JP2012227363A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2012227363A
JP2012227363A JP2011093801A JP2011093801A JP2012227363A JP 2012227363 A JP2012227363 A JP 2012227363A JP 2011093801 A JP2011093801 A JP 2011093801A JP 2011093801 A JP2011093801 A JP 2011093801A JP 2012227363 A JP2012227363 A JP 2012227363A
Authority
JP
Japan
Prior art keywords
porous frame
light emitting
wavelength conversion
light
conversion member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011093801A
Other languages
Japanese (ja)
Other versions
JP5683366B2 (en
Inventor
Daisuke Sakumoto
大輔 作本
Tamio Kusano
民男 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011093801A priority Critical patent/JP5683366B2/en
Publication of JP2012227363A publication Critical patent/JP2012227363A/en
Application granted granted Critical
Publication of JP5683366B2 publication Critical patent/JP5683366B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light emitting device which maintains a color temperature of extracted light in good conditions.SOLUTION: A light emitting device 1 includes: a substrate 2; a light emitting element 3 provided on the substrate 2; a porous frame body 4 provided on the substrate 2 so as to enclose the light emitting element 3; a sealing member 5 provided at a region on the substrate 2, which is enclosed by the porous frame body 4, so as to enclose the light emitting device 3 and partially infiltrating into the porous frame body 4; a wavelength conversion member 6 provided at the porous frame body 4 so as to be spaced away from the light emitting element 3; and an adhesion material 7 provided so as to range from an upper surface of the wavelength conversion member 6 to an upper part of the porous frame body 4 and be spaced away from the sealing member 5 in the porous frame body 4 and partially infiltrating into the porous frame body 4.

Description

本発明は、発光素子を含む発光装置に関するものである。   The present invention relates to a light emitting device including a light emitting element.

近年、発光ダイオードを始めとする発光素子を有する発光装置の開発が進められている。当該発光装置は、消費電力または製品寿命に関して注目されている。なお、発光装置として、発光素子から発せられる光を波長変換部材で特定の波長帯の光に変換して、外部に取り出すものがある(下記特許文献1,2参照)。   In recent years, development of a light emitting device having a light emitting element such as a light emitting diode has been advanced. The light-emitting device has attracted attention with respect to power consumption or product life. As a light emitting device, there is a light emitting device that converts light emitted from a light emitting element into light of a specific wavelength band by a wavelength conversion member and extracts the light outside (see Patent Documents 1 and 2 below).

特開2009−49172号公報JP 2009-49172 A 特開2009−70870号公報JP 2009-70870 A

発光装置の開発において、発光素子の発光する光に起因して発生する熱が、波長変換部材の特定箇所に集中すると、外部に取り出される光の色温度が大きく変化する虞がある。   In the development of a light emitting device, if the heat generated due to the light emitted from the light emitting element is concentrated at a specific location on the wavelength conversion member, the color temperature of the light extracted outside may change greatly.

本発明は、取り出される光の色温度を良好に維持することが可能な発光装置を提供することを目的とする。   An object of this invention is to provide the light-emitting device which can maintain the color temperature of the taken-out light favorably.

本発明の実施形態に係る発光装置は、基板と、前記基板上に設けられた発光素子と、前記基板上に前記発光素子を取り囲むように設けられた多孔質枠体と、前記基板上の前記多孔質枠体で囲まれた領域に前記発光素子を覆うように設けられ、一部が前記多孔質枠体内に浸入した封止部材と、前記多孔質枠体に支持された、前記発光素子と間を空けて設けられた波長変換部材と、前記波長変換部材の上面から前記多孔質枠体の上部にかけて設けられ、一部が前記多孔質枠体内に浸入しているとともに、前記多孔質枠体内で前記封止部材と間を空けて設けられた接着材とを備えたことを特徴とする。   A light emitting device according to an embodiment of the present invention includes: a substrate; a light emitting element provided on the substrate; a porous frame provided on the substrate so as to surround the light emitting element; A sealing member provided so as to cover the light emitting element in a region surrounded by a porous frame, and a part of which is infiltrated into the porous frame, and the light emitting element supported by the porous frame; A wavelength conversion member provided with a space between the upper surface of the wavelength conversion member and an upper portion of the porous frame, and a part of the wavelength conversion member enters the porous frame; And an adhesive provided at a distance from the sealing member.

本発明によれば、取り出される光の色温度を良好に維持することが可能な発光装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the light-emitting device which can maintain favorably the color temperature of the taken-out light can be provided.

本実施形態に係る発光装置の概観を示す断面斜視図である。It is a cross-sectional perspective view which shows the external appearance of the light-emitting device which concerns on this embodiment. 本実施形態に係る発光装置の断面図である。It is sectional drawing of the light-emitting device which concerns on this embodiment. 本実施形態に係る発光装置の一部を拡大した断面図である。It is sectional drawing to which some light emitting devices concerning this embodiment were expanded. 本実施形態に係る発光装置の平面図である。It is a top view of the light-emitting device concerning this embodiment. 本実施形態に係る多孔質枠体の一部を拡大した断面図である。It is sectional drawing to which a part of porous frame concerning this embodiment was expanded. 本実施形態に係る発光装置の製造工程を示す、発光装置の断面図である。It is sectional drawing of the light-emitting device which shows the manufacturing process of the light-emitting device which concerns on this embodiment. 本実施形態に係る発光装置の製造工程を示す、発光装置の断面図である。It is sectional drawing of the light-emitting device which shows the manufacturing process of the light-emitting device which concerns on this embodiment. 本実施形態に係る発光装置の製造工程を示す、発光装置の断面図である。It is sectional drawing of the light-emitting device which shows the manufacturing process of the light-emitting device which concerns on this embodiment. 本実施形態に係る発光装置の製造工程を示す、発光装置の断面図である。It is sectional drawing of the light-emitting device which shows the manufacturing process of the light-emitting device which concerns on this embodiment. 本実施形態に係る発光装置の製造工程を示す、発光装置の断面図である。It is sectional drawing of the light-emitting device which shows the manufacturing process of the light-emitting device which concerns on this embodiment. 本実施形態に係る発光装置の製造工程を示す、発光装置の断面図である。It is sectional drawing of the light-emitting device which shows the manufacturing process of the light-emitting device which concerns on this embodiment.

以下に添付図面を参照して、本発明にかかる発光装置の実施形態を説明する。なお、本発明は以下の実施形態に限定されないものである。   Embodiments of a light emitting device according to the present invention will be described below with reference to the accompanying drawings. In addition, this invention is not limited to the following embodiment.

<発光装置の概略構成>
図1は、本実施形態に係る発光装置の概観を示す断面斜視図であって、発光装置の一部を切り取って示している。また、図2は、図1に示す発光装置のX−X’線に沿った断面図である。また、図3は、図2に示す発光装置の一部Aを拡大した断面図である。また、図4は、発光装置の平面図であって、波長変換部材および接着材を取り除いた状態を示している。なお、図1から図3において、多孔質枠体内の丸が、模式的に示した気孔bを示している。図5は、多孔質枠体の一部を拡大した断面図である。
<Schematic configuration of light emitting device>
FIG. 1 is a cross-sectional perspective view showing an overview of the light emitting device according to the present embodiment, in which a part of the light emitting device is cut out. 2 is a cross-sectional view taken along the line XX ′ of the light emitting device shown in FIG. FIG. 3 is an enlarged cross-sectional view of a part A of the light emitting device shown in FIG. FIG. 4 is a plan view of the light emitting device, showing a state where the wavelength conversion member and the adhesive are removed. In FIGS. 1 to 3, the circles in the porous frame indicate the pores b schematically shown. FIG. 5 is an enlarged cross-sectional view of a part of the porous frame.

本実施形態に係る発光装置1は、基板2と、基板2上に設けられた発光素子3と、基板2上に発光素子3を取り囲むように設けられた多孔質枠体4と、基板2上の多孔質枠体4で囲まれた領域に発光素子3を覆うように設けられ、一部が多孔質枠体4内に浸入した封止部材5と、多孔質枠体4に支持された、発光素子3と間を空けて設けられた波長変換部材6と、波長変換部材6の上面から多孔質枠体4の上部にかけて設けられ、一部が多孔質枠体4内に浸入しているとともに、多孔質枠体4内で封止部材5と間を空けて設けられた接着材7とを備えている。なお、発光素子3は、発光ダイオードであって、半導体を用いたpn接合中の電子と正孔とが再結合することによって、外部に向かって光を放出することができる。   The light emitting device 1 according to this embodiment includes a substrate 2, a light emitting element 3 provided on the substrate 2, a porous frame 4 provided on the substrate 2 so as to surround the light emitting element 3, The region surrounded by the porous frame 4 is provided so as to cover the light emitting element 3, and a part of the sealing member 5 that has entered the porous frame 4 and the porous frame 4 are supported. A wavelength conversion member 6 provided to be spaced apart from the light emitting element 3, a wavelength conversion member 6 provided from the upper surface of the wavelength conversion member 6 to the upper part of the porous frame 4, and a part of the light entering the porous frame 4. The adhesive 7 is provided in the porous frame 4 so as to be spaced from the sealing member 5. The light emitting element 3 is a light emitting diode, and can emit light toward the outside by recombination of electrons and holes in a pn junction using a semiconductor.

基板2は、絶縁性の基板であって、例えばアルミナまたはムライト等のセラミック材料、あるいはガラスセラミック材料等から構成される。または、これらの材料のうち複数の材料を混合した複合系材料から構成される。また、基板2としては、基板2の熱膨張を調整することが可能な金属酸化物微粒子を分散させた高分子樹脂を用いることもできる。   The substrate 2 is an insulating substrate and is made of a ceramic material such as alumina or mullite, or a glass ceramic material. Alternatively, it is composed of a composite material obtained by mixing a plurality of materials among these materials. Further, as the substrate 2, a polymer resin in which metal oxide fine particles capable of adjusting the thermal expansion of the substrate 2 are dispersed can also be used.

基板2には、基板2の内外を電気的に導通する配線導体(図示せず)が形成されている。配線導体は、例えばタングステン、モリブデン、マンガンまたは銅等の導電材料からなる。配線導体は、例えばタングステン等の粉末に有機溶剤を添加して得た金属ペーストを、基板2となるセラミックグリーンシートに所定パターンで印刷し、この複数のセラミックグリーンシートを積層して焼成することによって得られる。なお、基板2の内外に露出する配線導体の表面には、酸化防止のために、例えばニッケルまたは金等の鍍金層が被着されている。   On the substrate 2, wiring conductors (not shown) that electrically connect the inside and outside of the substrate 2 are formed. The wiring conductor is made of a conductive material such as tungsten, molybdenum, manganese, or copper. The wiring conductor is obtained by printing a metal paste obtained by adding an organic solvent to a powder of tungsten or the like in a predetermined pattern on a ceramic green sheet to be the substrate 2, and laminating and firing the plurality of ceramic green sheets. can get. Note that a plating layer such as nickel or gold is deposited on the surface of the wiring conductor exposed inside and outside the substrate 2 to prevent oxidation.

また、基板2の上面には、基板2の上方に効率良く光を反射させるために、配線導体および鍍金層と間を空けて、例えばアルミニウム、銀、金、銅またはプラチナ等の金属からなる金属反射層を形成する。   Further, a metal made of a metal such as aluminum, silver, gold, copper or platinum is provided on the upper surface of the substrate 2 with a space between the wiring conductor and the plating layer in order to reflect light efficiently above the substrate 2. A reflective layer is formed.

発光素子3は、基板2の上に実装される。具体的には、発光素子3は、基板2上に形成される配線導体の表面に被着する鍍金層上に、例えばろう材または半田を介して電気的に接続される。   The light emitting element 3 is mounted on the substrate 2. Specifically, the light emitting element 3 is electrically connected to a plating layer attached to the surface of the wiring conductor formed on the substrate 2 via, for example, a brazing material or solder.

発光素子3は、透光性基体(図示せず)と、透光性基体上に形成された光半導体層(図示せず)とを有している。透光性基体は、その上に有機金属気相成長法または分子線エピタキシャル成長法等の化学気相成長法を用いて、光半導体層を成長させることが可能なものであればよい。透光性基体に用いられる材料としては、例えばサファイア、窒化ガリウム、窒化アルミニウム、酸化亜鉛、セレン化亜鉛、シリコンカーバイド、シリコンまたは二ホウ化ジルコニウム等を挙げることができる。なお、透光性基体の厚みは、例えば50
μm以上1000μm以下である。
The light emitting element 3 has a translucent base (not shown) and an optical semiconductor layer (not shown) formed on the translucent base. The translucent substrate may be any substrate on which the optical semiconductor layer can be grown using chemical vapor deposition such as metal organic chemical vapor deposition or molecular beam epitaxy. Examples of the material used for the light-transmitting substrate include sapphire, gallium nitride, aluminum nitride, zinc oxide, zinc selenide, silicon carbide, silicon, and zirconium diboride. The thickness of the translucent substrate is, for example, 50
It is not less than μm and not more than 1000 μm.

光半導体層は、透光性基体上に形成される第1半導体層と、第1半導体層上に形成される発光層と、発光層上に形成される第2半導体層とを含んで構成されている。第1半導体層、発光層および第2半導体層は、例えばIII族窒化物半導体、ガリウム燐またはガリウ
ムヒ素等のIII−V族半導体、あるいは、窒化ガリウム、窒化アルミニウムまたは窒化イ
ンジウム等のIII族窒化物半導体などを用いることができる。なお、第1半導体層の厚み
は、例えば1μm以上5μm以下であって、発光層の厚みは、例えば25nm以上150nm以下であって、第2半導体層の厚みは、例えば50nm以上600nm以下である。また、このように構成された発光素子3では、例えば370nm以上420nm以下の波長範囲の励起光を発する素子として用いることができる。
The optical semiconductor layer includes a first semiconductor layer formed on the translucent substrate, a light emitting layer formed on the first semiconductor layer, and a second semiconductor layer formed on the light emitting layer. ing. The first semiconductor layer, the light emitting layer, and the second semiconductor layer are, for example, a group III nitride semiconductor, a group III-V semiconductor such as gallium phosphide or gallium arsenide, or a group III nitride such as gallium nitride, aluminum nitride, or indium nitride. A semiconductor or the like can be used. The thickness of the first semiconductor layer is, for example, 1 μm to 5 μm, the thickness of the light emitting layer is, for example, 25 nm to 150 nm, and the thickness of the second semiconductor layer is, for example, 50 nm to 600 nm. Further, the light emitting element 3 configured as described above can be used as an element that emits excitation light in a wavelength range of, for example, 370 nm to 420 nm.

多孔質枠体4は、多孔質のセラミック材料から成り、基板2の上面に配置して例えば一体焼成して、基板2と多孔質枠体4とを接続することができる。また、基板2の上面に、例えばろう材または半田を介して接着することによって接続することもできる。多孔質枠体4は、基板2上の発光素子3を取り囲むように設けられている。なお、平面視して、多孔質枠体4の内壁面の形状を円形とすると、発光素子3が発光する光を全方向に満遍なく反射させて外部に均一に放出することができる。   The porous frame 4 is made of a porous ceramic material, and can be disposed on the upper surface of the substrate 2 and, for example, integrally fired to connect the substrate 2 and the porous frame 4. Further, it can be connected to the upper surface of the substrate 2 by bonding via, for example, a brazing material or solder. The porous frame 4 is provided so as to surround the light emitting element 3 on the substrate 2. Note that, when the shape of the inner wall surface of the porous frame 4 is circular in plan view, the light emitted from the light emitting element 3 can be uniformly reflected in all directions and uniformly emitted to the outside.

また、多孔質枠体4は、例えば酸化アルミニウム、酸化チタン、酸化ジルコニウムまたは酸化イットリウム等のセラミック材料を所望の形状に形成して焼結された多孔質材料から構成される。そして、多孔質枠体4には、多数の気孔bが設けられている。なお、多孔質枠体4の気孔率は、例えば25%以上50%以下に設定されている。また、多孔質枠体4に設けられた多数の気孔bの直径は、例えば0.1μm以上1.5μm以下の大きさに設定されている。なお、多孔質枠体4の熱伝導率は、例えば5W(m・K)以上200W(m・K)以下に設定されている。   The porous frame 4 is made of a porous material formed by sintering a ceramic material such as aluminum oxide, titanium oxide, zirconium oxide or yttrium oxide in a desired shape. The porous frame 4 is provided with a large number of pores b. In addition, the porosity of the porous frame 4 is set to 25% or more and 50% or less, for example. Moreover, the diameter of many pores b provided in the porous frame 4 is set to a size of 0.1 μm or more and 1.5 μm or less, for example. The thermal conductivity of the porous frame 4 is set to, for example, 5 W (m · K) or more and 200 W (m · K) or less.

多孔質枠体4は、発光素子3からの光または波長変換部材6にて反射された光を多孔質枠体4の表面で拡散反射する機能を有している。それによって、発光素子3から発せられる光を波長変換部材6の一部に集中しにくくすることができる。仮に、波長変換部材6の一部に光が集中すると、波長変換部材6の光が集中した箇所では温度が上昇することとなり、それによって波長変換部材6の波長変換効率が低下したり、波長変換部材6の透過率または機械的強度が劣化したりする虞がある。そこで、発光素子3の発する光を拡散反射することができる多孔質枠体4を発光素子3の周囲に設けることで、波長変換部材6の特定個所に光が集中するのを抑制することができ、波長変換部材6の波長変換効率を長期にわたって良好に維持することができる。さらに、波長変換部材6の透過率または機械的強度を長期にわたって良好に維持することができる。   The porous frame 4 has a function of diffusing and reflecting the light from the light emitting element 3 or the light reflected by the wavelength conversion member 6 on the surface of the porous frame 4. Thereby, the light emitted from the light emitting element 3 can be made difficult to concentrate on a part of the wavelength conversion member 6. If light concentrates on a part of the wavelength conversion member 6, the temperature rises at the location where the light of the wavelength conversion member 6 is concentrated, thereby reducing the wavelength conversion efficiency of the wavelength conversion member 6 or wavelength conversion. There is a possibility that the transmittance or mechanical strength of the member 6 may deteriorate. Therefore, by providing the porous frame 4 that can diffusely reflect the light emitted from the light emitting element 3 around the light emitting element 3, it is possible to suppress the light from being concentrated on a specific portion of the wavelength conversion member 6. The wavelength conversion efficiency of the wavelength conversion member 6 can be maintained well over a long period of time. Furthermore, the transmittance or mechanical strength of the wavelength conversion member 6 can be maintained well over a long period of time.

また、多孔質枠体4の内壁面によって囲まれる領域に対して、その内壁面は、断面視して下部から上部に向かって内壁面間の幅が広くなるように傾斜している。さらに、多孔質枠体4の上端内側には段差4aが設けられている。多孔質枠体4の段差4aは、その横面(通常は水平面に相当する)で波長変換部材6を支持するためのものである。ここでの段差4aは、多孔質枠体4の上部の一部を内側に向けて切り欠いたものである。   Further, the inner wall surface is inclined with respect to the region surrounded by the inner wall surface of the porous frame 4 so that the width between the inner wall surfaces becomes wider from the lower part to the upper part in a sectional view. Further, a step 4 a is provided inside the upper end of the porous frame 4. The step 4a of the porous frame 4 is for supporting the wavelength conversion member 6 on its lateral surface (usually corresponding to a horizontal plane). Here, the step 4a is formed by cutting out a part of the upper portion of the porous frame 4 inward.

また、多孔質枠体4の内壁面の傾斜角度は、基板2の上面に対して、例えば55度以上70度以下の角度に設定されている。また、多孔質枠体4の内壁面の表面粗さは、算術平均粗さRaで、例えば1μm以上3μm以下に設定されている。   In addition, the inclination angle of the inner wall surface of the porous frame 4 is set to an angle of, for example, 55 degrees to 70 degrees with respect to the upper surface of the substrate 2. Moreover, the surface roughness of the inner wall surface of the porous frame 4 is set to, for example, 1 μm or more and 3 μm or less in terms of arithmetic average roughness Ra.

多孔質枠体4で囲まれる領域には、発光素子3を内部に封止するようにして、光透過性の封止部材5が充填されている。多孔質枠体4は、多孔質枠体4の表面を含めて多数の気
孔bが設けられているので、封止部材5の一部が多孔質枠体4の表面から内部に浸入して固定される。そして、封止部材5の一部が多孔質枠体4内に浸入して固着することで、アンカー効果によって、封止部材5と多孔質枠体4とが強固に接合されている。
A region surrounded by the porous frame 4 is filled with a light-transmitting sealing member 5 so as to seal the light emitting element 3 inside. Since the porous frame 4 is provided with a large number of pores b including the surface of the porous frame 4, a part of the sealing member 5 enters inside from the surface of the porous frame 4 and is fixed. Is done. The sealing member 5 and the porous frame 4 are firmly bonded to each other by the anchor effect because a part of the sealing member 5 enters and adheres to the porous frame 4.

封止部材5は、発光素子3を封止するとともに、発光素子3から発せられる光を透過させる機能を備えている。封止部材5は、多孔質枠体4の内方に発光素子3を収容した状態で、多孔質枠体4で囲まれた領域において、段差4aの高さ位置よりも低い位置まで充填される。封止部材5は、発光素子3が発する光に起因した熱を吸収し、封止部材5全体に熱を伝える。仮に、封止部材5内の特定箇所に熱が集中すると、封止部材5の部分的な熱膨張が発生して、封止部材5が基板2および多孔質枠体4から剥離する虞が生じやすくなる。また、封止部材5内にて熱集中が起きると、発光素子3が高温となり発光素子3の発する光の波長が変化して、発光素子3の発光色が所望する光色から大きく外れる虞が生じやすくなる。なお、封止部材5は、例えばシリコーン樹脂、アクリル樹脂またはエポキシ樹脂等の透光性の絶縁樹脂が用いられる。なお、封止部材5の熱伝導率は、例えば0.14W/(m・K)以上0.21W/(m・K)以下に設定されている。   The sealing member 5 has a function of sealing the light emitting element 3 and transmitting light emitted from the light emitting element 3. The sealing member 5 is filled up to a position lower than the height position of the step 4 a in the region surrounded by the porous frame 4 in a state where the light emitting element 3 is accommodated inside the porous frame 4. . The sealing member 5 absorbs heat caused by light emitted from the light emitting element 3 and transmits the heat to the entire sealing member 5. If heat concentrates on a specific location in the sealing member 5, partial thermal expansion of the sealing member 5 occurs and the sealing member 5 may be peeled off from the substrate 2 and the porous frame 4. It becomes easy. Further, when heat concentration occurs in the sealing member 5, the light emitting element 3 becomes high temperature, the wavelength of light emitted from the light emitting element 3 changes, and the emission color of the light emitting element 3 may greatly deviate from the desired light color. It tends to occur. The sealing member 5 is made of a translucent insulating resin such as a silicone resin, an acrylic resin, or an epoxy resin. The thermal conductivity of the sealing member 5 is set to, for example, 0.14 W / (m · K) or more and 0.21 W / (m · K) or less.

封止部材5の一部が多孔質枠体4の内壁面から多孔質枠体4の内部に浸入している浸入領域S1は、多孔質枠体4の内壁面の全周にわたって連続して設けられている。浸入領域S1は、多孔質枠体4の内壁面から多孔質枠体4の内部に向かって、断面視して例えば0.5mm以上2mm以下に設定されている。浸入領域S1に浸入した封止部材5の含浸量は、例えば3mm以上180mm以下に設定されている。 The intrusion region S1 in which a part of the sealing member 5 enters the inside of the porous frame 4 from the inner wall surface of the porous frame 4 is continuously provided over the entire circumference of the inner wall surface of the porous frame 4. It has been. The intrusion region S1 is set to, for example, 0.5 mm or more and 2 mm or less in a cross-sectional view from the inner wall surface of the porous frame 4 toward the inside of the porous frame 4. The impregnation amount of the sealing member 5 that has entered the intrusion region S1 is set to 3 mm 3 or more and 180 mm 3 or less, for example.

発光素子3が発した熱は、封止部材5を介して浸入領域S1にまで伝わる。そして、浸入領域S1から多孔質枠体4内に伝わり、気孔bが多数存在する多孔質枠体4内を介して多孔質枠体4の側面から外部に向かって放熱することができる。その結果、封止部材5内に熱がこもって発光素子3の電気的特性が変化するのを抑制することができ、所望する量の光を発光素子3から波長変換部材6に向かって放射することができる。   The heat generated by the light emitting element 3 is transmitted to the intrusion region S <b> 1 through the sealing member 5. Then, the heat is transmitted from the intrusion region S1 into the porous frame 4 and can be radiated from the side surface of the porous frame 4 to the outside through the porous frame 4 in which many pores b exist. As a result, it is possible to suppress heat from being accumulated in the sealing member 5 and to change the electrical characteristics of the light emitting element 3, and to emit a desired amount of light from the light emitting element 3 toward the wavelength conversion member 6. be able to.

波長変換部材6は、発光素子3から発せられる光が内部に入射して、内部に含有されている蛍光体が励起されて、光を発するものである。ここで、波長変換部材6は、例えばシリコーン樹脂、アクリル樹脂またはエポキシ樹脂等の樹脂材料からなり、その樹脂材料中に、例えば430nm以上490nm以下の蛍光を発する青色蛍光体、例えば500nm以上560nm以下の蛍光を発する緑色蛍光体、例えば540nm以上600nm以下の蛍光を発する黄色蛍光体、例えば590nm以上700nm以下の蛍光を発する赤色蛍光体が含有されている。また、蛍光体は、波長変換部材6中に均一に分散するようにして含有されている。なお、波長変換部材6の熱伝導率は、例えば0.1W/(m・K)以上0.3W/(m・K)以下に設定されている。   The wavelength conversion member 6 emits light when the light emitted from the light emitting element 3 enters the inside and the phosphor contained therein is excited. Here, the wavelength conversion member 6 is made of a resin material such as a silicone resin, an acrylic resin, or an epoxy resin, and a blue phosphor that emits fluorescence of, for example, 430 nm to 490 nm in the resin material, for example, 500 nm to 560 nm. A green phosphor that emits fluorescence, for example, a yellow phosphor that emits fluorescence of 540 to 600 nm, for example, a red phosphor that emits fluorescence of 590 to 700 nm is contained. The phosphor is contained so as to be uniformly dispersed in the wavelength conversion member 6. The thermal conductivity of the wavelength conversion member 6 is set to, for example, 0.1 W / (m · K) or more and 0.3 W / (m · K) or less.

波長変換部材6は、多孔質枠体4上に支持されて、発光素子3と間を空けて設けられている。また、波長変換部材6の端部は多孔質枠体4の段差4a上に位置しており、多孔質枠体4によって波長変換部材6の端部側面が囲まれている。   The wavelength conversion member 6 is supported on the porous frame 4 and is provided to be spaced from the light emitting element 3. The end of the wavelength conversion member 6 is positioned on the step 4 a of the porous frame 4, and the end surface of the wavelength conversion member 6 is surrounded by the porous frame 4.

波長変換部材6は、平面視して円状であって、波長変換部材6の直径が例えば2mm以上20mm以下に設定されている。また、波長変換部材6の厚みは、例えば0.7mm以上3mm以下に設定されており、且つ厚みを一定にして設定されている。ここで、厚みが一定とは、厚みの誤差が0.5μm以下のものを含む。波長変換部材6の厚みを一定にすることにより、波長変換部材6にて励起される光の量を一様になるように調整することができ、波長変換部材6における輝度むらを抑制することができる。   The wavelength conversion member 6 is circular in plan view, and the diameter of the wavelength conversion member 6 is set to, for example, 2 mm or more and 20 mm or less. Moreover, the thickness of the wavelength conversion member 6 is set to 0.7 mm or more and 3 mm or less, for example, and is set with constant thickness. Here, the constant thickness includes a thickness error of 0.5 μm or less. By making the thickness of the wavelength conversion member 6 constant, the amount of light excited by the wavelength conversion member 6 can be adjusted to be uniform, and uneven brightness in the wavelength conversion member 6 can be suppressed. it can.

多孔質枠体4の段差4a上に、波長変換部材6の端部が接着材7を介して多孔質枠体4
の上部に固定される。接着材7は、波長変換部材6の上面から多孔質枠体4の上部にかけて設けられている。接着材7は、例えばシリコーン樹脂、アクリル樹脂またはエポキシ樹脂等の透光性の絶縁樹脂が用いられる。なお、接着材7の熱伝導率は、例えば0.14W/(m・K)以上4W/(m・K)以下に設定されている。
On the step 4 a of the porous frame 4, the end of the wavelength conversion member 6 is interposed between the porous frame 4 and the adhesive 7.
Fixed to the top of the. The adhesive 7 is provided from the upper surface of the wavelength conversion member 6 to the upper part of the porous frame 4. For the adhesive 7, for example, a translucent insulating resin such as a silicone resin, an acrylic resin, or an epoxy resin is used. The thermal conductivity of the adhesive 7 is set to, for example, 0.14 W / (m · K) or more and 4 W / (m · K) or less.

波長変換部材6と多孔質枠体4の段差4aの内壁面との間には、隙間SPが設けられており、接着材7の一部は隙間SPに入り込んでいる。そして、隙間SPに入り込んだ接着材7は、波長変換部材6の側面と多孔質枠体4の内壁面との間に介在して両者を接着することとなる。   A gap SP is provided between the wavelength converting member 6 and the inner wall surface of the step 4 a of the porous frame 4, and a part of the adhesive 7 enters the gap SP. Then, the adhesive 7 that has entered the gap SP is interposed between the side surface of the wavelength conversion member 6 and the inner wall surface of the porous frame 4 to bond them together.

接着材7は、平面視して波長変換部材6の外周に沿って連続して形成されている。また、波長変換部材6と多孔質枠体4との間の隙間SPは、波長変換部材6の外周に沿って設けられている。そして、接着材7は、波長変換部材6の外周に沿って設けられた隙間SPに充填されて、波長変換部材6と多孔質枠体4とを強固に接続している。断面視して、波長変換部材6の側面から多孔質枠体4の内壁面にまで被着することで、接着材7が被着する面積を大きくし、接着材7を介して波長変換部材6と多孔質枠体4を強固に接続することができる。その結果、波長変換部材6と多孔質枠体4の接続強度を向上させることができ、波長変換部材6の撓みが抑制される。そして、発光素子3と波長変換部材6との間の光学距離が変動するのを効果的に抑制することができる。   The adhesive material 7 is continuously formed along the outer periphery of the wavelength conversion member 6 in plan view. Further, the gap SP between the wavelength conversion member 6 and the porous frame 4 is provided along the outer periphery of the wavelength conversion member 6. The adhesive 7 is filled in a gap SP provided along the outer periphery of the wavelength conversion member 6 and firmly connects the wavelength conversion member 6 and the porous frame 4. In a cross-sectional view, by attaching from the side surface of the wavelength conversion member 6 to the inner wall surface of the porous frame 4, the area to which the adhesive 7 is attached is increased, and the wavelength conversion member 6 is interposed via the adhesive 7. And the porous frame 4 can be firmly connected. As a result, the connection strength between the wavelength conversion member 6 and the porous frame 4 can be improved, and bending of the wavelength conversion member 6 is suppressed. And it can suppress effectively that the optical distance between the light emitting element 3 and the wavelength conversion member 6 fluctuates.

また、接着材7は、一部が多孔質枠体4の上部から内部に浸入している。すなわち、多孔質枠体4は、多孔質枠体4の表面を含めて多数の気孔bが設けられているため、接着材7の一部が多孔質枠体4内に浸入して固定される。そして、接着材7の一部が多孔質枠体4内に浸入して固着することで、アンカー効果によって、接着材7と多孔質枠体4とが強固に接合されている。   In addition, a part of the adhesive 7 enters the inside from the top of the porous frame 4. That is, since the porous frame 4 is provided with a large number of pores b including the surface of the porous frame 4, a part of the adhesive 7 enters and is fixed in the porous frame 4. . The adhesive 7 and the porous frame 4 are firmly bonded to each other by the anchor effect because a part of the adhesive 7 enters and adheres to the porous frame 4.

接着材7の一部が多孔質枠体4の上部から多孔質枠体4の内部に向かって浸入している浸入領域S2は、段差4aの内面のうち横面から多孔質枠体4の下面に向かって、また段差4aの内面のうち縦面(通常は垂直面)から多孔質枠体4の外側面に向かって、好ましくはそれらの両方に設けられ、多孔質枠体4の段差4aの内面の全周にわたって連続して設けられている。浸入領域S2は、多孔質枠体4の表面から多孔質枠体4の内部に向かって、断面視して例えば0.5mm以上2mm以下に設定されている。浸入領域S2に浸入した接着材7の含浸量は、例えば3mm以上120mm以下に設定されている。 The intrusion region S2 in which a part of the adhesive material 7 infiltrates from the upper part of the porous frame 4 toward the inside of the porous frame 4 is the lower surface of the porous frame 4 from the lateral surface of the inner surface of the step 4a. Toward the outer surface of the porous frame 4 from the vertical surface (usually a vertical surface) of the inner surface of the step 4a, preferably on both of them, the step 4a of the porous frame 4 It is provided continuously over the entire circumference of the inner surface. The intrusion region S2 is set to, for example, 0.5 mm or more and 2 mm or less in a cross-sectional view from the surface of the porous frame 4 toward the inside of the porous frame 4. The impregnation amount of the adhesive 7 that has entered the intrusion region S2 is set to, for example, 3 mm 3 or more and 120 mm 3 or less.

浸入領域S2は浸入領域S1から離れて位置しており、多孔質枠体4内では封止部材5と接着材7とは接続されずに離れて配置されている。また、多孔質枠体4は、内部に多数の気孔bが存在するため、発光素子3から多孔質枠体4内の浸入領域S1に位置する封止部材5に伝わった熱は、浸入領域S1と浸入領域S2との間に位置する多孔質枠体4内の空気が含まれた気孔bで浸入領域S1から浸入領域S2への断熱性が保持されるため、浸入領域S1から浸入領域S2に伝わりにくい。その結果、多孔質枠体4内で封止部材5に伝わった熱は、多孔質枠体4内の接着材7に伝わりにくく、多孔質枠体4の側面から外部に向かって放熱され、接着材7の温度が高温になるのを抑制することができる。そして、接着材7の温度が高くなるのを抑制することによって、接着材7から波長変換部材6に伝わる熱を低減することができ、従って、波長変換部材6が高温になるのを抑制することができる。波長変換部材6が高温になると、発光素子3の発する励起光によって励起される光の色温度が変化して、所望する色温度の光色になりにくくなるが、波長変換部材6の温度が高温になるのを抑制することで、所望する光色の光を安定して取り出すことができる。   The intrusion area S2 is located away from the intrusion area S1, and the sealing member 5 and the adhesive material 7 are not connected in the porous frame 4 and are arranged apart from each other. In addition, since the porous frame 4 has a large number of pores b therein, the heat transmitted from the light emitting element 3 to the sealing member 5 located in the intrusion region S1 in the porous frame 4 is in the intrusion region S1. Since the heat insulation from the intrusion area S1 to the intrusion area S2 is maintained by the pore b containing the air in the porous frame 4 located between the intrusion area S2 and the intrusion area S2, the intrusion area S1 is changed to the intrusion area S2. Difficult to communicate. As a result, the heat transmitted to the sealing member 5 in the porous frame 4 is not easily transferred to the adhesive 7 in the porous frame 4 and is radiated from the side surface of the porous frame 4 to the outside to be bonded. It can suppress that the temperature of the material 7 becomes high temperature. And by suppressing that the temperature of the adhesive material 7 becomes high, the heat transmitted from the adhesive material 7 to the wavelength conversion member 6 can be reduced, and therefore, the wavelength conversion member 6 is prevented from becoming high temperature. Can do. When the wavelength conversion member 6 becomes high temperature, the color temperature of the light excited by the excitation light emitted from the light emitting element 3 changes and it becomes difficult to obtain a light color having a desired color temperature. However, the temperature of the wavelength conversion member 6 is high. By suppressing this, light of a desired light color can be stably extracted.

また、接着材7から波長変換部材6に伝わる熱量を少なくすることで、波長変換部材6
の波長変換効率が低下したり、波長変換部材6の透過率または機械的強度が劣化したりするのを抑制することができ、波長変換部材6の波長変換効率を長期にわたって良好に維持することができる。さらに、波長変換部材6の透過率または機械的強度を長期にわたって良好に維持することができる。
Moreover, the wavelength conversion member 6 can be reduced by reducing the amount of heat transferred from the adhesive 7 to the wavelength conversion member 6.
The wavelength conversion efficiency of the wavelength conversion member 6 can be suppressed from decreasing, or the transmittance or mechanical strength of the wavelength conversion member 6 can be prevented from deteriorating, and the wavelength conversion efficiency of the wavelength conversion member 6 can be maintained well over a long period. it can. Furthermore, the transmittance or mechanical strength of the wavelength conversion member 6 can be maintained well over a long period of time.

接着材7の熱伝導率は、波長変換部材6の熱伝導率よりも大きく設定してもよい。接着材7の熱伝導率を、波長変換部材6の熱伝導率よりも大きくすることで、発光素子3から封止部材5を介して、封止部材5の上方から波長変換部材6に伝わる熱を接着材7に伝達しやすくすることができる。波長変換部材6から接着材7に伝わった熱は、浸入領域S2と浸入領域S1とが離れているため、接着材7から封止部材5に伝わりにくく、多孔質枠体4の側面から外部に向かって放熱され、波長変換部材6の温度が上昇するのを抑制することができる。波長変換部材6には、発光素子3が発する光を蛍光体によって波長変換する際の変換損失に起因した熱が発生し、この熱によって波長変換部材6の温度が上昇する。その熱を波長変換部材6から接着材7に吸収しやすくすることで、波長変換部材6が高温になるのを抑制することができる。   The thermal conductivity of the adhesive 7 may be set larger than the thermal conductivity of the wavelength conversion member 6. Heat transmitted from the light emitting element 3 through the sealing member 5 to the wavelength converting member 6 from above the sealing member 5 by making the thermal conductivity of the adhesive 7 larger than the thermal conductivity of the wavelength converting member 6. Can be easily transmitted to the adhesive 7. The heat transferred from the wavelength conversion member 6 to the adhesive 7 is difficult to be transferred from the adhesive 7 to the sealing member 5 because the penetration region S2 and the penetration region S1 are separated from each other, and from the side surface of the porous frame 4 to the outside. It is possible to suppress the heat dissipation toward the wavelength conversion member 6 from rising. The wavelength conversion member 6 generates heat due to conversion loss when the light emitted from the light emitting element 3 is wavelength-converted by the phosphor, and the temperature of the wavelength conversion member 6 is increased by this heat. By making the heat easy to be absorbed by the adhesive 7 from the wavelength conversion member 6, it is possible to suppress the wavelength conversion member 6 from becoming high temperature.

本実施形態によれば、発光素子3の発する光を気孔bによって凹凸が存在する多孔質枠体4の内壁面によって拡散させて、波長変換部材6の下面に対して分散した光を到達させることができ、波長変換部材6の特定箇所が高温になるのを抑制して、外部に取り出される光の色温度のばらつきを抑制することができる。特に、長時間、波長変換部材6の特定箇所の温度が上昇し続けることがあると、波長変換部材6から外部に取り出される光の色温度が変化する虞がある。これに対して、本実施形態によれば、波長変換部材6の特定箇所が高温になるのを抑制することにより、外部に取り出される光の色温度を良好に維持することができる。   According to the present embodiment, the light emitted from the light-emitting element 3 is diffused by the inner wall surface of the porous frame body 4 having irregularities due to the pores b, and the dispersed light reaches the lower surface of the wavelength conversion member 6. It is possible to suppress the specific portion of the wavelength conversion member 6 from becoming high temperature, and to suppress variations in the color temperature of the light extracted to the outside. In particular, if the temperature at a specific portion of the wavelength conversion member 6 may continue to rise for a long time, the color temperature of the light extracted from the wavelength conversion member 6 may change. On the other hand, according to this embodiment, the color temperature of the light extracted outside can be favorably maintained by suppressing the specific portion of the wavelength conversion member 6 from becoming high temperature.

また、本実施形態によれば、多孔質枠体4内に浸入した封止部材5の浸入領域S1と接着材7の浸入領域S2とを離して形成することで、発光素子3の発した熱を多孔質枠体4内の気孔bを介して多孔質枠体4外に向かって放熱することによって波長変換部材6に伝わる温度を抑制することができ、発光素子3の発光する光に起因して発生する熱を波長変換部材6の特定箇所に集中しにくくすることができる。その結果、外部に取り出される光の色温度が大きく変化するのを効果的に抑えることができ、取り出される光の色温度を良好に維持することが可能な発光装置1を提供することができる。   Further, according to the present embodiment, the heat generated by the light emitting element 3 is formed by separating the intrusion region S1 of the sealing member 5 that has entered the porous frame 4 and the intrusion region S2 of the adhesive 7. The temperature transmitted to the wavelength conversion member 6 can be suppressed by dissipating heat to the outside of the porous frame 4 through the pores b in the porous frame 4, resulting in light emitted from the light emitting element 3. It is possible to make it difficult to concentrate the heat generated in a specific place of the wavelength conversion member 6. As a result, it is possible to provide the light-emitting device 1 that can effectively suppress a large change in the color temperature of the light extracted to the outside and can maintain a good color temperature of the extracted light.

なお、本発明は上述の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。   In addition, this invention is not limited to the above-mentioned form, A various change, improvement, etc. are possible in the range which does not deviate from the summary of this invention.

<発光装置の製造方法>
ここで、図1に示す発光装置1の製造方法を説明する。図6から図11が、発光装置の製造工程を示す発光装置の断面図であって、図2に示す断面に相当する。
<Method for manufacturing light emitting device>
Here, a method of manufacturing the light emitting device 1 shown in FIG. 1 will be described. 6 to 11 are cross-sectional views of the light-emitting device showing the manufacturing steps of the light-emitting device, and correspond to the cross-section shown in FIG.

まず、基板2を準備する。基板2が、例えば酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム、酸化珪素、酸化マグネシウムおよび酸化カルシウム等の原料粉末に、有機バインダー、可塑剤または溶剤等を添加混合して混合物を得る。そして、混合物から複数のグリーンシートを作製する。   First, the substrate 2 is prepared. If the substrate 2 is made of, for example, an aluminum oxide sintered body, an organic binder, a plasticizer, a solvent, or the like is added to and mixed with raw material powders such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide to obtain a mixture. obtain. And a some green sheet is produced from a mixture.

また、タングステンまたはモリブデン等の高融点金属粉末を準備し、この粉末に有機バインダー、可塑剤または溶剤等を添加混合して金属ペーストを得る。そして、基板2となるセラミックグリーンシートに配線導体となるメタライズパターンおよび必要に応じて多孔質枠体4を接合するためのメタライズパターンをそれぞれ所定パターンで印刷し、複数のセラミックグリーンシートを積層した状態で焼成することで、基板2を準備することが
できる。
Moreover, a high melting point metal powder such as tungsten or molybdenum is prepared, and an organic binder, a plasticizer, a solvent, or the like is added to and mixed with the powder to obtain a metal paste. And the metallized pattern used as a wiring conductor and the metallized pattern for joining the porous frame 4 as needed are each printed with the predetermined pattern to the ceramic green sheet used as the board | substrate 2, and the state which laminated | stacked the several ceramic green sheet The board | substrate 2 can be prepared by baking by.

一方で、多孔質枠体4を準備する。多孔質枠体4は、酸化アルミニウム、酸化チタン、酸化ジルコニウムまたは酸化イットリウム等のセラミック材料を準備する。そして、多孔質枠体4の型枠内に、セラミック材料を充填して乾燥させた後に、焼成することで多孔質枠体4を準備することができる。この多孔質枠体4にも、基板2を接合する面に必要に応じてメタライズパターンを形成しておく。   On the other hand, the porous frame 4 is prepared. For the porous frame 4, a ceramic material such as aluminum oxide, titanium oxide, zirconium oxide or yttrium oxide is prepared. The porous frame 4 can be prepared by filling the mold of the porous frame 4 with a ceramic material and drying it, followed by firing. Also on the porous frame 4, a metallized pattern is formed on the surface to which the substrate 2 is bonded as required.

次に、図6に示すように、基板2上に、多孔質枠体4を、両者のメタライズパターン同士を例えば半田を介して接合することによって設ける。そして、図7に示すように、基板2の上面であって多孔質枠体4で囲まれた領域に発光素子3を実装する。   Next, as shown in FIG. 6, the porous frame 4 is provided on the substrate 2 by joining both metallized patterns to each other through, for example, solder. Then, as shown in FIG. 7, the light emitting element 3 is mounted in a region surrounded by the porous frame 4 on the upper surface of the substrate 2.

そして、図8に示すように、基板2上の多孔質枠体4で囲まれた領域に、例えば封止部材5としてのシリコーン樹脂を充填する。このときは、多孔質枠体4内には、封止部材5が浸入していない。さらに、多孔質枠体4で囲まれる領域にシリコーン樹脂を充填して、例えば1分以上の時間を経過させることで、未硬化のシリコーン樹脂の一部を多孔質枠体4の内壁面から多孔質枠体4内の内部に向かって浸入させる。その後、例えば150℃以上の温度にシリコーン樹脂を熱して、シリコーン樹脂を硬化させることで、封止部材5を形成して発光素子3を封止する。このようにして、図9に示すように、浸入領域S1が形成された多孔質枠体4を設けることができる。   And as shown in FIG. 8, the area | region enclosed by the porous frame 4 on the board | substrate 2 is filled with the silicone resin as the sealing member 5, for example. At this time, the sealing member 5 does not enter the porous frame 4. Furthermore, a region surrounded by the porous frame 4 is filled with a silicone resin, and a part of uncured silicone resin is made porous from the inner wall surface of the porous frame 4 by, for example, passing a time of 1 minute or longer. It penetrates toward the inside of the frame 4. Thereafter, for example, the silicone resin is heated to a temperature of 150 ° C. or higher to cure the silicone resin, thereby forming the sealing member 5 and sealing the light emitting element 3. In this manner, as shown in FIG. 9, the porous frame 4 in which the intrusion region S1 is formed can be provided.

次に、波長変換部材6を準備する。波長変換部材6は、未硬化の樹脂に蛍光体を混合して、例えばドクターブレード法、ダイコーター法、押し出し法、スピンコート法またはディップ法等のシート成形技術を用いて作製することができる。また、波長変換部材6は、未硬化の波長変換部材6を型枠に充填し、硬化して取り出すことによっても得ることができる。   Next, the wavelength conversion member 6 is prepared. The wavelength conversion member 6 can be produced by mixing a phosphor with an uncured resin and using a sheet forming technique such as a doctor blade method, a die coater method, an extrusion method, a spin coating method, or a dip method. The wavelength conversion member 6 can also be obtained by filling the mold with the uncured wavelength conversion member 6 and curing it.

そして、図10に示すように、準備した波長変換部材6を多孔質枠体4の段差4a上に、接着材7としてのシリコーン樹脂を介して接着する。このときは、多孔質枠体4内には、接着材7が浸入していない。さらに、波長変換部材6を多孔質枠体4に接着材7を介して接着した状態で、例えば1分以上の時間を経過させることで、未硬化のシリコーン樹脂を多孔質枠体4内に浸入させる。その後、例えば150℃以上であって封止部材5が破壊されない360℃以下の温度にシリコーン樹脂を熱して、シリコーン樹脂を硬化させる。このようにして、図11に示すように、浸入領域S2が形成された多孔質枠体4を設けることができ、発光装置1を製造することができる。   Then, as shown in FIG. 10, the prepared wavelength conversion member 6 is bonded onto the step 4 a of the porous frame 4 via a silicone resin as the adhesive 7. At this time, the adhesive 7 does not enter the porous frame 4. Further, in a state where the wavelength conversion member 6 is bonded to the porous frame 4 via the adhesive 7, for example, an uncured silicone resin is infiltrated into the porous frame 4 by elapse of one minute or more. Let Thereafter, the silicone resin is heated to a temperature of, for example, 150 ° C. or higher and 360 ° C. or lower at which the sealing member 5 is not broken to cure the silicone resin. Thus, as shown in FIG. 11, the porous frame 4 in which the intrusion region S2 is formed can be provided, and the light emitting device 1 can be manufactured.

1 発光装置
2 基板
3 発光素子
4 多孔質枠体
4a 段差
5 封止部材
6 波長変換部材
7 接着材
SP 隙間
S1 浸入領域
S2 浸入領域
DESCRIPTION OF SYMBOLS 1 Light-emitting device 2 Board | substrate 3 Light-emitting element 4 Porous frame 4a Level | step difference 5 Sealing member 6 Wavelength conversion member 7 Adhesive material SP Clearance S1 Infiltration area S2 Infiltration area

Claims (3)

基板と、
前記基板上に設けられた発光素子と、
前記基板上に前記発光素子を取り囲むように設けられた多孔質枠体と、
前記基板上の前記多孔質枠体で囲まれた領域に前記発光素子を覆うように設けられ、一部が前記多孔質枠体内に浸入した封止部材と、
前記多孔質枠体に前記発光素子と間を空けて設けられた波長変換部材と、
前記波長変換部材の上面から前記多孔質枠体の上部にかけて設けられ、一部が前記多孔質枠体内に浸入しているとともに、前記多孔質枠体内で前記封止部材と間を空けて設けられた接着材とを備えたことを特徴とする発光装置。
A substrate,
A light emitting device provided on the substrate;
A porous frame provided on the substrate so as to surround the light emitting element;
A sealing member provided so as to cover the light emitting element in a region surrounded by the porous frame on the substrate, and a part of which is infiltrated into the porous frame;
A wavelength conversion member provided in the porous frame with a space between the light emitting element, and
Provided from the upper surface of the wavelength conversion member to the upper part of the porous frame, and a part of the wavelength conversion member penetrates into the porous frame, and is provided with a gap from the sealing member in the porous frame. A light-emitting device comprising: an adhesive material.
請求項1に記載の発光装置であって、
前記多孔質枠体は、前記封止部材と前記接着材との間に気孔を有していることを特徴とする発光装置。
The light-emitting device according to claim 1,
The light emitting device, wherein the porous frame has pores between the sealing member and the adhesive.
請求項1または請求項2に記載の発光装置であって、
前記波長変換部材と前記多孔質枠体との間に隙間が設けられており、前記接着材の一部は前記隙間に入り込んでいることを特徴とする発光装置。
The light-emitting device according to claim 1 or 2,
A light emitting device, wherein a gap is provided between the wavelength conversion member and the porous frame, and a part of the adhesive material enters the gap.
JP2011093801A 2011-04-20 2011-04-20 Light emitting device Expired - Fee Related JP5683366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011093801A JP5683366B2 (en) 2011-04-20 2011-04-20 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011093801A JP5683366B2 (en) 2011-04-20 2011-04-20 Light emitting device

Publications (2)

Publication Number Publication Date
JP2012227363A true JP2012227363A (en) 2012-11-15
JP5683366B2 JP5683366B2 (en) 2015-03-11

Family

ID=47277189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011093801A Expired - Fee Related JP5683366B2 (en) 2011-04-20 2011-04-20 Light emitting device

Country Status (1)

Country Link
JP (1) JP5683366B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125611A1 (en) * 2015-02-03 2016-08-11 日本電気硝子株式会社 Wavelength conversion member and light emitting device using same
JP2018163947A (en) * 2017-03-24 2018-10-18 日本電気硝子株式会社 Wavelength conversion member and light-emitting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227868A (en) * 2006-01-30 2007-09-06 Kyocera Corp Light-emitting device, and lighting device
WO2010106504A1 (en) * 2009-03-19 2010-09-23 Koninklijke Philips Electronics N.V. Illumination device with remote luminescent material
WO2011037184A1 (en) * 2009-09-25 2011-03-31 京セラ株式会社 Light emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227868A (en) * 2006-01-30 2007-09-06 Kyocera Corp Light-emitting device, and lighting device
WO2010106504A1 (en) * 2009-03-19 2010-09-23 Koninklijke Philips Electronics N.V. Illumination device with remote luminescent material
WO2011037184A1 (en) * 2009-09-25 2011-03-31 京セラ株式会社 Light emitting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125611A1 (en) * 2015-02-03 2016-08-11 日本電気硝子株式会社 Wavelength conversion member and light emitting device using same
CN107209302A (en) * 2015-02-03 2017-09-26 日本电气硝子株式会社 Wavelength convert part and use its light-emitting device
JPWO2016125611A1 (en) * 2015-02-03 2017-11-16 日本電気硝子株式会社 Wavelength converting member and light emitting device using the same
US10557614B2 (en) 2015-02-03 2020-02-11 Nippon Electric Glass Co., Ltd. Projector light source including wavelength conversion member having porous ceramic substrate
JP2018163947A (en) * 2017-03-24 2018-10-18 日本電気硝子株式会社 Wavelength conversion member and light-emitting device

Also Published As

Publication number Publication date
JP5683366B2 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5393802B2 (en) Light emitting device
JP5393796B2 (en) Light emitting device
JP5634519B2 (en) Light emitting device
JP5683366B2 (en) Light emitting device
JP2012174620A (en) Lighting device
JP5748575B2 (en) Light emitting device
WO2011125428A1 (en) Light emitting device
JP2012114336A (en) Light emitting device and lighting device
WO2013035529A1 (en) Light emitting device
JP2012094678A (en) Light emitting device
JP2014160811A (en) Light-emitting device
JP5683352B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP6294119B2 (en) Light emitting device
JP2012009719A (en) Light emitting device and lighting system
JP2013105801A (en) Light emitting device
JP5748599B2 (en) Lighting device
WO2011037184A1 (en) Light emitting device
JP2014123598A (en) Light-emitting device
JP2013110297A (en) Light emitting device
JP2012227224A (en) Light emitting device
JP2013021027A (en) Light emitting device
JP5806153B2 (en) Light emitting device
JP5748611B2 (en) Light emitting device
WO2015182537A1 (en) Light emitting device
JP2013115150A (en) Light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150113

R150 Certificate of patent or registration of utility model

Ref document number: 5683366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees