JP2012233038A - Surface-modified fluororesin film, method for manufacturing the same, apparatus for manufacturing the same, composite body including surface-modified fluororesin film, method for manufacturing the same - Google Patents

Surface-modified fluororesin film, method for manufacturing the same, apparatus for manufacturing the same, composite body including surface-modified fluororesin film, method for manufacturing the same Download PDF

Info

Publication number
JP2012233038A
JP2012233038A JP2011101189A JP2011101189A JP2012233038A JP 2012233038 A JP2012233038 A JP 2012233038A JP 2011101189 A JP2011101189 A JP 2011101189A JP 2011101189 A JP2011101189 A JP 2011101189A JP 2012233038 A JP2012233038 A JP 2012233038A
Authority
JP
Japan
Prior art keywords
fluororesin film
plasma
modified
modified fluororesin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011101189A
Other languages
Japanese (ja)
Inventor
Masaaki Okubo
雅章 大久保
Tomoyuki Kuroki
智之 黒木
Mitsuru Tawara
充 田原
Ifumi Kagechi
威史 陰地
Hiroaki Nakano
宏昭 中野
Eiji Yao
英治 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Osaka University NUC
Osaka Prefecture University PUC
Technology Research Institute of Osaka Prefecture
Original Assignee
Sumitomo Rubber Industries Ltd
Osaka University NUC
Osaka Prefecture University PUC
Technology Research Institute of Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd, Osaka University NUC, Osaka Prefecture University PUC, Technology Research Institute of Osaka Prefecture filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2011101189A priority Critical patent/JP2012233038A/en
Publication of JP2012233038A publication Critical patent/JP2012233038A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-modified fluororesin film having a high adhesive strength between a fluororesin film and an adherent and keeping a modification effect of the fluororesin film for a long period of time, a method for manufacturing the same, an apparatus for manufacturing the same, a composite body including the surface-modified fluororesin film, and a method for manufacturing the same.SOLUTION: In the surface-modified fluororesin film having a plasma-monomer polymerization layer (16) on at least one surface of the fluororesin film layer (15), the plasma-monomer polymerization layer (16) is a uniform thin film layer wherein a monomer including a reactive unsaturated group is graft-polymerized under a condition that the electric charge electrified on the fluororesin film layer is removed while plasma is irradiated. When an adherent (17) is stuck on the plasma-monomer polymerization layer (16), and the fluororesin film layer (15) and the adherent (17) are released, the upper part than the plasma-monomer polymerization layer (16) is broken.

Description

本発明は、表面改質フッ素樹脂フィルム、その製造方法、その製造装置、表面改質フッ素樹脂フィルムを含む複合体及びその製造方法に関する。   The present invention relates to a surface-modified fluororesin film, a production method thereof, a production apparatus thereof, a composite including the surface-modified fluororesin film, and a production method thereof.

フッ素樹脂は、化学的安定性および熱的安定性に優れるほか、自己潤滑性を有するために摩擦係数が低い等の特徴がある。しかし、フッ素樹脂はその化学的安定性から、シート状またはフィルム状のものを接着剤により他の材料にラミネートすることが難しく、例えば、化学的安定性を生かすことができる医薬品容器の栓等への利用が普及しなかった。   In addition to being excellent in chemical stability and thermal stability, the fluororesin has characteristics such as a low friction coefficient because of its self-lubricating property. However, because of the chemical stability of fluororesins, it is difficult to laminate a sheet or film-like material to other materials with an adhesive. For example, to a stopper of a pharmaceutical container that can make use of chemical stability. The use of was not widespread.

これに対し、フッ素樹脂を、接着剤により他の素材に接着可能にするために、フッ素樹脂成形物の表面を改質する種々の方法が提案されている。最も広範に使用される表面改質方法としては、ナトリウム−アンモニア溶液処理が挙げられる。この方法によれば、表面を化学的にほぼ完全に改質し他の素材との接着を可能にすることが知られている。しかし、この改質によりフッ素樹脂表面は茶褐色を呈し、外観上好ましくない。また、フィルム上に金属ナトリウムが残存する可能性もあり、特に厳密な品質管理が求められる医療用ゴム製品の場合、異物検査などの障害になることがあり、着色や金属残存のない改質方法が求められている。   On the other hand, various methods for modifying the surface of a fluororesin molding have been proposed in order to allow the fluororesin to adhere to other materials with an adhesive. The most widely used surface modification method includes sodium-ammonia solution treatment. According to this method, it is known that the surface is chemically almost completely modified to allow adhesion to other materials. However, this modification makes the surface of the fluororesin brownish, which is not preferable in appearance. In addition, there is a possibility that metallic sodium may remain on the film, and in the case of medical rubber products that require strict quality control in particular, it may be an obstacle for foreign matter inspection, etc. Is required.

前記のナトリウム−アンモニア溶液処理は化学的な改質方法であるが、物理化学的な方法を用いてフッ素樹脂フィルムの表面改質を行う手法が検討されている。たとえば、特許文献1にはプラズマ処理を行うに際して、成形物表面に負電圧を印加することにより、成形物表面にプラズマ中のイオンを注入して粗面化する物理的改質と、成形物表面におけるフッ素原子を他の原子に置換する化学的改質とを行い、更に、プラズマ処理後にシランカップリング剤を塗布する改質方法が記載されている。特許文献2にはイオン注入処理によりフッ素樹脂の表面の原子組成を変化させるとともに、表面に微細突起を成形することによる改質方法が記載されている。また、本発明者らの一部は特許文献3及び特許文献4においてフッ素樹脂表面にプラズマを照射しながらモノマーを気相重合することを提案している。   The sodium-ammonia solution treatment is a chemical modification method, but a technique for modifying the surface of a fluororesin film using a physicochemical method has been studied. For example, Patent Document 1 discloses that when plasma treatment is performed, a negative voltage is applied to the surface of the molded product to inject physical ions into the surface of the molded product to roughen the surface. A modification method is described in which a chemical modification is performed by substituting the fluorine atom with another atom, and a silane coupling agent is applied after the plasma treatment. Patent Document 2 describes a modification method by changing the atomic composition of the surface of the fluororesin by ion implantation and forming fine protrusions on the surface. In addition, some of the present inventors have proposed vapor phase polymerization of monomers while irradiating plasma on the fluororesin surface in Patent Document 3 and Patent Document 4.

特開2009−263529号公報JP 2009-263529 A 特開2000−017091号公報JP 2000-017091 A 特開2008−019393号公報JP 2008-019393 A 特開2009−167323号公報JP 2009-167323 A

特許文献1に開示されたような、不活性な表面の原子をプラズマ処理により他の原子で置換して親水化する方法では、ポリマーの熱ゆらぎにより処理面(改質面)が樹脂内部に潜り込む、または生成した親水性の低分子物質が遊離する等の要因により表面の改質効果(親水性)の持続性に問題があることが知られている。プラズマ処理後にシランカップリング剤の接着層を塗布する工程も記載されているが、改質効果が消失する前に塗布する必要があり、工程としては好ましくない。また一般のプラズマ処理に比べて、負電圧を印加する装置が必要であることから設備費が高額となり好ましくない。特許文献2に開示されたようなイオン注入法による改質は、高エネルギーのイオンを得る為の装置が複雑になること、また、高エネルギーのイオンを被処理物に注入する為には高い真空度の雰囲気下で処理を行う必要があること、などにより設備費が高額となり改善が望まれていた。加えて、前記従来方法はフッ素樹脂フィルムとゴムとの接着強度が低いという問題があった。また、特許文献3及び特許文献4の提案は、はく離強度は向上するものの、フィルム表面の電荷チャージに問題があり、均一な薄膜形成とさらに高い接着強度が要求されていた。   In the method of hydrophilizing by substituting the atoms on the inert surface with other atoms by plasma treatment as disclosed in Patent Document 1, the treated surface (modified surface) sinks inside the resin due to the thermal fluctuation of the polymer. It is known that there is a problem in the durability of the surface modification effect (hydrophilicity) due to factors such as liberation of the generated hydrophilic low molecular weight substance. Although a step of applying an adhesive layer of a silane coupling agent after plasma treatment is also described, it is necessary to apply the coating before the modification effect disappears, which is not preferable as a step. In addition, compared with general plasma processing, an apparatus for applying a negative voltage is required, and thus the equipment cost is high, which is not preferable. The modification by the ion implantation method disclosed in Patent Document 2 complicates a device for obtaining high-energy ions, and a high vacuum for injecting high-energy ions into a workpiece. Due to the necessity of performing the treatment in a moderate atmosphere, the equipment cost becomes high, and improvement has been desired. In addition, the conventional method has a problem that the adhesive strength between the fluororesin film and the rubber is low. Moreover, although the proposal of patent document 3 and patent document 4 improves peeling strength, there exists a problem in the charge charge of the film surface, and uniform thin film formation and higher adhesive strength were requested | required.

本発明は、前記従来の問題を解決するため、均一な薄膜形成ができ、フッ素樹脂フィルムと被着材との接着強度が高く、フッ素樹脂フィルムの改質効果が長期間持続する表面改質フッ素樹脂フィルム、その製造方法、その製造装置、表面改質フッ素樹脂フィルムを含む複合体及びその製造方法を提供する。   In order to solve the above-described conventional problems, the present invention provides a surface-modified fluorine that can form a uniform thin film, has high adhesive strength between the fluororesin film and the adherend, and has a long-lasting modification effect of the fluororesin film. Provided are a resin film, a production method thereof, a production apparatus thereof, a composite including a surface-modified fluororesin film, and a production method thereof.

本発明の表面改質フッ素樹脂フィルムは、フッ素樹脂フィルム層の少なくとも一表面にプラズマ−モノマー重合層を有する表面改質フッ素樹脂フィルムであって、前記プラズマ−モノマー重合層は、プラズマを照射しながら前記フッ素樹脂フィルム層に帯電する電荷を除去した状態で、反応性不飽和基を含むモノマーをグラフト重合させた均一な薄膜層であることを特徴とする。   The surface-modified fluororesin film of the present invention is a surface-modified fluororesin film having a plasma-monomer polymerization layer on at least one surface of the fluororesin film layer, wherein the plasma-monomer polymerization layer is irradiated with plasma. It is a uniform thin film layer obtained by graft polymerization of a monomer containing a reactive unsaturated group in a state in which a charge charged on the fluororesin film layer is removed.

本発明の表面改質フッ素樹脂フィルムの製造方法は、チャンバー内で、フッ素樹脂フィルム層の少なくとも一表面にモノマー重合層を形成して前記の表面改質フッ素樹脂フィルムを製造する方法であって、電気導体シートの上にフッ素樹脂フィルムを載置し、前記フッ素樹脂フィルム層に帯電する電荷を除去した状態で、プラズマ照射手段と前記電気導体シートとの間で電圧をかけた状態で前記フッ素樹脂フィルムの表面にプラズマを照射しながら反応性不飽和結合基を含むモノマーを供給し、前記フッ素樹脂フィルムの表面に前記モノマーをグラフト重合させて均一な薄膜層を形成することを特徴とする。   The method for producing the surface-modified fluororesin film of the present invention is a method for producing the surface-modified fluororesin film by forming a monomer polymerization layer on at least one surface of the fluororesin film layer in a chamber, A fluororesin film is placed on the electrical conductor sheet, and the fluororesin is in a state in which a voltage is applied between the plasma irradiation means and the electrical conductor sheet in a state where electric charges charged on the fluororesin film layer are removed. A monomer containing a reactive unsaturated bond group is supplied while irradiating the surface of the film with plasma, and the monomer is graft-polymerized on the surface of the fluororesin film to form a uniform thin film layer.

本発明の表面改質フッ素樹脂フィルムの製造装置は、チャンバー内で、フッ素樹脂フィルム層の少なくとも一表面にモノマー重合層を形成して前記の表面改質フッ素樹脂フィルムを製造する装置であって、フッ素樹脂フィルムを載せかつ前記フッ素樹脂フィルム層に帯電する電荷を除去するための電気導体シートと、前記チャンバー内に反応性不飽和結合基を含むモノマーを供給する手段と、前記フッ素樹脂フィルムの表面に前記モノマーを重合するためのプラズマ照射手段と、前記プラズマ照射手段と前記電気導体シートとの間で電圧をかける手段を含むことを特徴とする。   The apparatus for producing a surface-modified fluororesin film of the present invention is an apparatus for producing the surface-modified fluororesin film by forming a monomer polymerization layer on at least one surface of the fluororesin film layer in a chamber, An electric conductor sheet for placing a fluororesin film and removing the charge charged on the fluororesin film layer; means for supplying a monomer containing a reactive unsaturated bond group in the chamber; and a surface of the fluororesin film And a plasma irradiation means for polymerizing the monomer, and means for applying a voltage between the plasma irradiation means and the electric conductor sheet.

本発明の表面改質フッ素樹脂フィルムを含む複合体は、前記表面改質フッ素樹脂フィルムの上に直接又は接着層を介して被着材を接着した複合体であって、前記表面改質フッ素樹脂フィルムと前記被着材を剥離させると、前記表面改質フッ素樹脂フィルムより上の部分で破壊することを特徴とする。   The composite including the surface-modified fluororesin film of the present invention is a composite in which an adherend is adhered directly or via an adhesive layer on the surface-modified fluororesin film, When the film and the adherend are peeled off, the film is broken at a portion above the surface-modified fluororesin film.

本発明の表面改質フッ素樹脂フィルムを含む複合体の製造方法は、前記表面改質フッ素樹脂フィルムの上に直接ゴムを加硫成形した複合体の製造方法であって、前記表面改質フッ素樹脂フィルムの上でゴム材料を加熱温度130〜180℃、処理時間5〜20分の条件で加硫成形することを特徴とする。
The method for producing a composite including the surface-modified fluororesin film of the present invention is a method for producing a composite in which rubber is directly vulcanized and molded on the surface-modified fluororesin film. The rubber material is vulcanized and molded on the film under the conditions of a heating temperature of 130 to 180 ° C. and a processing time of 5 to 20 minutes.

本発明によると、薄膜形成する際にフッ素樹脂フィルム表面の電荷を除去することにより、均一な薄膜形成と接着強度の高い表面改質フッ素樹脂フィルムを提供できる。より具体的には、表面改質フッ素樹脂フィルムの上に直接又は接着層を介して被着材を接着させ、フッ素樹脂フィルム層と被着材を剥離させると、プラズマ−モノマー重合層より上の部分で破壊する程度に接着強度が高く、均一接着が可能で、フッ素樹脂フィルムの改質効果が長期間持続する表面改質フッ素樹脂フィルムを提供できる。すなわち、プラズマ重合法による樹脂層により、均一かつ強固に接着された複合体が得られるとともに、改質層が安定である為長期間の在庫が可能となる。   According to the present invention, a surface-modified fluororesin film having a uniform thin film formation and high adhesive strength can be provided by removing the charge on the surface of the fluororesin film when forming a thin film. More specifically, when the adherend is adhered to the surface-modified fluororesin film directly or via an adhesive layer, and the fluororesin film layer and the adherend are peeled off, the plasma-monomer polymerization layer is above the surface. It is possible to provide a surface-modified fluororesin film that has high adhesive strength to such an extent that it can be partially broken, can be uniformly adhered, and can maintain the modification effect of the fluororesin film for a long period of time. That is, the resin layer formed by the plasma polymerization method can provide a uniformly and firmly bonded composite, and the modified layer is stable, so that a long-term inventory is possible.

図1A−Bは本発明の一実施例における複合体のはく離試験後の破壊部を示す断面図である。1A and 1B are cross-sectional views showing a fracture portion after a peeling test of a composite in one embodiment of the present invention. 図2A−Dは破壊検査における破壊の基本的パターンを示すもので、図2Aは接着剤の凝集破壊、図2Bは接着破壊(界面破壊)、図2Cは材料破壊(基材破壊、被着材破壊)、図2Dは混合した破壊の例である。2A to D show a basic pattern of destruction in the destructive inspection, FIG. 2A is an adhesive cohesive failure, FIG. 2B is an adhesive failure (interface failure), and FIG. 2C is a material failure (base material destruction, adherend) Destruction), FIG. 2D is an example of mixed destruction. 図3Aは本発明の一実施例における改質フィルムとゴムを含む複合体の模式的断面図、図3Bは同はく離試験後の破壊部を示す断面図である。FIG. 3A is a schematic cross-sectional view of a composite including a modified film and rubber in one example of the present invention, and FIG. 3B is a cross-sectional view showing a fracture portion after the peeling test. 図4A−Bは本発明の一実施例におけるはく離試験の方法を示す断面図である。4A and 4B are cross-sectional views showing a peeling test method in one embodiment of the present invention. 図5は本発明の一実施例におけるプラズマ重合装置の模式的説明図である。FIG. 5 is a schematic explanatory view of a plasma polymerization apparatus in one embodiment of the present invention. 図6は本発明の一実施例における装置の要部を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing the main part of the apparatus in one embodiment of the present invention. 図7Aは本発明の比較例で得られた複合体の写真、図7Bは本発明の一実施例で得られた複合体の写真である。FIG. 7A is a photograph of the composite obtained in the comparative example of the present invention, and FIG. 7B is a photograph of the composite obtained in one example of the present invention. 図8は本発明の一実施例における複合体に対するはく離試験の結果を示すグラフである。FIG. 8 is a graph showing the results of a peel test for the composite in one example of the present invention. 図9A−Cは本発明の実施例1におけるゴム−フッ素樹脂フィルム間の破壊現象を示すフーリエ変換赤外分光(FTIR)測定装置によるATR法による分析結果であり、図9Aはフッ素樹脂表面の透過スペクトル、図9Bはフッ素樹脂のはく離面の反射スペクトル、図9Cはゴム表面の透過スペクトルをそれぞれ示す。9A-C are the results of analysis by the ATR method using a Fourier transform infrared spectroscopy (FTIR) measuring apparatus showing the destruction phenomenon between the rubber and the fluororesin film in Example 1 of the present invention, and FIG. 9A is the transmission of the fluororesin surface. 9B shows the reflection spectrum of the release surface of the fluororesin, and FIG. 9C shows the transmission spectrum of the rubber surface. 図10は本発明の実施例3と比較例2(特許文献4の条件)における加硫温度と処理時間を変化させたときの改質フィルムとゴムの接着性評価の結果である。FIG. 10 shows the results of the evaluation of the adhesion between the modified film and the rubber when the vulcanization temperature and the treatment time are changed in Example 3 and Comparative Example 2 (conditions of Patent Document 4) of the present invention. 図11は本発明の一実施例におけるプレフィルドシリンジに使用される医療用ゴム製品を示す図である。FIG. 11 is a view showing a medical rubber product used for a prefilled syringe in one embodiment of the present invention. 図12は本発明の一実施例における医療用ゴム製品の斜視図である。FIG. 12 is a perspective view of a medical rubber product in one embodiment of the present invention. 図13は本発明の一実施例における医療用ゴム製品の断面図である。FIG. 13 is a sectional view of a medical rubber product in one embodiment of the present invention.

本発明の複合体は、フッ素樹脂フィルム層とこのフィルム層の少なくとも一表面に形成したプラズマ−モノマー重合層とこのモノマー重合層の上に直接又は接着層を介して被着材が接着されており、フッ素樹脂フィルム層と被着材を剥離させると、プラズマ−モノマー重合層より上の部分で破壊をする。これを図面で説明する。図1Aは本発明の一実施例の複合体の破壊状態を示している。複合体10はフッ素樹脂フィルム層1とその表面に形成したプラズマ−モノマー重合層2とその上に直接被着材(3a,3b)が接着されているが、フッ素樹脂フィルム層と被着材を剥離させると、の被着材の部分(3a,3b)で材料破壊をする。4は破壊部分である。図1Bは別の破壊状態を示すもので、複合体10はフッ素樹脂フィルム層1とその表面に形成したプラズマ−モノマー重合層2とその上に接着剤層(5a,5b)を介して被着材6が接着されている。フッ素樹脂フィルム層と被着材を剥離させると、接着剤層(5a,5b)部分で接着破壊をする。4は破壊部分である。図1A−Bに示すとおり、本発明の複合体はフッ素樹脂フィルム層1とプラズマ−モノマー重合層2との間は破壊せず、プラズマ−モノマー重合層2より上の部分で破壊する。なお本件明細書においては、プラズマ照射によりモノマーを重合させた層を、プラズマ−モノマー重合層と言う。   In the composite of the present invention, the fluororesin film layer, the plasma-monomer polymerization layer formed on at least one surface of the film layer, and the adherend are bonded directly or via an adhesive layer on the monomer polymerization layer. When the fluororesin film layer and the adherend are peeled off, the portion above the plasma-monomer polymerization layer is broken. This will be described with reference to the drawings. FIG. 1A shows a broken state of the composite of one embodiment of the present invention. The composite 10 has a fluororesin film layer 1, a plasma-monomer polymerization layer 2 formed on the surface thereof, and an adherend (3a, 3b) directly adhered thereto. When peeled off, material destruction occurs at the parts (3a, 3b) of the adherend. 4 is a destruction part. FIG. 1B shows another broken state, in which the composite 10 is deposited through the fluororesin film layer 1, the plasma-monomer polymerization layer 2 formed on the surface thereof, and the adhesive layer (5a, 5b) thereon. The material 6 is bonded. When the fluororesin film layer and the adherend are peeled off, adhesive breakage occurs at the adhesive layer (5a, 5b). 4 is a destruction part. As shown in FIGS. 1A and 1B, the composite of the present invention does not break between the fluororesin film layer 1 and the plasma-monomer polymerization layer 2, but breaks at a portion above the plasma-monomer polymerization layer 2. In the present specification, a layer obtained by polymerizing a monomer by plasma irradiation is referred to as a plasma-monomer polymerization layer.

接着剤を使用した接着において、破壊検査をすると通常は次の4種類の破壊現象に分類できる。
(1)凝集破壊:硬化した接着剤層が破壊する。接着剤の強度が被着材の強度より低い場合に起こる。例えば図2Aに示すように、被着材7と被着材9の間の接着剤層8a,8b間が破壊する。11は破壊部分である。
(2)接着破壊:接着剤層と被着材との境界面が破壊する。接着力が不十分な場合に起こる。例えば図2Bに示すように、被着材7と接着剤層8との界面が破壊する。12は破壊部分である。
(3)被着材破壊:基材層(被着材)そのものが破壊する。この場合は接着剤及び接着力は十分な強度を持っており、基材層(被着材)の強度が弱い場合に起こる。例えば図2Cに示すように、被着材7a,7b間が破壊する。13は破壊部分である。
(4)混合破壊:前記(1)〜(3)の少なくとも2つが混合して起こる。例えば図2Dに示すように、被着材7と接着剤層8の破壊部分14a〜14cで破壊する。
In the adhesion using an adhesive, when a destructive inspection is performed, it can be generally classified into the following four types of destructive phenomena.
(1) Cohesive failure: The cured adhesive layer is destroyed. Occurs when the strength of the adhesive is lower than the strength of the adherend. For example, as shown in FIG. 2A, the adhesive layers 8a and 8b between the adherend 7 and the adherend 9 are broken. 11 is a destruction part.
(2) Adhesive failure: The interface between the adhesive layer and the adherend is destroyed. Occurs when the adhesion is insufficient. For example, as shown in FIG. 2B, the interface between the adherend 7 and the adhesive layer 8 is broken. Reference numeral 12 denotes a broken portion.
(3) Adhering material destruction: The base material layer (adhering material) itself is destroyed. In this case, the adhesive and the adhesive force have sufficient strength, and this occurs when the strength of the base material layer (the adherend) is weak. For example, as shown in FIG. 2C, the adherends 7a and 7b are broken. 13 is a destruction part.
(4) Mixed breakdown: At least two of the above (1) to (3) are mixed. For example, as shown in FIG. 2D, destruction is caused at the broken portions 14 a to 14 c of the adherend 7 and the adhesive layer 8.

本発明の複合体はフッ素樹脂フィルム層1とプラズマ−モノマー重合層2との間は破壊せず、プラズマ−モノマー重合層2より上の部分で破壊することから、フッ素樹脂フィルム層1とプラズマ−モノマー重合層2との間の接着力は、他の層よりも相当に高いことがわかる。プラズマ−モノマー重合層2より上の部分で破壊する状態は、前記(1)〜(4)のいずれの状態であってもよい。例えば図3Aに示すように、フッ素樹脂フィルム層15の表面にプラズマ−モノマー重合層16が形成されており、この上でゴム材料を加硫させてゴム層17を形成し複合体20を得る。この複合体20のフッ素樹脂フィルム層15とゴム層17を剥離させると、ゴム層17が破壊部分18で材料破壊する。   Since the composite of the present invention does not break between the fluororesin film layer 1 and the plasma-monomer polymerization layer 2, but breaks at the portion above the plasma-monomer polymerization layer 2, the fluororesin film layer 1 and the plasma- It turns out that the adhesive force between the monomer polymerization layers 2 is considerably higher than that of the other layers. The state of destruction at the portion above the plasma-monomer polymerization layer 2 may be any of the states (1) to (4). For example, as shown in FIG. 3A, a plasma-monomer polymerization layer 16 is formed on the surface of the fluororesin film layer 15, and a rubber material 17 is vulcanized thereon to form a rubber layer 17 to obtain a composite 20. When the fluororesin film layer 15 and the rubber layer 17 of the composite 20 are peeled off, the rubber layer 17 breaks the material at the broken portion 18.

本発明の複合体において、プラズマ−モノマー重合層はフッ素樹脂フィルムの一表面に形成してもよいし、両表面に形成しても良い。両表面に形成する場合は、両表面に他の物質を接着させることができる。あるいは一表面に他の物質を接着させ、他の表面には印刷を形成することもできる。   In the composite of the present invention, the plasma-monomer polymerization layer may be formed on one surface of the fluororesin film or on both surfaces. When forming on both surfaces, another substance can be adhered to both surfaces. Alternatively, another substance can be adhered to one surface, and printing can be formed on the other surface.

本発明の被着材としては、材料はどのようなものであっても良い。例えばゴム、樹脂、繊維、木材、紙、石材、金属、金属メッキ、導電性ペースト、金属ペースト、印刷インク、塗膜などが挙げられる。   As the adherend of the present invention, any material may be used. Examples thereof include rubber, resin, fiber, wood, paper, stone, metal, metal plating, conductive paste, metal paste, printing ink, and coating film.

本発明において、プラズマ−モノマー重合層の上に直接接着した被着材は、プラズマ−モノマー重合層の上で熱硬化性樹脂又はゴムを硬化させることにより自己接着させたものであっても良い。この場合は、フッ素樹脂フィルム層と熱硬化性樹脂又はゴムとは、プラズマ−モノマー重合層を介して熱硬化性樹脂又はゴムの硬化により自己接着されている。熱硬化性樹脂又はゴムの硬化は加硫によって起こる。さらに具体的には、加硫によって架橋反応が起こり、架橋によって硬化する。前記において硬化による自己接着とは、接着剤は使わずに基材自体の硬化によってプラズマ−モノマー重合層を介してフッ素樹脂フィルム層と接着することを言う。そして、フッ素樹脂フィルム層と熱硬化性樹脂又はゴムとを剥離させたとき、熱硬化性樹脂又はゴムの被着材破壊が起こる。   In the present invention, the adherend directly adhered on the plasma-monomer polymerization layer may be self-adhered by curing a thermosetting resin or rubber on the plasma-monomer polymerization layer. In this case, the fluororesin film layer and the thermosetting resin or rubber are self-adhered by the curing of the thermosetting resin or rubber through the plasma-monomer polymerization layer. Curing of the thermosetting resin or rubber occurs by vulcanization. More specifically, a crosslinking reaction occurs by vulcanization, and the composition is cured by crosslinking. In the above, the self-adhesion by curing means that the substrate is bonded to the fluororesin film layer through the plasma-monomer polymerization layer without using an adhesive. Then, when the fluororesin film layer and the thermosetting resin or rubber are peeled off, destruction of the adherend of the thermosetting resin or rubber occurs.

プラズマを用いたモノマー重合層の厚みは500nm以下が好ましい。この膜厚であれば、均一厚みのモノマー重合層を形成でき、かつフッ素樹脂フィルム層と被着材との接合強度も高い。より好ましいプラズマ−モノマー重合層の厚みは1〜100nmの範囲であり、さらに好ましくは5〜50nmの範囲である。   The thickness of the monomer polymerization layer using plasma is preferably 500 nm or less. With this film thickness, a monomer polymerization layer having a uniform thickness can be formed, and the bonding strength between the fluororesin film layer and the adherend is high. More preferably, the thickness of the plasma-monomer polymerization layer is in the range of 1 to 100 nm, and more preferably in the range of 5 to 50 nm.

本発明でいう「均一な薄膜」の膜厚は前記のとおりであり、均一とは、複合体にしたときにフッ素樹脂フィルム層と被着材との界面には目視で観察される気泡は無いことである。目視で観察される程度の気泡が存在すると、その部分の接合強度は弱いものとなる。より具体的には、改質フッ素樹脂フィルムの表面でゴムの加硫成形を行い、縦100mm、横100mmの大きさの複合体において、フッ素樹脂フィルム層とゴムとの界面には目視で観察される気泡は無いものを「均一」という。   The film thickness of the “uniform thin film” as used in the present invention is as described above, and the term “uniform” means that there are no bubbles observed visually at the interface between the fluororesin film layer and the adherend when it is made into a composite. That is. When bubbles that are visually observed are present, the bonding strength of the portion becomes weak. More specifically, rubber vulcanization molding is performed on the surface of the modified fluororesin film, and in a composite having a size of 100 mm in length and 100 mm in width, the interface between the fluororesin film layer and the rubber is visually observed. Those with no air bubbles are called “uniform”.

プラズマ−モノマー重合層は、表面に電気導体シートを配置した保持具の上にフッ素樹脂フィルムを載せ、プラズマ照射手段と電気導体シートとの間で電圧をかけた状態でフッ素樹脂フィルムの表面にプラズマを照射しながら反応性不飽和結合基を含むモノマーを供給し、フッ素樹脂の表面に前記モノマーをプラズマによりグラフト重合させる。これによりフッ素樹脂フィルム層に帯電する電荷を除去した状態で、薄膜を形成できる。この製造装置の工夫により、フッ素樹脂フィルムの表面にプラズマ−モノマー重合層を均一に形成することができる。プラズマ照射手段と前記電気導体シートとの間の電圧は1〜50kVの範囲が好ましい。プラズマ照射手段と電気導体シートとの間で電圧をかけた状態でプラズマ−モノマー重合をすると、プラズマによる表面改質が促進され、膜厚が薄いにもかかわらず強固なプラズマ−モノマー重合層を形成することができる。この薄膜は分子が配向しているとも考えられる。   In the plasma-monomer polymerization layer, a fluororesin film is placed on a holder having an electric conductor sheet disposed on the surface, and plasma is applied to the surface of the fluororesin film in a state where a voltage is applied between the plasma irradiation means and the electric conductor sheet. A monomer containing a reactive unsaturated bond group is supplied while irradiating the above, and the monomer is graft-polymerized by plasma on the surface of the fluororesin. Thereby, a thin film can be formed in a state in which the electric charge charged to the fluororesin film layer is removed. The plasma-monomer polymerization layer can be uniformly formed on the surface of the fluororesin film by devising the manufacturing apparatus. The voltage between the plasma irradiation means and the electric conductor sheet is preferably in the range of 1 to 50 kV. When plasma-monomer polymerization is performed with a voltage applied between the plasma irradiation means and the electrical conductor sheet, surface modification by plasma is promoted, and a strong plasma-monomer polymerization layer is formed despite its thin film thickness. can do. This thin film is also considered to have molecules oriented.

フッ素樹脂は、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレンと微量のパーフルオロアルコキシドとの共重合体(変性PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−エチレン共重合体(PETFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリビニリデンフルオライド(PVDF)、ポリビニルフルオライド(PVF)又はテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(PEP)等を挙げることができる。これらのフッ素樹脂は化学的に安定であるが、表面活性が乏しくゴムとの接着が困難であった。ここでフィルムとは概平板状に成形された成形品を指す。フィルムの成形方法に特に限定はないが、圧縮成形、スカイブド成形、キャスト成形、切削成形、溶融押し出し成形などが挙げられる。フィルムの厚みに特に限定はないが、フィルムの厚さは、10μm〜150μmが好ましい。   The fluororesin is polytetrafluoroethylene (PTFE), a copolymer of tetrafluoroethylene and a small amount of perfluoroalkoxide (modified PTFE), a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene- Examples include ethylene copolymer (PETFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), or tetrafluoroethylene-hexafluoropropylene copolymer (PEP). it can. These fluororesins are chemically stable, but have poor surface activity and are difficult to adhere to rubber. Here, the film refers to a molded product formed into a substantially flat plate shape. The method for forming the film is not particularly limited, and examples thereof include compression molding, skived molding, cast molding, cutting molding, and melt extrusion molding. The thickness of the film is not particularly limited, but the film thickness is preferably 10 μm to 150 μm.

本発明の表面改質フッ素樹脂フィルムは少なくとも一表面に形成したプラズマ−モノマー重合層からなる均一な薄膜である。これにより、プラズマ−モノマー重合層より上の部分で破壊する程度に接着強度が高く、フッ素樹脂フィルムの改質効果が長期間持続する表面改質フッ素樹脂フィルムを提供できる。   The surface-modified fluororesin film of the present invention is a uniform thin film comprising a plasma-monomer polymerization layer formed on at least one surface. Accordingly, it is possible to provide a surface-modified fluororesin film that has a high adhesive strength to such an extent that it breaks at a portion above the plasma-monomer polymerization layer, and the modification effect of the fluororesin film lasts for a long period of time.

本発明の製造装置を図5により説明する。図5はプラズマ重合装置31の模式的説明図である。プラズマ重合装置31は、ドラフトチャンバ32とプロセスガス供給装置33とを備え、ドラフトチャンバ32にはフッ素樹脂フィルム35の表面を改質する処理室34と、温度調節器40が設置されている。処理室34にはフッ素樹脂フィルム35の搬送装置36と、フッ素樹脂フィルム35を保持する保持具37が設けられている。処理室34にはモノマーガス供給装置38と、プラズマ発生装置(プラズマヘッド)39が設置されている。フッ素樹脂フィルム35の出入り口(搬送口)はガスカーテン41a,41bによって仕切られている。プラズマ発生装置(プラズマヘッド)39にはプラズマ発生用電源42が接続されている。ドラフトチャンバ32には送風機43が設けられており、矢印44のようにドラフトチャンバ32内のガスを排気している。プロセスガス供給装置33にはパージ及びガスカーテン用のプロセスガスボンベ45と、プラズマ発生用プロセスガスポンベ46が配置されている。プロセスガスボンベ45からのガスは流量計47によって流量を制御しながらドラフトチャンバ32に送られる。プロセスガスポンベ46からのガスはマスフローコントローラ48によって流量を制御しながら処理室34供給される。ドラフトチャンバ32内でモノマーガス供給装置38からモノマー蒸気を発生させ、プラズマ発生装置(プラズマヘッド)39をX−Y方向に移動させながら、フッ素樹脂フィルム35の表面に前記モノマーをグラフト重合させて薄膜層を形成するのが好ましい。この際に、保持具37の表面に電気導体シートを配置してフッ素樹脂フィルム層に帯電する電荷を除去しながら、薄膜を形成する。   The manufacturing apparatus of the present invention will be described with reference to FIG. FIG. 5 is a schematic explanatory view of the plasma polymerization apparatus 31. The plasma polymerization apparatus 31 includes a draft chamber 32 and a process gas supply apparatus 33, and a processing chamber 34 for modifying the surface of the fluororesin film 35 and a temperature controller 40 are installed in the draft chamber 32. The processing chamber 34 is provided with a transport device 36 for the fluororesin film 35 and a holder 37 for holding the fluororesin film 35. A monomer gas supply device 38 and a plasma generator (plasma head) 39 are installed in the processing chamber 34. The entrance / exit (conveying port) of the fluororesin film 35 is partitioned by gas curtains 41a and 41b. A plasma generating power source 42 is connected to the plasma generating device (plasma head) 39. The draft chamber 32 is provided with a blower 43 and exhausts the gas in the draft chamber 32 as indicated by an arrow 44. The process gas supply device 33 is provided with a process gas cylinder 45 for purge and gas curtain and a process gas pump 46 for generating plasma. The gas from the process gas cylinder 45 is sent to the draft chamber 32 while the flow rate is controlled by the flow meter 47. The gas from the process gas pump 46 is supplied to the processing chamber 34 while the flow rate is controlled by the mass flow controller 48. A monomer vapor is generated from the monomer gas supply device 38 in the draft chamber 32, and the monomer is graft-polymerized on the surface of the fluororesin film 35 while moving the plasma generator (plasma head) 39 in the XY direction. It is preferred to form a layer. At this time, an electric conductor sheet is disposed on the surface of the holder 37 to form a thin film while removing the electric charge charged on the fluororesin film layer.

図6は同装置のドラフトチャンバ32の概略断面図である。保持具37の上には電気導体シート50が配置され、その上にフッ素樹脂フィルム35が載置される。処理室34内はモノマーガス雰囲気となっており、フッ素樹脂フィルム35の上方のプラズマ発生装置(プラズマヘッド)39からプラズマ52が照射される。処理室34内の上部からパージガス51が供給され、かつ出入り口(搬送口)上方のパイプからのパージガスの噴出により、ガスカーテン41a,41bが形成される。このようにしてフッ素樹脂フィルム35の表面を改質させる装置が構成される。処理室34は、室内を密閉とし真空ポンプなどにより気圧を管理しても良いし、処理室を開放系とし処理室内に供給されるプロセスガスにより処理室内を大気圧以上とすることで外部空気の流入を防止しても良い。工業的には後者が好ましい。また後述する搬送装置の駆動による処理室内の気体の乱れを抑制する目的で、搬送装置の近辺にプロセスガスと同一のガスを一定量供給し気体の乱れを抑制する機構を備えることが好ましい。   FIG. 6 is a schematic sectional view of the draft chamber 32 of the apparatus. An electric conductor sheet 50 is disposed on the holder 37, and the fluororesin film 35 is placed thereon. The processing chamber 34 has a monomer gas atmosphere, and a plasma 52 is irradiated from a plasma generator (plasma head) 39 above the fluororesin film 35. The purge gas 51 is supplied from the upper part in the processing chamber 34, and the gas curtains 41a and 41b are formed by the ejection of the purge gas from the pipe above the entrance / exit (conveying port). Thus, an apparatus for modifying the surface of the fluororesin film 35 is configured. The processing chamber 34 may be hermetically sealed and the atmospheric pressure may be controlled by a vacuum pump or the like, or the processing chamber is an open system, and the processing gas supplied to the processing chamber is set to a pressure higher than the atmospheric pressure by the process gas. Inflow may be prevented. The latter is preferred industrially. In addition, for the purpose of suppressing the turbulence of the gas in the processing chamber due to the driving of the transfer device, which will be described later, it is preferable to provide a mechanism for suppressing the gas turbulence by supplying a certain amount of the same gas as the process gas in the vicinity of the transfer device.

プラズマ発生装置は、プラズマ重合を行うためのプラズマを発生させる装置である。プラズマを発生させる装置は特に指定はなく、公知の装置を用いることができる。好ましくは、プラズマ発生装置は常圧コロナ放電装置である。この場合、常圧とは厳密に1気圧(1013hPa)を意味するのではなく、必要に応じて1014〜2000hPaの範囲で加圧してもよい。   The plasma generator is an apparatus that generates plasma for performing plasma polymerization. An apparatus for generating plasma is not particularly specified, and a known apparatus can be used. Preferably, the plasma generator is an atmospheric pressure corona discharge device. In this case, the normal pressure does not strictly mean 1 atmospheric pressure (1013 hPa), but may be pressurized within a range of 1014 to 2000 hPa as necessary.

プラズマ発生の条件としては、後述するプロセスガスのプラズマ雰囲気を形成できれば特に限定されない。前述の常圧コロナ放電装置の場合、装置により多少変動するが、1kHz〜100kHzの印加電圧の周波数、1kV〜24kVの放電電圧、10Hz〜200Hzのパルス変調周波数、50%〜99%のパルスデューティーが好ましい。より好ましくは、20kHzの高周波、24kVの高電圧を印加し、パルス変調周波数60Hz、パルスデューティー99%である。プラズマ発生装置は処理室内に1個設置しても良く、複数設置することで見かけの処理速度を向上させることもできる。   The conditions for generating plasma are not particularly limited as long as a plasma atmosphere of a process gas described later can be formed. In the case of the atmospheric pressure corona discharge device described above, the frequency varies depending on the device, but the applied voltage frequency of 1 kHz to 100 kHz, the discharge voltage of 1 kV to 24 kV, the pulse modulation frequency of 10 Hz to 200 Hz, and the pulse duty of 50% to 99%. preferable. More preferably, a high frequency of 20 kHz and a high voltage of 24 kV are applied, the pulse modulation frequency is 60 Hz, and the pulse duty is 99%. One plasma generator may be installed in the processing chamber, and the apparent processing speed can be improved by installing a plurality of plasma generating apparatuses.

プロセスガス供給装置は、プラズマ重合装置の外部からプラズマ源となるガスをプラズマ発生装置に導入するための流路である。プロセスガスとしては不活性ガスまたは窒素が好ましい。不活性ガスとしてはアルゴン、ヘリウムなどが挙げられる。不活性ガスはプラズマの維持が容易であり好ましい。窒素ガスはコストの面から好ましい。ガスの純度はそれほど必要なく、一般の工業用純度(99.99vol.%)を用いればよい。この場合、大気中に含まれる酸素の影響を防ぐ目的で、処理室を閉鎖系としプロセスガスで置換を行うか、処理室を開放系としてプロセスガスの供給により処理室を大気圧以上とする方法あるいはガスカーテンを処理室の入口と出口に設置するなどし、大気の流入を防ぐことが好ましい。プラズマガスの供給量はプラズマ発生装置のサイズに合わせて適宜設定することができる。実施例に記載したサイズの常圧コロナ放電装置の場合、30SLM〜50SLMが好ましい。   The process gas supply apparatus is a flow path for introducing a gas serving as a plasma source from the outside of the plasma polymerization apparatus into the plasma generation apparatus. The process gas is preferably an inert gas or nitrogen. Examples of the inert gas include argon and helium. An inert gas is preferable because it is easy to maintain plasma. Nitrogen gas is preferable from the viewpoint of cost. The purity of the gas is not so necessary, and general industrial purity (99.99 vol.%) May be used. In this case, for the purpose of preventing the influence of oxygen contained in the atmosphere, the process chamber is closed and replaced with process gas, or the process chamber is opened and the process chamber is supplied to supply a process gas to atmospheric pressure or higher. Alternatively, it is preferable to prevent the inflow of air by installing gas curtains at the entrance and exit of the processing chamber. The supply amount of the plasma gas can be appropriately set according to the size of the plasma generator. In the case of the atmospheric pressure corona discharge device of the size described in the examples, 30 SLM to 50 SLM is preferable.

保持具はフッ素樹脂フィルムを保持する為の装置である。保持具の表面は電気導体シートとする。保持具がフィルムと接触している部分はプラズマ発生装置より発生するプラズマがフィルムに当たる箇所の反対面である。保持具とフィルムが接触している面積は特に指定はないが、プラズマが照射されている面積よりも大きな面積で接触していることが好ましい。   The holder is a device for holding the fluororesin film. The surface of the holder is an electric conductor sheet. The part where the holder is in contact with the film is the surface opposite to the part where the plasma generated by the plasma generator hits the film. The area where the holder and the film are in contact with each other is not particularly specified, but it is preferable that they are in contact with each other over an area where the plasma is irradiated.

また保持具表面の電気導体シートは、プラズマ放電の電位に対して接地されていることが好ましい。保持具の材質に特に指定はないが、たとえば銅、アルミニウム、ステンレスなどを表面に有する保持具が挙げられる。保持具の形状も特に指定はないが、フィルムと均一、かつ、大面積で接触する為に、板状の形状であることが好ましい。フィルムと保持具を均一に接触させる方法に特に指定はないが、例えば固定したフィルムに対して一定の圧力で保持具を押し付けても良いし、あるいは、保持具上にフィルムを固定しても良い。   The electric conductor sheet on the surface of the holder is preferably grounded with respect to the potential of plasma discharge. Although there is no designation | designated in particular in the material of a holder, the holder which has copper, aluminum, stainless steel etc. on the surface is mentioned, for example. The shape of the holder is not particularly specified, but a plate-like shape is preferable in order to contact the film uniformly and in a large area. There is no specific designation for the method of bringing the film and the holder into uniform contact, but for example, the holder may be pressed against the fixed film with a constant pressure, or the film may be fixed on the holder. .

保持具が電気導体シートであると所望の表面改質が得られる理由について詳細は不明であるが、フィルムをプラズマ処理する際に、フィルム表面が電荷を帯びる所謂チャージアップ現象が起きることが知られており、保持具を電気導体シートとすることでこの電荷をフィルム表面から逃し、より均一なプラズマ重合が行われていると発明者らは推測している。   The details of the reason why the desired surface modification can be obtained when the holder is an electric conductor sheet are unknown, but it is known that a so-called charge-up phenomenon occurs in which the film surface is charged when the film is plasma treated. The inventors speculate that this electric charge is released from the film surface by using the holder as an electric conductor sheet, and more uniform plasma polymerization is performed.

搬送装置に特に指定はなく、フィルムの所望の部位をプラズマ発生装置の部位へと搬送できる機構を備えていれば良い。たとえばX−Y軸方向に稼動できるステージを設けてフィルムの所望の部位をプラズマ発生装置の部位に搬送しても良いし、あるいは、プラズマ発生装置をX軸方向に搬送できる装置とフィルムをY軸方向に搬送できる装置の組み合わせで目的を達成しても良い。搬送装置は保持具を搬送しても良い。たとえば保持具をプラズマ発生装置の部位に固定し、搬送装置でフィルムのみを搬送しても良いし、あるいは、保持具にフィルムを固定しておきフィルムと保持具を同時に搬送しても良い。   There is no particular designation for the transport device, and it is only necessary to have a mechanism capable of transporting a desired part of the film to the part of the plasma generator. For example, a stage that can be operated in the XY axis direction may be provided to convey a desired part of the film to the part of the plasma generator, or the apparatus and film that can convey the plasma generator in the X axis direction may be transferred to the Y axis. The object may be achieved by a combination of apparatuses capable of conveying in the direction. The transport device may transport the holder. For example, the holder may be fixed to the site of the plasma generator and only the film may be transferred by the transfer device, or the film and the holder may be transferred simultaneously with the film fixed to the holder.

フィルムの処理速度は特に指定はなく、所望の改質が得られる範囲で適宜調整してよい。後述の実施例の装置、およびその他の条件を使用した場合、1cm2当たり1秒〜10秒の範囲で処理を行うことが好ましい。 The processing speed of the film is not particularly specified, and may be appropriately adjusted within a range in which a desired modification is obtained. In the case of using the apparatus of Examples described later and other conditions, it is preferable to perform the treatment in a range of 1 to 10 seconds per 1 cm 2 .

モノマーガス供給装置は、モノマーガスを供給する為の装置である。モノマー自体が室温でガス状の場合は、そのまま使用できる。液状および固体状の場合は、加熱することによりガス状として使用できる。後述のアクリル酸をモノマーとして使用する場合、アクリル酸は液状の為加熱が必要であり、モノマーガス供給装置はモノマーを適度に加熱する部品、および、ガスの供給部を保温し液化を防ぐ部品を備えることが好ましい。モノマーガスは適当な圧力を与えることで処理室に供給しても良いし、あるいは、前述のガス化を処理室内に設けたモノマーガス供給装置にて行うことで直接モノマーガスを供給しても良い。   The monomer gas supply device is a device for supplying monomer gas. When the monomer itself is gaseous at room temperature, it can be used as it is. In the case of liquid and solid, it can be used as a gas by heating. When acrylic acid, which will be described later, is used as a monomer, heating is necessary because acrylic acid is in a liquid state, and the monomer gas supply device has components that appropriately heat the monomer and components that keep the gas supply section warm and prevent liquefaction. It is preferable to provide. The monomer gas may be supplied to the processing chamber by applying an appropriate pressure, or the monomer gas may be directly supplied by performing the above gasification with a monomer gas supply device provided in the processing chamber. .

モノマーガスの供給は処理室内に均一に行うことが望ましい。すなわち、プラズマ重合が行われているプラズマ発生装置の近傍、および、プラズマ重合が行われていないフィルムの近傍の両方へとモノマーガスの供給を行うことが望ましい。この為に、プラズマ発生装置にプロセスガスと混合してモノマーガスを供給する方法は好ましくなく、モノマーガスを処理室内に供給する方法が適している。すなわち、前述したガス化を処理室内に設けたモノマーガス供給装置にて行うことで処理室に直接モノマーガスを供給する方法が好ましい。モノマーガスの供給を処理室内に均一に行うことで、プラズマ重合法による表面改質が行えるとともに、プラズマ処理が終わったフィルム部位でも残存するラジカルによる表面改質が継続し、より有効な表面改質を行うことができる。   It is desirable to supply the monomer gas uniformly in the processing chamber. That is, it is desirable to supply the monomer gas both to the vicinity of the plasma generator where plasma polymerization is performed and to the vicinity of the film where plasma polymerization is not performed. For this reason, a method of supplying a monomer gas by mixing it with a process gas to the plasma generator is not preferred, and a method of supplying the monomer gas into the processing chamber is suitable. That is, a method of supplying the monomer gas directly to the processing chamber by performing the above-described gasification with a monomer gas supply device provided in the processing chamber is preferable. Uniformly supplying the monomer gas into the processing chamber enables surface modification by plasma polymerization, and surface modification by remaining radicals continues even at the film part after the plasma treatment. It can be performed.

なお、アルゴンガスによるプラズマは青色をしており、モノマーガスを含むプラズマでは他の色を示すことが多い。たとえばモノマーガスとしてアクリル酸を用いた場合、そのプラズマの色は緑色を提色する。後述する実施例1でもプラズマは緑色を提色しており、このことから処理室内に供給されているアクリル酸のモノマーガスはプラズマ発生装置の近傍に十分な濃度で供給されていることが確認できる。   In addition, the plasma by argon gas is blue, and the plasma containing monomer gas often shows other colors. For example, when acrylic acid is used as the monomer gas, the plasma color is green. In Example 1 to be described later, the plasma is colored green, and from this, it can be confirmed that the monomer gas of acrylic acid supplied into the processing chamber is supplied at a sufficient concentration in the vicinity of the plasma generator. .

モノマーガスに特に指定はないが、反応性不飽和結合基を含むモノマーが好ましい。この反応性不飽和結合基を含むモノマーはガス化してプラズマ照射領域へ供給することが好ましい。反応性不飽和結合基を含むモノマーとしては、例えば(メタ)アクリル系モノマー、アセチレン系モノマー、アルコール系モノマーが挙げられる。使用するモノマーガスは単一の物質、あるいは、複数の混合物でも良い。具体的には、アクリル酸またはその誘導体として、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸イソブチル、アクリル酸t−ブチル、アクリル酸2−エチルヘキシル、アクリル酸ラウリル、アクリル酸トリデシル、アクリル酸ステアリル、アクリル酸シクロヘキシル、アクリル酸プロピル、アクリル酸ベンジル、アクリル酸イソプロピル、アクリル酸sec−ブチル、アクリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル、アクリル酸ジメチルアミノエチル、アクリル酸ジエチルアミノエチル、アクリル酸グリシジル、アクリル酸テトラヒドロフルフリル、アクリル酸アリル、ジアクリル酸エチルグリコール、ジアクリル酸トリエチレングリコール、ジアクリル酸テトラエチレングリコール、アクリル酸2−エトキシエチル、アクリル酸エトキシエトキシエチル、アクリル酸2−メトキシエチル、アクリル酸フェノキシエチル、アクリル酸フェノキシポリエチレングリコール、アクリル酸ジメチルアミノエチルメチルクロライド塩等のアクリル酸またはその誘導体が挙げられる。   The monomer gas is not particularly specified, but a monomer containing a reactive unsaturated bond group is preferable. The monomer containing the reactive unsaturated bond group is preferably gasified and supplied to the plasma irradiation region. Examples of the monomer containing a reactive unsaturated bond group include (meth) acrylic monomers, acetylene monomers, and alcohol monomers. The monomer gas used may be a single substance or a mixture of plural substances. Specifically, acrylic acid or its derivatives include acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, tridecyl acrylate , Stearyl acrylate, cyclohexyl acrylate, propyl acrylate, benzyl acrylate, isopropyl acrylate, sec-butyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, dimethylaminoethyl acrylate, diethylamino acrylate Ethyl, glycidyl acrylate, tetrahydrofurfuryl acrylate, allyl acrylate, ethyl glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate Acrylic acid or its derivatives, such as alcohol, 2-ethoxyethyl acrylate, ethoxyethoxyethyl acrylate, 2-methoxyethyl acrylate, phenoxyethyl acrylate, phenoxypolyethylene glycol acrylate, and dimethylaminoethylmethyl chloride acrylate. Can be mentioned.

メタクリル酸またはその誘導体としては、メタクリル酸、メタクリル酸メチル、メタクリル酸ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、メタクリル酸シクロヘキシル、メタクリル酸プロピル、メタクリル酸ベンジル、メタクリル酸イソプロピル、メタクリル酸sec−ブチル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチル、メタクリル酸グリシジル、メタクリル酸テトラヒドロフルフリル、メタクリル酸アリル、ジメタクリル酸エチレングリコール、ジメタクリル酸トリエチレングリコール、ジメタクリル酸テトラエチレングリコール、ジメタクリル酸1,3−ブチレングリコール、トリメタクリル酸トリメチロールプロパン、メタクリル酸2−エトキシエチル、メタクリル酸エトキシエトキシエチル、メタクリル酸2−メトキシエチル、メタクリル酸フェノキシエチル、メタクリル酸フェノキシポリエチレングリコール、メタクリル酸ジメチルアミノエチルメチルクロライド塩、メタクリル酸グリシジル等のメタクリル酸またはその誘導体が挙げられる。   Methacrylic acid or its derivatives include methacrylic acid, methyl methacrylate, butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, tridecyl methacrylate, stearyl methacrylate, cyclohexyl methacrylate. , Propyl methacrylate, benzyl methacrylate, isopropyl methacrylate, sec-butyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, glycidyl methacrylate, methacrylic acid Tetrahydrofurfuryl, allyl methacrylate, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, dimethac Tetraethylene glycol diacid, 1,3-butylene glycol dimethacrylate, trimethylolpropane trimethacrylate, 2-ethoxyethyl methacrylate, ethoxyethoxyethyl methacrylate, 2-methoxyethyl methacrylate, phenoxyethyl methacrylate, methacrylic acid Examples thereof include methacrylic acid such as phenoxypolyethylene glycol, dimethylaminoethyl methyl chloride salt, and glycidyl methacrylate, or derivatives thereof.

アセチレン系モノマーとしては、アセチレン、ジアセチレン、プロパギルアルコールが挙げられる。アルコール系モノマーとしては、前記のアルコール以外に炭素数2〜10の不飽和結合を含むアルキルアルコールが挙げられる。   Examples of the acetylene monomer include acetylene, diacetylene, and propargyl alcohol. Examples of the alcohol-based monomer include alkyl alcohols containing an unsaturated bond having 2 to 10 carbon atoms in addition to the alcohol.

このうちアクリル系モノマーが好ましく、アクリル酸またはその誘導体、メタクリル酸またはその誘導体がより好ましい。アクリル酸は入手が容易であり後述するガス化が容易な為、特に好ましい。メタクリル酸も同様の理由で特に好ましい。   Among these, acrylic monomers are preferable, and acrylic acid or a derivative thereof, and methacrylic acid or a derivative thereof are more preferable. Acrylic acid is particularly preferable because it is easily available and easily gasified as described later. Methacrylic acid is also particularly preferred for the same reason.

モノマーガスの供給量はモノマーガスの種類、および、処理室の容量に併せて適宜変更することができる。前述のアクリル酸をモノマーガスとして使用する場合、処理室内の濃度として100〜10000ppmが好ましい。供給量の管理は、簡便には例えば、モノマーガスとして使用したい液状の物質を一定の温度に保つことにより蒸気圧を一定させ、処理室内に拡散させることで目的を達成することができる。前述のアクリル酸の場合、処理室の容量にもよるが、50℃〜70℃の範囲で好ましい結果が得られる。   The supply amount of the monomer gas can be appropriately changed according to the type of the monomer gas and the capacity of the processing chamber. When the above-mentioned acrylic acid is used as the monomer gas, the concentration in the processing chamber is preferably 100 to 10,000 ppm. The management of the supply amount can be achieved simply by, for example, maintaining the vapor pressure constant by keeping the liquid substance to be used as the monomer gas at a constant temperature and diffusing it in the processing chamber. In the case of the above-mentioned acrylic acid, although depending on the capacity of the processing chamber, preferable results are obtained in the range of 50 ° C to 70 ° C.

プラズマ発生用電源としては特に指定はなく、公知の装置を用いればよく、プラズマ発生装置で必要とする電圧、周波数などを供給できる物であれば良い。   The power source for plasma generation is not particularly specified, and a known device may be used as long as it can supply voltage, frequency, and the like required by the plasma generation device.

改質の対象となるフッ素樹脂フィルムは、改質の対象となる表面がフッ素樹脂であれば他の物質との複合体であっても良い。例えば、フッ素樹脂フィルムの片面に金属膜などを被覆したフッ素樹脂フィルムを準備し、その被覆されていない面のフッ素樹脂に対して改質を行っても良い。あるいは、片面に別の樹脂などが積層されたフッ素樹脂フィルムを準備し、その積層されていない面のフッ素樹脂に対して改質を行っても良い。   The fluororesin film to be modified may be a composite with another substance as long as the surface to be modified is a fluororesin. For example, a fluororesin film in which a metal film or the like is coated on one side of the fluororesin film may be prepared, and the fluororesin on the uncoated side may be modified. Alternatively, a fluororesin film in which another resin or the like is laminated on one surface may be prepared, and the fluororesin on the non-laminated surface may be modified.

被着材としてゴムを用いる場合は、原料ゴムはブチル系ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、天然ゴム、クロロプレンゴム、アクリロニトリルブタジエンゴム等のニトリル系ゴム、水素化ニトリル系ゴム、ノルボルネンゴム、エチレンプロピレンゴム、エチレン−プロピレン−ジエンゴム、アクリルゴム、エチレン・アクリレートゴム、フッ素ゴム、クロロスルフォン化ポリエチレンゴム、エピクロロヒドリンゴム、シリコーンゴム、ウレタンゴム、多硫化ゴム、フォスファンゼンゴムまたは1,2−ポリブタジエン等が使用される。   When rubber is used as the adherend, the raw rubber is butyl rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, natural rubber, chloroprene rubber, acrylonitrile butadiene rubber and other nitrile rubber, hydrogenated nitrile rubber, norbornene rubber , Ethylene propylene rubber, ethylene-propylene-diene rubber, acrylic rubber, ethylene acrylate rubber, fluorine rubber, chlorosulfonated polyethylene rubber, epichlorohydrin rubber, silicone rubber, urethane rubber, polysulfide rubber, phosphansen rubber or 1, 2-polybutadiene or the like is used.

これらは1種類を単独で使用しても良いし、2種類以上を組み合わせて用いてもよい。ゴム複合体に使用されるゴムは、上記に限定されないが、ブチル系ゴムまたは/およびエチレン−プロピレン−ジエンゴム(以下、EPDMゴムという)が好ましい。ブチル系ゴムは耐気体透過性および耐水蒸気透過性に優れることから好ましい。ブチル系ゴムとしては公知の化合物を用いてよいが、例えばイソブチレン−イソプレン共重合ゴム、ハロゲン化イソブチレン−イソプレン共重合ゴム(以下、「ハロゲン化ブチルゴム」という)、またはその変性物が挙げられる。変性物としては、イソブチレンとp−メチルスチレンの共重合体の臭素化物等が挙げられる。なかでも、架橋の容易さからハロゲン化ブチルゴムがより好ましく、塩素化ブチルゴムまたは臭素化ブチルゴムが更に好ましい。   One of these may be used alone, or two or more of these may be used in combination. The rubber used in the rubber composite is not limited to the above, but butyl rubber and / or ethylene-propylene-diene rubber (hereinafter referred to as EPDM rubber) is preferable. Butyl rubber is preferred because of its excellent gas permeation resistance and water vapor permeation resistance. A known compound may be used as the butyl rubber, and examples thereof include isobutylene-isoprene copolymer rubber, halogenated isobutylene-isoprene copolymer rubber (hereinafter referred to as “halogenated butyl rubber”), and modified products thereof. Examples of the modified product include a brominated product of a copolymer of isobutylene and p-methylstyrene. Of these, halogenated butyl rubber is more preferable from the viewpoint of easy crosslinking, and chlorinated butyl rubber or brominated butyl rubber is more preferable.

また、EPDMゴムは加工性に優れているため好ましい。EPDMゴムにはゴム成分のみからなる非油展タイプのEPDMゴムとゴム成分とともに伸展油を含む油展タイプのEPDMゴムとが存在するが、本発明ではいずれのタイプのものも使用可能である。EPDMゴムにおけるジエンモノマーの例としては、ジシクロペンタジエン、メチレンノルボルネン、エチリデンノルボルネン、1,4−ヘキサジエンまたはシクロオクタジエンなどが挙げられる。   Also, EPDM rubber is preferable because of its excellent processability. EPDM rubber includes a non-oil-extended EPDM rubber composed only of a rubber component and an oil-extended EPDM rubber containing an extension oil together with the rubber component. Any type of EPDM rubber can be used in the present invention. Examples of the diene monomer in the EPDM rubber include dicyclopentadiene, methylene norbornene, ethylidene norbornene, 1,4-hexadiene, and cyclooctadiene.

さらに、ハロゲン化ブチルゴムとEPDMゴムの組み合わせは相溶性が良く、耐気体透過性および耐水蒸気透過性に優れるとともに加工性も優れることからより好ましい。ゴム複合体が、例えば注射器用のガスケットのような医療用ゴム製品である場合には、ゴムの主成分として気体透過性の低いブチルゴムが好ましい。架橋剤としては、清浄性の観点から、トリアジン誘導体架橋の使用が好ましい。   Furthermore, the combination of halogenated butyl rubber and EPDM rubber is more preferable because of good compatibility, excellent gas resistance and water vapor resistance, and excellent workability. When the rubber composite is a medical rubber product such as a gasket for a syringe, for example, butyl rubber having a low gas permeability is preferred as the main component of the rubber. As the crosslinking agent, it is preferable to use triazine derivative crosslinking from the viewpoint of cleanliness.

フッ素樹脂フィルムとゴムとの加硫接着は、これらを接触させた状態で所定の時間に渡り、熱と圧力を加え、ゴムの架橋を行いながらフッ素樹脂フィルムと接着させる。加硫接着を行う時間と温度は、未架橋ゴム配合の架橋への必要に応じて、設定が行われる。一例として、前記表面改質フッ素樹脂フィルムの上でゴム材料を加熱温度130〜180℃、処理時間5〜20分の条件で加硫成形するのが好ましい。加硫接着を行う時の圧力に関しては、公知のゴムの架橋方法における圧力が採用される。一般に成形物の雌型となる金型に対して、隙間無くゴムが充填される程度の圧力を加えればよく、医療用ゴム栓などの小型物では20MPa程度である。   In the vulcanization adhesion between the fluororesin film and the rubber, heat and pressure are applied for a predetermined time in a state where they are in contact with each other, and the fluororesin film is adhered to the fluororesin film while crosslinking the rubber. The time and temperature for performing the vulcanization adhesion are set according to the necessity for crosslinking of the uncrosslinked rubber blend. As an example, the rubber material is preferably vulcanized and molded on the surface-modified fluororesin film under the conditions of a heating temperature of 130 to 180 ° C. and a processing time of 5 to 20 minutes. Regarding the pressure at the time of vulcanization adhesion, the pressure in a known rubber crosslinking method is employed. In general, a pressure sufficient to fill the rubber without gaps may be applied to a mold that is a female mold of the molded product, and the pressure is about 20 MPa for a small product such as a medical rubber plug.

被着材として樹脂を使用する場合は、熱硬化性樹脂の場合は前記ゴムと同様に熱硬化性樹脂の硬化により自己接着させることができる。この反応は主に付加反応によって起こる。被着材として熱可塑性樹脂、繊維、木材、紙、石材、金属を使用する場合は、接着剤を使用する。接着剤としては、熱硬化性樹脂又は熱可塑性樹脂のレジン系接着剤、エラストマー接着剤、混合系接着剤、ホットメルト接着剤などを使用できる。導電性ペースト、金属ペースト、金属メッキ、印刷インク又は塗料などの塗膜の場合は、溶剤系、硬化系、溶融系などを使用できる。   When a resin is used as the adherend, in the case of a thermosetting resin, it can be self-adhered by curing of the thermosetting resin in the same manner as the rubber. This reaction occurs mainly by addition reaction. When thermoplastic resin, fiber, wood, paper, stone, or metal is used as the adherend, an adhesive is used. As the adhesive, a thermosetting resin or a thermoplastic resin-based adhesive, an elastomer adhesive, a mixed adhesive, a hot melt adhesive, or the like can be used. In the case of a coating film such as a conductive paste, metal paste, metal plating, printing ink, or paint, a solvent system, a curing system, a melting system, or the like can be used.

図11は本発明の複合体として適用手可能なプレフィルドシリンジに使用される医療用ゴム製品を示す図である。プレフィルドシリンジとは薬剤が予め充填された注射器である。このプレフィルドシリンジ60にはシリンジ用ガスケット61が装着されており、コア部63はゴム弾性のある材料で作成される。コア部の先端部62は薬剤と接触することから、フッ素樹脂フィルムで一体成形されている。図12はシリンジ用ガスケット61の斜視図、図13は同シリンジ用ガスケット61の断面図である。先端部とともに外側面64もフッ素樹脂フィルムで一体成形されている。内側面65にはねじ溝が形成されており、ここに心棒が取り付けられる。   FIG. 11 is a view showing a medical rubber product used for a prefilled syringe applicable as a composite of the present invention. A prefilled syringe is a syringe prefilled with a medicine. A syringe gasket 61 is mounted on the prefilled syringe 60, and the core 63 is made of a rubber elastic material. Since the tip 62 of the core is in contact with the drug, it is integrally formed with a fluororesin film. FIG. 12 is a perspective view of the syringe gasket 61, and FIG. 13 is a cross-sectional view of the syringe gasket 61. The outer surface 64 as well as the tip is integrally formed of a fluororesin film. A thread groove is formed in the inner side surface 65, and a mandrel is attached thereto.

以下、実施例によって本発明を更に具体的に説明するが、本発明はこれらによりなんら制限されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

(実施例1,比較例1)
(1)プラズマ−モノマー重合層形成のための製造装置
図5〜6に示す装置を用いて、表面改質フッ素樹脂フィルムを製造した。プラズマ発生装置としては常圧コロナ放電装置を用い、パール工業社製PLASMASTREAM PSC1002を使用した。常圧コロナ放電部の一対の電極は2mmφのタングステン棒で、同じ外形(長さ5cmで取り付け間隔は3cm、先端の放電部がレ字状に屈曲している)を有し、これらの電極の間隔は、0.5〜3cmとした。コロナ放電電極ヘッド部先端とフッ素樹脂フィルム処理面までの距離は9mmとした。
(Example 1, Comparative Example 1)
(1) Manufacturing apparatus for plasma-monomer polymerization layer formation A surface-modified fluororesin film was manufactured using the apparatus shown in FIGS. As the plasma generator, an atmospheric pressure corona discharge device was used, and PLASMASTREAM PSC1002 manufactured by Pearl Industrial Co., Ltd. was used. The pair of electrodes of the normal pressure corona discharge part is a 2 mmφ tungsten rod and has the same external shape (length 5 cm, mounting interval 3 cm, tip discharge part bent in a letter shape). The interval was 0.5 to 3 cm. The distance between the tip of the corona discharge electrode head and the fluororesin film treated surface was 9 mm.

保持具上に、フッ素樹脂フィルムを固定した。保持具としては下記を用いた。
(1)厚さ1.6mm、幅211mm、長さ338mmのガラスエポキシ銅張積層板(実施例1)
(2)厚さ1.6mm、幅210mm、長さ297mmのガラスエポキシ板(比較例1)
ガラスエポキシ銅張積層板(実施例1)を用いた場合には保持具を常圧コロナ放電の電位に対して接地した。ガラスエポキシ板(比較例1)は、フッ素樹脂フィルム表面に帯電する電荷チャージのために使用した。
A fluororesin film was fixed on the holder. The following was used as a holder.
(1) Glass epoxy copper clad laminate having a thickness of 1.6 mm, a width of 211 mm, and a length of 338 mm (Example 1)
(2) Glass epoxy plate having a thickness of 1.6 mm, a width of 210 mm, and a length of 297 mm (Comparative Example 1)
When a glass epoxy copper clad laminate (Example 1) was used, the holder was grounded with respect to the potential of atmospheric pressure corona discharge. The glass epoxy plate (Comparative Example 1) was used for charge charging that charges the surface of the fluororesin film.

フッ素樹脂フィルムとしては、PTFE(日本バルカー工業社製、バルフロン(登録商標)、厚み0.08mm)、フィルムのサイズは長さ21cm、幅30cmとした。   As the fluororesin film, PTFE (manufactured by Nippon Valqua Industries, VALFLON (registered trademark), thickness 0.08 mm), the size of the film was 21 cm in length and 30 cm in width.

モノマーガスは、開口部長さ296mm、幅38mmを有する深さ59mmのモノマーガス供給装置に液状のアクリル酸を270g投入し、60℃に加熱することでガス化を行った。アクリル酸は和光純薬社製アクリル酸(純度98質量%、500ml)を使用した。   The monomer gas was gasified by introducing 270 g of liquid acrylic acid into a monomer gas supply device having an opening length of 296 mm and a width of 38 mm and a depth of 59 mm and heating to 60 ° C. As acrylic acid, acrylic acid (purity 98 mass%, 500 ml) manufactured by Wako Pure Chemical Industries, Ltd. was used.

プロセスガスはアルゴンを使用し、30SLMの流量にてプラズマ発生装置に供給した。アルゴンガスはエア・リキード工業ガス社製計器用アルゴンボンベ(47L)、純度99.9995vol.%を使用した。   Argon was used as the process gas and supplied to the plasma generator at a flow rate of 30 SLM. Argon gas is an argon cylinder (47 L) for instrument made by Air Liquide Industrial Gas Co., Ltd., purity 99.9995 vol. %It was used.

プラズマ発生用電源から高周波(20kHz)の高電圧(約24kV)を印加することでプラズマ発生装置からプラズマ流を得た。上記以外の放電条件として、パルス変調周波数を60Hz、パルスデューティーを99%とした。このプラズマ流をフッ素樹脂フィルムに照射し、フィルム全面を改質した。プラズマ照射装置をX軸方向に4mm/秒で移動しながら一往復させ、一往復後保持具と保持具上のフィルムをY軸方向に10mm移動させることで搬送を行い、フィルム全面を処理した。   A plasma flow was obtained from the plasma generator by applying a high voltage (about 24 kV) at a high frequency (20 kHz) from a plasma generating power source. As discharge conditions other than the above, the pulse modulation frequency was 60 Hz and the pulse duty was 99%. This plasma flow was applied to the fluororesin film to modify the entire film surface. The plasma irradiation apparatus was reciprocated once while moving in the X-axis direction at 4 mm / sec. After one reciprocation, the holder and the film on the holder were moved by moving 10 mm in the Y-axis direction to process the entire film surface.

プラズマ重合処理後のフィルムを超音波洗浄し、フィルム表面の余分なモノマーおよび重合体を除去した。超音波洗浄は、アズワン社製超音波洗浄器USK−4Rを使用し、条件はエタノール使用量1000ml、発振パワー:Highに設定し10分間処理を行った。その後、卓上フード内において表面のエタノールが気化するまで室温で乾燥させ、最終的な改質フィルムを得た。得られた改質フッ素樹脂フィルムのプラズマ−モノマー重合層の厚みは10nm(薄膜表面スキャン・プロファイラー(KLA Tencor,P−15)で測定)であった。   The film after the plasma polymerization treatment was subjected to ultrasonic cleaning to remove excess monomer and polymer on the film surface. For ultrasonic cleaning, an ultrasonic cleaner USK-4R manufactured by ASONE Co., Ltd. was used, and the conditions were set to 1000 ml of ethanol usage and oscillation power: High, and the treatment was performed for 10 minutes. Then, it was dried at room temperature in the tabletop hood until the surface ethanol was vaporized to obtain a final modified film. The thickness of the plasma-monomer polymerization layer of the obtained modified fluororesin film was 10 nm (measured with a thin film surface scan profiler (KLA Tencor, P-15)).

得られた改質フィルムとゴムとの複合体の成形は加硫成形にて行った。架橋剤として2−ジ−n−ブチルアミノ−4,6−ジメルカプト−s−トリアジン(三協化成社製、ジスネットDB(登録商標))を含む未加硫ゴムシート(ハロゲン化ブチルゴム、厚さ2mm)を準備し、改質フィルムの改質面と未加硫ゴムシートを重ねた状態でプレス型に入れた。温度150℃、処理時間40分、処理圧力1.6MPaにて加硫成形を行い、フッ素樹脂フィルムとゴムとの複合体を得た。加硫後のゴムの厚さは1.95mmであった。保持具としてガラスエポキシ板(比較例1)を用いた場合の複合体の写真を図7Aに示し、ガラスエポキシ銅張積層板(実施例1)を用いた場合の複合体の写真を図7Bに示す。図7A−Bのサンプルは縦90mm、横70mmの大きさのフィルムの上に、縦100mm、横100mmの大きさのゴムを加硫成形した例を示している。   Molding of the composite of the obtained modified film and rubber was performed by vulcanization molding. Unvulcanized rubber sheet (halogenated butyl rubber, thickness 2 mm) containing 2-di-n-butylamino-4,6-dimercapto-s-triazine (manufactured by Sankyo Kasei Co., Ltd., Disnet DB (registered trademark)) as a crosslinking agent ) Was prepared, and the modified surface of the modified film and the unvulcanized rubber sheet were placed in a press mold in a state of being stacked. Vulcanization molding was performed at a temperature of 150 ° C., a treatment time of 40 minutes, and a treatment pressure of 1.6 MPa to obtain a composite of a fluororesin film and rubber. The rubber thickness after vulcanization was 1.95 mm. FIG. 7A shows a photograph of the composite when a glass epoxy plate (Comparative Example 1) is used as a holder, and FIG. 7B shows a photograph of the composite when a glass epoxy copper clad laminate (Example 1) is used. Show. 7A-B shows an example in which rubber having a size of 100 mm in length and 100 mm in width is vulcanized on a film having a size of 90 mm in length and 70 mm in width.

(2)均一性の評価
図7A−Bより、ガラスエポキシ板(比較例1)を用いた場合にはフッ素樹脂フィルムとゴムの間に気泡が見られるが、ガラスエポキシ銅張積層板(実施例1)を用いた複合体にはそのような気泡は見られない。このことから実施例1で得られた改質フッ素樹脂フィルムは、均一薄膜が形成されていることが確認できた。これに対して比較例1はフッ素樹脂フィルムとゴムとの間に気泡が入り、不均一であった。
(2) Uniformity evaluation From FIG. 7A-B, when a glass epoxy board (comparative example 1) is used, although a bubble is seen between a fluororesin film and rubber | gum, a glass epoxy copper clad laminated board (Example) Such a bubble is not seen in the composite using 1). From this, it was confirmed that the modified fluororesin film obtained in Example 1 was formed with a uniform thin film. On the other hand, in Comparative Example 1, air bubbles entered between the fluororesin film and the rubber and were non-uniform.

(3)はく離試験
実施例1で得られた複合体のはく離試験を行うため、図4Aに示すように、フッ素樹脂フィルムの21の表面にプラズマ−モノマー重合層22を形成した改質フィルムの上に、半分程度の大きさの未処理フッ素樹脂フィルム25を改質フィルムとゴム23の間に挟むことで改質フィルムをはく離試験機のチャックに固定するのに必要なはさみしろ25を確保した。架橋剤として2−ジ−n−ブチルアミノ−4,6−ジメルカプト−s−トリアジン(三協化成社製、ジスネットDB(登録商標))を含む未加硫ゴムシート(ハロゲン化ブチルゴム、厚さ2mm)を準備し、改質フィルムの改質面と未加硫ゴムシートを重ねた状態でプレス型に入れた。温度150℃、処理時間40分、処理圧力1.6MPaにて加硫成形を行い、フッ素樹脂フィルムとゴムとの複合体を得た。
(3) Peeling test To perform a peeling test of the composite obtained in Example 1, as shown in FIG. 4A, a modified film having a plasma-monomer polymerization layer 22 formed on the surface of a fluororesin film 21 was obtained. Further, by sandwiching an untreated fluororesin film 25 of about half the size between the modified film and the rubber 23, the scissors 25 required to fix the modified film to the chuck of the peeling tester was secured. Unvulcanized rubber sheet (halogenated butyl rubber, thickness 2 mm) containing 2-di-n-butylamino-4,6-dimercapto-s-triazine (manufactured by Sankyo Kasei Co., Ltd., Disnet DB (registered trademark)) as a crosslinking agent ) Was prepared, and the modified surface of the modified film and the unvulcanized rubber sheet were placed in a press mold in a state of being stacked. Vulcanization molding was performed at a temperature of 150 ° C., a treatment time of 40 minutes, and a treatment pressure of 1.6 MPa to obtain a composite of a fluororesin film and rubber.

はく離試験はJIS K 6854(ASTM D 1876も同様)にしたがって実施した。前記で得られた複合体を約25mm幅に切り、ゴム部23とフィルム部21aをそれぞれ180°はく離試験に固定し、その後100mm/minの速度で剥離し、引張強度を測定した。その結果を図8に示す。グラフの横軸はクロスヘッドの動いた距離であり、縦軸は荷重である。ここから、最大荷重やPTFEの伸びを読みとることができる。図8より、最大点荷重は3.69N/mmでそのときの伸びは83.0825mmであった。また、2N/mmを超えたあたりからゴムがはがれ始め,最終的にゴムのほうが破断した。ゴム−フッ素樹脂フィルム間においてどのような破壊現象が起こっているかを調べるためにはく離した部分のフッ素樹脂フィルムの表面をフーリエ変換赤外分光(FTIR)測定装置(Thermo Nicolet,Avatar360)を用いて分析した。図9A−Cは本発明の実施例1におけるゴム−フッ素樹脂フィルム間の破壊現象を示すフーリエ変換赤外分光(FTIR)測定装置によるATR法による分析結果である。図9Aにフッ素樹脂表面の透過スペクトル、図9Bにフッ素樹脂のはく離面の反射スペクトル、図9Cにゴム表面の透過スペクトルをそれぞれ示す。なお、グラフト重合膜の反射スペクトルについては重合膜が非常に薄いため検出されなかった。図9Aでは1100〜1200cm-1付近に−CF2―および−CF3のピークがみられるが、図9Bではこれらのピークは見られない。また、図9Bでは図9Cのゴムおよびゴムに添加されているタルクによるピークと同様のピークが見られることから基材層(被着材)そのものが破壊する被着材破壊が起こっているものと考えられる。この結果から改質フィルムとゴム間の接着はゴムの破断応力以上の非常に強い引張強度を持つことが確認できた。このことから、ガラスエポキシ銅張積層板(実施例1)を保持具として用いるほうがフッ素樹脂フィルムとゴムとの接着性が向上していることがわかった。はく離試験前のサンプルは図3A、試験後のサンプルは図3Bに示すとおりであった。 The peeling test was performed according to JIS K 6854 (also ASTM D 1876). The composite obtained above was cut into a width of about 25 mm, the rubber part 23 and the film part 21a were fixed in a 180 ° peel test, and then peeled at a speed of 100 mm / min, and the tensile strength was measured. The result is shown in FIG. The horizontal axis of the graph is the distance moved by the crosshead, and the vertical axis is the load. From here, the maximum load and the elongation of PTFE can be read. From FIG. 8, the maximum point load was 3.69 N / mm, and the elongation at that time was 83.0825 mm. Further, the rubber began to peel off at a point exceeding 2 N / mm, and finally the rubber was broken. In order to investigate what kind of fracture phenomenon occurs between the rubber and fluororesin film, the surface of the fluororesin film at the separated part is analyzed using a Fourier transform infrared spectroscopy (FTIR) measuring device (Thermo Nicolet, Avatar 360). did. FIGS. 9A to 9C are analysis results by an ATR method using a Fourier transform infrared spectroscopy (FTIR) measuring apparatus showing a breaking phenomenon between a rubber and a fluororesin film in Example 1 of the present invention. 9A shows the transmission spectrum of the fluororesin surface, FIG. 9B shows the reflection spectrum of the release surface of the fluororesin, and FIG. 9C shows the transmission spectrum of the rubber surface. The reflection spectrum of the graft polymer film was not detected because the polymer film was very thin. In FIG. 9A, peaks of —CF 2 — and —CF 3 are observed near 1100 to 1200 cm −1 , but these peaks are not seen in FIG. 9B. In addition, in FIG. 9B, the same peak as the peak due to the talc added to the rubber and rubber in FIG. Conceivable. From this result, it was confirmed that the adhesion between the modified film and the rubber had a very strong tensile strength exceeding the breaking stress of the rubber. From this, it was found that the adhesion between the fluororesin film and the rubber was improved when the glass epoxy copper clad laminate (Example 1) was used as a holder. The sample before the peeling test was as shown in FIG. 3A, and the sample after the test was as shown in FIG. 3B.

比較例1品のプラズマ−モノマー重合層の厚みは62.5nm(薄膜表面スキャン・プロファイラー(KLA Tencor,P−15)で測定)であった。   The thickness of the plasma-monomer polymerization layer of Comparative Example 1 was 62.5 nm (measured with a thin film surface scan profiler (KLA Tencor, P-15)).

(実施例2)
樹脂フィルムとして、PFA(ダイキン工業社製、ネオフロンPFAフィルム(ネオフロン:登録商標)、厚さ25μm)、を用いて実施例1と同様な条件および方法で改質フィルムを作成した。実施例1と同様な方法で得られた改質フィルムとゴムとの複合体の成形を行った。その結果、改質フィルムとゴム間は均一かつ強固に接着されており、PTFEを用いた場合と同様の結果が得られた。はく離試験においても被着材破壊していた。また、実施例1に記載の均一性の評価においても、フッ素樹脂フィルムとゴムの間に気泡は見られず均一薄膜であることが確認できた。
(Example 2)
A modified film was produced under the same conditions and in the same manner as in Example 1 using PFA (manufactured by Daikin Industries, Ltd., NEOFLON PFA film (NEOFLON: registered trademark), thickness: 25 μm)). A composite of a modified film and rubber obtained by the same method as in Example 1 was molded. As a result, the modified film and the rubber were uniformly and firmly adhered, and the same result as that obtained when PTFE was used was obtained. In the peeling test, the adherend was destroyed. Further, even in the evaluation of uniformity described in Example 1, no bubbles were observed between the fluororesin film and the rubber, and it was confirmed that the film was a uniform thin film.

(実施例3,比較例2)
モノマーガスとして、アクリル酸(和光純薬社製アクリル酸(純度98質量%、500ml))を用いて、実施例1に記載の方法で改質フィルムを作成した(実施例3)。アクリル酸は60℃に加熱することでガス化を行って改質フィルムを作成した。また、比較例2として特許文献4に記載の装置および方法により,改質フィルムを作成した。さらに得られた改質フィルムとゴムとの複合体の加硫成形を実施例1と同様な方法により行った。加熱温度を130〜180℃、処理時間5〜90分、処理圧力1.6MPaの条件で加硫成形を行ったときの接着状態の評価結果を図10に示す。接着状態の評価は接着後の目視による接着状態の確認と、カッターで複合体表面のフィルムに切れ目を入れ、幅2〜3mmの帯状になったフィルムをピンセットで人為的に引張ったときのはく離状態で判断した。評価基準は、△は見た目では気泡の混入はないが接着率が10%程度の低いもの、○は見た目も気泡の混入はなく、接着率も50%程度あるもの、◎は見た目も気泡の混入はなく接着率がほぼ100%でありピンセットでのはく離はほとんど困難であったものである。図10中の点のうち加熱温度180℃、処理時間5分、10分、20分、40分または加熱温度150℃、処理時間40分で加硫成型を行った結果が実施例1に記載の方法で作成した改質フィルムに対するものであり(実施例3)、その他の結果は特許文献4に記載の装置および方法により、改質フィルムを作成したものである(比較例2)。図10からわかるように実施例3ではいずれも接着率がほぼ100%の強固な複合体が得られ、従来方式(比較例2)にくらべて良好な結果が得られた。また、実施例1に記載の均一性の評価においても、実施例3はフッ素樹脂フィルムとゴムの間に気泡が見られず均一薄膜が形成されていることが確認できた。これに対して比較例2はフッ素樹脂フィルムとゴムとの間に気泡が入り、不均一であった。
(Example 3, Comparative Example 2)
A modified film was prepared by the method described in Example 1 using acrylic acid (acrylic acid manufactured by Wako Pure Chemical Industries, Ltd. (purity 98% by mass, 500 ml)) as the monomer gas (Example 3). Acrylic acid was gasified by heating to 60 ° C. to prepare a modified film. Further, as Comparative Example 2, a modified film was prepared by the apparatus and method described in Patent Document 4. Further, vulcanization molding of the resulting modified film / rubber composite was performed in the same manner as in Example 1. FIG. 10 shows the evaluation results of the adhesion state when vulcanization molding is performed under the conditions of a heating temperature of 130 to 180 ° C., a processing time of 5 to 90 minutes, and a processing pressure of 1.6 MPa. The evaluation of the adhesion state is confirmed by visual confirmation after adhesion, and the film on the surface of the composite is cut with a cutter, and the peeled state when the film having a width of 2 to 3 mm is artificially pulled with tweezers Judged. Evaluation criteria are as follows: △ is visually free of bubbles but has a low adhesion rate of about 10%, ◯ is visually and free of bubbles and has an adhesion rate of about 50%, and ◎ is visually and mixed of bubbles The adhesion rate was almost 100%, and peeling with tweezers was almost difficult. The results of vulcanization molding at a heating temperature of 180 ° C. and a processing time of 5 minutes, 10 minutes, 20 minutes, 40 minutes or a heating temperature of 150 ° C. and a processing time of 40 minutes among the points in FIG. 10 are described in Example 1. The results are for the modified film prepared by the method (Example 3), and the other results are for the modified film prepared by the apparatus and method described in Patent Document 4 (Comparative Example 2). As can be seen from FIG. 10, in Example 3, a strong composite having an adhesion rate of almost 100% was obtained, and better results were obtained compared to the conventional method (Comparative Example 2). In the uniformity evaluation described in Example 1, it was confirmed that Example 3 formed a uniform thin film with no bubbles observed between the fluororesin film and the rubber. On the other hand, in Comparative Example 2, air bubbles entered between the fluororesin film and the rubber and were non-uniform.

(実施例4)
保持具として、実施例1で使用したガラスエポキシ板の表面にアルミニウムテープを貼り付けものを用い、実施例1に記載の条件、方法でフッ素樹脂フィルムとゴムとの複合体を得た。その結果、保持具としてガラスエポキシ銅張積層板を用いた場合と同程度のフッ素樹脂フィルムとゴムとの接着性向上が得られた。はく離試験においても被着材破壊していた。また、実施例1に記載の均一性の評価においても、フッ素樹脂フィルムとゴムの間に気泡は見られず均一薄膜であることが確認できた。
Example 4
As a holder, an aluminum tape attached to the surface of the glass epoxy plate used in Example 1 was used, and a composite of a fluororesin film and rubber was obtained under the conditions and method described in Example 1. As a result, the adhesiveness improvement of the fluororesin film and rubber | gum comparable as the case where a glass epoxy copper clad laminated board was used as a holder was obtained. In the peeling test, the adherend was destroyed. Further, even in the evaluation of uniformity described in Example 1, no bubbles were observed between the fluororesin film and the rubber, and it was confirmed that the film was a uniform thin film.

以上から本発明の実施例の改質フッ素樹脂フィルムは、接着強度は高く、従来品に比べて優位性が確認できた。   From the above, the modified fluororesin films of the examples of the present invention have high adhesive strength, confirming superiority over conventional products.

本発明の表面改質フッ素樹脂フィルムは、実施例で示したもの以外に、ポリエステルフィルムやポリオレフィンフィルムとラミネート加工したラミネートフィルム、印刷物、プリント基板、電子回路、電池などのセパレータ、防水透湿布、フィルター、インサート成形体、ローラー、燃料電池用固体電解質膜、太陽電池表面保護シート、建材シートなどの広い範囲に応用できる。   The surface-modified fluororesin film of the present invention includes, in addition to those shown in the examples, a laminate film laminated with a polyester film or a polyolefin film, a printed material, a printed circuit board, an electronic circuit, a battery separator, a waterproof moisture-permeable cloth, a filter It can be applied to a wide range of insert molded bodies, rollers, solid electrolyte membranes for fuel cells, solar cell surface protection sheets, building material sheets and the like.

1,15 フッ素樹脂フィルム層
2,16,22 プラズマ−モノマー重合層
3a,3b,6,7,7a,7b,9 被着材
4,11,12,13,14a,14b,14c,18 破壊部分
5a,5b,8,8a,8b 接着剤層
10,20 複合体
17,17a,17b ゴム層
21 フッ素樹脂フィルム
21a フッ素樹脂フィルムの把持剥離部
23 ゴム層
24 破壊部
25 未処理フッ素樹脂フィルム
31 プラズマ重合装置
32 ドラフトチャンバ
33 プロセスガス供給装置
34 処理室
35 フッ素樹脂フィルム
36 搬送装置
37 保持具
38 モノマーガス供給装置
39 プラズマ発生装置(プラズマヘッド)
40 温度調節器
41a,41b ガスカーテン
42 プラズマ発生用電源
43 送風機
44 排出ガス
45 パージ及びガスカーテン用のプロセスガスボンベ
46 プラズマ発生用プロセスガスポンベ
47 流量計
48 マスフローコントローラ
49 アース
50 電気導体シート
51 パージガス
52 プラズマ
1,15 Fluororesin film layer 2,16,22 Plasma-monomer polymerization layer 3a, 3b, 6, 7, 7a, 7b, 9 Adhering material 4, 11, 12, 13, 14a, 14b, 14c, 18 Destruction portion 5a, 5b, 8, 8a, 8b Adhesive layers 10, 20 Composites 17, 17a, 17b Rubber layer 21 Fluorine resin film 21a Fluorine resin film gripping peeling part 23 Rubber layer 24 Destruction part 25 Untreated fluorine resin film 31 Plasma Polymerization device 32 Draft chamber 33 Process gas supply device 34 Processing chamber 35 Fluororesin film 36 Transport device 37 Holder 38 Monomer gas supply device 39 Plasma generator (plasma head)
40 Temperature controller 41a, 41b Gas curtain 42 Plasma generating power supply 43 Blower 44 Exhaust gas 45 Purge and gas curtain process gas cylinder 46 Plasma generating process gas pump 47 Flow meter 48 Mass flow controller 49 Ground 50 Electric conductor sheet 51 Purge gas 52 plasma

Claims (14)

フッ素樹脂フィルム層の少なくとも一表面にプラズマ−モノマー重合層を有する表面改質フッ素樹脂フィルムであって、
前記プラズマ−モノマー重合層は、プラズマを照射しながら前記フッ素樹脂フィルム層に帯電する電荷を除去した状態で、反応性不飽和基を含むモノマーをグラフト重合させた均一な薄膜層であることを特徴とする表面改質フッ素樹脂フィルム。
A surface-modified fluororesin film having a plasma-monomer polymerization layer on at least one surface of the fluororesin film layer,
The plasma-monomer polymerization layer is a uniform thin film layer obtained by graft polymerization of a monomer containing a reactive unsaturated group in a state in which a charge charged on the fluororesin film layer is removed while irradiating plasma. A surface-modified fluororesin film.
前記表面改質フッ素樹脂フィルムの上に直接又は接着層を介して被着材を接着したとき、
前記表面改質フッ素樹脂フィルムと前記被着材を剥離させると、前記表面改質フッ素樹脂フィルムより上の部分で破壊する請求項1に記載の表面改質フッ素樹脂フィルム。
When adhering the adherend directly or through the adhesive layer on the surface-modified fluororesin film,
The surface-modified fluororesin film according to claim 1, wherein when the surface-modified fluororesin film and the adherend are separated, the surface-modified fluororesin film is broken at a portion above the surface-modified fluororesin film.
表面改質フッ素樹脂フィルムの上に直接接着した被着材が、表面改質フッ素樹脂フィルムの上で熱硬化性樹脂又はゴムを硬化させることにより自己接着させたものである請求項2に記載の表面改質フッ素樹脂フィルム。   The adherend directly adhered on the surface-modified fluororesin film is self-adhered by curing a thermosetting resin or rubber on the surface-modified fluororesin film. Surface-modified fluororesin film. 前記薄膜層の厚みは500nm以下である請求項1〜3のいずれか1項である表面改質フッ素樹脂フィルム。   The surface-modified fluororesin film according to any one of claims 1 to 3, wherein the thin film layer has a thickness of 500 nm or less. チャンバー内で、フッ素樹脂フィルム層の少なくとも一表面にモノマー重合層を形成して請求項1〜4のいずれか1項に記載の表面改質フッ素樹脂フィルムを製造する方法であって、
電気導体シートの上にフッ素樹脂フィルムを載置し、前記フッ素樹脂フィルム層に帯電する電荷を除去した状態で、
プラズマ照射手段と前記電気導体シートとの間で電圧をかけた状態で前記フッ素樹脂フィルムの表面にプラズマを照射しながら反応性不飽和結合基を含むモノマーを供給し、前記フッ素樹脂フィルムの表面に前記モノマーをグラフト重合させて均一な薄膜層を形成することを特徴とする表面改質フッ素樹脂フィルムの製造方法。
A method for producing a surface-modified fluororesin film according to any one of claims 1 to 4, wherein a monomer polymerization layer is formed on at least one surface of the fluororesin film layer in a chamber,
In a state where a fluororesin film is placed on the electrical conductor sheet and the electrical charge charged on the fluororesin film layer is removed,
Supplying a monomer containing a reactive unsaturated bond group while irradiating the surface of the fluororesin film with a voltage applied between the plasma irradiation means and the electrical conductor sheet, the surface of the fluororesin film A method for producing a surface-modified fluororesin film, wherein the monomer is graft-polymerized to form a uniform thin film layer.
前記チャンバー内でモノマー蒸気を発生させ、プラズマ発生装置(プラズマヘッド)を移動させながら、前記フッ素樹脂フィルムの表面に前記モノマーをグラフト重合させて薄膜層を形成する請求項5に記載の表面改質フッ素樹脂フィルムの製造方法。   The surface modification according to claim 5, wherein a monomer vapor is generated in the chamber and a thin film layer is formed by graft polymerization of the monomer on the surface of the fluororesin film while moving a plasma generator (plasma head). A method for producing a fluororesin film. 前記電気導体シートは接地されている請求項5又は6に記載の表面改質フッ素樹脂フィルムの製造方法。   The method for producing a surface-modified fluororesin film according to claim 5 or 6, wherein the electrical conductor sheet is grounded. プラズマ照射手段と前記電気導体シートとの間の電圧が1〜50kVの範囲である請求項5〜7のいずれか1項に記載の表面改質フッ素樹脂フィルムの製造方法。   The method for producing a surface-modified fluororesin film according to any one of claims 5 to 7, wherein a voltage between the plasma irradiation means and the electric conductor sheet is in a range of 1 to 50 kV. 前記チャンバー内に不活性ガスを供給する請求項5〜8のいずれか1項に記載の表面改質フッ素樹脂フィルムの製造方法。   The method for producing a surface-modified fluororesin film according to any one of claims 5 to 8, wherein an inert gas is supplied into the chamber. チャンバー内で、フッ素樹脂フィルム層の少なくとも一表面にモノマー重合層を形成して請求項1〜4のいずれか1項に記載の表面改質フッ素樹脂フィルムを製造する装置であって、
フッ素樹脂フィルムを載せかつ前記フッ素樹脂フィルム層に帯電する電荷を除去するための電気導体シートと、
前記チャンバー内に反応性不飽和結合基を含むモノマーを供給する手段と、
前記フッ素樹脂フィルムの表面に前記モノマーを重合するためのプラズマ照射手段と、
前記プラズマ照射手段と前記電気導体シートとの間で電圧をかける手段を含むことを特徴とする表面改質フッ素樹脂フィルムの製造装置。
An apparatus for producing a surface-modified fluororesin film according to any one of claims 1 to 4, wherein a monomer polymerization layer is formed on at least one surface of the fluororesin film layer in a chamber,
An electrical conductor sheet for placing the fluororesin film and removing the charge charged on the fluororesin film layer;
Means for supplying a monomer containing a reactive unsaturated bond group into the chamber;
Plasma irradiation means for polymerizing the monomer on the surface of the fluororesin film;
An apparatus for producing a surface-modified fluororesin film, comprising means for applying a voltage between the plasma irradiation means and the electric conductor sheet.
請求項1〜4のいずれか1項に記載の表面改質フッ素樹脂フィルムの上に直接又は接着層を介して被着材を接着した複合体であって、
前記表面改質フッ素樹脂フィルムと前記被着材を剥離させると、前記表面改質フッ素樹脂フィルムより上の部分で破壊することを特徴とする表面改質フッ素樹脂フィルムを含む複合体。
A composite in which an adherend is adhered directly or via an adhesive layer on the surface-modified fluororesin film according to any one of claims 1 to 4,
A composite comprising a surface-modified fluororesin film, wherein when the surface-modified fluororesin film and the adherend are peeled, the surface-modified fluororesin film is broken at a portion above the surface-modified fluororesin film.
前記被着材が、ゴム、樹脂、繊維、木材、紙、石材、金属、金属メッキ、印刷インク、導電性ペースト、金属ペースト又は塗膜である請求項11に記載の表面改質フッ素樹脂フィルムを含む複合体。   The surface-modified fluororesin film according to claim 11, wherein the adherend is rubber, resin, fiber, wood, paper, stone, metal, metal plating, printing ink, conductive paste, metal paste, or coating film. Containing complex. 前記被着材が、前記表面改質フッ素樹脂フィルムの上で熱硬化性樹脂又はゴムを硬化させることにより自己接着させたものであり、前記表面改質フッ素樹脂フィルムと前記被着材を剥離させると被着材破壊をする請求項11又は12に記載の表面改質フッ素樹脂フィルムを含む複合体。   The adherend is self-adhering by curing a thermosetting resin or rubber on the surface-modified fluororesin film, and the surface-modified fluororesin film and the adherend are peeled off. A composite comprising the surface-modified fluororesin film according to claim 11 or 12, which destroys the adherend. 請求項1〜4のいずれか1項に記載の表面改質フッ素樹脂フィルムの上に直接ゴムを加硫成形した複合体の製造方法であって、
前記表面改質フッ素樹脂フィルムの上でゴム材料を加熱温度130〜180℃、処理時間5〜20分の条件で加硫成形することを特徴とする表面改質フッ素樹脂フィルムを含む複合体の製造方法。
A method for producing a composite in which rubber is directly vulcanized and molded on the surface-modified fluororesin film according to any one of claims 1 to 4,
A rubber material is vulcanized and molded on the surface-modified fluororesin film under conditions of a heating temperature of 130 to 180 ° C. and a treatment time of 5 to 20 minutes. Method.
JP2011101189A 2011-04-28 2011-04-28 Surface-modified fluororesin film, method for manufacturing the same, apparatus for manufacturing the same, composite body including surface-modified fluororesin film, method for manufacturing the same Pending JP2012233038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011101189A JP2012233038A (en) 2011-04-28 2011-04-28 Surface-modified fluororesin film, method for manufacturing the same, apparatus for manufacturing the same, composite body including surface-modified fluororesin film, method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011101189A JP2012233038A (en) 2011-04-28 2011-04-28 Surface-modified fluororesin film, method for manufacturing the same, apparatus for manufacturing the same, composite body including surface-modified fluororesin film, method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012233038A true JP2012233038A (en) 2012-11-29

Family

ID=47433691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011101189A Pending JP2012233038A (en) 2011-04-28 2011-04-28 Surface-modified fluororesin film, method for manufacturing the same, apparatus for manufacturing the same, composite body including surface-modified fluororesin film, method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012233038A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013107961A (en) * 2011-11-18 2013-06-06 Dainippon Printing Co Ltd Laminated film and rubber molded body using the same
CN103144386A (en) * 2013-03-18 2013-06-12 江苏泰氟隆科技有限公司 Polyperfluorinated ethylene propylene film, and functional group grafting process and composite sealing plug using same
WO2016021518A1 (en) * 2014-08-05 2016-02-11 株式会社 潤工社 Fluororesin tube
KR20180044203A (en) * 2016-10-21 2018-05-02 테사 소시에타스 유로파에아 Plasma treatment for a multilayer adhesive bonding element
JP2020519496A (en) * 2017-05-10 2020-07-02 スリーエム イノベイティブ プロパティズ カンパニー Fluoropolymer articles and related methods
US10730253B2 (en) 2014-09-05 2020-08-04 Osaka University Process for producing surface-modified molded article, and process for producing composite using surface-modified molded article
US11383488B2 (en) 2018-05-31 2022-07-12 Osaka University Joined body and method for manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226728A (en) * 1997-02-14 1998-08-25 Nitto Denko Corp Fluoropolymer composite and production thereof
JP2009167323A (en) * 2008-01-17 2009-07-30 Osaka Prefecture Univ Surface-coated resin base body and method and apparatus for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226728A (en) * 1997-02-14 1998-08-25 Nitto Denko Corp Fluoropolymer composite and production thereof
JP2009167323A (en) * 2008-01-17 2009-07-30 Osaka Prefecture Univ Surface-coated resin base body and method and apparatus for producing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013107961A (en) * 2011-11-18 2013-06-06 Dainippon Printing Co Ltd Laminated film and rubber molded body using the same
CN103144386A (en) * 2013-03-18 2013-06-12 江苏泰氟隆科技有限公司 Polyperfluorinated ethylene propylene film, and functional group grafting process and composite sealing plug using same
CN103144386B (en) * 2013-03-18 2015-10-28 江苏泰氟隆科技有限公司 Polyfluorinated ethylene membrane and grafted functional group technique thereof and compound seal plug
WO2016021518A1 (en) * 2014-08-05 2016-02-11 株式会社 潤工社 Fluororesin tube
JP2016037597A (en) * 2014-08-05 2016-03-22 株式会社潤工社 Fluorine resin tube
KR20170029546A (en) * 2014-08-05 2017-03-15 가부시키가이샤 쥰코샤 Fluororesin tube
KR102391301B1 (en) 2014-08-05 2022-04-26 가부시키가이샤 쥰코샤 Fluororesin tube
US10155362B2 (en) 2014-08-05 2018-12-18 Junkosha Inc. Fluororesin tube
US10730253B2 (en) 2014-09-05 2020-08-04 Osaka University Process for producing surface-modified molded article, and process for producing composite using surface-modified molded article
KR20180044203A (en) * 2016-10-21 2018-05-02 테사 소시에타스 유로파에아 Plasma treatment for a multilayer adhesive bonding element
US10662350B2 (en) 2016-10-21 2020-05-26 Tesa Se Plasma treatment for multilayer adhesive bonding element
KR102066038B1 (en) * 2016-10-21 2020-01-14 테사 소시에타스 유로파에아 Plasma treatment for a multilayer adhesive bonding element
JP2018090775A (en) * 2016-10-21 2018-06-14 テーザ・ソシエタス・ヨーロピア Plasma treatment of multi-layer type adhesion conjugate
JP2020519496A (en) * 2017-05-10 2020-07-02 スリーエム イノベイティブ プロパティズ カンパニー Fluoropolymer articles and related methods
US11383488B2 (en) 2018-05-31 2022-07-12 Osaka University Joined body and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP2012233038A (en) Surface-modified fluororesin film, method for manufacturing the same, apparatus for manufacturing the same, composite body including surface-modified fluororesin film, method for manufacturing the same
CN106687510B (en) Method for producing surface-modified molded article, and method for producing composite using same
US20140083604A1 (en) Multilayer polymeric articles and methods for making same
US20190048231A1 (en) Making adhesive silicone substances adhere to fluoropolymer films using a corona treatment
US20100151180A1 (en) Multi-layer fluoropolymer film
US20070206364A1 (en) Methods of forming a flexible circuit board
JP5895468B2 (en) Laminated film and rubber molded body using the same
JP2012036249A (en) Method for producing surface-modified fluororesin film, method for producing rubber composite, and rubber article
US10815394B2 (en) Method for producing an adhesive tape by means of plasma lamination
WO2010025325A2 (en) Fluoropolymer laminate
JP2010538829A (en) Method for stable hydrophilic enhancement of substrates by atmospheric pressure plasma deposition
JP6846781B2 (en) Laminated body and its manufacturing method
JP2022003150A (en) Method for producing fluorine-based resin film
JPH07292138A (en) Treating method for surface of article containing plastic material
KR101049927B1 (en) Silicone coated plastic bonding sheet and method of making same
JP3746868B2 (en) Fluororesin composite and method for producing the same
JP7047260B2 (en) Composite rubber molded body for pharmaceuticals
JP5429511B2 (en) Surface-coated resin substrate, method for producing the same, and apparatus for producing the same
JP3227005B2 (en) Modification method of fluororesin surface
JP4935214B2 (en) Surface-coated fluororesin substrate and method for producing the same
WO2010058648A1 (en) Surface modification process using microplasma and bonding process using microplasma
JP3819045B2 (en) Laminate of resin and rubber and method for producing the same
JPH10315400A (en) Molded article of polytetrafluoroethylene, and manufacture and use thereof
JPS6033860B2 (en) Fluororesin film with adhesive
JPH08198984A (en) Method for modifying surface of fluororesin film

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150226