いに大きさが異なる二種類以上のマンガンオキサイドとリチウム含有化合物を均一に混合する段階と、前記得られた混合物を熱処理してリチウムマンガンオキサイドを得る段階と、を含む。
【選択図】図2

Description

本発明は、リチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法に関するものである。更に詳しくは、本発明は、球状の互いに大きさが異なる二種類以上のスピネル型リチウムマンガンオキサイド粒子が含まれたリチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法、前記製造方法によって製造されたリチウムイオン二次電池用正極活物質及び前記正極活物質を含むリチウムイオン二次電池に関するものである。
最近、携帯電話、カムコーダ及びノートパソコンのような携帯用電池機器に小型化及び軽量化が要求されるようになり、これらの電力源として使用されるリチウムイオン二次電池の高容量、長寿命、高安全性などの特性の向上が要求されている。また、車両の電気化に対する関心が高まっており、電気自動車の電力源としてリチウムイオン二次電池が強力な代案として浮上している。
リチウムイオン二次電池は、一般的にリチウムイオンの挿入及び離脱が可能な正極及び負極、正極と負極との物理的な接触を防止する分離膜、リチウムイオンを伝達する有機電解液又は高分子電解液で形成される。リチウムイオン二次電池は、正極及び負極でリチウムイオンが挿入/離脱される際、電気化学的酸化、還元反応によって電気エネルギを生成するようになる。
リチウムイオン二次電池の負極活物質としては様々な炭素質材料が使用され、正極活物質としてLiCoO、LiMnO、LiMnなどのリチウム金属酸化物が使用されている。
リチウム金属酸化物のうち、スピネル型リチウムマンガンオキサイドは、コバルトのような有害な重金属素材を使用しないため、環境にやさしくて安全性の高い正極活物質として電気自動車及び電力貯蔵用で使用されている。しかし、スピネル型リチウムマンガンオキサイドは、層状のリチウム金属酸化物に比べ単位重量及び単位体積当たりエネルギの密度が低いという短所を有する。
従って、前記問題を解決するため、本発明は、球状の互いに大きさが異なる二種類以上のスピネル型リチウムマンガンオキサイド粒子が混合されたリチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法を提供する。
また、本発明は、前記製造方法によって製造された正極活物質及び前記正極活物質を含む体積エネルギ密度及び電池容量が向上されたリチウムイオン二次電池を提供する。
本発明は、前記課題を解決するため、球状の互いに大きさが異なる二種類以上のスピネル型リチウムマンガンオキサイド粒子が混合されたリチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法であり、互いに大きさが異なる二種類以上のマンガンオキサイドとリチウム含有化合物を均一に混合する段階と、前記得られた混合物を熱処理してリチウムマンガンオキサイドを得る段階と、を含むリチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法を提供する。
本発明はまた、前記製造方法によって製造されたリチウムイオン二次電池用リチウムマンガンオキサイド正極活物質を提供する。
本発明はまた、前記製造方法によって製造された正極活物質を含む正極、負極、分離膜及び有機電解質を含むリチウムイオン二次電池を提供する。
本発明によると、スピネル型リチウムマンガンオキサイド正極活物質の体積エネルギ密度が大きく向上されて出力特性が向上され、高速充放電の際、容量特性の低下を防ぐことができるので、自動車及び電力貯蔵用リチウムイオン二次電池の容量及び寿命特性を大きく改善することができる。
粒子の大きさが異なるマンガンオキサイドを示す図である。 実施例及び比較例によって製造された生成物を電子顕微鏡で観察した写真である。
本発明は、球状の互いに大きさが異なる二種類以上のスピネル型リチウムマンガンオキサイド粒子が混合されたリチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法であり、互いに大きさが異なる二種類以上のマンガンオキサイドとリチウム含有化合物を均一に混合する段階と、前記得られた混合物を熱処理してリチウムマンガンオキサイドを得る段階と、を含むリチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法に関するものである。
リチウムイオン二次電池の正極材料として、正極活物質は主にリチウム金属酸化物が使用され、その構造によって大きく層状型、スピネル型及びオリビン型で分類することができる。層状型酸化物は、各層の間でリチウムイオンがファンデルワールス結合で挿入/離脱され、一般的にLiMO(M=V,Cr,Co及びNi)の形を有する。スピネル型酸化物は、一般的にLiM(M=Ti,V,及びMn)の分子式を示し、正六面体の結晶構造を成している。オリビン型酸化物としてはLiFePOが代表的であり、構造的に安定していて容量の減少が少ない。
本発明によって製造される正極活物質は、LiMnのスピネル型金属酸化物を基本組成とし、LiMMn2−Xの形でMn以外にもNi,Zr,Co,Mg,Mo,Al,Agなどの金属前駆体が含まれてもよく、LiMMn2−X4−zの形であるフッ素置換されたリチウム金属複合酸化物を含んでもよい。
本発明の製造方法において、前記リチウム含有化合物は、リチウムイオン二次電池用正極活物質に通常的に使用されるものを使用してもよく、例えば、水酸化リチウム、炭酸リチウム、硝酸リチウム及び酢酸リチウムで構成された群から選択された1種以上であってもよい。
図1に示すように、本発明は、互いに大きさが異なる二種類以上のマンガンオキサイドを使用するが、粒子の大きさが大きいマンガンオキサイド粒子の大きさと、粒子の大きさが小さい他の一つの種類のマンガンオキサイド粒子の大きさの比は1:0.2乃至1:0.4であってもよく、好ましくは1:0.4である。前記範囲内であれば、電極の単位体積当たり電極容量が増加し、エネルギの密度が増加するようになる。
また、粒子の大きさが大きいマンガンオキサイドと、粒子の大きさが小さい他の一つの種類のマンガンオキサイドを1:1乃至1:3の混合比(重量部)で混合してもよい。前記範囲内であれば、粒子の大きさが互いに異なるリチウムマンガンオキサイド粒子が均一に混合できるので好ましい。
前記粒子の大きさが大きいマンガンオキサイド粒子の大きさは、10〜20μmの範囲内であることが好ましい。前記範囲内であれば、正極活物質の体積エネルギ密度が増加するようになる。
本発明のリチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法は、マンガンオキサイド粒子の大きさと形状制御のための前処理工程を含んでもよい。リチウムマンガンオキサイドの形状と粒子の大きさは、一般的に前駆体であるマンガンオキサイドの形状及び大きさに大きく影響される。従って、望みの粒子の大きさの球状の形を有するマンガンオキサイドを使用しなければならない。
マンガンオキサイドの形状及び構造は、マンガンオキサイドを製造する方法によって異なり得る。球状の形及び望みの粒子の大きさを有する前駆体を使用してもよく、場合によっては前処理工程を経て制御してもよい。
前処理工程として、マンガンオキサイドを硫酸、塩酸などの酸性溶液又はアンモニアや水酸化ナトリウムなどの塩基性溶液に溶かした後、300〜600℃の温度で4時間乃至6時間の間加熱して再結晶化させることで、pHと濃度の調節を介して球状の粒子を有するマンガンオキサイドの粒子の大きさを調節することができる。前記温度及び時間が前記範囲内であれば、マンガンオキサイドの酸化数の変化なしに形状を制御することができる。
更に他の方法としては、ミリングを利用して粒子の大きさ及び形状を制御することができる。前記ミリングは、ボールミル(ball mill)、アトリッションミル(attrition mill)、振動ミル(vibration mill)、ディスクミル(disk mill)、ジェットミル(jet mill)、ロータミル(rotor mill)などのようなミリングマシンを利用して行われてもよく、乾式工程、又は湿式工程、又は乾式及び湿式を組み合わせた工程で行われてもよい。
前記前処理工程を介して、望みの粒子の大きさのマンガンオキサイドを得た後、リチウム含有化合物と均一に混合してから熱処理し、最終的なスピネル型リチウムマンガンオキサイドを製造することができる。
前記熱処理は、か焼工程で700〜1000℃の温度で10時間乃至30時間の間行われることが好ましく、更に好ましくは、800℃〜900℃で12〜24時間行われる。前記温度及び時間が前記範囲内であれば、安定的なスピネル型のリチウムマンガンオキサイドが得られる。
本発明は、前記製造された正極活物質を含む正極、負極、分離幕及び電解質を含むリチウムイオン二次電池を提供する。
リチウムイオン二次電池で使用される電極は、通常的に活物質、バインダ及び導電材を溶媒と混合してスラリを形成し、これを電極集電体に塗布して乾燥及び圧着して製造される。
本発明のリチウムイオン二次電池は、本発明の方法によって製造された正極活物質を含む正極を具備し、容量及び寿命特性が改善される。
本発明のリチウムイオン二次電池では、負極活物質として天然黒鉛、人造黒鉛、炭素繊維、コークス、カーボングラック、カーボンナノチューブ、フラーレン、活性炭、リチウム金属やリチウム合金などを使用してもよいが、これに限ることはない。
リチウムイオン二次電池の集電体は、活物質の電気化学反応によって電子を集めるか、電気化学反応に必要な電子を供給する役割を果たす。
負極集電体は、電池に化学的変化を誘発することなく導電性を有するものであれば特に限られず、例えば、アルミニウム、銅、ニッケル、チタン、焼成炭素、ステンレススチール、銅又はステンレススチールの表面にカーボン、ニッケル、チタン、銀などを処理したもの、アルミニウム−カドミウム合金などが使用されてもよい。
正極集電体もまた、電気に化学的変化を誘発することなく導電性を有するものであれば特に限られず、例えば、ステンレススチール、アルミニウム、ニッケル、焼成炭素、アルミニウム又はステンレススチールの表面にカーボン、ニッケル、チタン、銀などを処理したものなどが使用されてもよい。
これらの終電体の表面に微細な凸凹を形成して電極活物質の結合力を強化してもよく、フィルム、シート、ホイル、ネット、多孔質体、発砲体、不職布体など、多様な形態で使用されてもよい。
バインダは、活物質と導電材を結着させて集電体に固定させる役割を果たし、ポリビニリデンフロライド、ポリプロピレン、カルボキシメチルセルロース、スターチ、ヒドロキシプロピルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、ポリエチレン、エチレン−プロピレン−ジエンポリマ(EPDM)、ポリビニルアルコール、スチレン−ブタジエンゴム、フッ素ゴムなど、リチウムイオン二次電池で通常的に使用されるものを使用してもよい。
前記導電材は、電池に化学的変化を誘発することなく導電性を有するものであれば特に限られず、例えば、人造黒鉛、天然黒鉛、アセチレンブランク、ケッチェンブラック、チャンネルブラック、ランプブラック、サマーグラック、炭素繊維や金属繊維などの導電性繊維、酸化チタンなどの導電性金属酸化物、アルミニウム、ニッケルなどの金属粉末などが使用されてもよい。
リチウムイオン二次電池の電解質は、正極と負極とのイオン移動を可能にする媒介体であり、有機溶媒にリチウム塩が溶解された有機電解質が使用される。
前記リチウム塩としては、リチウムイオン二次電池の電解液として通常的に使用されるものを使用してもよい。例えば、LiPF,LiBF,LiSbF,LiAsF,LiClO,LiN(CSO,LiN(CFSO,CFSOLi及びLiC(CFSOなどがあり、これらを本発明の効果を損なわない範囲内で単独に又は組み合わせて使用してもよい。
前記有機溶媒もまた、リチウムイオン二次電池に一般的に使用されるものを特に限らず使用してもよい。例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルエチルカーボネート、ブチレンカーボネート、ジメチルスルポキシド、アセト二トリル、ジメトキシエタン及びジエトキシエタンなどがあり、これらを本発明の効果を損なわない範囲内で単独に又は組み合わせて使用してもよい。
前記分離膜は正極と負極との間に存在する多孔性膜であり、両電極の間における電気的短絡を防止し、イオン伝達の通路として機能する。分離膜としては特に限られないが、ポリエチレン(PE)とポリプロピレン(PP)のような単一オレフィンやオレフィンの複合体、ポリアミド(PA)、ポリ(アクリロニトリル)(PAN)、ポリ(エチレンオキサイド)(PEO)、ポリ(プロピレンオキサイド)(PPO)、ポリ(エチレングリコール)ジアクリレート(PEGA)、ポリテトラフルオロエチレン(PTEE)、ポリビニリデンフルオライド(PVdF)、ポリビニルクロライド(PVC)などを使用してもよい。
本発明によるリチウムイオン二次電池は、当業者に公知されている通常的な方式によって製造されてもよい。また、本発明によるリチウムイオン二次電池の形状としては、コイン状、ボタン状、シート状、円筒状、平板状及び角状など、通常的にリチウムイオン二次電池に使用されるものを使用してもよい。
以下、本発明を実施例によって更に詳しく説明するが、本発明がこれらの実施例によって限られることはない。
[実施例]
粒子の大きさ(D50)が12μmであるMnOをpH3〜4のHCl弱酸溶液で30分くらい浸した後、500℃で5時間熱処理して3〜4μmのMnを得た。これを粒子の大きさ(D50)が12μmであるMnOと1:1で混合し、マンガンオキサイド混合物を得た。この混合物をLiCOと共にLiとMnの割り合い1:2で混合し、850℃で24時間加熱して粒子の大きさが3〜4μmと12μmであるスピネル構造のLiMn正極活物質を合成した。
粒子の大きさ(D50)が12μmであるMnを、ボールミルマシン(製造社:Wsid@Labortory社、モデル名:Wise Mix Ball Mill)を使用して3〜4μmのMnを得た。これを粒子の大きさ(D50)が12μmであるMnOと1:1で混合し、マンガンオキサイド混合物を得た。この混合物をLiCOと共にLiとMnの割り合い1:2で混合し、850℃で24時間加熱して粒子の大きさが3〜4μmと12μmであるスピネル構造のLiMn正極活物質を合成した。
粒子の大きさ(D50)が12μmであるMnOと粒子の大きさ(D50)が1.5μmであるMnと1:1で混合してマンガンオキサイド混合物を得た。この混合物をLiCOと共にLiとMnの割り合い1:2で混合し、850℃で24時間加熱して粒子の大きさが8μmと12μmであるスピネル構造のLiMn正極活物質を合成した。
粒子の大きさ(D50)が12μmであるMnOと粒子の大きさ(D50)が8μmであるMnと1:1で混合してマンガンオキサイド混合物を得た。この混合物をLiCOと共にLiとMnの割り合い1:2で混合し、850℃で24時間加熱して粒子の大きさが8μmと12μmであるスピネル構造のLiMn正極活物質を合成した。
粒子の大きさ(D50)が12μmであるMnOをpH3〜4のHCl弱酸溶液で30分くらい浸した後、500℃で5時間くらい熱処理して3〜4μmのMnを得た。これを粒子の大きさ(D50)が12μmであるMnOと1:0.5で混合し、マンガンオキサイド混合物を得た。この混合物をLiCOと共にLiとMnの割り合い1:2で混合し、850℃で24時間加熱して粒子の大きさが3〜4μmと12μmであるスピネル構造のLiMn正極活物質を合成した。
粒子の大きさ(D50)が12μmであるMnOをpH3〜4のHCl弱酸溶液で30分くらい浸した後、500℃で5時間くらい熱処理して3〜4μmのMnを得た。これを粒子の大きさ(D50)が12μmであるMnOと1:4で混合し、マンガンオキサイド混合物を得た。この混合物をLiCOと共にLiとMnの割り合い1:2で混合し、850℃で24時間加熱して粒子の大きさが3〜4μmと12μmであるスピネル構造のLiMn正極活物質を合成した。
[比較例1]
LiCOと粒子の大きさ(D50)が12μmであるMnOをLiとMnの割り合い1:2で混合した後、850℃で24時間加熱して、粒子の大きさ(D50)が12μm前後であるスピネル型のLiMn正極活物質を合成した。
[比較例2]
粒子の大きさ(D50)が12μmであるMnOをpH3〜4のHCl弱酸溶液で30分くらい浸した後、500℃で5時間くらい熱処理して3〜4μmのMnを得た。これをLiCOと共にLiとMnの割り合い1:2で混合し、850℃で24時間加熱して粒子の大きさが3〜4μm前後であるスピネル構造のLiMn正極活物質を合成した。
前記実施例及び比較例において、それぞれ得られた正極活物質と導電材としてDenka Black、PVDFバインダを94:3:3の割合で混合し、Alホイルの上にコーティングして正極を製造した。次に、負極としてリチウム金属、電解質として1.3M LiPF6 EC/DMC/EC=5:3:2である溶液を使用してコインセルを製造した。製造された各コインセルの電極極板の密度及び電池容量を測定し、その結果を下記表1に示した。
前記表1に示したように、3〜4μmと12μmのリチウムマンガン酸化物の粒子が混合された正極活物質を使用して製造した正極を含むコインセルの電極極板の密度及び電池容量は、大きさが同じである粒子を使用して正極活物質を製造した比較例に比べ優秀であるということが分かる。

Claims (10)

  1. 球状の互いに大きさが異なる二種類以上のスピネル型リチウムマンガンオキサイド粒子が混合されたリチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法であり、
    互いに大きさが異なる二種類以上のマンガンオキサイドとリチウム含有化合物を均一に混合する段階と、
    前記得られた混合物を熱処理してリチウムマンガンオキサイドを得る段階と、を含むことを特徴とするリチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法。
  2. 粒子の大きさが大きいマンガンオキサイド粒子の大きさと、粒子の大きさが小さい他の一つの種類のマンガンオキサイド粒子の大きさの割合が1:0.2乃至1:0.4であることを特徴とする請求項1に記載のリチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法。
  3. 粒子の大きさが大きいマンガンオキサイドと、粒子の大きさが小さい他の一つの種類のマンガンオキサイドとの混合比(重量比)が1:1乃至1:3であることを特徴とする請求項1に記載のリチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法。
  4. 粒子の大きさが大きいマンガンオキサイドの粒子の大きさは、10〜20μmの範囲内であることを特徴とする請求項1に記載のリチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法。
  5. マンガンオキサイドを酸性又は塩基性溶液に溶解させた後、熱処理してマンガンオキサイドの大きさ及び形状を制御する前処理段階を更に含むことを特徴とする請求項1に記載のリチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法。
  6. 前記酸性又は塩基性溶液は、硫酸、塩酸、アンモニア又は水酸化ナトリウム溶液であることを特徴とする請求項5に記載のリチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法。
  7. 前記熱処理は、300〜600℃の温度で4時間乃至6時間の間行われることを特徴とする請求項5に記載のリチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法。
  8. マンガンオキサイドをミリングし、マンガンオキサイドの大きさ及び形状を制御する前処理段階を更に含むことを特徴とする請求項1に記載のリチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法。
  9. 請求項1乃至請求項8のうち、いずれか一つの項の製造方法によって製造されたリチウムイオン二次電池用リチウムマンガンオキサイド正極活物質。
  10. 請求項1乃至請求項8のうち、いずれか一つの項で製造された正極活物質を含む正極、負極、分離膜及び有機電解質を含むリチウムイオン二次電池。
JP2012095748A 2011-05-02 2012-04-19 リチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法、これによって製造された正極活物質及びこれを含むリチウムイオン二次電池 Pending JP2012234808A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0041389 2011-05-02
KR1020110041389A KR101295974B1 (ko) 2011-05-02 2011-05-02 리튬이온 이차전지용 리튬망간옥사이드 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질 및 이것을 포함하는 리튬이온 이차전지

Publications (1)

Publication Number Publication Date
JP2012234808A true JP2012234808A (ja) 2012-11-29

Family

ID=47096435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012095748A Pending JP2012234808A (ja) 2011-05-02 2012-04-19 リチウムイオン二次電池用リチウムマンガンオキサイド正極活物質の製造方法、これによって製造された正極活物質及びこれを含むリチウムイオン二次電池

Country Status (4)

Country Link
US (1) US8715858B2 (ja)
JP (1) JP2012234808A (ja)
KR (1) KR101295974B1 (ja)
CN (1) CN102769129B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181157A (ja) * 2013-03-19 2014-09-29 Jgc Catalysts & Chemicals Ltd マンガン酸リチウムの製造方法
JP2022146899A (ja) * 2021-03-22 2022-10-05 安徽博石高科新材料股▲ふん▼有限公司 単結晶マンガン酸リチウム材料の調製方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178260A (zh) * 2013-03-14 2013-06-26 湖南杉杉户田新材料有限公司 一种锰酸锂正极材料及其制备方法与应用
CN105489881A (zh) * 2016-01-12 2016-04-13 哈尔滨工业大学 一种提高锂离子电池三元镍钴锰正极材料振实密度的方法
AU2018207579B2 (en) * 2017-01-12 2023-05-25 Calix Ltd Rechargeable battery and catalyst materials and the means of production thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6770226B2 (en) * 1998-02-24 2004-08-03 Superior Micropowders Fine powders for use in primary and secondary batteries
EP1089365B1 (en) * 1999-10-01 2016-07-20 Tosoh Corporation Lithium manganese oxide, and process for its production and secondary cell employing it
JP4868271B2 (ja) * 2001-03-15 2012-02-01 日立金属株式会社 非水系リチウム二次電池用正極活物質の製造方法およびこの活物質を用いた正極、並びに非水系リチウム二次電池
JP5079951B2 (ja) * 2001-06-27 2012-11-21 株式会社三徳 非水電解液2次電池用正極活物質、その製造方法、非水電解液2次電池、並びに正極の製造方法
KR20060091486A (ko) 2005-02-15 2006-08-21 삼성에스디아이 주식회사 양극 활물질, 그 제조 방법 및 이를 채용한 양극과 리튬 전지

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181157A (ja) * 2013-03-19 2014-09-29 Jgc Catalysts & Chemicals Ltd マンガン酸リチウムの製造方法
JP2022146899A (ja) * 2021-03-22 2022-10-05 安徽博石高科新材料股▲ふん▼有限公司 単結晶マンガン酸リチウム材料の調製方法
JP7318037B2 (ja) 2021-03-22 2023-07-31 安徽博石高科新材料股▲ふん▼有限公司 単結晶マンガン酸リチウム材料の調製方法

Also Published As

Publication number Publication date
US20120288767A1 (en) 2012-11-15
CN102769129A (zh) 2012-11-07
KR101295974B1 (ko) 2013-08-13
KR20120123821A (ko) 2012-11-12
CN102769129B (zh) 2015-03-04
US8715858B2 (en) 2014-05-06

Similar Documents

Publication Publication Date Title
US10840510B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same
JP7254875B2 (ja) リチウム二次電池用正極活物質およびこれを含むリチウム二次電池
JP6257066B2 (ja) リチウムイオン2次電池用リチウムマンガン酸化物正極活物質およびそれを含むリチウムイオン2次電池
KR101539843B1 (ko) 고밀도 음극 활물질 및 이의 제조방법
KR101589294B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
JP5686441B2 (ja) ケイ素系正極活物質及びこれを含む二次電池
EP2642555A2 (en) Positive electrode for a lithium ion secondary battery and a lithium ion secondary battery including the same
WO2013151209A1 (ko) 리튬 이온 커패시터용 양극 활물질 및 그의 제조 방법a
JP2014527267A (ja) バイモダルタイプの負極活物質及びこれを含むリチウム二次電池
JP2016219410A (ja) 二次電池用負極活物質、二次電池用負極活物質の製造方法、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP5716269B2 (ja) 非水電解質二次電池用正極材料
KR101497190B1 (ko) 리튬이차전지용 리튬금속산화물 복합체, 그 제조방법 및 이것을 포함하는 리튬이차전지
KR101295974B1 (ko) 리튬이온 이차전지용 리튬망간옥사이드 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질 및 이것을 포함하는 리튬이온 이차전지
KR101501804B1 (ko) 규소계 음극 활물질 및 이를 포함하는 이차전지
KR101449421B1 (ko) 고체초강산으로 표면 처리된 비수계 리튬이차전지용 양극활물질 및 그 제조방법
KR20140140981A (ko) 이차전지용 도전재 및 이를 포함하는 리튬 이차전지용 전극
KR101439630B1 (ko) 리튬이온 이차전지용 양극 및 이를 포함하는 리튬이온 이차전지
KR20150106203A (ko) 환원된 티타늄 산화물 함유 전극 활물질 및 이를 이용한 전기화학소자
JP2016031871A (ja) 二次電池用正極活物質及びその製造方法
KR101589296B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
JP6172834B2 (ja) リチウムイオン二次電池用正極活物質の製造方法、これによって製造された正極活物質及びこれを含むリチウムイオン二次電池
KR20160061498A (ko) 리튬 이온으로 이온교환된 제올라이트 함유 전극 활물질 및 이를 이용한 전기화학소자

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130726