WO2010058648A1 - Surface modification process using microplasma and bonding process using microplasma - Google Patents

Surface modification process using microplasma and bonding process using microplasma Download PDF

Info

Publication number
WO2010058648A1
WO2010058648A1 PCT/JP2009/065986 JP2009065986W WO2010058648A1 WO 2010058648 A1 WO2010058648 A1 WO 2010058648A1 JP 2009065986 W JP2009065986 W JP 2009065986W WO 2010058648 A1 WO2010058648 A1 WO 2010058648A1
Authority
WO
WIPO (PCT)
Prior art keywords
microplasma
surface modification
electrode
modification treatment
processed
Prior art date
Application number
PCT/JP2009/065986
Other languages
French (fr)
Japanese (ja)
Inventor
清水一男
Original Assignee
淀川ヒューテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淀川ヒューテック株式会社 filed Critical 淀川ヒューテック株式会社
Priority to JP2010539182A priority Critical patent/JPWO2010058648A1/en
Publication of WO2010058648A1 publication Critical patent/WO2010058648A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2418Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being embedded in the dielectric
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2437Multilayer systems

Definitions

  • the present invention relates to a surface modification method using microplasma and a bonding method using microplasma.
  • Patent Document 1 In the surface modification process by the conventional method as described above, a high voltage power source is required for plasma generation (usually 10-20 kV for the surface modification process) as well as the cost of the robot control part.
  • Non-Patent Document 1, Patent Document 2, and Patent Document 3 Regarding the surface modification processing technology, there are the following demands from the industry. (1) In the liquid crystal industry where competition for real-time processing is extremely fierce, speed processing is required, and it is difficult to deal with decompression processing that requires a vacuum chamber or the like, and an atmospheric pressure process capable of simple and large-area processing is required. It has become.
  • micro flow path having an extremely small cross-sectional area is driven by a high pressure pump or the like, it is required to improve the bonding strength.
  • (4) Adverse effects of electrostatic damage When corona discharge or glow discharge treatment is performed, charging of the material to be treated by charged particles becomes a problem.
  • the liquid crystal panel has an adverse effect on mounted parts, formation lines, and the like, and is considered to be a cause of inefficient surface modification.
  • microplasma Compared with atmospheric pressure corona and glow discharge, microplasma has a discharge voltage of about 1/10 (1 kV), and since the material to be treated is placed outside, the corona often sandwiches the material to be treated between the electrodes. It is considered that adverse effects are less likely to be seen compared to discharge treatment or the like.
  • Patent Document 4 describes a “microreactor” in which two substrates are bonded with an adhesive and a microchannel recess having a width of 0.1 to 3000 ⁇ m is formed at the interface between the substrates.
  • a solvent or an adhesive may be mixed in the chemical solution of the contents.
  • An object of the present invention is to provide a method for modifying the surface characteristics of various materials such as glass and resins to a large area in real time using atmospheric pressure microplasma.
  • Another object of the present invention is a method of joining a member to be treated such as a plurality of flexible members by heating and pressurizing without using an adhesive.
  • the object is to provide a method for joining a member to be processed which has no fear of mixing with a solvent, an adhesive or the like and has excellent joining durability.
  • the surface modification method using the microplasma of the present invention is as follows: Atmospheric pressure microplasma generated between a plurality of microplasma electrodes at 780 V to 1.9 kV under atmospheric pressure is irradiated onto the surface of the member to be processed, and the surface modification treatment of the surface of the member to be processed is performed without using a vacuum vessel. In real time.
  • the surface modification treatment method using the microplasma of the present invention is the above (1).
  • the atmospheric pressure microplasma is generated at 780 V to 1 kV so that static electricity is not generated in the member to be processed.
  • the surface modification treatment method using the microplasma of the present invention is the above (1) or (2).
  • the surface modification treatment method using microplasma of the present invention is the above (3).
  • the hole formed in the microplasma electrode has a diameter of 0.5-5 mm.
  • the surface modification treatment method using microplasma of the present invention is any one of the above (1) to (4),
  • the flow rate of the gas injected from the hole formed in the microplasma electrode is 1 to 5.5 m / s.
  • the surface modification treatment method using the microplasma of the present invention is any one of the above (1) to (5).
  • the distance between the microplasma electrode and the surface of the member to be processed is set to 0 to 10 mm.
  • the surface modification treatment method using microplasma of the present invention is any one of the above (1) to (6),
  • the discharge gap length between the microplasma electrodes is set to 0 to 500 ⁇ m.
  • the surface modification treatment method using the microplasma of the present invention is any one of the above (1) to (7).
  • the entire surface of the microplasma electrode is used to perform a surface modification process on the surface of the member to be processed.
  • the surface modification treatment method using microplasma of the present invention is any one of the above (1) to (8), In setting the discharge gap between the microplasma electrodes, Without using a separate spacer, a dielectric is coated on the surface of the microplasma electrode to ensure a discharge gap length.
  • a joining method using microplasma of the present invention is a joining method of a member to be processed whose surface has been modified by using the surface modification treatment method according to any one of (1) to (9). And It is characterized in that the surfaces of the treated members subjected to the surface modification treatment are heated and pressurized to be joined without using an adhesive.
  • microplasma of the present invention physical changes and chemical changes caused by generated radicals, ultraviolet light, etc. are caused by performing microplasma treatment on the surface of the member to be treated.
  • it is possible to perform a surface modification process for a large area in real time without the need for a vacuum vessel such as a chamber.
  • it can be handled with a small power source, and atmospheric gas can be used, which is advantageous in terms of cost.
  • surface modification treatment that does not adversely affect electrostatic damage is possible. That is, when corona discharge or glow discharge treatment is performed, charging of the member to be treated by charged particles becomes a problem.
  • the liquid crystal panel has an adverse effect on mounted components, formation lines, and the like, and is considered to be a cause of inefficient surface modification.
  • the discharge voltage is about 1/10 (1 kV)
  • the member to be processed is placed outside, the member to be processed is often sandwiched between the electrodes.
  • corona discharge treatment there are few adverse effects.
  • the bonding method using the microplasma of the present invention since the processing target members are bonded without using an adhesive, there is no possibility that the adhesive component is eluted into the contents, and the influence on the contents There is no.
  • the present invention can be preferably applied when the content is food, medicine or the like.
  • the members to be processed are joined by heating and pressing, the members to be processed can be integrated by a simple means and can be preferably applied to a liquid container or the like.
  • the member to be treated is a resin film
  • the resin film is heated evenly, so that peeling is unlikely to occur on the bonding surface between the films.
  • FIG. 1 is a schematic configuration of a plasma electrode used for microplasma processing, where (a) is a cross-sectional view of the plasma electrode, and (b) is a plan view of the plasma electrode.
  • FIG. 2 is an explanatory view of a method for joining processed members using the microplasma processing of the present invention.
  • FIG. 3 is a photograph of the contact angle measured in order to evaluate the effect of the surface modification treatment.
  • FIG. 4 shows an example of the result of microplasma surface modification treatment with a PEN film (polyethylene naphthalate) in Example 2, where (1) is untreated (2) is treated with an applied voltage of 780 V, and (3) is 880 V. (4) is processed at 1 kV.
  • FIG. 1 is a schematic configuration of a plasma electrode used for microplasma processing, where (a) is a cross-sectional view of the plasma electrode, and (b) is a plan view of the plasma electrode.
  • FIG. 2 is an explanatory view of a method for joining processed members using the microplasm
  • FIG. 5 shows the result of a water droplet contact angle change on the glass substrate when the surface of the glass substrate in Example 3 was subjected to microplasma surface modification treatment.
  • FIG. 6 shows the results of changes in the contact angle of water droplets on the surface of the LCP when the surface of the LCP (Liquid Crystal Polymer: liquid crystal polymer) of Example 4 was subjected to microplasma surface modification treatment.
  • FIG. 7 shows the result of a change in water droplet contact angle on the surface of PPA when the surface of PPA (polyphthalamide) in Example 5 was subjected to microplasma surface modification treatment.
  • FIG. 8 shows the result of the water droplet contact angle change on the surface of the lead frame in Example 6.
  • FIG. 9 shows the result of the water droplet contact angle change on the surface of the PC in Example 7.
  • FIG. 10 shows the adhesion between LCP and silicon after 48 hours in Example 8.
  • FIG. 11 shows the adhesion between LCP and silicon after 72 hours.
  • FIG. 12 shows the adhesion between LCP and silicon after 120 hours.
  • FIG. 13 shows the measurement result of the contact angle in this case, in which the surface modification treatment of the member to be treated was performed by changing the through-hole diameter of the plasma electrode.
  • FIG. 14 shows the influence of Example 10 on the contact angle of the PEN film surface when the gas flow rate was changed.
  • FIG. 15 shows the relationship of the distance between the electrode (dielectric part) and the member to be processed in microplasma processing in Example 11.
  • FIG. 16 shows the change in the contact angle depending on the treatment time when argon is used as the rare gas for the surface modification treatment of the PEN film in Example 12.
  • FIG. 17 shows the influence of the injection gas type on the contact angle in Example 13.
  • 18A shows a microplasma experimental apparatus diagram of Example 15, and
  • FIG. 18B shows a corona discharge experimental apparatus diagram of Comparative Example 1.
  • FIG. FIG. 19 shows the experimental results of FIG.
  • FIG. 20 shows the change in the C1s spectrum on the surface of the PEN film before and after performing microplasma treatment using Ar gas as the injection gas in Example 16.
  • FIG. 21 shows the O1s spectrum on the surface of the PEN film before treatment in Example 16 and the change in the O1s spectrum on the surface of the PEN film when treated with Ar.
  • FIG. 22 shows the N1s spectrum on the surface of the PEN film before the treatment in Example 16 and the N1s spectrum change on the surface of the PEN film when treated with Ar.
  • FIG. 23 shows an electrode temperature distribution in Example 17 when the area of the plasma electrode is 20 ⁇ 100 mm 2 .
  • FIG. 24 shows an electrode temperature distribution in Example 17 when the area of the plasma electrode is 60 ⁇ 100 mm 2 .
  • FIG. 25 shows an electrode temperature distribution in Example 17 when the area of the plasma electrode is 100 ⁇ 100 mm 2 .
  • FIG. 26 shows an example in which the resin coating of Example 18 was provided with a difference in thickness and a discharge gap length of 100 ⁇ m was formed on the electrode surface.
  • FIG. 27 is an explanatory diagram for forming a fluid manifold made of the three-layer resin film of Example 19.
  • FIG. 28 shows the result of analyzing the bonding state with a laser focus microscope.
  • a film to be activated (member to be treated) is installed below an electrode for generating microplasma, and an alternating voltage is applied to the upper microplasma electrode.
  • the microplasma used in the present invention can be driven with a Paschen minimum of about 10 ⁇ m at atmospheric pressure, and thus is essentially characterized by extremely high energy efficiency (active species generation efficiency in plasma).
  • the member to be treated by the surface modification treatment method of the present invention is not particularly limited as long as it is a dielectric, but polyester, polyethylene terephthalate, polycarbonate, polypropylene, polymethylpentene, polychlorinated Examples thereof include resin films made from vinyl, polyurethane, and the like.
  • the resin film may be a single layer or a laminated layer.
  • the resin film excellent in chemical resistance and heat resistance include polyethylene naphthalate (PEN), polyimide (PI), and polyetheretherketone (PEEK).
  • PEN polyethylene naphthalate
  • PI polyimide
  • PEEK polyetheretherketone
  • the target of the surface modification by the surface modification treatment method of the present invention can be applied to a resin substrate, a glass substrate, and other substrates in addition to the resin film, and is not particularly limited.
  • a schematic configuration of a plasma electrode used for the microplasma treatment is shown in FIG. 1A is a cross-sectional view of a plasma electrode, and FIG. 1B is a plan view of the plasma electrode.
  • the plasma electrode 10 includes two metal substrates 13 each having a plurality of through holes 11 arranged in parallel.
  • the plasma electrodes 10 are arranged in parallel at the peripheral portion with a non-conductive spacer 15 interposed therebetween. Furthermore, a dielectric film 16 is formed on the surface of the metal substrate 13, and the surface of the dielectric film 16 is preferably an uneven shape with a porous surface exposed. Furthermore, a ground electrode 18 is provided under the member 17 to be processed (resin film, glass substrate, resin substrate, etc., which is the target of surface modification), and charged particles such as ions are actively applied to the surface of the member 17 to be processed. By supplying to the surface treatment, the surface treatment can be accelerated.
  • the distance between workpieces of the member 17 to be processed and the metal substrate 13 having the dielectric film 16 is within 0-5 mm.
  • CDA Clean dry air
  • rare gases such as nitrogen and argon are injected through the through-hole 11 provided in the plasma electrode 10
  • the injection gas flow rate from the through hole 11 of the plasma electrode 10 to the member 17 to be processed is about 1 to 5.5 m / s.
  • the discharge gap length which is the plasma generation region between the microplasma electrodes, is preferably set between 0-500 ⁇ m, and more preferably between 0-300 ⁇ m.
  • the plasma electrode 10 desirably has a plurality of through holes 11 formed therein.
  • the total opening area ratio of the opening portions of the through holes 11 formed in the metal substrate 13 is 2-60% with respect to the plane area when the metal substrate 13 is viewed from the plane. Is preferred.
  • the discharge gap length which is the plasma generation region between the microplasma electrodes
  • the size of the through hole 11 is preferably 0.5-5 mm in order to ensure that the injection gas flow rate is 1-5.5 m / s.
  • the peak value of the voltage is about 500V-2kV, and plasma can be generated at atmospheric pressure.
  • the range is preferably 700V-1.5kV.
  • the average current depends on the area of the electrode, but is preferably in the range of about 20 mA-10 A.
  • the frequency of the power source may be any band in the region from a low frequency to a very high frequency in the range of 1 kHz to 1000 MHz, but a frequency in the range of about 10 kHz to 100 kHz is preferable in consideration of an increase in electrode temperature.
  • the heating temperature of the plasma electrode 10 is preferably room temperature-300 ° C., more preferably in the range of room temperature-100 ° C.
  • a method for joining processed members using microplasma processing is a method in which a plurality of processed members are joined by heating and pressing without using an adhesive, and the processed member is formed by microplasma. It processes, after that, to-be-processed members are heated and pressurized, and to-be-processed members are joined. As shown in FIG. 2, the activated surfaces of the two processed members 2 and 3 that have been subjected to surface modification treatment by plasma treatment face each other and are placed on the lower press die 21. Further, the upper press die 22 heated by the external heating device (heater) 23 is placed in a standby state above the members 2 and 3 to be processed.
  • the two processed members 2 and 3 disposed on the lower press mold 21 are pressed by the heated upper press mold 22 to join the processed members 2 and 3 together.
  • the heating temperature of the press upper die 22 needs to be a temperature that softens the member to be processed, it is preferable that the temperature of the softening point is slightly lower than the melting point of the member to be processed.
  • the melting point is 265-270 ° C.
  • the heating temperature by the heater is preferably about 145-147 ° C.
  • the heating temperature by the heater is preferably about 230 to 250 ° C.
  • the applied pressure at the time of joining is such that the member to be treated is softened and sufficient joining strength is obtained. If a further pressing force is applied, the member to be processed is destroyed, so that the thickness is adjusted as appropriate according to the thickness of the material to be processed. For example, when joining at the softening point using PEN as a member to be treated, it is sufficient to set the pressure to about 1-3 Pa (10-30 kgf / cm 2 ).
  • Example 1 The surface of the PEN film using a disk-shaped plasma electrode made of 18-8 stainless steel with a thickness of 0.5 mm and an outer diameter of 100 mm formed of a metal substrate punched with a large number of circular through-holes. A reforming treatment was performed. The through hole formed in the metal substrate had an outer diameter of one through hole of 0.2 mm and an opening area ratio of 50%. A dielectric material was coated on the surface of the metal substrate 13. The dielectric film is preferably coated with a ceramic coating such as glass coating or alumina, or with another ceramic or insulating material. As a voltage driving condition, a voltage of 920 V was applied between the plasma electrode 10 and the ground electrode 18 to drive, thereby generating plasma in a silent discharge state.
  • a voltage driving condition a voltage of 920 V was applied between the plasma electrode 10 and the ground electrode 18 to drive, thereby generating plasma in a silent discharge state.
  • the PEN film was subjected to surface modification by flowing a gas vertically through the through hole of the metal substrate to generate microplasma between the plasma electrodes.
  • the conditions for surface modification were as follows.
  • the injection gas flow rate was 1 L / min, and the processing time was 10 min.
  • As the kind of gas pure air and nitrogen were used.
  • the contact angle (side view) to the film was photographed. The photograph is shown to FIG. 3 (1)-(4).
  • the contact angle ⁇ is obtained from the calculation formula shown in Table 1, and the result is shown in Table 1.
  • the contact angle before the modification was 86.9 °, but by the surface modification treatment of the present invention, the contact angle was as follows.
  • the contact angle after modification is 60.3 °
  • the contact angle after modification is 60.2 °
  • the contact angle after modification is 54.2 °
  • the contact angle after modification is 22.3 °
  • Example 2 shows the dependency of the applied voltage in the microplasma surface modification treatment.
  • the applied voltage was changed to 780 V, 880 V, and 1 kV under the conditions of argon as the injection gas, a gas flow rate of 10 L / min, and a processing time of 1 min.
  • the discharge gap length between the electrodes was 300 ⁇ m.
  • a PEN film was used as a member to be treated for the microplasma surface modification treatment, and the water droplet contact angle on the film surface was measured and evaluated.
  • Example 3 a glass substrate as a substrate used in a liquid crystal panel or the like was used as the member to be processed.
  • the surface of the glass substrate is subjected to microplasma surface modification treatment, and the result of the water droplet contact angle change on the glass substrate is shown in FIG. Table 3 summarizes the experimental parameters in this case. From the results of FIG. 5, the water droplet contact angle on the glass substrate before the surface modification treatment using microplasma was 39-43 °, but after the surface modification treatment, the water droplet contact angle was greatly reduced.
  • Example 4 LCP was used as the member to be processed. The surface of the LCP is subjected to a microplasma surface modification treatment, and the result of the water droplet contact angle change on the surface of the LCP is shown in FIG. Table 4 summarizes the experimental parameters.
  • Example 5 In Example 5, PPA (polyphthalamide) was used as the member to be treated. The experimental parameters are the same as in Table 4 shown in Example 4.
  • Example 6 The surface of PPA (polyphthalamide) is subjected to microplasma surface modification treatment, and the result of the water droplet contact angle change on the surface of PPA is shown in FIG. (Example 6)
  • the lead frame metal plate used at the time of semiconductor manufacture was used as a member to be processed.
  • the surface of the lead frame is subjected to AG plating and Pd plating.
  • the experimental parameters are the same as in Table 4 shown in Example 4.
  • FIG. 8 shows the results of changes in the contact angle of water droplets on the surface of the lead frame when the surface of the lead frame was subjected to microplasma surface modification treatment.
  • PC polycarbonate
  • Example 8 The experimental parameters are the same as in Table 4 shown in Example 4.
  • the surface of PC polycarbonate
  • FIG. Example 8
  • the results of observing the sustainability after performing the microplasma treatment for 30 seconds on the adhesion (adhesiveness or bondability) between the LCP and silicon as the member to be treated are shown in FIGS. .
  • 10 shows adhesion between LCP and silicon after 48 hours
  • FIG. 11 shows adhesion between LCP and silicon after 72 hours
  • FIG. 12 shows adhesion between LCP and silicon after 120 hours. Observed.
  • FIG. 10 shows adhesion between LCP and silicon after 48 hours
  • FIG. 11 shows adhesion between LCP and silicon after 72 hours
  • FIG. 12 shows adhesion between LCP and silicon after 120 hours.
  • Example 9 In Example 9, the diameter of the through hole 11 of the plasma electrode is changed to perform the surface modification treatment of the member 17 to be processed, and the contact angle measurement result in this case is shown in FIG. In addition, the to-be-processed material 17 used the glass base material, and the water droplet contact angle before a process was about 25 degree
  • the contact angle change is small for the diameter of the through-hole 11 of 5 mm depending on the microplasma processing time (reduction of 6.9 ° in the processing time of 60 seconds), the diameter of the through-hole 11 is small.
  • the contact angle became less than the measurement limit at a processing time of 60 seconds.
  • the contact angle decreased to 10 ° even with a treatment time of 5 seconds.
  • the gas flow rates in the through holes 11 are summarized in Table 5. As shown in Example 6, the gas flow rate shows an optimum value at 1 [m / s] or more, and when the gas flow rate is further increased, it tends to decrease again.
  • FIG. 14 shows the influence on the contact angle of the PEN film surface when the gas flow rate is changed in Example 10.
  • the injection gas used for the surface modification treatment of the PEN film was air, and was supplied to the microplasma electrode using a fan.
  • the discharge gap length of the microplasma electrode is 100 ⁇ m, and the applied voltage is 1.5 kV.
  • the member to be processed has a contact angle once reduced at an injection gas flow rate of 3.0 m / s, and that the contact angle increases as the flow rate increases from there.
  • Example 11 In Example 11, the relationship between the distance between the electrode (dielectric part 16) and the member to be processed 17 in the microplasma processing is shown in FIG.
  • the to-be-processed member 17 uses the glass base material, and the water droplet contact angle before a process is about 30 degree
  • the distance between the electrode (dielectric part 16) and the member to be processed 17 is 10 mm, the effect of the surface modification treatment is small, and the electrode (dielectric part 16) and the member to be processed 17 When the distance is shortened, the contact angle is decreased, and the effect of the surface modification treatment is greatly exhibited. In particular, when the distance between the member to be processed and the electrode was 5 mm or less, the contact angle was below the measurement limit.
  • Example 12 In Example 12, the change in the contact angle depending on the treatment time when argon is used as the rare gas for the surface modification treatment of the PEN film is shown. In Example 1, the result of processing for about 10 minutes using nitrogen and room air was shown. However, in Example 12, since argon was used, the PEN film contacted in about 3 seconds as shown in FIG. The angle decreased to about 30 degrees and the hydrophilicity increased. Even if the treatment time is further increased, the contact angle does not change greatly, so that the effectiveness of using a rare gas for shortening the treatment time is recognized.
  • Example 12 the interelectrode discharge gap length was 100 ⁇ m, the distance between the PEN and the electrode was 1 mm, the discharge voltage was 1.1 kV, the discharge current was 28 mA, and the gas flow rate was 3.5 m / s.
  • Example 13 the influence on the contact angle when nitrogen or argon is added to room air as the propellant gas is shown.
  • FIG. 17 shows the results of comparing changes in the contact angle on the PEN surface using the following three types of propellant gas.
  • Example 14 When treated with nitrogen alone, it was 65.2 °.
  • an LCD panel substrate was used as the member to be processed.
  • the charging voltage of the LCD panel substrate after the surface modification treatment using microplasma was measured, and the influence of static electricity was evaluated.
  • the measuring instrument used was made by Static Sensor Model 718, 3M.
  • the conditions at the time of measurement are as follows. Gas type: nitrogen 70 L / min, discharge voltage: 1 KV, through-hole diameter: 2 mm, distance between electrode (dielectric part) and member to be processed: 3 mm
  • Table 10 shows the measurement results. There was almost no effect on the LCD panel substrate after the microplasma treatment, and the phenomenon that the bare chip on the LCD panel was destroyed by electrostatic failure was not observed.
  • Table 11 shows performance evaluation data of a static eliminator (ionizer) on an LCD panel.
  • the LCD panel was triboelectrically charged only by being transported on the production line, and voltages up to 68-155V were observed.
  • the charging voltage of the panel is standardized to be ⁇ 50 V or less. Even in comparison with these, since the voltage rises to only 30 V even after 60 seconds of microplasma treatment, the chips reported in the prior art (plasma surface treatment) are not damaged due to electrostatic failure, It can be said that the microplasma treatment has almost no influence of static electricity. Electrically, the lines of electric force are closed between the electrodes.
  • Example 15 Comparative Example 1
  • a plasma electrode having a hole diameter of 3 mm was used, the discharge gap length was 100 ⁇ m, and the distance between the member to be treated (PEN film) and the electrode was 1 mm, 2 mm, and 3 mm.
  • the surface modification treatment of the PEN film was performed for 5 seconds at an input voltage of 100 V, a discharge voltage of 1.9 kV, a discharge current of about 120 mA, and a room air (5 L / min).
  • the surface treatment by corona discharge was performed with a distance between the PEN film and the electrode of about 0.5 mm, a discharge voltage of 2.5 kV, a discharge current of about 180 mA, a room air (5 L / min), and a treatment time of 5 seconds. Under each condition, the surface potential was measured using a surface potentiometer (Trek, Model 347) after the surface treatment.
  • An experimental apparatus is shown in FIG. In FIG. 18, (a) shows a microplasma experimental apparatus, and (b) shows a corona discharge experimental apparatus. The experimental results are shown in FIG. From FIG. 19, when the microplasma electrode was used, the surface potential tended to decrease as the distance from the electrode to PEN increased.
  • Example 16 when the microplasma treatment is performed on the surface of the PEN film as the member to be treated, the change in chemical bonding on the surface is analyzed using XPS.
  • FIG. 20 shows the change in the C1s spectrum on the surface of the PEN film before and after performing the microplasma treatment using Ar gas as the injection gas. From FIG. 20, this spectrum shows C—H bonds, and it can be confirmed that C—H bonds are reduced by the microplasma treatment.
  • Example 17 in order to demonstrate that it is preferable to increase the area of the plasma electrode in the surface modification treatment using microplasma, plasma electrodes having various areas were manufactured and verified. In the present example, the surface temperature of the plasma electrode was observed with a thermo camera. However, since the electrode surface temperature rises when the plasma generation density is high, this measurement result suggests the plasma generation density.
  • FIG. 23 shows the electrode temperature distribution when the area of the plasma electrode is 20 ⁇ 100 mm 2 . As can be seen from FIG.
  • FIG. 24 shows the electrode temperature distribution when the area of the plasma electrode is 60 ⁇ 100 mm 2 . As can be seen from FIG. 24, it was recognized that the plasma generation was uneven in the 60 ⁇ 100 mm 2 electrode. From this result, it is understood that the surface modification may be limited to a certain area of the electrode area when the fixing method is not devised or when the thickness of the material (base material) is thin.
  • FIG. 25 shows an electrode temperature distribution when the area of the plasma electrode is 100 ⁇ 100 mm 2 . As can be seen from FIG. 25, it was recognized that the plasma generation was uneven in the 100 ⁇ 100 mm 2 electrode.
  • the plasma generation density around the clip for fixing the electrode is high.
  • these are considered to be improved by improving electrode processing accuracy (for example, setting of the discharge gap length, electrode fixing method, and power source capacity).
  • Example 18 In FIG. 1, the discharge gap length of 100 ⁇ m is secured by sandwiching the spacers between the electrodes.
  • the metal substrate constituting the plasma electrode is formed.
  • Example 26 shows an example in which a difference in thickness (step) is provided in the resin coating and a discharge gap length is formed on the electrode surface.
  • the electrode (a) portion (1): 350 ⁇ m, (2): 250 ⁇ m,
  • the electrode (b) part (2): 250 ⁇ m, (3): 350 ⁇ m.
  • Example 19 In Example 19, using the same apparatus as in Example 1, as shown in FIG. 27 (a), the member to be treated 4 is made of three resin films 2, 3, and 4 without using an adhesive. Bonding was performed by heating and pressing to form a fluid manifold made of three layers of resin film. In addition, about the resin film 3, both surfaces were surface-modified (activation process). In Example 19, the resin film 3 formed with the slits 5 as shown in FIG.
  • FIGS. 28 (a) and 28 (b) show the result of analyzing the bonding state with a laser focus microscope. The sample shown in FIG.
  • the surface modification treatment method using microplasma of the present invention causes the chamber to undergo physical changes and chemical changes caused by radicals generated by atmospheric pressure microplasma treatment, ultraviolet light, etc. on the surface of the member to be treated. It is possible to perform surface treatment over a large area in real time without the need for a vacuum vessel, etc., and it can be handled with a small power source, etc., and does not use expensive rare gas or standard gas, It can be diverted, is advantageous in terms of cost, and has high industrial applicability. Furthermore, since surface modification treatment that does not adversely affect electrostatic damage is possible, surface modification of a liquid crystal panel or the like can be performed with high efficiency.
  • the member to be treated is formed with a plurality of films without using an adhesive, there is no possibility that the adhesive component is eluted into the contents, and the contents It can be preferably applied to the case where the contents are food or pharmaceuticals. Furthermore, since the members to be treated are joined together by heating and pressing, the members to be treated can be integrated by simple means and can be preferably applied to a liquid container or the like, and the resin film is heated evenly. Separation is unlikely to occur on the joint surface, and it can be applied to fluid manifolds, etc., and has high industrial applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

Disclosed is a process for modifying surface characteristics in a large area of various materials in real time using atmospheric pressure microplasma. A member to be processed is surface-modified by irradiating the surface of the member to be processed with atmospheric pressure microplasma which is generated between a plurality of microplasma electrodes at from 780V to 1.9 kV at atmospheric pressure in real time without using a vacuum chamber. Also disclosed is a bonding process using microplasma, which is characterized in that modified surfaces of members to be processed are bonded together by being heated and pressed without using an adhesive.

Description

マイクロプラズマを用いた表面改質処理方法及び接合方法Surface modification treatment method and bonding method using microplasma
本発明は、マイクロプラズマを用いた表面改質処理方法及びマイクロプラズマを用いた接合方法に関する。 The present invention relates to a surface modification method using microplasma and a bonding method using microplasma.
近年、様々な樹脂材料などが医療用検査キット、燃料電池用マイクロセル、液晶ディスプレイ基板などの産業応用として開発研究されてきている。
通常、耐久性、化学的安定性などの理由により接着剤は元より、接合困難な樹脂材料が使用されるケースが多く(それらと相反しながらも)、それらを短時間に接合可能とする技術が求められてきている。
これらの接合技術には、大気グロー放電、コロナ放電、プラズマジェット、プラズマトーチ処理が実用化されており、それらは針電極、くし型電極、ノズル型電極などをロボットアームやXYプロッタアームで制御しながら走査させる方式が主流である。
(例えば、特許文献1参照)
上述したような従来手法による表面改質処理では、ロボット制御部分のコストは元より、プラズマ生成(通常、表面改質処理には10−20kV)には高電圧電源が必要となる。
(例えば、非特許文献1、特許文献2、特許文献3参照)
表面改質処理技術に関し、産業界から以下のような要求がある。
(1)リアルタイム処理の要求
競争の極めて激しい液晶業界では、スピード処理が要求され、真空チャンバ等を必要とする減圧処理では対応が困難であり、簡易かつ大面積処理が可能な大気圧プロセスが必要となってきている。
(2)低コスト化の要求
表面処理にレーザや寿命の短いUVランプを使用するシステムや前述のチャンバ(真空排気系)、消耗品としての希ガス類、高電圧電源を要求する設備費用、新規ライン構築費用圧縮の要求があり、プロセス全体の低コスト化が求められている。
(3)強接合強度と低残留成分の要求
接着剤では接合しづらい材料(ポリエチレンナフタレート、ポリイミドなど)がマイクロセルに用いられるが、医療用検査キット、燃料電池用マイクロセルでは、接着剤による残留成分が分析、燃料改質時に悪影響を及ぼすことが懸念されており、物理化学的接合が望ましい。さらに極めて断面積の小さいマイクロ流路を高圧力ポンプなどで駆動することから接合強度の向上を要求されている。
(4)静電気障害の悪影響
コロナ放電、グロー放電処理を行った場合、荷電粒子による被処理材料への帯電が問題となる。
特に、液晶パネルでは実装部品、形成ライン等に悪影響があり、表面改質を高効率で行えない原因とされている。マイクロプラズマでは大気圧コロナ、グロー放電と比べて、その放電電圧は1/10(1kV)程度であり、さらに被処理材料は外部に置かれるため、電極間に被処理材料を挟むことの多いコロナ放電処理などと比べて、悪影響が見られにくいものと考えられる。
また、従来、各種の可撓性部材、例えば樹脂フィルム同士を接合する方法として、接着剤を用いて接合する技術が知られている。
例えば、特許文献4には、二枚の基板を接着剤によって接着し、基板の界面に幅が0.1~3000μmの微細流路用凹部を形成した「マイクロリアクター」が記載されている。
しかし、接着剤を用いると、内容物の薬液に溶剤や接着剤などが混じるおそれがあるという問題があった。
ぬれと(超)撥水、(超)親水技術、そのコントロール、pp.477−480,2007,株式会社エヌ・ティー・エス 特開2008−27830号公報 特開2008−124041号公報 特開2007−188690号公報 特開2006−112836号公報
In recent years, various resin materials have been developed and studied for industrial applications such as medical test kits, fuel cell microcells, and liquid crystal display substrates.
Usually, adhesives are often used for resinous materials that are difficult to bond due to reasons such as durability and chemical stability (although conflicting with them), and technology that enables them to be bonded in a short time Has been demanded.
In these joining technologies, atmospheric glow discharge, corona discharge, plasma jet, and plasma torch treatment have been put into practical use, and these control needle electrodes, comb electrodes, nozzle electrodes, etc. with a robot arm or XY plotter arm. Scanning methods are the mainstream.
(For example, see Patent Document 1)
In the surface modification process by the conventional method as described above, a high voltage power source is required for plasma generation (usually 10-20 kV for the surface modification process) as well as the cost of the robot control part.
(For example, see Non-Patent Document 1, Patent Document 2, and Patent Document 3)
Regarding the surface modification processing technology, there are the following demands from the industry.
(1) In the liquid crystal industry where competition for real-time processing is extremely fierce, speed processing is required, and it is difficult to deal with decompression processing that requires a vacuum chamber or the like, and an atmospheric pressure process capable of simple and large-area processing is required. It has become.
(2) Cost reduction requirements A system that uses lasers and short-life UV lamps for surface treatment, the aforementioned chamber (evacuation system), rare gases as consumables, equipment costs that require high-voltage power supplies, and construction of new lines There is a demand for cost reduction, and cost reduction of the entire process is required.
(3) Materials that are difficult to bond (such as polyethylene naphthalate and polyimide) are used for microcells with adhesives that require strong bonding strength and low residual components, but in medical test kits and microcells for fuel cells, adhesives are used. Physicochemical bonding is desirable because residual components are feared to have adverse effects during analysis and fuel reforming. Furthermore, since the micro flow path having an extremely small cross-sectional area is driven by a high pressure pump or the like, it is required to improve the bonding strength.
(4) Adverse effects of electrostatic damage When corona discharge or glow discharge treatment is performed, charging of the material to be treated by charged particles becomes a problem.
In particular, the liquid crystal panel has an adverse effect on mounted parts, formation lines, and the like, and is considered to be a cause of inefficient surface modification. Compared with atmospheric pressure corona and glow discharge, microplasma has a discharge voltage of about 1/10 (1 kV), and since the material to be treated is placed outside, the corona often sandwiches the material to be treated between the electrodes. It is considered that adverse effects are less likely to be seen compared to discharge treatment or the like.
Conventionally, as a method of joining various flexible members, for example, resin films, a technique of joining using an adhesive is known.
For example, Patent Document 4 describes a “microreactor” in which two substrates are bonded with an adhesive and a microchannel recess having a width of 0.1 to 3000 μm is formed at the interface between the substrates.
However, when an adhesive is used, there is a problem that a solvent or an adhesive may be mixed in the chemical solution of the contents.
Wetting and (super) water repellent, (super) hydrophilic technology, its control, pp. 477-480, 2007, NTS Corporation JP 2008-27830 A Japanese Patent Laid-Open No. 2008-124041 JP 2007-188690 A JP 2006-1112836 A
本発明の課題は、大気圧マイクロプラズマを用いてガラス、樹脂類等の様々な材料の表面特性をリアルタイムで、大面積に改質するための方法を提供することである。
また、本発明の他の課題は、複数枚の可撓性部材などの被処理部材を接着剤を用いずに加熱加圧により接合して被処理部材を接合する方法であって、内容物に溶剤や接着剤などが混じるおそれがなく、接合耐久性に優れた被処理部材の接合方法を提供することである。
An object of the present invention is to provide a method for modifying the surface characteristics of various materials such as glass and resins to a large area in real time using atmospheric pressure microplasma.
Another object of the present invention is a method of joining a member to be treated such as a plurality of flexible members by heating and pressurizing without using an adhesive. The object is to provide a method for joining a member to be processed which has no fear of mixing with a solvent, an adhesive or the like and has excellent joining durability.
上記の課題を解決するために、
(1)本発明のマイクロプラズマを用いた表面改質処理方法は、
大気圧下、780V−1.9kVで複数のマイクロプラズマ電極間に生成させた大気圧マイクロプラズマを被処理部材の表面に照射して、被処理部材表面の表面改質処理を真空容器を用いずにリアルタイムに行うことを特徴とする。
(2)本発明のマイクロプラズマを用いた表面改質処理方法は、前記(1)において、
前記大気圧マイクロプラズマを780V−1kVで生成して、被処理部材に静電気を発生させないようにすることを特徴とする。
(3)本発明のマイクロプラズマを用いた表面改質処理方法は、前記(1)又は(2)において、
前記大気圧マイクロプラズマを被処理部材の表面に照射するに際し、
前記マイクロプラズマ電極に形成した穴を通して、0.1−0.8MPaの、空気、不活性な窒素、アルゴン、ヘリウム、キセノン、ネオンのいずれかのガスを、被処理部材の表面に噴射することを特徴とする。
(4)本発明のマイクロプラズマを用いた表面改質処理方法は、前記(3)において、
前記マイクロプラズマ電極に形成した穴の直径を、0.5−5mmとすることを特徴とする。
(5)本発明のマイクロプラズマを用いた表面改質処理方法は、前記(1)乃至(4)のいずれかにおいて、
前記マイクロプラズマ電極に形成した穴から噴射するガス流速を、1−5.5m/sとすることを特徴とする。
(6)本発明のマイクロプラズマを用いた表面改質処理方法は、前記(1)乃至(5)のいずれかにおいて、
前記マイクロプラズマ電極と被処理部材表面とのワーク間距離を、0−10mmとすることを特徴とする。
(7)本発明のマイクロプラズマを用いた表面改質処理方法は、前記(1)乃至(6)のいずれかにおいて、
前記マイクロプラズマ電極間の放電ギャップ長を0−500μmとすることを特徴とする。
(8)本発明のマイクロプラズマを用いた表面改質処理方法は、前記(1)乃至(7)のいずれかにおいて、
前記マイクロプラズマ電極の面積全体を用いて被処理部材表面の表面改質処理を行うことを特徴とする。
(9)本発明のマイクロプラズマを用いた表面改質処理方法は、前記(1)乃至(8)のいずれかにおいて、
前記マイクロプラズマ電極間の放電ギャップを設定するに際し、
別体のスペーサを使用せずに、前記マイクロプラズマ電極表面に誘電体をコーティングをして、放電ギャップ長を確保することを特徴とする。
(10)本発明のマイクロプラズマを用いた接合方法は、前記(1)乃至(9)のいずれかに記載の表面改質処理方法を用いて表面改質された被処理部材の接合方法であって、
表面改質処理された被処理部材の表面同士を加熱及び加圧して、接着剤を用いずに接合することを特徴とする。
To solve the above problem,
(1) The surface modification method using the microplasma of the present invention is as follows:
Atmospheric pressure microplasma generated between a plurality of microplasma electrodes at 780 V to 1.9 kV under atmospheric pressure is irradiated onto the surface of the member to be processed, and the surface modification treatment of the surface of the member to be processed is performed without using a vacuum vessel. In real time.
(2) The surface modification treatment method using the microplasma of the present invention is the above (1).
The atmospheric pressure microplasma is generated at 780 V to 1 kV so that static electricity is not generated in the member to be processed.
(3) The surface modification treatment method using the microplasma of the present invention is the above (1) or (2).
When irradiating the surface of the member to be processed with the atmospheric pressure microplasma,
Injecting 0.1 to 0.8 MPa of air, inert nitrogen, argon, helium, xenon, or neon gas onto the surface of the member to be processed through the hole formed in the microplasma electrode. Features.
(4) The surface modification treatment method using microplasma of the present invention is the above (3).
The hole formed in the microplasma electrode has a diameter of 0.5-5 mm.
(5) The surface modification treatment method using microplasma of the present invention is any one of the above (1) to (4),
The flow rate of the gas injected from the hole formed in the microplasma electrode is 1 to 5.5 m / s.
(6) The surface modification treatment method using the microplasma of the present invention is any one of the above (1) to (5).
The distance between the microplasma electrode and the surface of the member to be processed is set to 0 to 10 mm.
(7) The surface modification treatment method using microplasma of the present invention is any one of the above (1) to (6),
The discharge gap length between the microplasma electrodes is set to 0 to 500 μm.
(8) The surface modification treatment method using the microplasma of the present invention is any one of the above (1) to (7).
The entire surface of the microplasma electrode is used to perform a surface modification process on the surface of the member to be processed.
(9) The surface modification treatment method using microplasma of the present invention is any one of the above (1) to (8),
In setting the discharge gap between the microplasma electrodes,
Without using a separate spacer, a dielectric is coated on the surface of the microplasma electrode to ensure a discharge gap length.
(10) A joining method using microplasma of the present invention is a joining method of a member to be processed whose surface has been modified by using the surface modification treatment method according to any one of (1) to (9). And
It is characterized in that the surfaces of the treated members subjected to the surface modification treatment are heated and pressurized to be joined without using an adhesive.
本発明のマイクロプラズマを用いた表面改質処理方法によれば、被処理部材の表面にマイクロプラズマ処理を施すことにより、生成されるラジカル、紫外光などによる物理的変化、化学的変化を起こすことで、チャンバなど真空容器を必要とせずに、リアルタイムで大面積の表面改質処理を施すことが可能となる。
また、小型電源などで対応が出来、大気ガスを流用可能であり、コスト面で有利である。
さらに、静電気障害の悪影響のない表面改質処理が可能である。
すなわち、コロナ放電、グロー放電処理を行った場合、荷電粒子による被処理部材への帯電が問題となる。
特に、液晶パネルでは、実装部品、形成ライン等に悪影響があり、表面改質を高効率で行えない原因とされている。
マイクロプラズマでは、大気圧コロナ、グロー放電と比べて、その放電電圧は1/10(1kV)程度であり、さらに被処理部材は外部に置かれるため、電極間に被処理部材を挟むことの多いコロナ放電処理などと比べて、悪影響が少ない。
また、本発明のマイクロプラズマを用いた接合方法によれば、被処理部材を接着剤を使用せずに接合したので、接着剤成分が内容物内に溶出するおそれがなくなり、内容物への影響がない。
特に、内容物が食品や医薬品などの場合に好ましく適用できる。
さらに、本発明によれば、被処理部材同士を加熱加圧によって接合したので、被処理部材同士を簡単な手段で一体化できて、液体容器などに好ましく適用できる。
被処理部材を樹脂フィルムとした場合は、樹脂フィルムが均等に加熱されるため、フィルム同士の接合面に剥離が発生しにくい。
According to the surface modification treatment method using microplasma of the present invention, physical changes and chemical changes caused by generated radicals, ultraviolet light, etc. are caused by performing microplasma treatment on the surface of the member to be treated. Thus, it is possible to perform a surface modification process for a large area in real time without the need for a vacuum vessel such as a chamber.
In addition, it can be handled with a small power source, and atmospheric gas can be used, which is advantageous in terms of cost.
Furthermore, surface modification treatment that does not adversely affect electrostatic damage is possible.
That is, when corona discharge or glow discharge treatment is performed, charging of the member to be treated by charged particles becomes a problem.
In particular, the liquid crystal panel has an adverse effect on mounted components, formation lines, and the like, and is considered to be a cause of inefficient surface modification.
In the microplasma, compared with the atmospheric pressure corona and glow discharge, the discharge voltage is about 1/10 (1 kV), and since the member to be processed is placed outside, the member to be processed is often sandwiched between the electrodes. Compared with corona discharge treatment, there are few adverse effects.
Further, according to the bonding method using the microplasma of the present invention, since the processing target members are bonded without using an adhesive, there is no possibility that the adhesive component is eluted into the contents, and the influence on the contents There is no.
In particular, the present invention can be preferably applied when the content is food, medicine or the like.
Furthermore, according to the present invention, since the members to be processed are joined by heating and pressing, the members to be processed can be integrated by a simple means and can be preferably applied to a liquid container or the like.
In the case where the member to be treated is a resin film, the resin film is heated evenly, so that peeling is unlikely to occur on the bonding surface between the films.
図1は、マイクロプラズマ処理に用いるプラズマ電極の概略構成であり、(a)はプラズマ電極の断面図、(b)はプラズマ電極の平面図である。
図2は、本発明のマイクロプラズマ処理を用いた被処理部材の接合方法についての説明図である。
図3は、表面改質処理の効果を評価するため、接触角を測定した写真である。
図4は、実施例2の、PENフィルム(ポリエチレンナフタレート)でのマイクロプラズマ表面改質処理結果例を示し、(1)は未処理(2)は印可電圧780Vで処理、(3)は880Vで処理、(4)は1kVで処理したものである。
図5は、実施例3の、ガラス基材の表面をマイクロプラズマ表面改質処理を行い、ガラス基材上の水滴接触角変化の結果を示す。
図6は、実施例4の、LCP(Liquid Crystal Polymer:液晶ポリマー)の表面をマイクロプラズマ表面改質処理を行い、LCPの表面の水滴接触角変化の結果を示す。
図7は、実施例5の、PPA(ポリフタルアミド)の表面をマイクロプラズマ表面改質処理を行い、PPAの表面の水滴接触角変化の結果を示す。
図8は、実施例6の、リードフレームの表面の水滴接触角変化の結果を示す。
図9は、実施例7の、PCの表面の水滴接触角変化の結果を示す。
図10は、実施例8の、48時間経過後のLCPとシリコンとの密着性を示す。
図11は、同、72時間経過後のLCPとシリコンとの密着性を示す。
図12は、同、120時間経過後のLCPとシリコンとの密着性を示す。
図13は、実施例9の、プラズマ電極の貫通孔径を変更して被処理部材の表面改質処理を行い、この場合の接触角の測定結果を示す。
図14は、実施例10の、ガス流速を変化させた時のPENフィルム表面の接触角への影響を示す。
図15は、実施例11の、マイクロプラズマ処理における電極(誘電体部)と被処理部材との距離の関係を示す。
図16は、実施例12の、PENフィルムの表面改質処理に、希ガスとしてアルゴンを用いた際の処理時間による接触角変化を示す。
図17は、実施例13の、噴射ガス種による接触角への影響を示す。
図18(a)は、実施例15のマイクロプラズマの実験装置図を示し、(b)は比較例1のコロナ放電の実験装置図を示す。
図19は、図18の実験結果を示す。
図20は、実施例16の、Arガスを噴射ガスとしてマイクロプラズマ処理を行う前後のPENフィルム表面のC1sスペクトルの変化を示す。
図21は、実施例16の、処理前のPENフィルム表面のO1sスペクトルとArで処理したときのPENフィルム表面のO1sスペクトル変化を示す。
図22は、実施例16の、処理前のPENフィルム表面のN1sスペクトルとArで処理したときのPENフィルム表面のN1sスペクトル変化を示す。
図23は、実施例17の、プラズマ電極の面積を20×100mmとした場合の電極温度分布を示す。
図24は、実施例17の、プラズマ電極の面積を60×100mmとした場合の電極温度分布を示す。
図25は、実施例17の、プラズマ電極の面積を100×100mmとした場合の電極温度分布を示す。
図26は、実施例18の、樹脂コーティングに厚みの違いを設け、電極表面に100μmの放電ギャップ長を形成した例を示す。
図27は、実施例19の3層の樹脂フィルムからなる流体マニフォールドを形成する説明図である。
図28は、接合状態をレーザ焦点顕微鏡で分析した結果を示す。
FIG. 1 is a schematic configuration of a plasma electrode used for microplasma processing, where (a) is a cross-sectional view of the plasma electrode, and (b) is a plan view of the plasma electrode.
FIG. 2 is an explanatory view of a method for joining processed members using the microplasma processing of the present invention.
FIG. 3 is a photograph of the contact angle measured in order to evaluate the effect of the surface modification treatment.
FIG. 4 shows an example of the result of microplasma surface modification treatment with a PEN film (polyethylene naphthalate) in Example 2, where (1) is untreated (2) is treated with an applied voltage of 780 V, and (3) is 880 V. (4) is processed at 1 kV.
FIG. 5 shows the result of a water droplet contact angle change on the glass substrate when the surface of the glass substrate in Example 3 was subjected to microplasma surface modification treatment.
FIG. 6 shows the results of changes in the contact angle of water droplets on the surface of the LCP when the surface of the LCP (Liquid Crystal Polymer: liquid crystal polymer) of Example 4 was subjected to microplasma surface modification treatment.
FIG. 7 shows the result of a change in water droplet contact angle on the surface of PPA when the surface of PPA (polyphthalamide) in Example 5 was subjected to microplasma surface modification treatment.
FIG. 8 shows the result of the water droplet contact angle change on the surface of the lead frame in Example 6.
FIG. 9 shows the result of the water droplet contact angle change on the surface of the PC in Example 7.
FIG. 10 shows the adhesion between LCP and silicon after 48 hours in Example 8.
FIG. 11 shows the adhesion between LCP and silicon after 72 hours.
FIG. 12 shows the adhesion between LCP and silicon after 120 hours.
FIG. 13 shows the measurement result of the contact angle in this case, in which the surface modification treatment of the member to be treated was performed by changing the through-hole diameter of the plasma electrode.
FIG. 14 shows the influence of Example 10 on the contact angle of the PEN film surface when the gas flow rate was changed.
FIG. 15 shows the relationship of the distance between the electrode (dielectric part) and the member to be processed in microplasma processing in Example 11.
FIG. 16 shows the change in the contact angle depending on the treatment time when argon is used as the rare gas for the surface modification treatment of the PEN film in Example 12.
FIG. 17 shows the influence of the injection gas type on the contact angle in Example 13.
18A shows a microplasma experimental apparatus diagram of Example 15, and FIG. 18B shows a corona discharge experimental apparatus diagram of Comparative Example 1. FIG.
FIG. 19 shows the experimental results of FIG.
FIG. 20 shows the change in the C1s spectrum on the surface of the PEN film before and after performing microplasma treatment using Ar gas as the injection gas in Example 16.
FIG. 21 shows the O1s spectrum on the surface of the PEN film before treatment in Example 16 and the change in the O1s spectrum on the surface of the PEN film when treated with Ar.
FIG. 22 shows the N1s spectrum on the surface of the PEN film before the treatment in Example 16 and the N1s spectrum change on the surface of the PEN film when treated with Ar.
FIG. 23 shows an electrode temperature distribution in Example 17 when the area of the plasma electrode is 20 × 100 mm 2 .
FIG. 24 shows an electrode temperature distribution in Example 17 when the area of the plasma electrode is 60 × 100 mm 2 .
FIG. 25 shows an electrode temperature distribution in Example 17 when the area of the plasma electrode is 100 × 100 mm 2 .
FIG. 26 shows an example in which the resin coating of Example 18 was provided with a difference in thickness and a discharge gap length of 100 μm was formed on the electrode surface.
FIG. 27 is an explanatory diagram for forming a fluid manifold made of the three-layer resin film of Example 19.
FIG. 28 shows the result of analyzing the bonding state with a laser focus microscope.
2、3、4:被処理部材(樹脂フィルム)
5:スリット
10:プラズマ電極
11:貫通孔
13:金属基板
15:非導電体スペーサ
16:誘電体膜
17:被処理部材(表面改質の対象である可撓性部材)
18:接地電極
21:プレス下型
22:プレス上型
23:外部加熱装置(ヒータ)
2, 3, 4: treated member (resin film)
5: Slit 10: Plasma electrode 11: Through hole 13: Metal substrate 15: Non-conductive spacer 16: Dielectric film 17: Member to be treated (flexible member to be surface-modified)
18: Ground electrode 21: Press lower mold 22: Press upper mold 23: External heating device (heater)
本発明のマイクロプラズマを用いた表面改質処理方法は、マイクロプラズマを発生する電極の下部の活性化対象のフィルム(被処理部材)を設置し、上方のマイクロプラズマ電極に交流電圧を印可する。
なお、本発明で用いるマイクロプラズマは、大気圧中で10μmというパッシェンミニマム程度で駆動することが出来る為、本質的にエネルギ効率(プラズマ中の活性種生成効率)が極めて高いのが特徴である。
本発明の表面改質処理方法による表面改質の対象である被処理部材は、誘電体であれば特に制限をするものではないが、ポリエステル、ポリエチレンテレフタレート、ポリカーボネイト、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリウレタンなどを原料とする樹脂フィルムが挙げられる。
樹脂フィルムは、単層のものでも積層されたものでもよい。
特に、耐薬品性、耐熱性に優れた樹脂フィルムとしては、ポリエチレンナフタレート(PEN)、ポリイミド(PI)やポリエーテルエーテルケトン(PEEK)などが挙げられる。
本発明の表面改質処理方法による表面改質の対象は、上記樹脂フィルムの他、樹脂基材やガラス基材、その他の基材にも適用でき、特に制限をするものではない。
マイクロプラズマ処理に用いるプラズマ電極の概略構成を、図1に示す。
図1において、(a)はプラズマ電極の断面図、(b)はプラズマ電極の平面図である。
図1に示すように、プラズマ電極10は、複数の貫通孔11が形成されている金属基板13を、平行に2枚配設したものである。
また、図1(a)に示すように、プラズマ電極10は、その周縁部分に非導電体スペーサ15を介在させて平行に配設されている。
さらに、金属基板13の表面には、誘電体膜16が形成されており、誘電体膜16の表面は、ポーラス面が露出した凹凸状となっていることが好ましい。
さらにまた、被処理部材17(表面改質の対象である樹脂フィルム、ガラス基材、樹脂基材など)の下に接地電極18を設け、イオンなどの荷電粒子を積極的に被処理部材17表面に供給することで、表面処理を加速することもできる。
このとき、被処理部材17と誘電体膜16を有する金属基板13とのワーク間距離が、0−5mm以内であることが好ましい。
また、このとき、大気中空気(CDA:Clean dry air)だけでなく、窒素やアルゴンなどの希ガス類を、プラズマ電極10に設けた貫通孔11を通して噴射すると、
被処理部材17の活性化が促進される。
その際、プラズマ電極10の貫通孔11から被処理部材17への噴射ガス流速が、1−5.5m/s程度であることが好ましい。
なお、噴射ガス流速を大きくする場合、マイクロプラズマ電極間のプラズマ生成領域である放電ギャップ長を0−500μmの間に設定することが好ましく、0−300μmの間に設定することがさらに好ましい。
図1(b)に示すように、プラズマ電極10は、複数の貫通孔11を形成させることが望ましい。
プラズマ電極10において、金属基板13に形成させる貫通孔11の開口部分の全面積を合計した開口面積率は、金属基板13を平面からみた状態で、平面積に対して2−60%とすることが好ましい。
噴射ガス流速を大きくする場合、マイクロプラズマ電極間のプラズマ生成領域である放電ギャップ長を0−500μmと可変することが好ましいが、低電圧を維持確保しながらも貫通孔11から被処理部材17への噴射ガス流速が1−5.5m/sを確保するため貫通孔11の大きさは0.5−5mmであることが好ましい。
次に、上記プラズマ電極10への電圧の印加方法について説明する。
2枚の金属基板13間に、相対的に交流となる電圧を供給する。
その電圧波形としては、トランス交流電圧を印可した正弦波、パルス電圧を印可した矩形のパルス波、あるいは鋸歯状波などが挙げられる。
電圧の波高値は、概ね500V−2kV程度で大気圧中でプラズマが生成可能である。
特に700V−1.5kVの範囲とすることが好ましい。
平均電流は電極の面積に依存するが、概ね20mA−10A程度の範囲とすることが好ましい。
また、電源の周波数は、1kHz−1000MHzの範囲の低周波から超高周波に至る領域のいずれの帯域でもよいが、電極温度上昇などを考慮して10kHz−100kHz程度の帯域の周波数が好ましい。
なお、プラズマ電極10の加熱温度は、室温−300℃が好ましく、より好ましくは、室温−100℃の範囲内である。
次に、本発明のマイクロプラズマ処理を用いた接合方法について説明する。
マイクロプラズマ処理を用いた被処理部材の接合方法は、複数の被処理部材を接着剤を用いずに加熱加圧により接合して被処理部材を形成する方法であって、被処理部材をマイクロプラズマ処理し、その後被処理部材を加熱及び加圧して、被処理部材同士を接合することを特徴とする。
図2に示すように、プラズマ処理により表面改質処理を施した2枚の被処理部材2、3の活性化表面同士を向かい合わせて重ね、プレス下型21上に配設する。
さらに、その被処理部材2、3の上方に、外部加熱装置(ヒータ)23によって加熱したプレス上型22を接近させた状態で待機させる。
そして、プレス下型21上に配設した2枚の被処理部材2、3を、加熱されたプレス上型22により加圧して被処理部材2、3同士を接合する。
プレス上型22の加熱温度は、被処理部材を軟化させる温度とすることが必要であるので、被処理部材の融点よりやや低く、軟化点程度の温度がとすることが好ましい。例えば、被処理部材がPENの場合は、その融点が265−270℃であるので、ヒータによる加熱温度は145−147℃程度とすることが好ましい。PI(ポリイミド)の場合、耐熱性が高いため、ヒータによる加熱温度は230−250℃程度とすることが好ましい。
接合時の加圧力は、被処理部材を軟化させて、十分な接合強度が得られる程度とする。それ以上の加圧力を加えると、被処理部材の破壊におよぶため、被処理材料の厚さにより適宜、調整する。例えば、被処理部材としてPENを用いて上記軟化点での接合する場合、1−3Pa(10−30kgf/cm)程度とすれば十分である。
In the surface modification method using microplasma of the present invention, a film to be activated (member to be treated) is installed below an electrode for generating microplasma, and an alternating voltage is applied to the upper microplasma electrode.
Note that the microplasma used in the present invention can be driven with a Paschen minimum of about 10 μm at atmospheric pressure, and thus is essentially characterized by extremely high energy efficiency (active species generation efficiency in plasma).
The member to be treated by the surface modification treatment method of the present invention is not particularly limited as long as it is a dielectric, but polyester, polyethylene terephthalate, polycarbonate, polypropylene, polymethylpentene, polychlorinated Examples thereof include resin films made from vinyl, polyurethane, and the like.
The resin film may be a single layer or a laminated layer.
Particularly, examples of the resin film excellent in chemical resistance and heat resistance include polyethylene naphthalate (PEN), polyimide (PI), and polyetheretherketone (PEEK).
The target of the surface modification by the surface modification treatment method of the present invention can be applied to a resin substrate, a glass substrate, and other substrates in addition to the resin film, and is not particularly limited.
A schematic configuration of a plasma electrode used for the microplasma treatment is shown in FIG.
1A is a cross-sectional view of a plasma electrode, and FIG. 1B is a plan view of the plasma electrode.
As shown in FIG. 1, the plasma electrode 10 includes two metal substrates 13 each having a plurality of through holes 11 arranged in parallel.
As shown in FIG. 1A, the plasma electrodes 10 are arranged in parallel at the peripheral portion with a non-conductive spacer 15 interposed therebetween.
Furthermore, a dielectric film 16 is formed on the surface of the metal substrate 13, and the surface of the dielectric film 16 is preferably an uneven shape with a porous surface exposed.
Furthermore, a ground electrode 18 is provided under the member 17 to be processed (resin film, glass substrate, resin substrate, etc., which is the target of surface modification), and charged particles such as ions are actively applied to the surface of the member 17 to be processed. By supplying to the surface treatment, the surface treatment can be accelerated.
At this time, it is preferable that the distance between workpieces of the member 17 to be processed and the metal substrate 13 having the dielectric film 16 is within 0-5 mm.
At this time, when not only air in the atmosphere (CDA: Clean dry air) but also rare gases such as nitrogen and argon are injected through the through-hole 11 provided in the plasma electrode 10,
Activation of the member 17 to be processed is promoted.
In that case, it is preferable that the injection gas flow rate from the through hole 11 of the plasma electrode 10 to the member 17 to be processed is about 1 to 5.5 m / s.
When increasing the flow rate of the injection gas, the discharge gap length, which is the plasma generation region between the microplasma electrodes, is preferably set between 0-500 μm, and more preferably between 0-300 μm.
As shown in FIG. 1B, the plasma electrode 10 desirably has a plurality of through holes 11 formed therein.
In the plasma electrode 10, the total opening area ratio of the opening portions of the through holes 11 formed in the metal substrate 13 is 2-60% with respect to the plane area when the metal substrate 13 is viewed from the plane. Is preferred.
When increasing the jet gas flow velocity, it is preferable to change the discharge gap length, which is the plasma generation region between the microplasma electrodes, from 0 to 500 μm, but from the through hole 11 to the member to be processed 17 while maintaining a low voltage. The size of the through hole 11 is preferably 0.5-5 mm in order to ensure that the injection gas flow rate is 1-5.5 m / s.
Next, a method for applying a voltage to the plasma electrode 10 will be described.
A relatively alternating voltage is supplied between the two metal substrates 13.
Examples of the voltage waveform include a sine wave to which a transformer AC voltage is applied, a rectangular pulse wave to which a pulse voltage is applied, or a sawtooth wave.
The peak value of the voltage is about 500V-2kV, and plasma can be generated at atmospheric pressure.
In particular, the range is preferably 700V-1.5kV.
The average current depends on the area of the electrode, but is preferably in the range of about 20 mA-10 A.
Further, the frequency of the power source may be any band in the region from a low frequency to a very high frequency in the range of 1 kHz to 1000 MHz, but a frequency in the range of about 10 kHz to 100 kHz is preferable in consideration of an increase in electrode temperature.
The heating temperature of the plasma electrode 10 is preferably room temperature-300 ° C., more preferably in the range of room temperature-100 ° C.
Next, a bonding method using the microplasma treatment of the present invention will be described.
A method for joining processed members using microplasma processing is a method in which a plurality of processed members are joined by heating and pressing without using an adhesive, and the processed member is formed by microplasma. It processes, after that, to-be-processed members are heated and pressurized, and to-be-processed members are joined.
As shown in FIG. 2, the activated surfaces of the two processed members 2 and 3 that have been subjected to surface modification treatment by plasma treatment face each other and are placed on the lower press die 21.
Further, the upper press die 22 heated by the external heating device (heater) 23 is placed in a standby state above the members 2 and 3 to be processed.
The two processed members 2 and 3 disposed on the lower press mold 21 are pressed by the heated upper press mold 22 to join the processed members 2 and 3 together.
Since the heating temperature of the press upper die 22 needs to be a temperature that softens the member to be processed, it is preferable that the temperature of the softening point is slightly lower than the melting point of the member to be processed. For example, when the member to be treated is PEN, the melting point is 265-270 ° C., and therefore the heating temperature by the heater is preferably about 145-147 ° C. In the case of PI (polyimide), since the heat resistance is high, the heating temperature by the heater is preferably about 230 to 250 ° C.
The applied pressure at the time of joining is such that the member to be treated is softened and sufficient joining strength is obtained. If a further pressing force is applied, the member to be processed is destroyed, so that the thickness is adjusted as appropriate according to the thickness of the material to be processed. For example, when joining at the softening point using PEN as a member to be treated, it is sufficient to set the pressure to about 1-3 Pa (10-30 kgf / cm 2 ).
(実施例1)
プレスにて多数の円形状の貫通孔を打ち抜いた金属基板で形成した18−8ステンレス製の、厚み:0.5mm、外径:100mmの円板形状のプラズマ電極を用いて、PENフィルムの表面改質処理を行った。金属基板に形成した貫通孔は、一つの貫通孔の外径を0.2mmとし、開口面積率を50%とした。
この金属基板13の表面に、誘電体をコーティングした。誘電体膜はガラスコーティングやアルミナなどのセラミック溶射によるコーティングまた、その他のセラミックや絶縁性の材料でコーティングしておいても好ましい。
電圧駆動条件として、プラズマ電極10と接地電極18との間に、電圧920Vを印加して駆動して、無声放電状態のプラズマを発生させた。
金属基板の貫通孔に上下方向にガスを流し、プラズマ電極間にマイクロプラズマを発生させてPENフィルムの表面改質を行った。
表面改質の条件は以下のとおりとした。
噴射ガス流量1L/min、処理時間は10minとした。
貫通孔の外経は、φ=0.75mm,φ=1.5mmの2通りのものを用いた。
ガスの種類としては、純空気、窒素を用いた。
表面改質処理の効果を評価するため、フィルムに対しての接触角(側面図)を写真撮影した。
その写真を、図3(1)−(4)に示す。表1において示す計算式から接触角θを求め、その結果を表1に示す。表1に示すように、改質前の接触角は86.9°であったが本発明の表面改質処理によって、以下のようになった。
Airで貫通孔の外径φ=0.75mmの場合、改質後の接触角は60.3°、
ガスで貫通孔の外径φ=0.75mmの場合、改質後の接触角は60.2°、
Airで貫通孔の外径φ=1.5mmの場合、改質後の接触角は54.2°、
ガスで貫通孔の外径φ=1.5mmの場合、改質後の接触角は22.3°、
Figure JPOXMLDOC01-appb-T000001
(実施例2)
実施例2では、マイクロプラズマ表面改質処理における印加電圧の依存性を示す。
噴射ガスとしてアルゴン、ガス流量10L/min、処理時間1minの条件下で印加電圧を780V、880V、1kVと変化させた。なお、電極間の放電ギャップ長は、300μmとした。
マイクロプラズマ表面改質処理の被処理部材としてPENフィルムを用い、フィルム表面上の水滴接触角を測定して評価した。
図4に、処理前と処理後のフィルム表面での接触角変化を示す。
図4から分かるように、印加電圧を上昇させるに従い、接触角の減少(=親水性の増加)が認められる。
これらの結果を表2にまとめて示す。
なお、印加電圧を780V以上としたのは、それ未満の場合、放電状態が不安定となったからである。
Figure JPOXMLDOC01-appb-T000002
(実施例3)
[0017]
実施例3では、被処理部材として、液晶パネルなどで用いられる基材としてのガラス基材を用いた。ガラス基材の表面をマイクロプラズマ表面改質処理を行い、ガラス基材上の水滴接触角変化の結果を図5に示す。
また、表3にこの場合の実験パラメータをまとめて示す。
Figure JPOXMLDOC01-appb-T000003
図5の結果から、マイクロプラズマを用いた表面改質処理前のガラス基材上の水滴接触角は39−43°であったが、表面改質処理後は、水滴接触角は大きく減少した。
以上のように、化学的安定性の高いPENフィルムの接触角変化と比べてガラス基材の場合には、マイクロプラズマによる表面改質処理の効果が大きいことが認められる。
(実施例4)
実施例4では、被処理部材として、LCPを用いた。LCPの表面をマイクロプラズマ表面改質処理を行い、LCPの表面の水滴接触角変化の結果を図6に示す。
また表4に実験パラメータをまとめて示す。
Figure JPOXMLDOC01-appb-T000004
(実施例5)
実施例5では、被処理部材として、PPA(ポリフタルアミド)を用いた。実験パラメータは、実施例4で示した表4と同様である。PPA(ポリフタルアミド)の表面をマイクロプラズマ表面改質処理を行い、PPAの表面の水滴接触角変化の結果を図7に示す。
(実施例6)
実施例6では、被処理部材として、半導体製造時に使用されるリードフレーム(金属板)を用いた。リードフレームの表面は、AG鍍金、Pd鍍金が施されている。
実験パラメータは、実施例4で示した表4と同様である。
リードフレームの表面をマイクロプラズマ表面改質処理を行い、リードフレームの表面の水滴接触角変化の結果を図8に示す。
(実施例7)
実施例7では、被処理部材として、PC(ポリカーボネート)を用いた。
実験パラメータは、実施例4で示した表4と同様である。
PC(ポリカーボネート)の表面をマイクロプラズマ表面改質処理を行い、PCの表面の水滴接触角変化の結果を図9に示す。
(実施例8)
実施例8では、被処理部材として、LCPとシリコンとの密着性(接着性あるいは接合性)について、30秒間マイクロプラズマ処理を施した後の持続性を観察した結果を図10~図12に示す。
図10は48時間経過後のLCPとシリコンとの密着性、図11は72時間経過後のLCPとシリコンとの密着性、図12は120時間経過後のLCPとシリコンとの密着性、をそれぞれ観察したものである。
図10から、マイクロプラズマ処理を施して48時間経過した後においても、濡れ性、密着性の向上がみられる。
(実施例9)
実施例9では、プラズマ電極の貫通孔11径を変更して被処理部材17の表面改質処理を行い、この場合の接触角の測定結果を図13に示す。
なお被処理材17はガラス基材を用い、処理前の水滴接触角はおよそ25度であった。噴射ガスとして窒素を70L/minで供給した。印加電圧は1kVである。
図13の結果から分かるように、マイクロプラズマ処理時間にもよるが貫通孔11径5mmでは接触角変化が少ない(処理時間60秒で6.9°の減少)に対して、貫通孔11径が、2mmおよび3mmの場合は、処理時間60秒では接触角が計測限界以下となった。
特に、貫通孔11径が2mmの場合は、処理時間5秒でも接触角は10°まで減少する事が認められた。
なお、貫通孔11におけるガス流速を表5にまとめて示す。
実施例6にも示したが、ガス流速は1[m/s]以上で最適値を示し、さらにガス流速を増加するとまた低下する傾向がみられる。
Figure JPOXMLDOC01-appb-T000005
(実施例10)
[0020]
実施例10において、ガス流速を変化させた時のPENフィルム表面の接触角への影響を図14に示す。
PENフィルムの表面改質処理に使用した噴射ガスは空気であり、ファンを用いてマイクロプラズマ電極に供給した。
マイクロプラズマ電極の放電ギャップ長は100μmであり、印加電圧は1.5kVである。
図14の測定結果から分かるように、
被処理部材は噴射ガス流速3.0m/sで一旦接触角が小さくなり、そこから流速が上がっていくとまた接触角が大きくなっていくことが確認できる。
(実施例11)
実施例11において、マイクロプラズマ処理における電極(誘電体部16)と被処理部材17との距離の関係を図15に示す。なお被処理部材17はガラス基材を用いており、処理前の水滴接触角はおよそ30度である。
噴射ガスとして、窒素を70L/minで供給した。
印加電圧1kVで、処理時間は30秒とした。
図15から分かるように、電極(誘電体部16)と被処理部材17との距離が10mmの場合は、表面改質処理の効果が小さく、電極(誘電体部16)と被処理部材17の距離を短くすると、接触角の低下がみられるようになり、表面改質処理の効果が大きく現れる。
特に、被処理部材と電極との距離を5mm以下とすると、接触角は測定限界以下となった。
(実施例12)
実施例12においては、PENフィルムの表面改質処理に、希ガスとしてアルゴンを用いた際の処理時間による接触角変化を示す。
実施例1では、窒素、室内空気を用いて、10分程度処理した結果を示したが、実施例12では、アルゴンを用いたので、図16に示すように、約3秒でPENフィルムの接触角は30度程度まで低下し、親水性が増加した。それ以上処理時間を増加しても大きく接触角は変わらないことから、処理時間の短縮に希ガスを用いることの有効性が認められる。
なお、実施例12では、電極間放電ギャップ長:100μm、PENと電極の距離:1mm、放電電圧:1.1kV、放電電流:28mA、ガス流速:3.5m/sとした。
(実施例13)
[0023]
実施例13において、噴射ガスとして、室内空気に、窒素またはアルゴンを添加した際の接触角への影響を示す。
図17は、以下の3種類の噴射ガスを用いて、PEN表面の接触角変化を比較した結果を示す。
(1)Room air(100L/min)、
(2)Room air(90L/min)+N(10L/min)、
(3)Room air(90L/min)+Ar(10L/min)、
なお、プラズマ電極の放電ギャップ長:100μm、流速:3.0m/s、放電電圧:1.5kV、処理時間は10分とした。
また、処理時間を10秒と短縮した場合でも、図16に既に示したように、アルゴンを用いた場合は接触角の変化が認められる。
表9に、ガス種の混合割合による接触角変化を示す。
処理前のPENの接触角は77.1°であり、アルゴン100%での接触角が最も小さく、35.8°となった。窒素のみで処理した場合は65.2°であった。
Figure JPOXMLDOC01-appb-T000006
(実施例14)
実施例14において、被処理部材としてLCDパネル基板を用いた。マイクロプラズマを用いて表面改質処理した後のLCDパネル基板の帯電電圧を計測し、静電気の影響を評価した。計測器は、Static Senser Model 718、3M製を用いた。
計測時の条件は次のとおりである。
ガス種:窒素70L/min、放電電圧:1KV、貫通孔径:2mm、電極(誘電体部)と被処理部材の距離:3mm
計測結果を表10に示す。マイクロプラズマ処理後のLCDパネル基板上への影響はほとんど見られず、LCDパネル上のベアチップなどが静電気障害により破壊される現象も認められなかった。参考に、表11にLCDパネルでの除電器(イオナイザー)の性能評価データを示す。
LCDパネルを製造ライン上で搬送するだけで摩擦帯電し、68−155Vまでの電圧が観測された。剥離帯電時の放電による回路破損を防止するために、パネルの帯電電圧は±50V以下と規格されている。これらと比較しても、マイクロプラズマ処理を60秒行った後もわずか30Vまでしか電圧が上昇しないため、従来技術(プラズマ表面処理)で報告されているチップ類の静電気障害による破損は起こらず、マイクロプラズマ処理では静電気の影響がほとんどないことが言える。
電気的には電極間で電気力線は閉じている。電極外に接地電極18を設けた場合は、イオンなど荷電粒子を積極的に被処理部材17表面に移動させる事が可能となるので、帯電電圧は高くなるが、表面処理の状況によってはあえてこの配置とすることが好ましい場合もある(スパッタリング的な効果を狙った場合など)。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
(実施例15、比較例1)
実施例15では、プラズマ電極の孔径を3mmのものを用い、放電ギャップ長:100μm、被処理部材(PENフィルム)と電極の距離を、1mm、2mm、3mmとし、
入力電圧:100V、放電電圧:1.9kV、放電電流:約120mA、room air(5L/min)として、PENフィルムの表面改質処理を5秒間行った。
比較例1として、コロナ放電による表面処理では、PENフィルムと電極の距離約0.5mm、放電電圧2.5kV、放電電流約180mA、room air(5L/min)、処理時間5秒で行った。
それぞれの条件下で、表面処理後に表面電位計(Trek、Model 347)を用いて表面電位を測定した。実験装置図を図18に示す。
図18において、(a)はマイクロプラズマの実験装置図、(b)はコロナ放電の実験装置図を示す。
この実験結果を図19に示す。図19から、マイクロプラズマ電極を使用した場合、電極からPENへの距離が大きくなるほど、表面電位は低下する傾向が見られた。全て50V以下であり、LCDパネルでの試験結果と同等以下であった。
比較例として行ったコロナ放電による表面処理では、100V以上となり、表面電位がマイクロプラズマ処理の倍以上の値となった。
(実施例16)
実施例16では、被処理部材としてのPENフィルム表面にマイクロプラズマ処理を行った場合、その表面の化学結合にどのような変化が出たか、XPSを用いて解析した結果を示す。
まず、Arガスを噴射ガスとしてマイクロプラズマ処理を行う前後のPENフィルム表面のC1sスペクトルの変化を図20に示す。図20から、本スペクトルは、C−H結合を示しており、マイクロプラズマ処理によってC−H結合が減少していることが確認できる。
これは、プラズマで生成されたArラジカルがPENフィルム表面のC−H結合に衝突し、結合を切断したためであると考えられる。
また、処理前のPENフィルム表面のO1sスペクトルとArで処理したときのPENフィルム表面のO1sスペクトル変化を図21に示す。図21から、本スペクトルはC−O−C結合を示しており、マイクロプラズマ処理によってC−O−C結合が増加していることが確認できる。
これは、ArラジカルがC−C結合を切断し、そこに大気中の酸素などが反応したためであると考えられる。
さらに、処理前のPENフィルム表面のN1sスペクトルとArで処理したときのPENフィルム表面のN1sスペクトル変化を図22に示す。本スペクトルはC−NO結合を示しており、マイクロプラズマ処理によってC−NOスペクトルが増加していることが確認できる。噴射ガスはArのみであるが、大気中で処理を行っているため、大気中の窒素が関与したためだと考えられる。
(実施例17)
実施例17では、マイクロプラズマによる表面改質処理において、プラズマ電極の大面積化が好ましいことを実証するため、種々の面積のプラズマ電極を試作して検証した。本実施例において、プラズマ電極の表面温度をサーモカメラで観測したが、電極表面温度はプラズマの生成密度が高い場合に温度上昇するため、本測定結果はプラズマ生成密度を示唆している。
図23に、プラズマ電極の面積を20×100mmとした場合の電極温度分布を示す。図23から分かるように、20×100mm電極では電極全体で均一なプラズマ生成が行われるため、表面改質は電極面積とほぼ同面積で行われる。
また、図24に、プラズマ電極の面積を60×100mmとした場合の電極温度分布を示す。図24から分かるように、60×100mm電極では、プラズマ生成にむらがある事が認められた。
この結果から、固定方法を工夫しない場合や、材料(母材)の板厚が薄い場合、表面改質は電極面積の内、ある面積に限定される可能性があることが分かる。
さらに、図25に、プラズマ電極の面積を100×100mmとした場合の電極温度分布を示す。図25から分かるように、100×100mm電極では、プラズマ生成にむらがある事が認められた。
特に電極を固定するクリップ周辺のプラズマ生成密度が高いものと考えられる。しかし、これらは電極加工精度(例えば、放電ギャップ長の設定、電極固定の仕方、および電源容量)などの改善によって向上するものと考えられる。
(実施例18)
図1では電極間にスペーサを挟むことで100μmの放電ギャップ長を確保したが、実施例14に示すように、大面積で均一な放電空間を実現するために、プラズマ電極を構成する金属基板の表面にセラミックコーティングを施するとともに、そのセラミックコーティングの厚みに差を設け、薄くコーティングを施した部分によって、電極表面に放電ギャップ長を確保する事もできる。
図26に、樹脂コーティングに厚みの違い(段差)を設け、電極表面に放電ギャップ長を形成した例を示し、電極(a)部で、▲1▼:350μm、▲2▼:250μmであり、電極(b)部で、▲2▼:250μm、▲3▼:350μmであった。
(実施例19)
実施例19では、実施例1と同様の装置を用いて、図27(a)に示すように、被処理部材4は3枚の樹脂フィルム2,3,4を、接着剤を使用することなく、加熱加圧により接合して、3層の樹脂フィルムからなる流体マニフォールドを形成した。なお、樹脂フィルム3については、両面を表面改質(活性化処理)した。
実施例19において、接合する被処理部材の中間層には、図27(b)に示すような、スリット5を形成した樹脂フィルム3を用いた。上層の樹脂フィルム2及び下層の樹脂フィルム4は、1枚のシートであり、中間層の樹脂フィルム3には、レーザ等の手段によって表面と裏面を貫通させたスリット(貫通溝)5を形成させてあり、3枚を接合することによって、中間層の樹脂フィルムに流体通路が形成された流体マニフォールドを形成した。
なお、樹脂フィルムの厚さtは3枚共に約0.25mmとし、流体通路13の幅wは約0.5mmとした。
図28(a)、(b)に、接合状態をレーザ焦点顕微鏡で分析した結果を示すが、(a)に示したサンプル(流体マニフォールドを形成した部分(図27の(b)のスリット5の断面図)ではマイクロ流路の形状を保ちつつも、マイクロ流路の両端部においては樹脂フィルム同士が接合していることが分かる。
Example 1
The surface of the PEN film using a disk-shaped plasma electrode made of 18-8 stainless steel with a thickness of 0.5 mm and an outer diameter of 100 mm formed of a metal substrate punched with a large number of circular through-holes. A reforming treatment was performed. The through hole formed in the metal substrate had an outer diameter of one through hole of 0.2 mm and an opening area ratio of 50%.
A dielectric material was coated on the surface of the metal substrate 13. The dielectric film is preferably coated with a ceramic coating such as glass coating or alumina, or with another ceramic or insulating material.
As a voltage driving condition, a voltage of 920 V was applied between the plasma electrode 10 and the ground electrode 18 to drive, thereby generating plasma in a silent discharge state.
The PEN film was subjected to surface modification by flowing a gas vertically through the through hole of the metal substrate to generate microplasma between the plasma electrodes.
The conditions for surface modification were as follows.
The injection gas flow rate was 1 L / min, and the processing time was 10 min.
As the outer diameter of the through hole, two types of φ = 0.75 mm and φ = 1.5 mm were used.
As the kind of gas, pure air and nitrogen were used.
In order to evaluate the effect of the surface modification treatment, the contact angle (side view) to the film was photographed.
The photograph is shown to FIG. 3 (1)-(4). The contact angle θ is obtained from the calculation formula shown in Table 1, and the result is shown in Table 1. As shown in Table 1, the contact angle before the modification was 86.9 °, but by the surface modification treatment of the present invention, the contact angle was as follows.
When the outer diameter of the through-hole φ is 0.75 mm in Air, the contact angle after modification is 60.3 °,
When the outer diameter of the through hole is N = 0.75 mm with N 2 gas, the contact angle after modification is 60.2 °,
When the outer diameter of the through-hole is 1.5 mm in Air, the contact angle after modification is 54.2 °,
When the outer diameter φ of the through hole is 1.5 mm with N 2 gas, the contact angle after modification is 22.3 °,
Figure JPOXMLDOC01-appb-T000001
(Example 2)
Example 2 shows the dependency of the applied voltage in the microplasma surface modification treatment.
The applied voltage was changed to 780 V, 880 V, and 1 kV under the conditions of argon as the injection gas, a gas flow rate of 10 L / min, and a processing time of 1 min. The discharge gap length between the electrodes was 300 μm.
A PEN film was used as a member to be treated for the microplasma surface modification treatment, and the water droplet contact angle on the film surface was measured and evaluated.
FIG. 4 shows the change in contact angle on the film surface before and after treatment.
As can be seen from FIG. 4, as the applied voltage is increased, a decrease in contact angle (= increase in hydrophilicity) is observed.
These results are summarized in Table 2.
The reason why the applied voltage is set to 780 V or more is that when the applied voltage is less than 780 V, the discharge state becomes unstable.
Figure JPOXMLDOC01-appb-T000002
(Example 3)
[0017]
In Example 3, a glass substrate as a substrate used in a liquid crystal panel or the like was used as the member to be processed. The surface of the glass substrate is subjected to microplasma surface modification treatment, and the result of the water droplet contact angle change on the glass substrate is shown in FIG.
Table 3 summarizes the experimental parameters in this case.
Figure JPOXMLDOC01-appb-T000003
From the results of FIG. 5, the water droplet contact angle on the glass substrate before the surface modification treatment using microplasma was 39-43 °, but after the surface modification treatment, the water droplet contact angle was greatly reduced.
As described above, it is recognized that the effect of the surface modification treatment by microplasma is larger in the case of the glass substrate as compared with the change in the contact angle of the PEN film having high chemical stability.
Example 4
In Example 4, LCP was used as the member to be processed. The surface of the LCP is subjected to a microplasma surface modification treatment, and the result of the water droplet contact angle change on the surface of the LCP is shown in FIG.
Table 4 summarizes the experimental parameters.
Figure JPOXMLDOC01-appb-T000004
(Example 5)
In Example 5, PPA (polyphthalamide) was used as the member to be treated. The experimental parameters are the same as in Table 4 shown in Example 4. The surface of PPA (polyphthalamide) is subjected to microplasma surface modification treatment, and the result of the water droplet contact angle change on the surface of PPA is shown in FIG.
(Example 6)
In Example 6, the lead frame (metal plate) used at the time of semiconductor manufacture was used as a member to be processed. The surface of the lead frame is subjected to AG plating and Pd plating.
The experimental parameters are the same as in Table 4 shown in Example 4.
FIG. 8 shows the results of changes in the contact angle of water droplets on the surface of the lead frame when the surface of the lead frame was subjected to microplasma surface modification treatment.
(Example 7)
In Example 7, PC (polycarbonate) was used as the member to be treated.
The experimental parameters are the same as in Table 4 shown in Example 4.
The surface of PC (polycarbonate) is subjected to microplasma surface modification treatment, and the result of the water droplet contact angle change on the PC surface is shown in FIG.
(Example 8)
In Example 8, the results of observing the sustainability after performing the microplasma treatment for 30 seconds on the adhesion (adhesiveness or bondability) between the LCP and silicon as the member to be treated are shown in FIGS. .
10 shows adhesion between LCP and silicon after 48 hours, FIG. 11 shows adhesion between LCP and silicon after 72 hours, and FIG. 12 shows adhesion between LCP and silicon after 120 hours. Observed.
FIG. 10 shows that wettability and adhesion are improved even after 48 hours have passed since the microplasma treatment.
Example 9
In Example 9, the diameter of the through hole 11 of the plasma electrode is changed to perform the surface modification treatment of the member 17 to be processed, and the contact angle measurement result in this case is shown in FIG.
In addition, the to-be-processed material 17 used the glass base material, and the water droplet contact angle before a process was about 25 degree | times. Nitrogen was supplied as a propellant gas at 70 L / min. The applied voltage is 1 kV.
As can be seen from the results of FIG. 13, although the contact angle change is small for the diameter of the through-hole 11 of 5 mm depending on the microplasma processing time (reduction of 6.9 ° in the processing time of 60 seconds), the diameter of the through-hole 11 is small. In the case of 2 mm and 3 mm, the contact angle became less than the measurement limit at a processing time of 60 seconds.
In particular, when the diameter of the through-hole 11 was 2 mm, it was recognized that the contact angle decreased to 10 ° even with a treatment time of 5 seconds.
The gas flow rates in the through holes 11 are summarized in Table 5.
As shown in Example 6, the gas flow rate shows an optimum value at 1 [m / s] or more, and when the gas flow rate is further increased, it tends to decrease again.
Figure JPOXMLDOC01-appb-T000005
(Example 10)
[0020]
FIG. 14 shows the influence on the contact angle of the PEN film surface when the gas flow rate is changed in Example 10.
The injection gas used for the surface modification treatment of the PEN film was air, and was supplied to the microplasma electrode using a fan.
The discharge gap length of the microplasma electrode is 100 μm, and the applied voltage is 1.5 kV.
As can be seen from the measurement results in FIG.
It can be confirmed that the member to be processed has a contact angle once reduced at an injection gas flow rate of 3.0 m / s, and that the contact angle increases as the flow rate increases from there.
Example 11
In Example 11, the relationship between the distance between the electrode (dielectric part 16) and the member to be processed 17 in the microplasma processing is shown in FIG. In addition, the to-be-processed member 17 uses the glass base material, and the water droplet contact angle before a process is about 30 degree | times.
Nitrogen was supplied at 70 L / min as the injection gas.
The applied voltage was 1 kV and the processing time was 30 seconds.
As can be seen from FIG. 15, when the distance between the electrode (dielectric part 16) and the member to be processed 17 is 10 mm, the effect of the surface modification treatment is small, and the electrode (dielectric part 16) and the member to be processed 17 When the distance is shortened, the contact angle is decreased, and the effect of the surface modification treatment is greatly exhibited.
In particular, when the distance between the member to be processed and the electrode was 5 mm or less, the contact angle was below the measurement limit.
(Example 12)
In Example 12, the change in the contact angle depending on the treatment time when argon is used as the rare gas for the surface modification treatment of the PEN film is shown.
In Example 1, the result of processing for about 10 minutes using nitrogen and room air was shown. However, in Example 12, since argon was used, the PEN film contacted in about 3 seconds as shown in FIG. The angle decreased to about 30 degrees and the hydrophilicity increased. Even if the treatment time is further increased, the contact angle does not change greatly, so that the effectiveness of using a rare gas for shortening the treatment time is recognized.
In Example 12, the interelectrode discharge gap length was 100 μm, the distance between the PEN and the electrode was 1 mm, the discharge voltage was 1.1 kV, the discharge current was 28 mA, and the gas flow rate was 3.5 m / s.
(Example 13)
[0023]
In Example 13, the influence on the contact angle when nitrogen or argon is added to room air as the propellant gas is shown.
FIG. 17 shows the results of comparing changes in the contact angle on the PEN surface using the following three types of propellant gas.
(1) Room air (100 L / min),
(2) Room air (90 L / min) + N 2 (10 L / min),
(3) Room air (90 L / min) + Ar (10 L / min),
The discharge gap length of the plasma electrode was 100 μm, the flow rate was 3.0 m / s, the discharge voltage was 1.5 kV, and the treatment time was 10 minutes.
Further, even when the processing time is shortened to 10 seconds, as shown in FIG. 16, a change in contact angle is recognized when argon is used.
Table 9 shows the change in the contact angle depending on the mixing ratio of the gas species.
The contact angle of PEN before the treatment was 77.1 °, and the contact angle at 100% argon was the smallest, which was 35.8 °. When treated with nitrogen alone, it was 65.2 °.
Figure JPOXMLDOC01-appb-T000006
(Example 14)
In Example 14, an LCD panel substrate was used as the member to be processed. The charging voltage of the LCD panel substrate after the surface modification treatment using microplasma was measured, and the influence of static electricity was evaluated. The measuring instrument used was made by Static Sensor Model 718, 3M.
The conditions at the time of measurement are as follows.
Gas type: nitrogen 70 L / min, discharge voltage: 1 KV, through-hole diameter: 2 mm, distance between electrode (dielectric part) and member to be processed: 3 mm
Table 10 shows the measurement results. There was almost no effect on the LCD panel substrate after the microplasma treatment, and the phenomenon that the bare chip on the LCD panel was destroyed by electrostatic failure was not observed. For reference, Table 11 shows performance evaluation data of a static eliminator (ionizer) on an LCD panel.
The LCD panel was triboelectrically charged only by being transported on the production line, and voltages up to 68-155V were observed. In order to prevent circuit damage due to discharge during peeling charging, the charging voltage of the panel is standardized to be ± 50 V or less. Even in comparison with these, since the voltage rises to only 30 V even after 60 seconds of microplasma treatment, the chips reported in the prior art (plasma surface treatment) are not damaged due to electrostatic failure, It can be said that the microplasma treatment has almost no influence of static electricity.
Electrically, the lines of electric force are closed between the electrodes. When the ground electrode 18 is provided outside the electrode, charged particles such as ions can be positively moved to the surface of the member 17 to be processed, so that the charging voltage is increased. In some cases, the arrangement is preferable (for example, when a sputtering effect is aimed).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
(Example 15, Comparative Example 1)
In Example 15, a plasma electrode having a hole diameter of 3 mm was used, the discharge gap length was 100 μm, and the distance between the member to be treated (PEN film) and the electrode was 1 mm, 2 mm, and 3 mm.
The surface modification treatment of the PEN film was performed for 5 seconds at an input voltage of 100 V, a discharge voltage of 1.9 kV, a discharge current of about 120 mA, and a room air (5 L / min).
As Comparative Example 1, the surface treatment by corona discharge was performed with a distance between the PEN film and the electrode of about 0.5 mm, a discharge voltage of 2.5 kV, a discharge current of about 180 mA, a room air (5 L / min), and a treatment time of 5 seconds.
Under each condition, the surface potential was measured using a surface potentiometer (Trek, Model 347) after the surface treatment. An experimental apparatus is shown in FIG.
In FIG. 18, (a) shows a microplasma experimental apparatus, and (b) shows a corona discharge experimental apparatus.
The experimental results are shown in FIG. From FIG. 19, when the microplasma electrode was used, the surface potential tended to decrease as the distance from the electrode to PEN increased. All of them were 50 V or less, which was equal to or less than the test result of the LCD panel.
In the surface treatment by corona discharge performed as a comparative example, the voltage became 100 V or more, and the surface potential became a value more than double that of the microplasma treatment.
(Example 16)
In Example 16, when the microplasma treatment is performed on the surface of the PEN film as the member to be treated, the change in chemical bonding on the surface is analyzed using XPS.
First, FIG. 20 shows the change in the C1s spectrum on the surface of the PEN film before and after performing the microplasma treatment using Ar gas as the injection gas. From FIG. 20, this spectrum shows C—H bonds, and it can be confirmed that C—H bonds are reduced by the microplasma treatment.
This is considered to be because Ar radicals generated by plasma collide with C—H bonds on the surface of the PEN film and break the bonds.
Moreover, the O1s spectrum of the PEN film surface before a process and the O1s spectrum change of the PEN film surface when it processes by Ar are shown in FIG. From FIG. 21, this spectrum shows C—O—C bonds, and it can be confirmed that C—O—C bonds are increased by the microplasma treatment.
This is presumably because the Ar radical cleaved the C—C bond, and oxygen in the atmosphere reacted therewith.
Furthermore, the N1s spectrum of the PEN film surface before a process and the N1s spectrum change of the PEN film surface when it processes by Ar are shown in FIG. This spectrum shows a C—NO bond, and it can be confirmed that the C—NO spectrum is increased by the microplasma treatment. The propellant gas is only Ar, but it is considered that nitrogen in the atmosphere was involved because the treatment was performed in the atmosphere.
(Example 17)
In Example 17, in order to demonstrate that it is preferable to increase the area of the plasma electrode in the surface modification treatment using microplasma, plasma electrodes having various areas were manufactured and verified. In the present example, the surface temperature of the plasma electrode was observed with a thermo camera. However, since the electrode surface temperature rises when the plasma generation density is high, this measurement result suggests the plasma generation density.
FIG. 23 shows the electrode temperature distribution when the area of the plasma electrode is 20 × 100 mm 2 . As can be seen from FIG. 23, with 20 × 100 mm 2 electrodes, uniform plasma generation is performed on the entire electrode, and thus surface modification is performed with approximately the same area as the electrode area.
FIG. 24 shows the electrode temperature distribution when the area of the plasma electrode is 60 × 100 mm 2 . As can be seen from FIG. 24, it was recognized that the plasma generation was uneven in the 60 × 100 mm 2 electrode.
From this result, it is understood that the surface modification may be limited to a certain area of the electrode area when the fixing method is not devised or when the thickness of the material (base material) is thin.
Further, FIG. 25 shows an electrode temperature distribution when the area of the plasma electrode is 100 × 100 mm 2 . As can be seen from FIG. 25, it was recognized that the plasma generation was uneven in the 100 × 100 mm 2 electrode.
In particular, it is considered that the plasma generation density around the clip for fixing the electrode is high. However, these are considered to be improved by improving electrode processing accuracy (for example, setting of the discharge gap length, electrode fixing method, and power source capacity).
(Example 18)
In FIG. 1, the discharge gap length of 100 μm is secured by sandwiching the spacers between the electrodes. However, as shown in Example 14, in order to realize a large area and uniform discharge space, the metal substrate constituting the plasma electrode is formed. In addition to applying a ceramic coating to the surface, it is possible to provide a difference in the thickness of the ceramic coating and to secure a discharge gap length on the electrode surface by the thinly coated portion.
FIG. 26 shows an example in which a difference in thickness (step) is provided in the resin coating and a discharge gap length is formed on the electrode surface. In the electrode (a) portion, (1): 350 μm, (2): 250 μm, In the electrode (b) part, (2): 250 μm, (3): 350 μm.
Example 19
In Example 19, using the same apparatus as in Example 1, as shown in FIG. 27 (a), the member to be treated 4 is made of three resin films 2, 3, and 4 without using an adhesive. Bonding was performed by heating and pressing to form a fluid manifold made of three layers of resin film. In addition, about the resin film 3, both surfaces were surface-modified (activation process).
In Example 19, the resin film 3 formed with the slits 5 as shown in FIG. 27B was used for the intermediate layer of the members to be processed to be joined. The upper resin film 2 and the lower resin film 4 are a single sheet, and a slit (through groove) 5 is formed in the intermediate resin film 3 by penetrating the front and back surfaces by means of a laser or the like. By joining the three sheets, a fluid manifold in which a fluid passage was formed in the resin film of the intermediate layer was formed.
The thickness t of the three resin films was about 0.25 mm, and the width w of the fluid passage 13 was about 0.5 mm.
FIGS. 28 (a) and 28 (b) show the result of analyzing the bonding state with a laser focus microscope. The sample shown in FIG. 28 (a) (the portion where the fluid manifold was formed (the slit 5 in FIG. 27 (b)). In the cross-sectional view, it can be seen that the resin films are bonded to each other at both ends of the microchannel while maintaining the shape of the microchannel.
本発明のマイクロプラズマを用いた表面改質処理方法は、被処理部材の表面に、大気圧マイクロプラズマ処理により生成されるラジカル、紫外光などによる物理的変化、化学的変化を起こすことで、チャンバなど真空容器を必要とせずに、リアルタイムで大面積への表面処理を施すことが可能であり、また、小型電源などで対応が出来、高価な希ガス、標準ガスを使用せず、大気ガスを流用可能であり、コスト面で有利であり、産業上の利用可能性が高い。
さらに、静電気障害の悪影響のない表面改質処理が可能であるので、液晶パネルなどの表面改質を高効率で行うことができる。
また、本発明のマイクロプラズマを用いた接合方法は、被処理部材を複数枚のフィルムで接着剤を使用せずに成形したので、接着剤成分が内容物内に溶出するおそれがなくなり、内容物への影響がなく、内容物が食品や医薬品などの場合に好ましく適用できる。
さらに、被処理部材同士を加熱加圧によって接合するので、被処理部材同士を簡単な手段で一体化できて、液体容器などに好ましく適用でき、樹脂フィルムが均等に加熱されるため、フィルム同士の接合面に剥離が発生しにくく、流体マニフォールドなどに適用でき、産業上の利用可能性が高い。
The surface modification treatment method using microplasma of the present invention causes the chamber to undergo physical changes and chemical changes caused by radicals generated by atmospheric pressure microplasma treatment, ultraviolet light, etc. on the surface of the member to be treated. It is possible to perform surface treatment over a large area in real time without the need for a vacuum vessel, etc., and it can be handled with a small power source, etc., and does not use expensive rare gas or standard gas, It can be diverted, is advantageous in terms of cost, and has high industrial applicability.
Furthermore, since surface modification treatment that does not adversely affect electrostatic damage is possible, surface modification of a liquid crystal panel or the like can be performed with high efficiency.
Further, in the joining method using the microplasma of the present invention, since the member to be treated is formed with a plurality of films without using an adhesive, there is no possibility that the adhesive component is eluted into the contents, and the contents It can be preferably applied to the case where the contents are food or pharmaceuticals.
Furthermore, since the members to be treated are joined together by heating and pressing, the members to be treated can be integrated by simple means and can be preferably applied to a liquid container or the like, and the resin film is heated evenly. Separation is unlikely to occur on the joint surface, and it can be applied to fluid manifolds, etc., and has high industrial applicability.

Claims (10)

  1.  大気圧下、780V−1.9kVで複数のマイクロプラズマ電極間に生成させた大気圧マイクロプラズマを被処理部材の表面に照射して、被処理部材表面の表面改質処理を真空容器を用いずにリアルタイムに行うことを特徴とするマイクロプラズマを用いた表面改質処理方法。 Atmospheric pressure microplasma generated between a plurality of microplasma electrodes at 780 V to 1.9 kV under atmospheric pressure is irradiated onto the surface of the member to be processed, and the surface modification treatment of the surface of the member to be processed is performed without using a vacuum vessel. A surface modification method using microplasma, which is performed in real time.
  2.  前記大気圧マイクロプラズマを780V−1kVで生成して、被処理部材に静電気を発生させないようにすることを特徴とする請求項1に記載の表面改質処理方法。 2. The surface modification treatment method according to claim 1, wherein the atmospheric pressure microplasma is generated at 780 V to 1 kV so that static electricity is not generated in a member to be treated.
  3.  前記大気圧マイクロプラズマを被処理部材の表面に照射するに際し、
    前記マイクロプラズマ電極に形成した穴を通して、0.1−0.8MPaの、空気、不活性な窒素、アルゴン、ヘリウム、キセノン、ネオンのいずれかのガスを、被処理部材の表面に噴射することを特徴とする請求項1又は2に記載の表面改質処理方法。
    When irradiating the surface of the member to be processed with the atmospheric pressure microplasma,
    Injecting 0.1 to 0.8 MPa of air, inert nitrogen, argon, helium, xenon, or neon gas onto the surface of the member to be processed through the hole formed in the microplasma electrode. The surface modification treatment method according to claim 1 or 2, characterized in that
  4.  前記マイクロプラズマ電極に形成した穴の直径を、0.5−5mmとすることを特徴とする請求項3に記載の表面改質処理方法。 4. The surface modification treatment method according to claim 3, wherein the diameter of the hole formed in the microplasma electrode is 0.5-5 mm.
  5.  前記マイクロプラズマ電極に形成した穴から噴射するガス流速を、1−5.5m/sとすることを特徴とする請求項1乃至4のいずれかに記載の表面改質処理方法。 The surface modification treatment method according to any one of claims 1 to 4, wherein a gas flow velocity ejected from a hole formed in the microplasma electrode is 1 to 5.5 m / s.
  6.  前記マイクロプラズマ電極と被処理部材表面とのワーク間距離を、0−10mmとすることを特徴とする請求項1乃至5のいずれかに記載の表面改質処理方法。 The surface modification treatment method according to any one of claims 1 to 5, wherein a distance between workpieces between the microplasma electrode and the surface of the member to be treated is 0 to 10 mm.
  7.  前記マイクロプラズマ電極間の放電ギャップ長を0−500μmとすることを特徴とする請求項1乃至6のいずれかに記載の表面改質処理方法。 The surface modification treatment method according to any one of claims 1 to 6, wherein a discharge gap length between the microplasma electrodes is set to 0 to 500 µm.
  8.  前記マイクロプラズマ電極の面積全体を用いて被処理部材表面の表面改質処理を行うことを特徴とする請求項1乃至7のいずれかに記載の表面改質処理方法。 The surface modification treatment method according to any one of claims 1 to 7, wherein a surface modification treatment is performed on the surface of the member to be treated using the entire area of the microplasma electrode.
  9.  前記マイクロプラズマ電極間の放電ギャップを設定するに際し、
    別体のスペーサを使用せずに、前記マイクロプラズマ電極表面に誘電体をコーティングをして、放電ギャップ長を確保することを特徴とする請求項1乃至8のいずれかに記載の表面改質処理方法。
    In setting the discharge gap between the microplasma electrodes,
    9. The surface modification treatment according to claim 1, wherein a dielectric gap is coated on the surface of the microplasma electrode without using a separate spacer to ensure a discharge gap length. Method.
  10.  請求項1乃至9のいずれかに記載の表面改質処理方法を用いて表面改質された被処理部材の接合方法であって、
    表面改質処理された被処理部材の表面同士を加熱及び加圧して、接着剤を用いずに接合することを特徴とするマイクロプラズマを用いた接合方法。
    A method for bonding a member to be processed, which has been surface-modified using the surface-modifying method according to claim 1,
    A joining method using microplasma, characterized in that the surfaces of treated members subjected to surface modification treatment are heated and pressed together to join without using an adhesive.
PCT/JP2009/065986 2008-11-22 2009-09-08 Surface modification process using microplasma and bonding process using microplasma WO2010058648A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010539182A JPWO2010058648A1 (en) 2008-11-22 2009-09-08 Surface modification treatment method and bonding method using microplasma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-298867 2008-11-22
JP2008298867 2008-11-22

Publications (1)

Publication Number Publication Date
WO2010058648A1 true WO2010058648A1 (en) 2010-05-27

Family

ID=42198087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065986 WO2010058648A1 (en) 2008-11-22 2009-09-08 Surface modification process using microplasma and bonding process using microplasma

Country Status (2)

Country Link
JP (1) JPWO2010058648A1 (en)
WO (1) WO2010058648A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069448A (en) * 2010-09-27 2012-04-05 Ngk Insulators Ltd Plasma processing apparatus
WO2012173229A1 (en) * 2011-06-16 2012-12-20 京セラ株式会社 Plasma generator and plasma generation device
JP2016056363A (en) * 2014-09-05 2016-04-21 国立大学法人大阪大学 Production method of surface-modified molded body, and production method of composite body using the surface-modified molded body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096445A (en) * 1984-03-21 1985-05-30 Idemitsu Petrochem Co Ltd Manufacture of resin laminate
JPH05202208A (en) * 1991-08-20 1993-08-10 Bridgestone Corp Method of surface-treating vulcanized rubber
JPH0770335A (en) * 1993-09-01 1995-03-14 Mitsui Toatsu Chem Inc Method and apparatus for bonding thermoplastic polyimide
JP2006302624A (en) * 2005-04-19 2006-11-02 Matsushita Electric Works Ltd Plasma treatment device and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096445A (en) * 1984-03-21 1985-05-30 Idemitsu Petrochem Co Ltd Manufacture of resin laminate
JPH05202208A (en) * 1991-08-20 1993-08-10 Bridgestone Corp Method of surface-treating vulcanized rubber
JPH0770335A (en) * 1993-09-01 1995-03-14 Mitsui Toatsu Chem Inc Method and apparatus for bonding thermoplastic polyimide
JP2006302624A (en) * 2005-04-19 2006-11-02 Matsushita Electric Works Ltd Plasma treatment device and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069448A (en) * 2010-09-27 2012-04-05 Ngk Insulators Ltd Plasma processing apparatus
WO2012173229A1 (en) * 2011-06-16 2012-12-20 京セラ株式会社 Plasma generator and plasma generation device
JPWO2012173229A1 (en) * 2011-06-16 2015-02-23 京セラ株式会社 Plasma generator and plasma generator
US9386678B2 (en) 2011-06-16 2016-07-05 Kyocera Corporation Plasma generator and plasma generating device
JP2016056363A (en) * 2014-09-05 2016-04-21 国立大学法人大阪大学 Production method of surface-modified molded body, and production method of composite body using the surface-modified molded body

Also Published As

Publication number Publication date
JPWO2010058648A1 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
EP3488998A1 (en) Substrate bonding method and microchip manufacturing method
WO2010058648A1 (en) Surface modification process using microplasma and bonding process using microplasma
TWI753120B (en) Method for bonding cyclo-olefin polymer(cop)
US8614118B2 (en) Component bonding method, component laminating method and bonded component structure
US11864464B2 (en) Method for polarizing piezoelectric film
CN115136293A (en) Electrostatic chuck device
KR101899177B1 (en) Method and apparatus for treating film surface
TW202046421A (en) Semiconductor device manufacturing method
JP6944149B2 (en) Laminate manufacturing method and joining equipment
US20230115256A1 (en) Electrostatic chuck device and sleeve for electrostatic chuck device
JP2013065433A (en) Plasma radiation device and surface modification method
JP3551319B2 (en) Dry surface treatment method for making porous material surface hydrophilic
JP6510774B2 (en) Film surface treatment method and apparatus
CN111433005B (en) Method for bonding cycloolefin polymer and metal, method for manufacturing biosensor, and biosensor
JP7335371B2 (en) Electrostatic chuck device
JP2011245743A (en) Laminate and manufacturing method therefor
JP4733587B2 (en) Metal bonding pretreatment method
JP2006005302A (en) Flexible substrate and manufacturing method of the same
JP6067210B2 (en) Plasma processing equipment
WO2020170567A1 (en) Method of manufacturing resin bonded body
JP2008140823A (en) Electrostatic chuck
TW202140247A (en) Resin joined body production device and resin joined body production method
JP2022123196A (en) Method of manufacturing electrostatic chuck laminate
JP2014160743A (en) Bonding apparatus and cleaning method of the same
JP2000091373A (en) Work-mounting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010539182

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09827429

Country of ref document: EP

Kind code of ref document: A1