JP2012227224A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2012227224A
JP2012227224A JP2011091306A JP2011091306A JP2012227224A JP 2012227224 A JP2012227224 A JP 2012227224A JP 2011091306 A JP2011091306 A JP 2011091306A JP 2011091306 A JP2011091306 A JP 2011091306A JP 2012227224 A JP2012227224 A JP 2012227224A
Authority
JP
Japan
Prior art keywords
wavelength conversion
light emitting
conversion member
porous frame
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011091306A
Other languages
Japanese (ja)
Inventor
Daisuke Sakumoto
大輔 作本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011091306A priority Critical patent/JP2012227224A/en
Publication of JP2012227224A publication Critical patent/JP2012227224A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light emitting device which continues to secure a wavelength conversion member in good conditions.SOLUTION: A light emitting device 1 includes: a substrate 2; a light emitting element 3 provided on the substrate 2; a porous frame body 4 provided on the substrate 2 so as to enclose the light emitting element 3; a ring shaped member 5 provided along an upper part of an inner wall surface of the porous frame body 4 and having a porosity smaller than that of the porous frame body 4; a wavelength conversion member 6 provided on the inner side of the ring shaped member 5 so as to be spaced away from the light emitting element 3; and an adhesion material 7 which is provided so as to range from an upper surface of the wavelength conversion member 6 to an upper surface of the ring shaped member 5.

Description

本発明は、発光素子を含む発光装置に関するものである。   The present invention relates to a light emitting device including a light emitting element.

近年、発光ダイオードを始めとする発光素子を有する発光装置の開発が進められている。当該発光装置は、消費電力または製品寿命に関して注目されている。なお、発光装置として、発光素子から発せられる光を波長変換部材で特定の波長帯の光に変換して、外部に取り出すものがある(下記特許文献1,2参照)。   In recent years, development of a light emitting device having a light emitting element such as a light emitting diode has been advanced. The light-emitting device has attracted attention with respect to power consumption or product life. As a light emitting device, there is a light emitting device that converts light emitted from a light emitting element into light of a specific wavelength band by a wavelength conversion member and extracts the light outside (see Patent Documents 1 and 2 below).

特開2009−49172号公報JP 2009-49172 A 特開2009−70870号公報JP 2009-70870 A

発光素子の開発において、発光素子の発光する光に起因して発生する熱が、波長変換部材の特定箇所に集中すると、波長変換部材が熱によって剥離する虞がある。   In the development of a light emitting element, if the heat generated due to the light emitted from the light emitting element is concentrated on a specific portion of the wavelength converting member, the wavelength converting member may be peeled off by the heat.

本発明は、波長変換部材を良好に固着し続けることが可能な発光装置を提供することを目的とする。   An object of this invention is to provide the light-emitting device which can continue adhering a wavelength conversion member favorably.

本発明の実施形態に係る発光装置は、基板と、前記基板上に設けられた発光素子と、前記基板上に設けられた、前記発光素子を取り囲む多孔質枠体と、前記多孔質枠体の内壁面の上部に沿って設けられた、前記多孔質枠体の気孔率よりも気孔率が小さい輪状部材と、前記輪状部材の内側に前記発光素子と間を空けて設けられた波長変換部材と、前記波長変換部材の上面から前記輪状部材の上面にかけて設けられた接着材と、を備えたことを特徴とする。   A light-emitting device according to an embodiment of the present invention includes a substrate, a light-emitting element provided on the substrate, a porous frame surrounding the light-emitting element provided on the substrate, and the porous frame An annular member provided along the upper portion of the inner wall surface and having a porosity smaller than the porosity of the porous frame, and a wavelength conversion member provided between the light emitting elements inside the annular member, And an adhesive provided from the upper surface of the wavelength conversion member to the upper surface of the ring-shaped member.

本発明によれば、従来よりも発光素子の発生する熱による影響を抑えて、波長変換部材を良好に固着し続けることが可能な発光装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the light-emitting device which can suppress the influence by the heat | fever which a light emitting element generate | occur | produces conventionally, and can continue favorably fixing a wavelength conversion member can be provided.

本実施形態に係る発光装置の概観を示す断面斜視図である。It is a cross-sectional perspective view which shows the external appearance of the light-emitting device which concerns on this embodiment. 本実施形態に係る発光装置の断面図である。It is sectional drawing of the light-emitting device which concerns on this embodiment. 本実施形態に係る発光装置の一部を拡大した断面図である。It is sectional drawing to which some light emitting devices concerning this embodiment were expanded. 本実施形態に係る発光装置の平面図である。It is a top view of the light-emitting device concerning this embodiment. 本実施形態に係る多孔質枠体の一部を拡大した断面図である。It is sectional drawing to which a part of porous frame concerning this embodiment was expanded.

以下に添付図面を参照して、本発明にかかる発光装置の実施形態を説明する。なお、本発明は以下の実施形態に限定されないものである。   Embodiments of a light emitting device according to the present invention will be described below with reference to the accompanying drawings. In addition, this invention is not limited to the following embodiment.

<発光装置の概略構成>
図1は、本実施形態に係る発光装置の概観斜視図であって、その一部を切り取って示し
ている。また、図2は、図1に示す発光装置のX−X’線に沿った断面図である。また、図3は、図2に示す発光装置の一部Aを拡大した断面図である。また、図4は、発光装置の平面図であって、波長変換部材、輪状部材および接着材を取り除いた状態を示している。なお、図1から図3において、多孔質枠体4内の丸が、模式的に示した気孔bを示している。図5は、多孔質枠体4の一部を拡大した断面図である。
<Schematic configuration of light emitting device>
FIG. 1 is a schematic perspective view of a light emitting device according to this embodiment, and a part thereof is cut away. 2 is a cross-sectional view taken along the line XX ′ of the light emitting device shown in FIG. FIG. 3 is an enlarged cross-sectional view of a part A of the light emitting device shown in FIG. FIG. 4 is a plan view of the light emitting device, showing a state in which the wavelength conversion member, the ring-shaped member, and the adhesive are removed. In FIGS. 1 to 3, the circles in the porous frame 4 indicate the pores b schematically shown. FIG. 5 is an enlarged cross-sectional view of a part of the porous frame 4.

本実施形態に係る発光装置1は、基板2と、基板2上に設けられた発光素子3と、基板2上に設けられた、発光素子3を取り囲む多孔質枠体4と、多孔質枠体4の内壁面に沿って設けられた、多孔質枠体4の気孔率よりも気孔率が小さい輪状部材5と、輪状部材5の内側に発光素子3と間を空けて設けられた波長変換部材6と、波長変換部材6の上面から輪状部材5の上面にかけて被着した接着材7とを備えている。なお、発光素子3は、例えば、発光ダイオードであって、半導体を用いたpn接合中の電子と正孔が再結合することによって、外部に向かって光を放出することができる。   The light emitting device 1 according to the present embodiment includes a substrate 2, a light emitting element 3 provided on the substrate 2, a porous frame 4 surrounding the light emitting element 3 provided on the substrate 2, and a porous frame. An annular member 5 provided along the inner wall surface of the porous member 4 having a porosity smaller than the porosity of the porous frame 4, and a wavelength conversion member provided inside the annular member 5 with a space between the light emitting element 3. 6 and an adhesive 7 that is applied from the upper surface of the wavelength conversion member 6 to the upper surface of the ring-shaped member 5. The light emitting element 3 is, for example, a light emitting diode, and can emit light toward the outside by recombination of electrons and holes in a pn junction using a semiconductor.

基板2は、絶縁性の基板であって、アルミナまたはムライト等のセラミック材料、あるいはガラスセラミック材料等から構成される。または、これらの材料のうち複数の材料を混合した複合系材料から構成される。また、基板2としては、基板2の熱膨張を調整することが可能な金属酸化物微粒子を分散させた高分子樹脂を用いることもできる。   The substrate 2 is an insulating substrate and is made of a ceramic material such as alumina or mullite, or a glass ceramic material. Alternatively, it is composed of a composite material obtained by mixing a plurality of materials among these materials. Further, as the substrate 2, a polymer resin in which metal oxide fine particles capable of adjusting the thermal expansion of the substrate 2 are dispersed can also be used.

基板2には、基板2の内外を電気的に導通する配線導体(図示せず)が形成されている。配線導体は、例えばタングステン、モリブデン、マンガンまたは銅等の導電材料からなる。配線導体は、例えば、タングステン等の粉末に有機溶剤を添加して得た金属ペーストを、基板2となるセラミックグリーンシートに所定パターンで印刷し、複数のセラミックグリーンシートを積層焼成することによって得られる。なお、基板2の内外に露出する配線導体の表面には、酸化防止のためにニッケルまたは金等の鍍金層(図示せず)が被着されている。   On the substrate 2, wiring conductors (not shown) that electrically connect the inside and outside of the substrate 2 are formed. The wiring conductor is made of a conductive material such as tungsten, molybdenum, manganese, or copper. The wiring conductor is obtained, for example, by printing a metal paste obtained by adding an organic solvent to a powder of tungsten or the like in a predetermined pattern on a ceramic green sheet to be the substrate 2 and laminating and firing a plurality of ceramic green sheets. . A plating layer (not shown) such as nickel or gold is deposited on the surface of the wiring conductor exposed inside and outside the substrate 2 to prevent oxidation.

また、基板2の上面には、基板2の上方に効率良く光を反射させるために、配線導体および鍍金層と間を空けて、例えばアルミニウム、銀、金、銅またはプラチナ等の金属からなる金属反射層(図示せず)を形成する。   Further, a metal made of a metal such as aluminum, silver, gold, copper or platinum is provided on the upper surface of the substrate 2 with a space between the wiring conductor and the plating layer in order to reflect light efficiently above the substrate 2. A reflective layer (not shown) is formed.

発光素子3は、基板2上に実装される。具体的には、発光素子3は、基板2上に形成される配線導体の表面に被着する鍍金層上に、例えばろう材または半田を介して電気的に接続される。   The light emitting element 3 is mounted on the substrate 2. Specifically, the light emitting element 3 is electrically connected to a plating layer attached to the surface of the wiring conductor formed on the substrate 2 via, for example, a brazing material or solder.

発光素子3は、透光性基体(図示せず)と、透光性基体上に形成される光半導体層(図示せず)とを有している。透光性基体は、その上に有機金属気相成長法または分子線エピタキシャル成長法等の化学気相成長法を用いて、光半導体層を成長させることが可能なものであればよい。透光性基体に用いられる材料としては、例えばサファイア、窒化ガリウム、窒化アルミニウム、酸化亜鉛、セレン化亜鉛、シリコンカーバイド、シリコンまたは二ホウ化ジルコニウム等を用いることができる。なお、透光性基体の厚みは、例えば50μm以上1000μm以下である。   The light emitting element 3 has a translucent base (not shown) and an optical semiconductor layer (not shown) formed on the translucent base. The translucent substrate may be any substrate on which the optical semiconductor layer can be grown using chemical vapor deposition such as metal organic chemical vapor deposition or molecular beam epitaxy. As a material used for the translucent substrate, for example, sapphire, gallium nitride, aluminum nitride, zinc oxide, zinc selenide, silicon carbide, silicon, or zirconium diboride can be used. In addition, the thickness of a translucent base | substrate is 50 micrometers or more and 1000 micrometers or less, for example.

光半導体層は、透光性基体上に形成される第1半導体層と、第1半導体層上に形成される発光層と、発光層上に形成される第2半導体層とを含んで構成されている。第1半導体層、発光層および第2半導体層は、例えばIII族窒化物半導体、ガリウム燐またはガリウ
ムヒ素等のIII−V族半導体、あるいは、窒化ガリウム、窒化アルミニウムまたは窒化イ
ンジウム等のIII族窒化物半導体などを用いることができる。なお、第1半導体層の厚み
は、例えば1μm以上5μm以下であって、発光層の厚みは、例えば25nm以上150nm以下であって、第2半導体層の厚みは、例えば50nm以上600nm以下である。
また、このように構成された発光素子3では、例えば370nm以上420nm以下の波長範囲の光を発する素子として用いることができる。
The optical semiconductor layer includes a first semiconductor layer formed on the translucent substrate, a light emitting layer formed on the first semiconductor layer, and a second semiconductor layer formed on the light emitting layer. ing. The first semiconductor layer, the light emitting layer, and the second semiconductor layer are, for example, a group III nitride semiconductor, a group III-V semiconductor such as gallium phosphide or gallium arsenide, or a group III nitride such as gallium nitride, aluminum nitride, or indium nitride. A semiconductor or the like can be used. The thickness of the first semiconductor layer is, for example, 1 μm to 5 μm, the thickness of the light emitting layer is, for example, 25 nm to 150 nm, and the thickness of the second semiconductor layer is, for example, 50 nm to 600 nm.
In addition, the light-emitting element 3 configured as described above can be used as an element that emits light in a wavelength range of, for example, 370 nm to 420 nm.

多孔質枠体4は、多孔質のセラミック材料から成り、基板2の上面に配置されて例えば一体焼成されている。多孔質枠体4は、基板2上の発光素子3を取り囲むように設けられている。なお、平面視して、多孔質枠体4の内壁面の形状を円形とすると、発光素子3が発光する光を全方向に満遍なく反射させて外部に均一に放出することができる。また、多孔質枠体4は、基板2の上面に接着されてもよい。   The porous frame 4 is made of a porous ceramic material, and is disposed on the upper surface of the substrate 2 and is integrally fired, for example. The porous frame 4 is provided so as to surround the light emitting element 3 on the substrate 2. Note that, when the shape of the inner wall surface of the porous frame 4 is circular in plan view, the light emitted from the light emitting element 3 can be uniformly reflected in all directions and uniformly emitted to the outside. The porous frame 4 may be bonded to the upper surface of the substrate 2.

また、多孔質枠体4は、酸化アルミニウム、酸化チタン、酸化ジルコニウムまたは酸化イットリウム等のセラミック材料を所望の形状に形成して焼結された多孔質材料から構成される。そして、多孔質枠体4には、多数の孔である気孔bが設けられている。なお、多孔質枠体4の気孔率は、例えば25%以上50%以下に設定されている。また、多孔質枠体4に設けられた多数の気孔bの直径は、例えば0.1μm以上1.5μm以下の大きさに設定されている。   The porous frame 4 is made of a porous material formed by sintering a ceramic material such as aluminum oxide, titanium oxide, zirconium oxide or yttrium oxide in a desired shape. The porous frame 4 is provided with a large number of pores b. In addition, the porosity of the porous frame 4 is set to 25% or more and 50% or less, for example. Moreover, the diameter of many pores b provided in the porous frame 4 is set to a size of 0.1 μm or more and 1.5 μm or less, for example.

多孔質枠体4は、発光素子3からの光または波長変換部材6にて反射された光を多孔質枠体4の表面で拡散反射する機能を有している。それによって、発光素子3から発せられる光は、波長変換部材6の一部に集中しにくくすることができる。仮に、波長変換部材6の一部に光が集中すると、波長変換部材6の光が集中した箇所では温度が上昇することとなり、それによって波長変換部材6の波長変換効率が低下したり、波長変換部材6の透過率または機械的強度が劣化したりする虞がある。そこで、発光素子3の発する光を拡散反射することができる多孔質枠体4を発光素子3の周囲に設けることで、波長変換部材6の特定個所に光が集中するのを抑制することができ、波長変換部材6の波長変換効率を長期にわたって良好に維持することができる。さらに、波長変換部材6の透過率または機械的強度を長期にわたって良好に維持することができる。   The porous frame 4 has a function of diffusing and reflecting the light from the light emitting element 3 or the light reflected by the wavelength conversion member 6 on the surface of the porous frame 4. Thereby, the light emitted from the light emitting element 3 can be made difficult to concentrate on a part of the wavelength conversion member 6. If light concentrates on a part of the wavelength conversion member 6, the temperature rises at the location where the light of the wavelength conversion member 6 is concentrated, thereby reducing the wavelength conversion efficiency of the wavelength conversion member 6 or wavelength conversion. There is a possibility that the transmittance or mechanical strength of the member 6 may deteriorate. Therefore, by providing the porous frame 4 that can diffusely reflect the light emitted from the light emitting element 3 around the light emitting element 3, it is possible to suppress the light from being concentrated on a specific portion of the wavelength conversion member 6. The wavelength conversion efficiency of the wavelength conversion member 6 can be maintained well over a long period of time. Furthermore, the transmittance or mechanical strength of the wavelength conversion member 6 can be maintained well over a long period of time.

また、多孔質枠体4の内壁面によって囲まれる領域は、断面視して下部から上部に向かって内壁面間の幅が広くなるように傾斜している。さらに、多孔質枠体4の上端内側には段差4aが設けられている。また、多孔質枠体4の傾斜する内壁面には、例えばタングステン、モリブデン、銅または銀等から成る金属層(図示せず)と、金属層を被覆するニッケルまたは金等から成る鍍金金属層(図示せず)が形成されてもよい。この鍍金金属層は、発光素子3の発する光を反射させる機能を有する。   The region surrounded by the inner wall surface of the porous frame 4 is inclined so that the width between the inner wall surfaces becomes wider from the lower part to the upper part in a cross-sectional view. Further, a step 4 a is provided inside the upper end of the porous frame 4. In addition, on the inclined inner wall surface of the porous frame 4, for example, a metal layer (not shown) made of tungsten, molybdenum, copper, silver or the like, and a plated metal layer made of nickel or gold or the like covering the metal layer ( (Not shown) may be formed. The plated metal layer has a function of reflecting light emitted from the light emitting element 3.

また、多孔質枠体4の内壁面の傾斜角度は、基板2の上面に対して、例えば55度以上70度以下の角度に設定されている。また、多孔質枠体4の表面粗さは、算術平均高さRaが、例えば1μm以上3μm以下に設定されている。   In addition, the inclination angle of the inner wall surface of the porous frame 4 is set to an angle of, for example, 55 degrees to 70 degrees with respect to the upper surface of the substrate 2. Further, the surface roughness of the porous frame 4 is set such that the arithmetic average height Ra is, for example, 1 μm or more and 3 μm or less.

多孔質枠体4の段差4aは、その横面(通常は水平面)で波長変換部材6を支持するためのものである。段差4aは、多孔質枠体4の上部の一部を内側に向けて切り欠いたものであって、切り欠いた縦面(通常は垂直面)に沿って、後述する輪状部材5が設けられる。なお、段差4aの表面にまで、前述した鍍金金属層が形成されてもよい。   The step 4a of the porous frame 4 is for supporting the wavelength conversion member 6 on its lateral surface (usually a horizontal surface). The step 4a is formed by notching a part of the upper part of the porous frame 4 inward, and a ring-shaped member 5 described later is provided along the notched vertical surface (usually a vertical surface). . Note that the above-described plated metal layer may be formed up to the surface of the step 4a.

多孔質枠体4で囲まれる領域には、発光素子3を内部に封止するようにして、光透過性の封止部材8が充填されている。多孔質枠体4は、多孔質枠体4の表面を含めて多数の気孔bが設けられているので、封止部材8の一部が多孔質枠体4の表面から内部に浸入して固定される。そして、封止部材8の一部が多孔質枠体4内に浸入して固着されることで、アンカー効果によって封止部材8と多孔質枠体4とが強固に接合されている。   A region surrounded by the porous frame 4 is filled with a light-transmitting sealing member 8 so as to seal the light emitting element 3 inside. Since the porous frame 4 is provided with a large number of pores b including the surface of the porous frame 4, a part of the sealing member 8 enters inside from the surface of the porous frame 4 and is fixed. Is done. And since a part of sealing member 8 penetrates into the porous frame 4 and is fixed, the sealing member 8 and the porous frame 4 are firmly joined by the anchor effect.

封止部材8は、発光素子3を封止するとともに、発光素子3から発せられる光を透過さ
せる機能を備えている。封止部材8は、多孔質枠体4の内方に発光素子3を収容した状態で、多孔質枠体4で囲まれる領域であって、段差4aの高さ位置よりも低い位置まで充填される。封止部材8は、発光素子3が発する光に起因した熱を吸収し、封止部材8全体に熱を伝える。仮に、封止部材8内の特定箇所に熱が集中すると、封止部材8の部分的な熱膨張が発生して、封止部材8が基板2から剥離する虞が生じやすくなる。また、封止部材8内にて熱集中が起きると、発光素子3が高温となり発光素子3の発する光の波長が変化して、発光素子3の発光色が所望する光色から大きく外れる虞が生じやすくなる。なお、封止部材8は、例えばシリコーン樹脂、アクリル樹脂またはエポキシ樹脂等の透光性の絶縁樹脂が用いられる。なお、封止部材8の熱伝導率は、例えば0.14W/(m・K)以上0.21W/(m・K)以下に設定されている。
The sealing member 8 has a function of sealing the light emitting element 3 and transmitting light emitted from the light emitting element 3. The sealing member 8 is a region surrounded by the porous frame 4 in a state in which the light emitting element 3 is accommodated inside the porous frame 4 and is filled to a position lower than the height position of the step 4a. The The sealing member 8 absorbs heat caused by light emitted from the light emitting element 3 and transmits the heat to the entire sealing member 8. If heat concentrates on a specific location in the sealing member 8, partial thermal expansion of the sealing member 8 occurs, and the sealing member 8 is likely to peel from the substrate 2. Further, when heat concentration occurs in the sealing member 8, the light emitting element 3 becomes high temperature, the wavelength of the light emitted from the light emitting element 3 is changed, and the light emission color of the light emitting element 3 may be greatly deviated from the desired light color. It tends to occur. The sealing member 8 is made of a translucent insulating resin such as a silicone resin, an acrylic resin, or an epoxy resin. The thermal conductivity of the sealing member 8 is set to, for example, 0.14 W / (m · K) or more and 0.21 W / (m · K) or less.

波長変換部材6は、発光素子3から発せられる光が内部に入射して、内部に含有されている蛍光体が励起されて、光を発するものである。ここで、波長変換部材6は、例えばシリコーン樹脂、アクリル樹脂またはエポキシ樹脂等の樹脂材料からなり、その樹脂材料中に、例えば430nm以上490nm以下の蛍光を発する青色蛍光体、例えば500nm以上560nm以下の蛍光を発する緑色蛍光体、例えば540nm以上600nm以下の蛍光を発する黄色蛍光体、例えば590nm以上700nm以下の蛍光を発する赤色蛍光体が含有されている。また、蛍光体は、波長変換部材6中に均一に分散するようにして含有されている。なお、波長変換部材6の熱伝導率は、例えば0.1W/(m・K)以上0.3W/(m・K)以下に設定されている。   The wavelength conversion member 6 emits light when the light emitted from the light emitting element 3 enters the inside and the phosphor contained therein is excited. Here, the wavelength conversion member 6 is made of a resin material such as a silicone resin, an acrylic resin, or an epoxy resin, and a blue phosphor that emits fluorescence of, for example, 430 nm to 490 nm in the resin material, for example, 500 nm to 560 nm. A green phosphor that emits fluorescence, for example, a yellow phosphor that emits fluorescence of 540 to 600 nm, for example, a red phosphor that emits fluorescence of 590 to 700 nm is contained. The phosphor is contained so as to be uniformly dispersed in the wavelength conversion member 6. The thermal conductivity of the wavelength conversion member 6 is set to, for example, 0.1 W / (m · K) or more and 0.3 W / (m · K) or less.

波長変換部材6は、多孔質枠体4上に支持されて、発光素子3と間を空けて設けられている。また、波長変換部材6の端部は、多孔質枠体4の段差4a上に位置しており、多孔質枠体4によって波長変換部材6の端部側面が囲まれている。   The wavelength conversion member 6 is supported on the porous frame 4 and is provided to be spaced from the light emitting element 3. The end of the wavelength conversion member 6 is located on the step 4 a of the porous frame 4, and the end side of the wavelength conversion member 6 is surrounded by the porous frame 4.

波長変換部材6は平面視して円状であって、波長変換部材6の直径が、例えば2mm以上20mm以下に設定されている。また、波長変換部材6の厚みは、例えば0.7mm以上3mm以下に設定されており、且つ厚みを一定にして設定されている。ここで、厚みが一定とは、厚みの誤差が0.5μm以下のものを含む。波長変換部材6の厚みを一定にすることにより、波長変換部材6にて励起される光の量を一様になるように調整することができ、波長変換部材6における輝度むらを抑制することができる。   The wavelength conversion member 6 is circular in plan view, and the diameter of the wavelength conversion member 6 is set to, for example, 2 mm or more and 20 mm or less. Moreover, the thickness of the wavelength conversion member 6 is set to 0.7 mm or more and 3 mm or less, for example, and is set with constant thickness. Here, the constant thickness includes a thickness error of 0.5 μm or less. By making the thickness of the wavelength conversion member 6 constant, the amount of light excited by the wavelength conversion member 6 can be adjusted to be uniform, and uneven brightness in the wavelength conversion member 6 can be suppressed. it can.

多孔質枠体4の段差4a上には、多孔質枠体4の内壁面の上部(段差4aの縦面)に沿って輪状部材5が設けられている。輪状部材5は、例えばシリコーン樹脂、アクリル樹脂またはエポキシ樹脂等の樹脂材料、あるいは酸化アルミニウム、酸化チタン、酸化ジルコニウムまたは酸化イットリウム等のセラミック材料からなる。また、輪状部材5の気孔率は、例えば2%以上20%以下であって、多孔質枠体4の気孔率よりも小さく設定されている。輪状部材5の気孔率を多孔質枠体4の気孔率よりも小さくすることで、波長変換部材6と多孔質枠体4とを接続する接着材7が、輪状部材5から多孔質枠体4に向かって流れにくくすることができる。これによって、多孔質枠体4と波長変換部材6とを接続する際に、接着材7が外部に流れ出ようとするのを抑制することができ、多孔質枠体4に対して波長変換部材6を強固に接着することができる。なお、輪状部材5は、その内部に気孔が形成されない緻密材料であってもよい。その場合には、輪状部材5の熱伝導率が向上することにより、波長変換部材6で発生した熱が輪状部材5を介して効率よく多孔質枠体4に拡散され、波長変換部材6の温度上昇が抑制される。従って、波長変換部材6は、波長変換効率が低下したり、波長変換部材6の透過率または機械的強度が劣化したりしにくくなり、波長変換部材6の波長変換効率を長期にわたって良好に維持することができるとともに、波長変換部材6の透過率または機械的強度を長期にわたって良好に維持することができる。   On the step 4 a of the porous frame 4, a ring-shaped member 5 is provided along the upper part of the inner wall surface of the porous frame 4 (vertical surface of the step 4 a). The annular member 5 is made of, for example, a resin material such as silicone resin, acrylic resin, or epoxy resin, or a ceramic material such as aluminum oxide, titanium oxide, zirconium oxide, or yttrium oxide. Further, the porosity of the annular member 5 is set to be 2% or more and 20% or less, for example, and is set smaller than the porosity of the porous frame 4. By making the porosity of the annular member 5 smaller than the porosity of the porous frame 4, the adhesive 7 that connects the wavelength conversion member 6 and the porous frame 4 is changed from the annular member 5 to the porous frame 4. It can be made difficult to flow toward. Thereby, when connecting the porous frame 4 and the wavelength conversion member 6, it can suppress that the adhesive material 7 tries to flow outside, and the wavelength conversion member 6 with respect to the porous frame 4 can be suppressed. Can be firmly bonded. The ring-shaped member 5 may be a dense material in which no pores are formed. In that case, the heat conductivity of the annular member 5 is improved, so that the heat generated in the wavelength conversion member 6 is efficiently diffused into the porous frame 4 through the annular member 5, and the temperature of the wavelength conversion member 6 is increased. The rise is suppressed. Therefore, the wavelength conversion member 6 is less likely to have a reduced wavelength conversion efficiency, or to deteriorate the transmittance or mechanical strength of the wavelength conversion member 6, and maintain the wavelength conversion efficiency of the wavelength conversion member 6 well over a long period of time. In addition, the transmittance or mechanical strength of the wavelength conversion member 6 can be maintained well over a long period of time.

輪状部材5は、波長変換部材6に向かって光を反射する機能を有している。発光素子3から波長変換部材6の内部に進入した光が、波長変換部材6の内部で端部にまで達することがある。その波長変換部材6の端部から多孔質枠体4に向かって進行する光を輪状部材5にて反射することで、反射された光を再び波長変換部材6内に戻すことができる。その結果、波長変換部材6内に再び戻った光を蛍光体にて励起して、発光装置1の光出力を向上させることができる。   The ring-shaped member 5 has a function of reflecting light toward the wavelength conversion member 6. The light that has entered the wavelength conversion member 6 from the light emitting element 3 may reach the end within the wavelength conversion member 6. By reflecting the light traveling from the end of the wavelength conversion member 6 toward the porous frame 4 by the ring-shaped member 5, the reflected light can be returned to the wavelength conversion member 6 again. As a result, the light returned to the wavelength conversion member 6 can be excited by the phosphor, and the light output of the light emitting device 1 can be improved.

輪状部材5は、表面が拡散面であってもよく、その場合には波長変換部材6の外周面から放射される光を輪状部材5で拡散反射できる。その結果、輪状部材5は、波長変換部材6や蛍光体が局所に集中した光を吸収することによって生じる温度上昇や機械的な特性劣化を抑制することができる。   The ring-shaped member 5 may have a diffused surface, and in this case, the light emitted from the outer peripheral surface of the wavelength conversion member 6 can be diffusely reflected by the ring-shaped member 5. As a result, the ring-shaped member 5 can suppress temperature rise and mechanical characteristic deterioration caused by absorbing the light in which the wavelength conversion member 6 and the phosphor are locally concentrated.

輪状部材5は、平面視したときの外径が、例えば3mm以上21mm以下であって、平面視したときの内径が、例えば2.5mm以上20mm以下に設定されている。そして、輪状部材5の外径は、輪状部材5が多孔質枠体4の段差4aの内側に嵌まる大きさになっている。また、輪状部材5の内径は、輪状部材5の内側に波長変換部材6が嵌まる大きさになっている。   The ring-shaped member 5 has an outer diameter of, for example, 3 mm or more and 21 mm or less when viewed in plan, and an inner diameter of 2.5 to 20 mm when viewed in plan. The outer diameter of the annular member 5 is such that the annular member 5 fits inside the step 4 a of the porous frame 4. Further, the inner diameter of the annular member 5 is large enough to fit the wavelength conversion member 6 inside the annular member 5.

輪状部材5が多孔質枠体4の内側に嵌まることで、多孔質枠体4が熱によって収縮するときに、多孔質枠体4の内壁面が輪状部材5の外壁面に当接することによって多孔質枠体4が必要以上に収縮変形して多孔質枠体4にクラックが発生するのを抑制することができるとともに、多孔質枠体4が熱によって収縮するときに、多孔質枠体4の内壁面が波長変換部材6に当接することによって波長変換部材6が撓んだり、変形したり、クラックまたは割れが発生したりするのを抑制することができる。   By fitting the ring-shaped member 5 inside the porous frame 4, the inner wall surface of the porous frame 4 abuts the outer wall surface of the ring-shaped member 5 when the porous frame 4 contracts due to heat. It is possible to suppress the porous frame 4 from being contracted and deformed more than necessary and to generate cracks in the porous frame 4, and when the porous frame 4 is contracted by heat, the porous frame 4 It is possible to prevent the wavelength conversion member 6 from being bent, deformed, or cracked or cracked by the inner wall surface of the contact with the wavelength conversion member 6.

多孔質枠体4の段差4a上に、波長変換部材6の端部が接着材7を介して輪状部材5に固定される。接着材7は、波長変換部材6の上面から輪状部材5の上面にかけて設けられている。接着材7を波長変換部材6から輪状部材5にかけて被着させることで、波長変換部材6を接着材7でもって輪状部材5に固着することができる。なお、接着材7は、波長変換部材6の上面から輪状部材5の上面にかけて設けられ、多孔質枠体4の段差4aの内周面と波長変換部材6の外周面とが隙間を介して配置されてもよい。その結果、多孔質枠体4や波長変換部材6の熱によって生じる膨張がその隙間で緩和される。従って、多孔質枠体4や波長変換部材6は、相互に作用する応力が隙間で緩和され、波長変換部材6の撓みや変形、クラックまたは割れの発生が抑制されるので、発光装置1を長期にわたって良好に作動させることができる。   On the step 4 a of the porous frame 4, the end of the wavelength conversion member 6 is fixed to the ring-shaped member 5 via the adhesive 7. The adhesive material 7 is provided from the upper surface of the wavelength conversion member 6 to the upper surface of the ring-shaped member 5. By attaching the adhesive material 7 from the wavelength conversion member 6 to the ring-shaped member 5, the wavelength conversion member 6 can be fixed to the ring-shaped member 5 with the adhesive material 7. The adhesive 7 is provided from the upper surface of the wavelength conversion member 6 to the upper surface of the ring-shaped member 5, and the inner peripheral surface of the step 4a of the porous frame 4 and the outer peripheral surface of the wavelength conversion member 6 are arranged with a gap. May be. As a result, the expansion caused by the heat of the porous frame 4 and the wavelength conversion member 6 is alleviated by the gap. Accordingly, in the porous frame 4 and the wavelength conversion member 6, the stress acting on each other is relieved in the gap, and the wavelength conversion member 6 is prevented from being bent or deformed, and cracks or cracks are generated. Can be operated well over a wide range.

接着材7は、例えばシリコーン樹脂、アクリル樹脂またはエポキシ樹脂等の透光性の絶縁樹脂が用いられる。なお、接着材7の熱伝導率は、例えば0.14W/(m・K)以上4W/(m・K)以下に設定されている。   For the adhesive 7, for example, a translucent insulating resin such as a silicone resin, an acrylic resin, or an epoxy resin is used. The thermal conductivity of the adhesive 7 is set to, for example, 0.14 W / (m · K) or more and 4 W / (m · K) or less.

輪状部材5は、外縁の形状が円形状に形成されている。仮に、外縁の形状が矩形状であれば、発光素子3の発する熱によって熱応力が伝わるが、矩形状になった角に応力が集中して破壊される虞がある。そして、輪状部材5に代えて矩形状部材が破壊されると、波長変換部材6が矩形状部材から剥離して、製品不良が発生する。そこで、外縁の形状が円形状の輪状部材5を用いることで、輪状部材5に加わる熱応力を分散させることができ、輪状部材5が破壊されるのを抑制することで、製造歩留まりを向上させることができる。   The ring-shaped member 5 has a circular outer edge. If the shape of the outer edge is rectangular, the thermal stress is transmitted by the heat generated by the light emitting element 3, but there is a possibility that the stress concentrates on the corners of the rectangular shape and is destroyed. And if it replaces with the annular member 5 and a rectangular member is destroyed, the wavelength conversion member 6 will peel from a rectangular member, and a product defect will generate | occur | produce. Therefore, by using the annular member 5 having a circular outer edge, the thermal stress applied to the annular member 5 can be dispersed, and the production yield is improved by suppressing the annular member 5 from being broken. be able to.

波長変換部材6と輪状部材5との間には、隙間SPが設けられており、接着材7の一部は隙間SPに入り込んでいる。そして、隙間SPに入り込んだ接着材7は、波長変換部材6の側面と輪状部材5の内壁面との間に介在して両者を接着することとなる。   A gap SP is provided between the wavelength conversion member 6 and the annular member 5, and a part of the adhesive 7 enters the gap SP. The adhesive 7 that has entered the gap SP is interposed between the side surface of the wavelength conversion member 6 and the inner wall surface of the ring-shaped member 5 to bond them together.

接着材7は、平面視して波長変換部材6の外周に沿って連続して形成されている。また、波長変換部材6と輪状部材5との間の隙間SPは、波長変換部材6の外周に沿って設けられている。そして、接着材7は、波長変換部材6の外周に沿って設けられた隙間SPに充填されて、波長変換部材6と輪状部材5とを強固に接続している。断面視して、波長変換部材6の側面から輪状部材5の内壁面にまで被着することで、接着材7が被着する面積を大きくし、接着材7を介して波長変換部材6と輪状部材5を強固に接続することができる。その結果、波長変換部材6と輪状部材5の接続強度を向上させることができ、波長変換部材6の撓みが抑制される。そして、発光素子3と波長変換部材6との間の光学距離が変動するのを効果的に抑制することができる。   The adhesive material 7 is continuously formed along the outer periphery of the wavelength conversion member 6 in plan view. Further, the gap SP between the wavelength conversion member 6 and the annular member 5 is provided along the outer periphery of the wavelength conversion member 6. The adhesive 7 is filled in a gap SP provided along the outer periphery of the wavelength conversion member 6 and firmly connects the wavelength conversion member 6 and the ring-shaped member 5. In a cross-sectional view, the area on which the adhesive 7 is attached is increased by attaching from the side surface of the wavelength converting member 6 to the inner wall surface of the annular member 5, and the wavelength converting member 6 and the annular shape are attached via the adhesive 7. The member 5 can be firmly connected. As a result, the connection strength between the wavelength conversion member 6 and the ring-shaped member 5 can be improved, and bending of the wavelength conversion member 6 is suppressed. And it can suppress effectively that the optical distance between the light emitting element 3 and the wavelength conversion member 6 fluctuates.

接着材7は、輪状部材5の上面から多孔質枠体4の上部にかけて設けられている。輪状部材5の上部から多孔質枠体4の上部にかけて接着材7を設けることで、輪状部材5と多孔質枠体4との接触面積を大きくすることができ、輪状部材5と多孔質枠体4との接続強度を向上させることができる。   The adhesive 7 is provided from the upper surface of the ring-shaped member 5 to the upper part of the porous frame 4. By providing the adhesive 7 from the upper part of the ring-shaped member 5 to the upper part of the porous frame body 4, the contact area between the ring-shaped member 5 and the porous frame body 4 can be increased, and the ring-shaped member 5 and the porous frame body can be increased. The connection strength with 4 can be improved.

また、接着材7は、一部が多孔質枠体4の上部から内部に浸入している。すなわち、多孔質枠体4は、多孔質枠体4の表面を含めて多数の気孔bが設けられているため、接着材7の一部が多孔質枠体4内に浸入して固定される。そして、接着材7の一部が多孔質枠体4内に浸入して固着されることで、アンカー効果によって、接着材7と多孔質枠体4とが強固に接合されている。   In addition, a part of the adhesive 7 enters the inside from the top of the porous frame 4. That is, since the porous frame 4 is provided with a large number of pores b including the surface of the porous frame 4, a part of the adhesive 7 enters and is fixed in the porous frame 4. . The adhesive 7 and the porous frame 4 are firmly joined to each other by the anchor effect because a part of the adhesive 7 enters and is fixed in the porous frame 4.

接着材7の熱伝導率は、波長変換部材6の熱伝導率よりも大きく設定してもよい。接着材7の熱伝導率を波長変換部材6の熱伝導率よりも大きくすることで、発光素子3から波長変換部材6に伝わる熱を接着材7に伝達しやすくすることができる。波長変換部材6には、発光素子3が発する光を蛍光体によって波長変換する際の変換損失に起因した熱が発生し、この熱によって波長変換部材6の温度が上昇する。その熱を波長変換部材6から接着材7に吸収しやすくすることで、波長変換部材6が高温になるのを抑制することができる。従って、波長変換部材6が高温になると発光素子3の発する励起光によって励起される光の色温度が変化して、所望する色温度の光色になりにくくなるが、波長変換部材6の温度が高温になるのを抑制することで、所望する光色を安定して取り出すことができる。   The thermal conductivity of the adhesive 7 may be set larger than the thermal conductivity of the wavelength conversion member 6. By making the thermal conductivity of the adhesive 7 greater than the thermal conductivity of the wavelength conversion member 6, the heat transmitted from the light emitting element 3 to the wavelength conversion member 6 can be easily transmitted to the adhesive 7. The wavelength conversion member 6 generates heat due to conversion loss when the light emitted from the light emitting element 3 is wavelength-converted by the phosphor, and the temperature of the wavelength conversion member 6 is increased by this heat. By making the heat easy to be absorbed by the adhesive 7 from the wavelength conversion member 6, it is possible to suppress the wavelength conversion member 6 from becoming high temperature. Therefore, when the wavelength conversion member 6 becomes high temperature, the color temperature of the light excited by the excitation light emitted from the light emitting element 3 changes, and it becomes difficult to obtain a light color of a desired color temperature. By suppressing the high temperature, the desired light color can be stably extracted.

また、接着材7の浸透領域Sは、封止部材8と離れて設けられている。発光素子3は、発光時に熱が発生し、封止部材8に伝わる。さらに、封止部材8に伝わった熱は、多孔質枠体4に伝わるが、接着材7と封止部材8とが離れていることで、多孔質枠体4に伝わった熱が接着材7に伝わりにくく、接着材7から波長変換部材6に伝わる熱量を少なくすることができる。波長変換部材6に伝わる熱量を少なくすることで、波長変換部材6の波長変換効率が低下したり、波長変換部材6の透過率または機械的強度が劣化したりするのを抑制することができ、波長変換部材6の波長変換効率を長期にわたって良好に維持することができる。さらに、波長変換部材6の透過率または機械的強度を長期にわたって良好に維持することができる。   Further, the permeation region S of the adhesive 7 is provided apart from the sealing member 8. The light emitting element 3 generates heat during light emission and is transmitted to the sealing member 8. Furthermore, although the heat transmitted to the sealing member 8 is transmitted to the porous frame 4, the heat transmitted to the porous frame 4 is separated from the adhesive 7 and the sealing member 8. The amount of heat transferred from the adhesive 7 to the wavelength conversion member 6 can be reduced. By reducing the amount of heat transmitted to the wavelength conversion member 6, it is possible to suppress the wavelength conversion efficiency of the wavelength conversion member 6 from decreasing or the transmittance or mechanical strength of the wavelength conversion member 6 from being deteriorated. The wavelength conversion efficiency of the wavelength conversion member 6 can be favorably maintained over a long period. Furthermore, the transmittance or mechanical strength of the wavelength conversion member 6 can be maintained well over a long period of time.

接着材7および輪状部材5は、波長変換部材6から放射される光に対して透過性を有してもよい。その結果、発光装置1の放射面積が接着材7および輪状部材5の表面によって大きくなることから、波長変換部材6の内部から放射される光が、接着材7および輪状部材5を介して発光装置1の外部に放射されやすくなり、発光装置1の光出力が向上する。   The adhesive 7 and the ring-shaped member 5 may have transparency to the light emitted from the wavelength conversion member 6. As a result, since the radiation area of the light emitting device 1 is increased by the surface of the adhesive 7 and the ring-shaped member 5, the light emitted from the inside of the wavelength conversion member 6 is emitted through the adhesive 7 and the ring-shaped member 5. The light output from the light emitting device 1 is improved.

また、発光素子3の発する光を満遍なく波長変換部材6に到達させることができ、発光素子3の光に起因して波長変換部材6内で発生する熱を、波長変換部材6全体に分散させることができ、波長変換部材6の特定箇所が高温になるのを抑制して、外部に取り出され
る光の色温度のばらつきを抑制することができる。特に、長時間、波長変換部材6の特定箇所の温度が上昇し続けることで、波長変換部材6から外部に取り出される光の色温度が変化する虞がある。これに対して、本実施形態によれば、波長変換部材6の特定箇所が高温になるのを抑制することにより、外部に取り出される光の色温度を良好に維持することができる。
Further, the light emitted from the light emitting element 3 can reach the wavelength converting member 6 uniformly, and the heat generated in the wavelength converting member 6 due to the light from the light emitting element 3 is dispersed throughout the wavelength converting member 6. It is possible to suppress the specific portion of the wavelength conversion member 6 from becoming high temperature, and to suppress variations in the color temperature of the light extracted to the outside. In particular, the color temperature of the light extracted from the wavelength conversion member 6 to the outside may change due to the temperature of a specific portion of the wavelength conversion member 6 continuing to rise for a long time. On the other hand, according to this embodiment, the color temperature of the light extracted outside can be favorably maintained by suppressing the specific portion of the wavelength conversion member 6 from becoming high temperature.

本実施形態によれば、多孔質枠体4と波長変換部材6との間に多孔質枠体4の気孔率よりも小さな気孔率の輪状部材5を設け、接着材7を介して波長変換部材6と輪状部材5とを接続することで、多孔質枠体4に浸入する接着材7の量を抑え、波長変換部材6を輪状部材5に強固に接合することができる。その結果、発光素子3の発する熱が、波長変換部材6の端部に集中しても、波長変換部材6と輪状部材5とを強固に接合したことによって、波長変換部材6が剥離するのを抑制することができ、波長変換部材6を良好に固着し続けることが可能な発光装置1を提供することができる。   According to the present embodiment, the annular member 5 having a porosity smaller than the porosity of the porous frame 4 is provided between the porous frame 4 and the wavelength conversion member 6, and the wavelength conversion member is interposed via the adhesive 7. By connecting 6 and the ring-shaped member 5, the amount of the adhesive 7 that enters the porous frame 4 can be suppressed, and the wavelength conversion member 6 can be firmly bonded to the ring-shaped member 5. As a result, even if the heat generated by the light emitting element 3 is concentrated on the end of the wavelength conversion member 6, the wavelength conversion member 6 is peeled off by firmly joining the wavelength conversion member 6 and the ring-shaped member 5. It is possible to provide the light-emitting device 1 that can be suppressed and can keep the wavelength conversion member 6 firmly fixed.

なお、本発明は上述の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。   In addition, this invention is not limited to the above-mentioned form, A various change, improvement, etc. are possible in the range which does not deviate from the summary of this invention.

<発光装置の製造方法>
ここで、図1に示す発光装置1の製造方法を説明する。まず、基板2を準備する。基板2が、例えば、酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム、酸化珪素、酸化マグネシウムおよび酸化カルシウム等の原料粉末に、有機バインダー、可塑剤または溶剤等を添加混合して混合物を得る。そして、混合物から複数のグリーンシートを作製する。
<Method for manufacturing light emitting device>
Here, a method of manufacturing the light emitting device 1 shown in FIG. 1 will be described. First, the substrate 2 is prepared. If the substrate 2 is made of, for example, an aluminum oxide sintered body, an organic binder, a plasticizer, a solvent, or the like is added to and mixed with raw material powders such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide. Get. And a some green sheet is produced from a mixture.

また、タングステンまたはモリブデン等の高融点金属粉末を準備し、この粉末に有機バインダー、可塑剤または溶剤等を添加混合して金属ペーストを得る。そして、基板2となるセラミックグリーンシートに配線導体となるメタライズパターンおよび多孔質枠体4を接合するためのメタライズパターンをそれぞれ所定パターンで印刷し、複数のセラミックグリーンシートを積層した状態で焼成することで、基板2を準備することができる。   Moreover, a high melting point metal powder such as tungsten or molybdenum is prepared, and an organic binder, a plasticizer, a solvent, or the like is added to and mixed with the powder to obtain a metal paste. Then, a metallized pattern as a wiring conductor and a metallized pattern for joining the porous frame 4 are printed in a predetermined pattern on the ceramic green sheet as the substrate 2 and fired in a state where a plurality of ceramic green sheets are laminated. Thus, the substrate 2 can be prepared.

一方で、多孔質枠体4を準備する。多孔質枠体4は、酸化アルミニウム、酸化チタン、酸化ジルコニウムまたは酸化イットリウム等のセラミック材料を準備する。そして、多孔質枠体4の型枠内にセラミック材料を充填して乾燥させた後に、焼成することで多孔質枠体4を準備することができる。この多孔質枠体4にも、基板2に接合する面にメタライズパターンを形成しておく。   On the other hand, the porous frame 4 is prepared. For the porous frame 4, a ceramic material such as aluminum oxide, titanium oxide, zirconium oxide or yttrium oxide is prepared. The porous frame 4 can be prepared by firing after filling the mold of the porous frame 4 with a ceramic material and drying it. A metallized pattern is also formed on the porous frame 4 on the surface to be bonded to the substrate 2.

次に、基板2上に、多孔質枠体4を、両者のメタライズパターン同士を例えば半田を介して接合することによって設ける。そして、基板2の上面であって多孔質枠体4で囲まれた領域に発光素子3を実装する。   Next, the porous frame 4 is provided on the substrate 2 by bonding both metallized patterns to each other through, for example, solder. Then, the light emitting element 3 is mounted on a region surrounded by the porous frame 4 on the upper surface of the substrate 2.

そして、基板2上の多孔質枠体4で囲まれた領域に、例えば、シリコーン樹脂を充填して、シリコーン樹脂を硬化させることで、封止部材8を形成して発光素子3を封止する。   And the area | region enclosed with the porous frame 4 on the board | substrate 2 is filled with a silicone resin, for example, and the silicone resin is hardened, the sealing member 8 is formed and the light emitting element 3 is sealed. .

次に、波長変換部材6を準備する。波長変換部材6は、未硬化の樹脂に蛍光体を混合して、例えばドクターブレード法、ダイコーター法、押し出し法、スピンコート法またはディップ法等のシート成形技術を用いて作製することができる。また、波長変換部材6は、未硬化の波長変換部材6を型枠に充填し、硬化して取り出すことによっても得ることができる。   Next, the wavelength conversion member 6 is prepared. The wavelength conversion member 6 can be produced by mixing a phosphor with an uncured resin and using a sheet forming technique such as a doctor blade method, a die coater method, an extrusion method, a spin coating method, or a dip method. The wavelength conversion member 6 can also be obtained by filling the mold with the uncured wavelength conversion member 6 and curing it.

また、輪状部材5を準備する。輪状部材5は、例えば気泡を含んだ未硬化の透過性アク
リル樹脂を従来の成形法によって所望の形状に形成することで作製することができる。
Moreover, the ring-shaped member 5 is prepared. The ring-shaped member 5 can be produced, for example, by forming an uncured transparent acrylic resin containing bubbles into a desired shape by a conventional molding method.

そして、準備した波長変換部材6を多孔質枠体4の段差4a上に、シリコーン樹脂等の接着材7を介して接着することで、発光装置1を作製することができる。   And the light-emitting device 1 is producible by adhere | attaching the prepared wavelength conversion member 6 on the level | step difference 4a of the porous frame 4 via the adhesive materials 7, such as a silicone resin.

1 発光装置
2 基板
3 発光素子
4 多孔質枠体
4a 段差
5 輪状部材
6 波長変換部材
7 接着材
8 封止部材
SP 隙間
S 浸透領域
b 気孔
DESCRIPTION OF SYMBOLS 1 Light-emitting device 2 Board | substrate 3 Light-emitting element 4 Porous frame 4a Level | step difference 5 Ring-shaped member 6 Wavelength conversion member 7 Adhesive material 8 Sealing member SP Clearance S Penetration area | region b Pore

Claims (4)

基板と、
前記基板上に設けられた発光素子と、
前記基板上に設けられた、前記発光素子を取り囲む多孔質枠体と、
前記多孔質枠体の内壁面の上部に沿って設けられた、前記多孔質枠体の気孔率よりも気孔率が小さい輪状部材と、
前記輪状部材の内側に前記発光素子と間を空けて設けられた波長変換部材と、
前記波長変換部材の上面から前記輪状部材の上面にかけて設けられた接着材と、を備えたことを特徴とする発光装置。
A substrate,
A light emitting device provided on the substrate;
A porous frame provided on the substrate and surrounding the light emitting element;
A ring-shaped member provided along the upper portion of the inner wall surface of the porous frame, the porosity of which is smaller than the porosity of the porous frame;
A wavelength conversion member provided inside the ring-shaped member and spaced apart from the light emitting element;
And an adhesive provided from the upper surface of the wavelength conversion member to the upper surface of the ring-shaped member.
請求項1に記載の発光装置であって、
前記波長変換部材と前記輪状部材との間には隙間が設けられており、前記接着材の一部は前記隙間に入り込んでいることを特徴とする発光装置。
The light-emitting device according to claim 1,
A gap is provided between the wavelength conversion member and the ring-shaped member, and a part of the adhesive material enters the gap.
請求項1または請求項2に記載の発光装置であって、
前記接着材は、前記輪状部材の上面から前記多孔質枠体の上部にかけても設けられていることを特徴とする発光装置。
The light-emitting device according to claim 1 or 2,
The light emitting device according to claim 1, wherein the adhesive material is also provided from an upper surface of the ring-shaped member to an upper portion of the porous frame.
請求項3に記載の発光装置であって、
前記接着材は、前記多孔質枠体の上部から内部に浸入していることを特徴とする発光装置。
The light-emitting device according to claim 3,
The light-emitting device, wherein the adhesive material penetrates into the inside from the upper part of the porous frame.
JP2011091306A 2011-04-15 2011-04-15 Light emitting device Withdrawn JP2012227224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011091306A JP2012227224A (en) 2011-04-15 2011-04-15 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011091306A JP2012227224A (en) 2011-04-15 2011-04-15 Light emitting device

Publications (1)

Publication Number Publication Date
JP2012227224A true JP2012227224A (en) 2012-11-15

Family

ID=47277089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011091306A Withdrawn JP2012227224A (en) 2011-04-15 2011-04-15 Light emitting device

Country Status (1)

Country Link
JP (1) JP2012227224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125611A1 (en) * 2015-02-03 2016-08-11 日本電気硝子株式会社 Wavelength conversion member and light emitting device using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125611A1 (en) * 2015-02-03 2016-08-11 日本電気硝子株式会社 Wavelength conversion member and light emitting device using same
CN107209302A (en) * 2015-02-03 2017-09-26 日本电气硝子株式会社 Wavelength convert part and use its light-emitting device
JPWO2016125611A1 (en) * 2015-02-03 2017-11-16 日本電気硝子株式会社 Wavelength converting member and light emitting device using the same
US10557614B2 (en) 2015-02-03 2020-02-11 Nippon Electric Glass Co., Ltd. Projector light source including wavelength conversion member having porous ceramic substrate

Similar Documents

Publication Publication Date Title
JP5393802B2 (en) Light emitting device
JP5393796B2 (en) Light emitting device
JP5634519B2 (en) Light emitting device
WO2012011528A1 (en) Light-emitting device and lighting device
WO2011149052A1 (en) Light emitting device and lighting device
JP5748575B2 (en) Light emitting device
JP2012114336A (en) Light emitting device and lighting device
WO2011125428A1 (en) Light emitting device
JP5683366B2 (en) Light emitting device
JP2012094678A (en) Light emitting device
JP2014160811A (en) Light-emitting device
WO2013035529A1 (en) Light emitting device
JP6294119B2 (en) Light emitting device
JP2012227224A (en) Light emitting device
JP2012209512A (en) Light emitting device and lighting device using the same
JP2012009719A (en) Light emitting device and lighting system
JP2014123598A (en) Light-emitting device
JP5748599B2 (en) Lighting device
JP2013110297A (en) Light emitting device
WO2011037184A1 (en) Light emitting device
JP2013105801A (en) Light emitting device
JP5806153B2 (en) Light emitting device
JP2013021027A (en) Light emitting device
JP2013012537A (en) Light emitting apparatus
JP6010404B2 (en) Light emitting device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701