JP2012229955A - Thickness measurement apparatus and thickness measurement method - Google Patents

Thickness measurement apparatus and thickness measurement method Download PDF

Info

Publication number
JP2012229955A
JP2012229955A JP2011097468A JP2011097468A JP2012229955A JP 2012229955 A JP2012229955 A JP 2012229955A JP 2011097468 A JP2011097468 A JP 2011097468A JP 2011097468 A JP2011097468 A JP 2011097468A JP 2012229955 A JP2012229955 A JP 2012229955A
Authority
JP
Japan
Prior art keywords
thickness
calibration
measured
measurement
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011097468A
Other languages
Japanese (ja)
Other versions
JP5833831B2 (en
Inventor
Masamitsu Nishikawa
政光 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011097468A priority Critical patent/JP5833831B2/en
Publication of JP2012229955A publication Critical patent/JP2012229955A/en
Application granted granted Critical
Publication of JP5833831B2 publication Critical patent/JP5833831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thickness measurement device and a thickness measurement method which can correct a measurement error in a short time even if a set position of a distance detector is displaced.SOLUTION: The thickness measurement device comprises: a calibration plate 3 including a first thickness section and a second thickness section, which have reference thickness; a movement mechanism section 2 for moving a detection section 1; and a position setting section 4 for commanding movement to a "calibration position" with a constant length fixed in advance and a "measurement position" fixed in advance. The position setting section 4 delivers the "calibration" command to the movement mechanism section 2 to move the detection section 1 from the "measurement position" to the "calibration position", and delivers calibration position signals set in advance of the first thickness section and the second thickness section to a thickness arithmetic section 5. The thickness arithmetic section 5 determines each of thickness in the first thickness section and the second thickness section, determines a difference between the reference thicknesses, corrects the thickness determined at the "measurement position", fixes a thickness calibration plate, moves the detection section 1 and corrects the measurement error due to displacement of set positions of first and second distance detectors, which are set in advance.

Description

本発明は、搬送中の鋼板などの厚さを、レーザビームを用いた距離検出器を使用して測定する厚さ測定装置、及び厚さ測定方法に関する。   The present invention relates to a thickness measuring apparatus and a thickness measuring method for measuring the thickness of a steel plate being conveyed using a distance detector using a laser beam.

鋼板などの各種素材の形状や製品などの厚さ測定装置として、レーザビームによる距離検出器を使用した装置が普及している。この装置は搬送されている被測定物の厚さをその搬送方向において連続して測定するものである。   2. Description of the Related Art Devices that use a distance detector using a laser beam have become widespread as thickness measuring devices for shapes of various materials such as steel plates and products. This apparatus continuously measures the thickness of an object to be measured in the conveying direction.

この厚さ測定装置は、従来からの放射線を使用した厚さ計に比べて、特別の安全管理が不要で、測定するビームが小さくできるので、厚さの変化を高分解能で測定することが可能である。そのため、被測定物の端部近傍の急激な形状変化を精度良く計測したいとする分野で利用されている。   Compared to conventional thickness gauges using radiation, this thickness measurement device does not require special safety management, and the beam to be measured can be made smaller, so that changes in thickness can be measured with high resolution. It is. For this reason, it is used in a field where it is desired to accurately measure a sudden shape change near the end of the object to be measured.

この距離検出器を用いた厚さ測定装置200の構成例を図6に示す。図6において、厚さ測定装置200の検出部1は、被測定物10を挟んで、C形フレームの互いに対向する腕部の上部1a、下部1bの、夫々に置かれたレーザ発振器を用いた三角測量の原理の基づく距離検出器11及び距離検出器12で、夫々の距離検出器と被測定物10の間の距離L1及び、距離L2を夫々求め、距離検出器の間の設定距離Lを予め入力して置き、この設定距離L、及び求めた距離L1、L2から被測定物10の厚さtを、t=L−(L1+L2)として、演算により厚さを求めるものである。   A configuration example of a thickness measuring apparatus 200 using this distance detector is shown in FIG. In FIG. 6, the detecting unit 1 of the thickness measuring apparatus 200 uses laser oscillators respectively placed on the upper part 1 a and the lower part 1 b of the arm parts of the C-shaped frame that sandwich the DUT 10. In the distance detector 11 and the distance detector 12 based on the principle of triangulation, the distance L1 and the distance L2 between each distance detector and the object to be measured 10 are respectively obtained, and the set distance L between the distance detectors is obtained. The thickness is obtained by calculation by setting it in advance and setting the thickness t of the DUT 10 to be t = L− (L1 + L2) from the set distance L and the obtained distances L1 and L2.

このような厚さ測定装置200は、校正板と呼ばれる、厚さの基準となる校正片を使用して、定期的な厚さ測定値の校正を行っている。   Such a thickness measuring apparatus 200 periodically calibrates the thickness measurement value using a calibration piece called a calibration plate, which is a standard for thickness.

しかしながら、C形フレームのような構造の検出部1は、距離検出器の支持機構である長い腕部(1a、1b)に何らかの外力が加わったり、周囲温度や設置場所の振動が加わったりするなどの環境の変化によって、被測定物10に対して鉛直方向の距離検出器間の設定距離Lや、距離検出器11、及び距離検出器12の光軸の角度がドリフトする問題が有った。   However, in the detection unit 1 having a structure like a C-shaped frame, some external force is applied to the long arms (1a, 1b) that are the support mechanism of the distance detector, or ambient temperature or vibration of the installation location is applied. There is a problem that the set distance L between the distance detectors in the vertical direction with respect to the DUT 10 and the angles of the optical axes of the distance detector 11 and the distance detector 12 drift due to the environmental change.

そこで、このドリフトを除くために一定のインターバルで校正片をC形フレームの空間に高速度で設定して、校正する校正装置が開示されている(例えば、特許文献1参照。)。   In order to eliminate this drift, a calibration apparatus is disclosed in which calibration pieces are set at high speed in the space of the C-shaped frame at regular intervals (see, for example, Patent Document 1).

特許第3880909号公報(図1、第1頁)Japanese Patent No. 3880909 (FIG. 1, page 1)

特許文献1に開示されたようなC形フレームを備える厚さ測定装置200の検出部1においては、図7に示すように、距離検出器11、及び距離検出器12の支持機構であるC形フレームの長い腕部(1a、1b)の環境の変化によって、距離検出器間の設定距離Lの変化(ΔL)や、被測定物10の表面に対して鉛直方向に設定される距離検出器の測定軸Lmの角度変化(Δθ)が発生して誤差が生じる。   In the detection unit 1 of the thickness measuring apparatus 200 having a C-shaped frame as disclosed in Patent Document 1, as shown in FIG. 7, a C-shaped which is a support mechanism for the distance detector 11 and the distance detector 12. A change in the set distance L between the distance detectors (ΔL) due to a change in the environment of the long arm portion (1a, 1b) of the frame, or a distance detector set in the vertical direction with respect to the surface of the object to be measured 10 An error occurs due to an angle change (Δθ) of the measurement axis Lm.

詳細には、設定距離Lの変化(ΔL)は、図8(b)に示すように、その値ΔLそのものが誤差となる。また、光軸Lmの角度変化(Δθ)による誤差は、図8(c)に示すように被測定物10の厚さtに比例した誤差となる。   Specifically, the change (ΔL) in the set distance L is an error as shown in FIG. 8B. Further, the error due to the angle change (Δθ) of the optical axis Lm is an error proportional to the thickness t of the DUT 10 as shown in FIG.

しかしながら、従来の校正片による校正方法では、光軸Lmの傾斜を補正する機能を備えていないので、被測定物10の厚さtと相関性のある光軸Lmの角度変化(Δθ)による誤差が補正できない問題が有る。   However, since the conventional calibration method using the calibration piece does not have a function of correcting the inclination of the optical axis Lm, an error due to an angle change (Δθ) of the optical axis Lm correlated with the thickness t of the object to be measured 10. There is a problem that cannot be corrected.

また、上述した厚さ測定装置200の校正は、測定位置(オンライン位置)にある検出部1を、一旦、校正動作が可能な位置(オフライン位置)に退避させ、その後に校正を行う必要があるため校正時間が長くなる問題がある。   Further, in the calibration of the thickness measuring apparatus 200 described above, it is necessary to temporarily retract the detection unit 1 at the measurement position (online position) to a position where the calibration operation can be performed (offline position) and then perform calibration. Therefore, there is a problem that the calibration time becomes long.

本発明は上記問題点を解決するためになされたもので、距離検出器を用いた厚さ測定装置において、距離検出器の設定位置に変位があっても、短時間で厚さ測定値の誤差補正が可能な厚さ測定装置、及び厚さ測定方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems. In a thickness measuring apparatus using a distance detector, even if the set position of the distance detector is displaced, an error in the thickness measurement value can be obtained in a short time. An object of the present invention is to provide a thickness measuring apparatus and a thickness measuring method capable of correction.

上記目的を達成するために、実施例の厚さ測定装置は、被測定物をその搬送方向と直交する方向から挟むC形フレームの上下の互いに対向する腕部の上部に配置され、該被測定物の表面に対して垂直方向からレーザビームを照射して該被測定物との距離を求める第1の距離検出器と、前記被測定物を挟む前記C形フレームの上下の互いに対向する腕部の下部に配置され、該被測定物の裏面に対して垂直方向からレーザビームを照射して該被測定物との距離を求める第2の距離検出器と、を備える検出部と、前記第1の距離検出器の出力及び前記第2の距離検出器の出力から厚さを求める厚さ演算部と、を備える厚さ測定装置であって、前記検出部は、前記被測定物の搬送方向と直交する方向の一方の退避位置方向において、前記第1の距離検出器と前記第2の距離検出器の測定範囲内に固定設定される、予め設定された異なる基準厚さを有する第1の厚さ部と第2の厚さ部を備える校正板と、前記退避位置方向と、当該退避位置方向と反対の測定位置方向とに前記検出部を移動させる移動機構部と、前記移動機構部には前記厚さ校正板の前記第1の厚さ部と第2の厚さ部の「校正位置」及び「測定位置」を検出する位置検出センサとを備え、当該位置検出センサの信号から、前記移動機構部に対して、前記検出部を予め定める一定長さの「校正位置」、及び予め定められる「測定位置」に、移動を指令する位置設定部と、を備え、前記位置設定部は、「校正」指令を前記移動機構部に送り、前記移動機構部は、当該「校正」指令で前記検出部を予め設定される速度で前記「測定位置」から前記「校正位置」に移動させ、さらに、前記位置検出センサからの信号で、予め設定された前記第1の厚さ部と第2の厚さ部との校正位置信号を前記厚さ演算部に送り、前記厚さ演算部は、前記第1の厚さ部及び前記第2の厚さ部の厚さを求め、夫々の前記基準厚さとの差を求めて、前記「測定位置」で求めた厚さを補正し、前記厚さ校正板を固定し、前記検出部を移動させて、予め設定された前記第1及び第2の距離検出器の設定位置の変位による測定誤差を補正するようにしたことを特徴とする。   In order to achieve the above object, the thickness measuring apparatus of the embodiment is disposed on the upper and lower opposing arm portions of a C-shaped frame that sandwiches the object to be measured from the direction perpendicular to the conveying direction. A first distance detector for irradiating a surface of the object with a laser beam from a direction perpendicular to the object to be measured, and upper and lower arms of the C-shaped frame sandwiching the object to be measured; A second distance detector disposed at a lower portion of the first distance detector to obtain a distance from the measured object by irradiating a laser beam from a direction perpendicular to the back surface of the measured object; A thickness calculation unit that obtains a thickness from the output of the distance detector and the output of the second distance detector, wherein the detection unit includes a conveyance direction of the object to be measured; The first distance detection in one retraction position direction of the orthogonal direction A calibration plate comprising a first thickness portion and a second thickness portion having different preset reference thicknesses fixedly set within a measurement range of the measuring device and the second distance detector; A movement mechanism that moves the detection unit in a position direction and a measurement position direction opposite to the retraction position direction, and the movement mechanism unit includes the first thickness portion and the second thickness portion of the thickness calibration plate. A position detection sensor that detects a “calibration position” and a “measurement position” of the thickness portion, and a predetermined length “ A position setting unit that commands movement to a `` calibration position '' and a predetermined `` measurement position '', the position setting unit sends a `` calibration '' command to the movement mechanism unit, and the movement mechanism unit includes: The “measurement position” at a speed set in advance by the detection unit with the “calibration” command. To the “calibration position”, and a calibration position signal of the first thickness portion and the second thickness portion set in advance by a signal from the position detection sensor The thickness calculation unit obtains the thicknesses of the first thickness part and the second thickness part, obtains a difference from each of the reference thicknesses, and obtains it at the “measurement position”. The thickness calibration plate is fixed, the thickness calibration plate is fixed, and the detection unit is moved so as to correct a measurement error caused by a displacement of a preset position of the first and second distance detectors. It is characterized by that.

上記目的を達成するために、実施例の厚さ測定装置の厚さ測定方法は、被測定物をその搬送方向と直交する方向から挟むC形フレームの上下の互いに対向する腕部の上部に配置され、該被測定物の表面に対して垂直方向からレーザビームを照射して該被測定物との距離を求める第1の距離検出器と、前記被測定物を挟む前記C形フレームの上下の互いに対向する腕部の下部に配置され、該被測定物の裏面に対して垂直方向からレーザビームを照射して該被測定物との距離を求める第2の距離検出器と、を備える検出部と、前記第1の距離検出器の出力及び前記第2の距離検出器の出力から厚さを求める厚さ演算部と、を備える厚さ測定装置であって、前記検出部は、前記被測定物の搬送方向と直交する方向の一方の退避位置方向において、前記第1の距離検出器と前記第2の距離検出器の測定範囲内に固定設定される、予め設定された異なる基準厚さを有する第1の厚さ部と第2の厚さ部を備える校正板と、前記退避位置方向と、当該退避位置方向と反対の測定位置方向とに前記検出部を移動させる移動機構部と、前記移動機構部には前記厚さ校正板の前記第1の厚さ部と第2の厚さ部の「校正位置」及び「測定位置」を検出する位置検出センサとを備え、当該位置検出センサの信号から、前記移動機構部に対して、前記検出部を予め定める一定長さの「校正位置」、及び予め定められる「測定位置」に、移動を指令する位置設定部と、を備え、前記位置設定部は、「校正」指令を前記移動機構部に送り、前記移動機構部は、当該「校正」指令で前記検出部を予め設定される速度で前記「測定位置」から前記「校正位置」に移動させ、さらに、前記位置検出センサからの信号で、予め設定された前記第1の厚さ部と第2の厚さ部との校正位置信号を前記厚さ演算部に送り、前記厚さ演算部は、前記「測定位置」で厚さxを求め、前記「校正位置」で求めた前記第1の厚さ部の厚さの平均値m1、前記第2の厚さ部の厚さの平均値m2を求め、また、予め設定された前記第1の厚さ部の基準厚さg1、前記第2の厚さ部の基準厚さg2とすると、補正後の厚さyは、m2>x>m1として、y=((g2−g1)/(m2−m1))・(x−m1)+g1として求め、前記厚さ校正板を固定し、前記検出部を移動させて、予め設定された前記第1及び第2の距離検出器の設定位置の変位による測定誤差を補正するようにしたことを特徴とする。   In order to achieve the above object, the thickness measuring method of the thickness measuring apparatus according to the embodiment is arranged on the upper and lower arms of the C-shaped frame sandwiching the object to be measured from the direction orthogonal to the conveying direction. A first distance detector for irradiating a laser beam from a direction perpendicular to the surface of the object to be measured to obtain a distance from the object to be measured; and upper and lower sides of the C-shaped frame sandwiching the object to be measured. A second distance detector disposed below the arm portions facing each other and irradiating a laser beam perpendicularly to the back surface of the object to be measured to obtain a distance to the object to be measured. And a thickness calculation unit for obtaining a thickness from the output of the first distance detector and the output of the second distance detector, wherein the detection unit is configured to measure the measured object. In one retraction position direction in a direction orthogonal to the conveyance direction of the object, Calibration comprising a first thickness portion and a second thickness portion having different preset reference thicknesses fixedly set within the measurement range of the first distance detector and the second distance detector A plate, a retraction position direction, a movement mechanism portion that moves the detection portion in a measurement position direction opposite to the retraction position direction, and the movement mechanism portion includes the first thickness of the thickness calibration plate. And a position detection sensor for detecting the “calibration position” and the “measurement position” of the second thickness part, and the detection unit is determined in advance for the moving mechanism unit from the signal of the position detection sensor. A position setting unit that commands movement to a predetermined length of “calibration position” and a predetermined “measurement position”, and the position setting unit sends a “calibration” command to the movement mechanism unit, The moving mechanism unit moves the detection unit forward at a preset speed with the “calibration” command. The position is moved from the “measurement position” to the “calibration position”, and the calibration position signal of the first thickness part and the second thickness part set in advance by the signal from the position detection sensor. The thickness calculator calculates the thickness x at the “measurement position”, the average value m1 of the thicknesses of the first thickness part calculated at the “calibration position”, An average value m2 of the thickness of the second thickness portion is obtained, and when the reference thickness g1 of the first thickness portion and the reference thickness g2 of the second thickness portion are set in advance, The corrected thickness y is calculated as y = ((g2−g1) / (m2−m1)) · (x−m1) + g1 where m2> x> m1, the thickness calibration plate is fixed, The detector is moved to correct the measurement error due to the displacement of the preset position of the first and second distance detectors. The features.

実施例1の厚さ測定装置の構成図。1 is a configuration diagram of a thickness measuring apparatus according to Embodiment 1. FIG. 実施例1の厚さ測定装置の動作原理を説明する図。FIG. 3 is a diagram for explaining an operation principle of the thickness measuring apparatus according to the first embodiment. 実施例1の厚さ測定装置の動作を説明するタイムチャート。3 is a time chart for explaining the operation of the thickness measuring apparatus according to the first embodiment. 実施例2の厚さ測定装置の構成図。The block diagram of the thickness measuring apparatus of Example 2. FIG. 実施例2の厚さ測定装置の動作を説明するタイムチャート。9 is a time chart for explaining the operation of the thickness measuring apparatus according to the second embodiment. 従来の厚さ測定装置の構成図。The block diagram of the conventional thickness measuring apparatus. 従来の厚さ測定装置の測定誤差を説明する図。The figure explaining the measurement error of the conventional thickness measuring apparatus.

以下、本発明の実施例について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1乃至図4を参照して、実施例1の厚さ測定装置100について説明する。先ず、図2を参照して、本発明の測定原理を説明する。図7に示したように、検出部1の構成が、C形フレームの腕部に光学的な距離検出器を用いて厚さを測定する厚さ測定装置100においては、被測定物10の表面に鉛直方向からレーザビームを照射して距離を測定している。   A thickness measuring apparatus 100 according to the first embodiment will be described with reference to FIGS. First, the measurement principle of the present invention will be described with reference to FIG. As shown in FIG. 7, in the thickness measurement apparatus 100 in which the configuration of the detection unit 1 measures the thickness using an optical distance detector on the arm portion of the C-shaped frame, the surface of the DUT 10 is measured. The distance is measured by irradiating the laser beam from the vertical direction.

このような厚さ測定装置100においては、図7で説明したように距離検出器間の設定距離Lが変位(ΔL)したり、距離検出器のレーザビームの光軸が変位(Δθ)したりすることにより、測定誤差が発生する。   In such a thickness measuring apparatus 100, as described with reference to FIG. 7, the set distance L between the distance detectors is displaced (ΔL), or the optical axis of the laser beam of the distance detector is displaced (Δθ). As a result, a measurement error occurs.

このような誤差を短時間で補正するため、本発明の測定原理は、異なる厚さの校正板を、距離検出器間に設定し、測定中の検出器1を被測定物10搬送方向と直交する退避方向に移動させるとともに、この退避経路上に置かれた校正板の厚さの一定長の平均値を測定して補正するものである。   In order to correct such errors in a short time, the measurement principle of the present invention is that calibration plates having different thicknesses are set between the distance detectors, and the detector 1 being measured is orthogonal to the conveyance direction of the object 10 to be measured. In addition to moving in the retracting direction, the average value of a certain length of the thickness of the calibration plate placed on the retracting path is measured and corrected.

即ち、予め定める一定長の異なる2つの基準厚さ(g1、g2)の校正板を固定位置に設け、検出器1を移動させながら厚さを測定する。この測定値をm1、m2とする。すると、この状態で測定した厚さ測定値xは、下記(1)式で求められる。
y=(g2−g1)/(m2−m1)・(x−m1)+g1・・・・・(1)
但し、g2>x>g1とする。
That is, calibration plates having two different reference thicknesses (g1, g2) having different predetermined lengths are provided at fixed positions, and the thickness is measured while the detector 1 is moved. The measured values are m1 and m2. Then, the thickness measurement value x measured in this state is obtained by the following equation (1).
y = (g2-g1) / (m2-m1). (x-m1) + g1 (1)
However, g2>x> g1.

このような校正方法によれば、何らかの原因により検出器1が変形したり、外力により変形したりしたことを検知した場合、検出器1を退避方向に移動させる。   According to such a calibration method, when it is detected that the detector 1 is deformed for some reason or deformed by an external force, the detector 1 is moved in the retracting direction.

この場合、厚さ基準となる厚さ校正板を移動させること無く、検出器の移動機構を利用して、検出器1を退避方向に移動するだけで、測定した厚さの誤差補正を補正することができる。   In this case, the error correction of the measured thickness is corrected only by moving the detector 1 in the retracting direction using the detector moving mechanism without moving the thickness calibration plate serving as the thickness reference. be able to.

通常、厚さ測定装置100においては、予め基準厚さにより作成された厚さの校正テーブルを初期値として備え、被測定物10の厚さを連続して測定しているが、上述したように、何らかの原因により設定位置の変化があることを検知した場合、その測定値の誤差の補正は、直ちに短時間での補正することが可能となる。   In general, the thickness measuring apparatus 100 includes a thickness calibration table created in advance as a reference thickness as an initial value, and continuously measures the thickness of the DUT 10, but as described above. When it is detected that there is a change in the setting position for some reason, the error of the measured value can be immediately corrected in a short time.

次に、このような測定原理に基づく実施例1の構成について図1を参照して説明する。   Next, the configuration of the first embodiment based on such a measurement principle will be described with reference to FIG.

図1は、被測定物10をその搬送方向と直交する方向から挟むC形フレームの上下の互いに対向する腕部の上部1aに配置され、該被測定物10の表面に対して垂直方向からレーザビームを照射して該被測定物との距離を求める第1の距離検出器11と、被測定物10を挟むC形フレームの上下の互いに対向する腕部の下部1bに配置され、該被測定物の裏面に対して垂直方向からレーザビームを照射して該被測定物との距離を求める第2の距離検出器12と、を備える検出部1と、第1の距離検出器11の出力及び第2の距離検出器12の出力から厚さを求める厚さ演算部5とを備える。   FIG. 1 shows a laser beam from a direction perpendicular to the surface of the object to be measured 10, which is disposed on the upper and lower arms 1 a of the C-shaped frame sandwiching the object to be measured 10 from a direction perpendicular to the conveying direction. A first distance detector 11 for irradiating a beam to obtain the distance to the object to be measured, and a lower part 1b of the upper and lower arms of the C-shaped frame sandwiching the object 10 to be measured, A detection unit 1 including a second distance detector 12 that obtains a distance from the object to be measured by irradiating a laser beam perpendicularly to the back surface of the object; and an output of the first distance detector 11; And a thickness calculator 5 for determining the thickness from the output of the second distance detector 12.

さらに、検出部1は、被測定物10の搬送方向と直交する方向の一方の退避位置方向において、第1の距離検出器11と第2の距離検出器12の測定範囲内に固定設定される、予め設定された異なる基準厚さを有する第1の厚さ部と第2の厚さ部を備える校正板3と、退避位置方向と、当該退避位置方向と反対の測定位置方向とに検出部1を移動させる移動機構部2と、移動機構部2には前記厚さ校正板の第1の厚さ部と第2の厚さ部の「校正位置」及び「測定位置」を検出する位置基準板40を含む位置検出センサ41、42、43とを備え、当該位置検出センサの信号から、移動機構部2に対して、検出部1を予め定める一定長さの「校正位置」、及び予め定められる「測定位置」に、移動を指令する位置設定部4と、を備える。   Further, the detection unit 1 is fixedly set within the measurement range of the first distance detector 11 and the second distance detector 12 in one retraction position direction in a direction orthogonal to the conveyance direction of the DUT 10. A calibration plate 3 having a first thickness portion and a second thickness portion having different reference thicknesses set in advance, a detection portion in a retracted position direction and a measurement position direction opposite to the retracted position direction. A moving mechanism section 2 for moving 1 and a position reference for detecting a “calibration position” and a “measurement position” of the first thickness section and the second thickness section of the thickness calibration plate. Position detection sensors 41, 42, and 43 including a plate 40, and a predetermined length “calibration position” determined in advance with respect to the moving mechanism unit 2 based on a signal from the position detection sensor, and a predetermined position. The position setting unit 4 that commands movement is provided in the “measurement position”.

次に各部の詳細について説明する。移動機構部2は、検出部1を乗せ、測定位置から校正位置に退避させる場合のレール21と、検出部1の下部に設けられる複数の車輪23と、車輪23を「測定位置」方向及び「退避位置方向」の前後に回転させる図示しない駆動モータを備える駆動部22と、を備える。   Next, the detail of each part is demonstrated. The moving mechanism unit 2 places the detection unit 1 on the rail 21 when retracting from the measurement position to the calibration position, a plurality of wheels 23 provided below the detection unit 1, and the wheels 23 in the “measurement position” direction and “ And a drive unit 22 including a drive motor (not shown) that is rotated before and after the “retraction position direction”.

また、位置設定部4は、検出部1の位置を検出するためレール21上に設ける位置基準板40と、検出部1に設けられ、この位置基準板40で検出部1に自身の位置を検知して「測定位置」及び「校正位置」を検出する、夫々の位置検出センサ41、及び位置検出センサ42、43とを備える。   The position setting unit 4 is provided on the detection unit 1 and a position reference plate 40 provided on the rail 21 for detecting the position of the detection unit 1. The position reference plate 40 detects the position of the detection unit 1 itself. The position detection sensor 41 and the position detection sensors 42 and 43 for detecting the “measurement position” and the “calibration position” are provided.

そして、図3のタイムチャートに示すように、位置検出部4は、駆動部22に対して、測定指令信号s1、校正指令信号s2を送り、更に、駆動部22が検出部1を予め設定される移動速度信号s3を移動させ、位置検出センサ41、42、43から夫々の検出信号を受信して、「測定位置」信号s4、「校正位置」信号s5、s6を生成して厚さ測定部5に送る。   As shown in the time chart of FIG. 3, the position detection unit 4 sends a measurement command signal s1 and a calibration command signal s2 to the drive unit 22, and the drive unit 22 sets the detection unit 1 in advance. The movement speed signal s3 is moved, the respective detection signals are received from the position detection sensors 41, 42, 43, and the "measurement position" signal s4 and the "calibration position" signals s5, s6 are generated to generate the thickness measurement unit Send to 5.

また、厚さ校正板3は、夫々が、移動方向に長さLwで、その長さLwでの平均厚さがg1、g2として異なる基準厚さを設定するもので、例えば、被測定物10の表面性状に近似した粗さや反射率を備え、経時変化しにくい金属板等で生成しておく。   Each of the thickness calibration plates 3 has a length Lw in the moving direction, and sets different reference thicknesses as average thicknesses g1 and g2 in the length Lw. It is made of a metal plate or the like that has a roughness and reflectivity approximate to the surface properties of the material and hardly changes over time.

また、厚さ演算部5は、距離検出器11と距離検出器12の距離信号と、予め定められる図示しない校正基準片とで生成される図示しない厚さの校正テーブルを予め備え、位置設定部4から送られる「測定位置」信号s4を受信して被測定物10の厚さを測定して図示しない記憶部に一次記憶してゆく。   In addition, the thickness calculation unit 5 includes a calibration table with a thickness (not shown) generated by a distance signal from the distance detector 11 and the distance detector 12 and a calibration reference piece (not shown) set in advance. 4 receives the “measurement position” signal s4 sent from the sensor 4, measures the thickness of the device under test 10, and primarily stores it in a storage unit (not shown).

そして、「校正位置」信号s5、s6を受信した場合、記憶した厚さ測定値xは、上述した(1)式の演算の実行し、その厚さ測定値xを補正する。   When the “calibration position” signals s5 and s6 are received, the stored thickness measurement value x is subjected to the calculation of the above-described equation (1) to correct the thickness measurement value x.

次に、このように校正された、厚さ測定装置100の動作を、図3を参照して説明する。   Next, the operation of the thickness measuring apparatus 100 calibrated in this way will be described with reference to FIG.

先ず、位置設定部4は、駆動部22に対して校正指令信号s1と移動速度信号s3を指定して送る。すると、駆動部22は、図示しないモータを駆動して車輪23を測定位置の方向に回転し、検出器1を測定位置に移動させる。   First, the position setting unit 4 designates and sends a calibration command signal s1 and a movement speed signal s3 to the drive unit 22. Then, the drive part 22 drives the motor which is not shown in figure, rotates the wheel 23 in the direction of a measurement position, and moves the detector 1 to a measurement position.

そして、位置設定部4は、位置検出センサ41が「測定位置」となったことを検出すると、駆動部22にモータの駆動の停止を指令し、位置設定部4は「測定位置」信号s4を厚さ演算部5送り、厚さ演算部5は測定を開始する。   When the position setting unit 4 detects that the position detection sensor 41 has reached the “measurement position”, the position setting unit 4 instructs the drive unit 22 to stop driving the motor, and the position setting unit 4 outputs the “measurement position” signal s4. The thickness calculator 5 feeds, and the thickness calculator 5 starts measurement.

検出部1の停止位置は、駆動部22自身が制御することも可能である。   The stop position of the detection unit 1 can also be controlled by the drive unit 22 itself.

次に、被測定物10の厚さ測定中に、または、厚さ測定装置100の検出部1に対して校正の要求があると、厚さ測定装置100の操作員は、位置設定部4を操作して校正指令信号s2を駆動部22に送る。   Next, during the thickness measurement of the object to be measured 10 or when there is a request for calibration to the detection unit 1 of the thickness measurement device 100, the operator of the thickness measurement device 100 moves the position setting unit 4. The calibration command signal s2 is sent to the drive unit 22 by operating.

すると、駆動部22は、検出部1を退避方向に移動する。退避方向に移動中位置検出センサ42、43が作動すると、位置設定部4は「校正位置」信号s5、s6を厚さ演算部5に送り、厚さ演算部5に校正の演算動作を指令する。   Then, the drive unit 22 moves the detection unit 1 in the retracting direction. When the position detection sensors 42 and 43 that are moving in the retracting direction are operated, the position setting unit 4 sends “calibration position” signals s5 and s6 to the thickness calculation unit 5 and instructs the thickness calculation unit 5 to perform a calibration calculation operation. .

ここで、校正位置信号s5、s6の信号幅tDW、校正位置信号s5、s6間の信号幅tは、厚さ校正板3の基準厚さg1、g2部分の移動方向の長さLw、及びその基準厚さ間の距離Lsに相当し、予め設定される厚さ校正板3の厚さ基準となる厚さ部の長さLwとその表面性状は、検出部1の移動速度において厚さ平均値のバラツキが予め定められる値の範囲内となるように設定しておく。 Here, the signal width t DW of the calibration position signals s 5 and s 6 and the signal width t L between the calibration position signals s 5 and s 6 are the lengths Lw in the moving direction of the reference thicknesses g 1 and g 2 of the thickness calibration plate 3, Further, the length Lw of the thickness portion and the surface property of the thickness calibration plate 3 which are set in advance and correspond to the distance Ls between the reference thickness and the reference thickness are the thicknesses at the moving speed of the detection unit 1. The variation of the average value is set so as to be within a predetermined value range.

厚さ演算部5は、位置設定部4から送信された「校正位置」信号s5、s6を受信して、この信号幅tDWの間の厚さの平均値m1、m2を求め、上述した(1)式により、求めた厚さ測定値xを補正する。 The thickness calculation unit 5 receives the “calibration position” signals s5 and s6 transmitted from the position setting unit 4, obtains average values m1 and m2 of the thickness between the signal widths t DW , and is described above ( 1) The obtained thickness measurement value x is corrected by the equation.

このような実施例の厚さ測定装置によれば、検出器の設定位置の異常を何らかの要因で検出した場合、検出部を退避位置に移動することで、測定した厚さの補正が短時間で可能となる。   According to the thickness measuring apparatus of such an embodiment, when an abnormality in the setting position of the detector is detected for some reason, the measured thickness can be corrected in a short time by moving the detection unit to the retracted position. It becomes possible.

図4、図5を参照して、実施例2について説明する。実施例2の各部について、実施例1と同一部分は同じ符号を付しその説明を省略する。実施例2が実施例1と異なる点は、実施例1においては、厚さ校正板3は、異なる基準厚さを設定するものであったが、実施例2においては、さらに、この厚さ校正板3を格納する格納ケース31を備えるようにしたことにある。   Embodiment 2 will be described with reference to FIGS. 4 and 5. About each part of Example 2, the same part as Example 1 attaches | subjects the same code | symbol, and abbreviate | omits the description. The difference between the second embodiment and the first embodiment is that, in the first embodiment, the thickness calibration plate 3 sets a different reference thickness. In the second embodiment, this thickness calibration is further performed. The storage case 31 for storing the plate 3 is provided.

詳細には、位置設定部4は、位置検出センサ42、43から格納ケース開,閉の信号を図示しない格納ケース31の駆動部に送り、この駆動部は、位置検出センサ42を受信して予め格納ケース31を開状態として、その状態で厚さ校正板3の校正位置信号s7、s8を生成し、更に、位置検出センサ43から格納ケース閉信号を生成する。   More specifically, the position setting unit 4 sends signals for opening and closing the storage case from the position detection sensors 42 and 43 to the drive unit of the storage case 31 (not shown). The drive unit receives the position detection sensor 42 and receives the position detection sensor 42 in advance. The storage case 31 is opened, and calibration position signals s7 and s8 of the thickness calibration plate 3 are generated in this state, and further, a storage case closing signal is generated from the position detection sensor 43.

即ち、位置検出センサ42、43から、厚さ校正板3を使用する期間のみ格納ケースからを使用し、その他の期間においては、格納ケースに収納して、厚さ校正板3の経時変化を防止するようにしたので、光学的測定装置である距離検出器の厚さ校正板の品質を長期間安定して使用することが出来る。   That is, the position detection sensors 42 and 43 use the storage case only during the period when the thickness calibration plate 3 is used, and store it in the storage case during other periods to prevent the thickness calibration plate 3 from changing over time. As a result, the quality of the thickness calibration plate of the distance detector, which is an optical measuring device, can be used stably for a long period of time.

尚、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明と均等の範囲に含まれる。   In addition, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the scope equivalent to the invention described in the claims.

1 検出部
1a 腕部の上部
1b 腕部の下部
11 第1の距離検出器
12 第2の距離検出器
2 移動機構部
21 レール
22 駆動部
23 車輪機構部
3 厚さ校正板
31 格納ケース
4 位置設定部
40 位置基準板
41 位置検出センサ
42 位置検出センサ
43 位置検出センサ
5 厚さ演算部
10 被測定物
100、200 厚さ測定装置
DESCRIPTION OF SYMBOLS 1 Detection part 1a Upper part of arm part 1b Lower part of arm part 11 First distance detector 12 Second distance detector 2 Moving mechanism part 21 Rail 22 Drive part 23 Wheel mechanism part 3 Thickness calibration plate 31 Storage case 4 Position Setting unit 40 Position reference plate 41 Position detection sensor 42 Position detection sensor 43 Position detection sensor 5 Thickness calculation unit 10 DUT 100, 200 Thickness measurement device

Claims (4)

被測定物をその搬送方向と直交する方向から挟むC形フレームの上下の互いに対向する腕部の上部に配置され、該被測定物の表面に対して垂直方向からレーザビームを照射して該被測定物との距離を求める第1の距離検出器と、前記被測定物を挟む前記C形フレームの上下の互いに対向する腕部の下部に配置され、該被測定物の裏面に対して垂直方向からレーザビームを照射して該被測定物との距離を求める第2の距離検出器と、を備える検出部と、
前記第1の距離検出器の出力及び前記第2の距離検出器の出力から厚さを求める厚さ演算部と、を備える厚さ測定装置であって、
前記検出部は、前記被測定物の搬送方向と直交する方向の一方の退避位置方向において、前記第1の距離検出器と前記第2の距離検出器の測定範囲内に固定設定される、予め設定された異なる基準厚さを有する第1の厚さ部と第2の厚さ部を備える校正板と、
前記退避位置方向と、当該退避位置方向と反対の測定位置方向とに前記検出部を移動させる移動機構部と、
前記移動機構部には前記厚さ校正板の前記第1の厚さ部と第2の厚さ部の「校正位置」及び「測定位置」を検出する位置検出センサとを備え、当該位置検出センサの信号から、前記移動機構部に対して、前記検出部を予め定める一定長さの「校正位置」、及び予め定められる「測定位置」に、移動を指令する位置設定部と、
を備え、
前記位置設定部は、「校正」指令を前記移動機構部に送り、前記移動機構部は、当該「校正」指令で前記検出部を予め設定される速度で前記「測定位置」から前記「校正位置」に移動させ、
さらに、前記位置検出センサからの信号で、予め設定された前記第1の厚さ部と第2の厚さ部との校正位置信号を前記厚さ演算部に送り、
前記厚さ演算部は、前記第1の厚さ部及び前記第2の厚さ部の厚さを求め、夫々の前記基準厚さとの差を求めて、前記「測定位置」で求めた厚さを補正し、
前記厚さ校正板を固定し、前記検出部を移動させて、予め設定された前記第1及び第2の距離検出器の設定位置の変位による測定誤差を補正するようにしたことを特徴とする厚さ測定装置。
The object to be measured is placed on the upper and lower arms of the C-shaped frame that sandwiches the object to be measured from the direction perpendicular to the conveying direction, and the surface of the object to be measured is irradiated with a laser beam from the vertical direction to irradiate the object. A first distance detector for determining the distance to the object to be measured, and a lower part of the upper and lower arms of the C-shaped frame sandwiching the object to be measured, perpendicular to the back surface of the object to be measured A second distance detector for obtaining a distance from the object to be measured by irradiating a laser beam from
A thickness calculator that calculates a thickness from the output of the first distance detector and the output of the second distance detector,
The detection unit is fixedly set in advance within a measurement range of the first distance detector and the second distance detector in one retraction position direction in a direction orthogonal to the conveyance direction of the object to be measured. A calibration plate comprising a first thickness portion and a second thickness portion having different set reference thicknesses;
A moving mechanism unit that moves the detection unit in the retraction position direction and a measurement position direction opposite to the retraction position direction;
The moving mechanism section includes a position detection sensor for detecting “calibration position” and “measurement position” of the first thickness section and the second thickness section of the thickness calibration plate, and the position detection sensor. From the signal, a position setting unit for commanding the movement to the movement mechanism unit to a predetermined “calibration position” of a predetermined length and a predetermined “measurement position”;
With
The position setting unit sends a “calibration” command to the moving mechanism unit, and the moving mechanism unit moves the detection unit from the “measurement position” to the “calibration position” at a speed set in advance by the “calibration” command. To
Further, a signal from the position detection sensor sends a preset calibration position signal of the first thickness part and the second thickness part to the thickness calculation part,
The thickness calculator obtains the thicknesses of the first thickness part and the second thickness part, obtains a difference from each of the reference thicknesses, and obtains the thickness obtained at the “measurement position”. To correct
The thickness calibration plate is fixed, and the detection unit is moved to correct a measurement error due to a preset displacement of the set positions of the first and second distance detectors. Thickness measuring device.
前記厚さ演算部は、前記「測定位置」で求めた厚さをxとし、前記「校正位置」で求めた前記第1の厚さ部の厚さの平均値、前記第2の厚さ部の厚さの平均値を、夫々、m1、m2(m2>m1)、また、予め設定された第1の厚さ部の基準厚さg1、第2の厚さ部の基準厚さg2とすると、
補正後の厚さyは、m2>x>m1として、
y=((g2−g1)/(m2−m1))×(x−m1)+g1
として求めるようにした請求項1に記載の厚さ測定装置。
The thickness calculation unit sets the thickness obtained at the “measurement position” to x, an average value of the thicknesses of the first thickness part obtained at the “calibration position”, and the second thickness part. Are the average thicknesses m1, m2 (m2> m1), the first reference thickness g1 of the first thickness portion, and the reference thickness g2 of the second thickness portion, respectively. ,
The corrected thickness y is m2>x> m1,
y = ((g2-g1) / (m2-m1)) * (x-m1) + g1
The thickness measuring device according to claim 1, which is obtained as follows.
更に、前記厚さ校正板は、格納ケースを備え、
前記位置設定部は、前記「校正」指令後、前記位置検出センサからの信号で、前記厚さ校正板の手前で前記格納ケースを「開」、前記厚さ校正板を通過後に「閉」とする格納ケースの開閉を指令するようにした請求項1に記載の厚さ測定装置。
Further, the thickness calibration plate includes a storage case,
After the “calibration” command, the position setting unit “opens” the storage case in front of the thickness calibration plate and “closes” after passing the thickness calibration plate by a signal from the position detection sensor. The thickness measuring device according to claim 1, wherein the opening / closing of the storage case is commanded.
被測定物をその搬送方向と直交する方向から挟むC形フレームの上下の互いに対向する腕部の上部に配置され、該被測定物の表面に対して垂直方向からレーザビームを照射して該被測定物との距離を求める第1の距離検出器と、前記被測定物を挟む前記C形フレームの上下の互いに対向する腕部の下部に配置され、該被測定物の裏面に対して垂直方向からレーザビームを照射して該被測定物との距離を求める第2の距離検出器と、を備える検出部と、
前記第1の距離検出器の出力及び前記第2の距離検出器の出力から厚さを求める厚さ演算部と、を備える厚さ測定装置であって、
前記検出部は、前記被測定物の搬送方向と直交する方向の一方の退避位置方向において、前記第1の距離検出器と前記第2の距離検出器の測定範囲内に固定設定される、予め設定された異なる基準厚さを有する第1の厚さ部と第2の厚さ部を備える校正板と、
前記退避位置方向と、当該退避位置方向と反対の測定位置方向とに前記検出部を移動させる移動機構部と、
前記移動機構部には前記厚さ校正板の前記第1の厚さ部と第2の厚さ部の「校正位置」及び「測定位置」を検出する位置検出センサとを備え、当該位置検出センサの信号から、前記移動機構部に対して、前記検出部を予め定める一定長さの「校正位置」、及び予め定められる「測定位置」に、移動を指令する位置設定部と、
を備え、
前記位置設定部は、「校正」指令を前記移動機構部に送り、前記移動機構部は、当該「校正」指令で前記検出部を予め設定される速度で前記「測定位置」から前記「校正位置」に移動させ、
さらに、前記位置検出センサからの信号で、予め設定された前記第1の厚さ部と第2の厚さ部との校正位置信号を前記厚さ演算部に送り、
前記厚さ演算部は、前記「測定位置」で厚さxを求め、
前記「校正位置」で求めた前記第1の厚さ部の厚さの平均値m1、前記第2の厚さ部の厚さの平均値m2を求め、
また、予め設定された前記第1の厚さ部の基準厚さg1、前記第2の厚さ部の基準厚さg2とすると、補正後の厚さyは、m2>x>m1として、
y=((g2−g1)/(m2−m1))・(x−m1)+g1
として求め、
前記厚さ校正板を固定し、前記検出部を移動させて、予め設定された前記第1及び第2の距離検出器の設定位置の変位による測定誤差を補正するようにしたことを特徴とする厚さ測定装置の厚さ測定方法。
The object to be measured is placed on the upper and lower arms of the C-shaped frame that sandwiches the object to be measured from the direction perpendicular to the conveying direction, and the surface of the object to be measured is irradiated with a laser beam from the vertical direction to irradiate the object. A first distance detector for determining the distance to the object to be measured, and a lower part of the upper and lower arms of the C-shaped frame sandwiching the object to be measured, perpendicular to the back surface of the object to be measured A second distance detector for obtaining a distance from the object to be measured by irradiating a laser beam from
A thickness calculator that calculates a thickness from the output of the first distance detector and the output of the second distance detector,
The detection unit is fixedly set in advance within a measurement range of the first distance detector and the second distance detector in one retraction position direction in a direction orthogonal to the conveyance direction of the object to be measured. A calibration plate comprising a first thickness portion and a second thickness portion having different set reference thicknesses;
A moving mechanism unit that moves the detection unit in the retraction position direction and a measurement position direction opposite to the retraction position direction;
The moving mechanism section includes a position detection sensor for detecting “calibration position” and “measurement position” of the first thickness section and the second thickness section of the thickness calibration plate, and the position detection sensor. From the signal, a position setting unit for commanding the movement to the movement mechanism unit to a predetermined “calibration position” of a predetermined length and a predetermined “measurement position”;
With
The position setting unit sends a “calibration” command to the moving mechanism unit, and the moving mechanism unit moves the detection unit from the “measurement position” to the “calibration position” at a speed set in advance by the “calibration” command. To
Further, a signal from the position detection sensor sends a preset calibration position signal of the first thickness part and the second thickness part to the thickness calculation part,
The thickness calculator calculates the thickness x at the “measurement position”,
An average value m1 of the thickness of the first thickness portion obtained at the “calibration position”, and an average value m2 of the thickness of the second thickness portion;
Further, assuming that the reference thickness g1 of the first thickness portion and the reference thickness g2 of the second thickness portion that are set in advance are set, the corrected thickness y is m2>x> m1,
y = ((g2-g1) / (m2-m1)). (x-m1) + g1
As sought
The thickness calibration plate is fixed, and the detection unit is moved to correct a measurement error due to a preset displacement of the set positions of the first and second distance detectors. Thickness measuring method of thickness measuring device.
JP2011097468A 2011-04-25 2011-04-25 Thickness measuring device and thickness measuring method Active JP5833831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011097468A JP5833831B2 (en) 2011-04-25 2011-04-25 Thickness measuring device and thickness measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011097468A JP5833831B2 (en) 2011-04-25 2011-04-25 Thickness measuring device and thickness measuring method

Publications (2)

Publication Number Publication Date
JP2012229955A true JP2012229955A (en) 2012-11-22
JP5833831B2 JP5833831B2 (en) 2015-12-16

Family

ID=47431627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011097468A Active JP5833831B2 (en) 2011-04-25 2011-04-25 Thickness measuring device and thickness measuring method

Country Status (1)

Country Link
JP (1) JP5833831B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016044970A (en) * 2014-08-19 2016-04-04 株式会社東芝 Thickness measuring apparatus using optical distance detector
CN105705905A (en) * 2013-10-28 2016-06-22 微-埃普西龙测量技术有限两合公司 Method for thickness measurement on measurement objects and device for applying the method
JP2018179818A (en) * 2017-04-17 2018-11-15 日置電機株式会社 Measurement device, measurement data processing device and measurement system
CN112325814A (en) * 2020-11-03 2021-02-05 成都锐科软控科技有限公司 Ultrasonic correlation thickness gauge and thickness measuring method thereof
KR102278783B1 (en) * 2020-12-08 2021-07-20 주식회사 엔시스 Thickness measuring equipment for polar plates
KR102278780B1 (en) * 2020-12-08 2021-07-20 주식회사 엔시스 Thickness measuring equipment for polar plate
CN114833085A (en) * 2021-01-30 2022-08-02 杭州千岛湖瑞淳机器人研究院有限公司 Non-contact metal annular gasket thickness detection mechanism
CN116878406A (en) * 2023-09-05 2023-10-13 武汉捷沃汽车零部件有限公司 Automobile rubber shock pad thickness detection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258032A (en) * 1993-03-05 1994-09-16 Japan Radio Co Ltd Automatic plate thickness measuring equipment
JP2000321029A (en) * 1999-05-13 2000-11-24 Yokohama Rubber Co Ltd:The Method and instrument for measuring thickness of sheet member
JP2009014613A (en) * 2007-07-06 2009-01-22 Nikon Corp Measuring apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258032A (en) * 1993-03-05 1994-09-16 Japan Radio Co Ltd Automatic plate thickness measuring equipment
JP2000321029A (en) * 1999-05-13 2000-11-24 Yokohama Rubber Co Ltd:The Method and instrument for measuring thickness of sheet member
JP2009014613A (en) * 2007-07-06 2009-01-22 Nikon Corp Measuring apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105705905A (en) * 2013-10-28 2016-06-22 微-埃普西龙测量技术有限两合公司 Method for thickness measurement on measurement objects and device for applying the method
JP2016044970A (en) * 2014-08-19 2016-04-04 株式会社東芝 Thickness measuring apparatus using optical distance detector
JP2018179818A (en) * 2017-04-17 2018-11-15 日置電機株式会社 Measurement device, measurement data processing device and measurement system
CN112325814A (en) * 2020-11-03 2021-02-05 成都锐科软控科技有限公司 Ultrasonic correlation thickness gauge and thickness measuring method thereof
KR102278783B1 (en) * 2020-12-08 2021-07-20 주식회사 엔시스 Thickness measuring equipment for polar plates
KR102278780B1 (en) * 2020-12-08 2021-07-20 주식회사 엔시스 Thickness measuring equipment for polar plate
CN114833085A (en) * 2021-01-30 2022-08-02 杭州千岛湖瑞淳机器人研究院有限公司 Non-contact metal annular gasket thickness detection mechanism
CN114833085B (en) * 2021-01-30 2023-06-06 杭州千岛湖瑞淳机器人研究院有限公司 Non-contact type metal annular gasket thickness detection mechanism
CN116878406A (en) * 2023-09-05 2023-10-13 武汉捷沃汽车零部件有限公司 Automobile rubber shock pad thickness detection device
CN116878406B (en) * 2023-09-05 2023-12-26 武汉捷沃汽车零部件有限公司 Automobile rubber shock pad thickness detection device

Also Published As

Publication number Publication date
JP5833831B2 (en) 2015-12-16

Similar Documents

Publication Publication Date Title
JP5833831B2 (en) Thickness measuring device and thickness measuring method
US6441905B1 (en) Sheet thickness and swell measurement method and apparatus therefor
WO2013099870A1 (en) Thickness measurement system and thickness measurement method
JP4776473B2 (en) Optical axis deflection laser interferometer, its calibration method, correction method, and measurement method
EP3043176B1 (en) Portable ultrasonic flow detection device and ultrasonic flow detection method
KR101530953B1 (en) Inspection apparatus and method for cell guide installation accuracy of container ship
JP6370928B2 (en) Object geometric measurement apparatus and method
JP6412735B2 (en) Thickness measuring device using optical distance detector
JP5030699B2 (en) Method and apparatus for adjusting thickness measuring apparatus
KR101798322B1 (en) shape measuring device, processing device and reforming method of shape measuring device
US9273957B2 (en) Method and apparatus for calibrating a sensor for the measurement of material thickness or surface weight
JP2007263818A (en) Adjusting method for thickness measuring instrument, and device therefor
JP2017129464A5 (en)
JP3880909B2 (en) Thickness measuring device
JP2009139176A5 (en)
KR101679339B1 (en) Linear positioning apparatus and method for compensating error thereof
JP2005083820A (en) Plate thickness measuring device and chatter mark detection system
KR102010068B1 (en) Thickness measuring device for edge portion and method thereof
JP5599335B2 (en) Thickness measuring device
JP2834638B2 (en) Automatic thickness gauge
JP2017049019A (en) Long-sized material length measuring apparatus
JP2008059016A (en) Positioning controller and positioning control method
US11988496B1 (en) Strip width measurement with continuous hardware imperfection corrections of sensed edge positions
WO2023224089A1 (en) Machining machine
JP4483809B2 (en) Radiographic tubular material wall thickness measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20141215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141216

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151030

R151 Written notification of patent or utility model registration

Ref document number: 5833831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151