JP2012224935A - Titanium alloy billet and method for producing titanium alloy billet, and method for producing titanium alloy forged material - Google Patents

Titanium alloy billet and method for producing titanium alloy billet, and method for producing titanium alloy forged material Download PDF

Info

Publication number
JP2012224935A
JP2012224935A JP2011096050A JP2011096050A JP2012224935A JP 2012224935 A JP2012224935 A JP 2012224935A JP 2011096050 A JP2011096050 A JP 2011096050A JP 2011096050 A JP2011096050 A JP 2011096050A JP 2012224935 A JP2012224935 A JP 2012224935A
Authority
JP
Japan
Prior art keywords
titanium alloy
billet
forging
producing
alloy billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011096050A
Other languages
Japanese (ja)
Other versions
JP5748267B2 (en
Inventor
Yoshinori Ito
良規 伊藤
Shogo Murakami
昌吾 村上
Takayuki Kinoshita
敬之 木下
Shunsuke Mochida
俊介 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011096050A priority Critical patent/JP5748267B2/en
Publication of JP2012224935A publication Critical patent/JP2012224935A/en
Application granted granted Critical
Publication of JP5748267B2 publication Critical patent/JP5748267B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide: titanium alloy billets with which an α+β type titanium alloy product with small anisotropy can be manufactured at a relatively simplified forging process; a method for producing the titanium alloy billets; and a method for producing a titanium alloy forged material, by which a titanium alloy forged material is produced using the titanium alloy billets.SOLUTION: In the titanium alloy billets, a c-axis direction of an α phase is integrated within ±30° from the longitudinal direction of each of the titanium alloy billets toward the Y direction (direction of heavy reduction) and in a range ±40-90° from the longitudinal direction of each of the titanium alloy billets toward the X direction (direction perpendicular to the Y direction and the longitudinal direction), and a degree of the integration is 3 or greater.

Description

本発明は、チタン合金製品の製造工程の途中に得られるチタン合金ビレット、およびそのチタン合金ビレットの製造方法、並びにそのチタン合金ビレットを用いてチタン合金鍛造材を製造するチタン合金鍛造材の製造方法に関するものである。   The present invention relates to a titanium alloy billet obtained during the manufacturing process of a titanium alloy product, a method for manufacturing the titanium alloy billet, and a method for manufacturing a titanium alloy forged material using the titanium alloy billet to manufacture a titanium alloy forged material. It is about.

Ti−6Al−4V合金に代表されるα+β型チタン合金は、軽量、高強度、高耐食性に加え、溶接性、超塑性、拡散接合性などの利用加工諸特性を有することから、航空機産業を中心に多用されてきた。これらの特性を更に活用すべく、近年では、ゴルフ用品をはじめとしたスポーツ用品にも使用されるようになってきており、自動車部品、土木建築用素材、各種工具類などの民生品分野や、深海やエネルギー開発用途などへの適用拡大も進んでいる。   Α + β type titanium alloy, represented by Ti-6Al-4V alloy, has various processing characteristics such as weldability, superplasticity, and diffusion bondability in addition to light weight, high strength, and high corrosion resistance. Has been used extensively. In order to further utilize these characteristics, in recent years it has come to be used for sports equipment such as golf equipment, such as consumer products such as automobile parts, civil engineering materials, various tools, Application to deep seas and energy development applications is also expanding.

α+β型のチタン合金製品は、まず、原材料を溶解後、例えば、特許文献1に記載されているように、β域鍛造→α+β域鍛造→β熱処理→α+β域鍛造という鍛造工程を経てまずチタン合金ビレットを製造し、そのチタン合金ビレットに対し、複数の荒地鍛造工程と仕上げ鍛造工程で成る型鍛造、熱処理、機械加工を施すことによって製造される。   The α + β type titanium alloy product is first a titanium alloy after the raw material is melted and then subjected to a forging process of β region forging → α + β region forging → β heat treatment → α + β region forging as described in Patent Document 1, for example. The billet is manufactured by subjecting the titanium alloy billet to die forging, heat treatment, and machining, which include a plurality of wasteland forging steps and finish forging steps.

このα+β型チタン合金の金属組織はα相とβ相で構成されている。これら金属組織のうち、β相は体心立方晶であり等方的な特性を有しているが、α相は稠密六方晶であり、結晶セルの方向、特にc軸方向(図1に示す)とc軸と垂直な方向で特性が大きく異なっている。そのため、α+β型のチタン合金製品は、α相の結晶セルの配向状態(集合組織)によって、機械的特性を始め種々の特性に異方性を生じることがある。   The metal structure of this α + β type titanium alloy is composed of an α phase and a β phase. Among these metal structures, the β phase is a body-centered cubic crystal and has isotropic characteristics, but the α phase is a dense hexagonal crystal, and the crystal cell direction, particularly the c-axis direction (shown in FIG. 1). ) And the direction perpendicular to the c-axis are greatly different. For this reason, α + β type titanium alloy products may have anisotropy in various characteristics including mechanical characteristics depending on the orientation state (texture structure) of the α-phase crystal cell.

α+β型チタン合金でなる最終製品には、特定の目的で意図的に異方性を持たせる場合もあるが、多くの場合は等方的な特性を有することが望まれる。従って、従来から等方的な特性を有する最終製品を製造するために様々な工夫が凝らされていた。   The final product made of α + β type titanium alloy may be intentionally anisotropic for a specific purpose, but in many cases it is desired to have isotropic characteristics. Therefore, various efforts have been made to produce a final product having isotropic characteristics.

従来の製造方法では、まず、半径方向に異方性のないチタン合金ビレットを製造したうえで、そのチタン合金ビレットに対し、複数の荒地鍛造工程と仕上げ鍛造工程で成る型鍛造、熱処理、そして機械加工を施すことによって最終製品を製造することが一般的であった。しかしながら、このような製造工程で等方的な特性を有する最終製品を製造する場合、型鍛造により導入される歪みが一方向に偏らないように、荒地鍛造工程や仕上げ鍛造工程に細かな工夫を凝らす必要がある。そのためには、金型の形状の工夫を始めとして、最適な鍛造工程を見つけ出すための試行錯誤を行うこととなり、α+β型チタン合金でなる最終製品の製造には大変な手間を要していた。   In the conventional manufacturing method, first, a titanium alloy billet having no anisotropy in the radial direction is manufactured, and then the die forging, heat treatment, and machine comprising a plurality of rough forging processes and finishing forging processes are performed on the titanium alloy billet. It has been common to produce final products by processing. However, when manufacturing a final product with isotropic characteristics in such a manufacturing process, fine contrivances have been made in the wasteland forging process and the finishing forging process so that the strain introduced by die forging is not biased in one direction. It is necessary to elaborate. For that purpose, trial and error for finding the optimum forging process, including the contrivance of the shape of the mold, was carried out, and it took a lot of labor to produce the final product made of α + β type titanium alloy.

米国特許第5277718号明細書US Pat. No. 5,277,718

本発明は、上記従来の問題を解決せんとしてなされたもので、比較的簡便な鍛造工程で異方性の小さいα+β型のチタン合金製品を製造することができるチタン合金ビレット、およびそのチタン合金ビレットの製造方法、並びにそのチタン合金ビレットを用いてチタン合金鍛造材を製造するチタン合金鍛造材の製造方法を提供することを課題とするものである。   The present invention has been made as a solution to the above-mentioned conventional problems, and a titanium alloy billet capable of producing an α + β type titanium alloy product having a small anisotropy by a relatively simple forging process, and the titanium alloy billet It is an object of the present invention to provide a method for producing a titanium alloy forged material that produces a titanium alloy forged material using the titanium alloy billet.

請求項1記載の発明は、α相とβ相でなる金属組織を有するチタン合金ビレットであって、ビレットの長手方向からY方向(強圧下方向)に向かって±30°以内で、且つ、ビレットの長手方向からX方向(Y方向および長手方向に垂直な方向)に向かって±40°〜90°の範囲に、α相のc軸方向が集積しており、その集積度が3以上であることを特徴とするチタン合金ビレットである。   The invention according to claim 1 is a titanium alloy billet having a metal structure composed of an α phase and a β phase, which is within ± 30 ° from the longitudinal direction of the billet toward the Y direction (downward pressure), and the billet The α-axis c-axis direction is accumulated in the range of ± 40 ° to 90 ° from the longitudinal direction of the film toward the X direction (the direction perpendicular to the Y direction and the longitudinal direction), and the degree of accumulation is 3 or more. This is a titanium alloy billet.

請求項2記載の発明は、質量%で、Al:5.50〜6.75%、V:3.50〜4.50%を含有し、残部がTiおよび不可避的不純物であるチタン合金で形成されていることを特徴とする請求項1記載のチタン合金ビレットである。   The invention according to claim 2 is formed of a titanium alloy containing, by mass%, Al: 5.50 to 6.75%, V: 3.50 to 4.50%, the balance being Ti and inevitable impurities. The titanium alloy billet according to claim 1, wherein the billet is a titanium alloy billet.

請求項3記載の発明は、チタン合金素材を用いてチタン合金ビレットを製造するにあたり、チタン合金素材を用いて鍛造された中間素材をβ変態温度未満の温度で加熱した後に、下記式(1)〜式(3)を満足する条件で鍛造を行い、チタン合金ビレットを製造することを特徴とするチタン合金ビレットの製造方法である。
(a1×b2)/(a2×b1)≧1.5・・・式(1)
(a1−a2)/a1≧0.4・・・式(2)
A2/A1≧0.6・・・式(3)
In manufacturing the titanium alloy billet using the titanium alloy material, the invention described in claim 3 is the following formula (1) after heating the intermediate material forged using the titanium alloy material at a temperature lower than the β transformation temperature. A titanium alloy billet manufacturing method is characterized in that forging is performed under conditions satisfying the expression (3) to manufacture a titanium alloy billet.
(A1 × b2) / (a2 × b1) ≧ 1.5 (1)
(A1-a2) /a1≧0.4 Formula (2)
A2 / A1 ≧ 0.6 Formula (3)

但し、a1,b1,A1は強圧下鍛造前の中間素材の長手方向に直交する断面形状を計測したもので、a1は強圧下方向の中間素材の長さを、b1はa1に直交する方向の中間素材の長さを、A1は断面積を、夫々示し、また、a2,b2,A2は鍛造後の中間素材の長手方向に直交する断面形状を計測したもので、a2は強圧下方向の中間素材の長さを、b2はa2に直交する方向の中間素材の長さを、A2は断面積を、夫々示す。   However, a1, b1, and A1 are cross-sectional shapes that are orthogonal to the longitudinal direction of the intermediate material before forging under strong pressure, a1 is the length of the intermediate material in the downward direction, and b1 is in the direction orthogonal to a1. A1 indicates the length of the intermediate material, A1 indicates the cross-sectional area, and a2, b2, and A2 indicate the cross-sectional shape orthogonal to the longitudinal direction of the intermediate material after forging, and a2 indicates the intermediate direction in the strong pressure downward direction. The length of the material, b2 indicates the length of the intermediate material in the direction orthogonal to a2, and A2 indicates the cross-sectional area.

請求項4記載の発明は、前記チタン合金素材が、質量%で、Al:5.50〜6.75%、V:3.50〜4.50%を含有し、残部がTiおよび不可避的不純物であるチタン合金であることを特徴とする請求項3記載のチタン合金ビレットの製造方法である。   In the invention according to claim 4, the titanium alloy material contains, by mass%, Al: 5.50 to 6.75%, V: 3.50 to 4.50%, the balance being Ti and inevitable impurities. The titanium alloy billet manufacturing method according to claim 3, wherein the titanium alloy billet is a titanium alloy.

請求項5記載の発明は、請求項1または請求項2記載のチタン合金ビレットを用いてチタン合金鍛造材を製造するにあたり、チタン合金ビレットをβ変態点未満の温度で加熱した後に、前記強圧下方向と直交し、且つ長手方向と直交する方向から±10°の範囲内に位置する方向より下記式(4)および式(5)を満足する条件で、前記チタン合金ビレットに変形を加え、チタン合金鍛造材を製造することを特徴とするチタン合金鍛造材の製造方法である。
(b2−b3)/b2≧0.2・・・式(4)
(b2−b4)/b2≦0.6・・・式(5)
In manufacturing the titanium alloy forged material using the titanium alloy billet according to the first or second aspect, the invention according to the fifth aspect is characterized in that after the titanium alloy billet is heated at a temperature lower than the β transformation point, the strong pressure is reduced. The titanium alloy billet is deformed under conditions satisfying the following formulas (4) and (5) from a direction that is perpendicular to the direction and within a range of ± 10 ° from the direction perpendicular to the longitudinal direction. An alloy forging material is produced. A method for producing a titanium alloy forging material.
(B2-b3) /b2≧0.2 (4)
(B2-b4) /b2≦0.6 (5)

但し、b3,b4はチタン合金鍛造材を製造する鍛造工程後のb2(請求項3で定義)と平行する方向のチタン合金鍛造材の長さを示し、b3は最長部の長さを、b4は最短部の長さを、夫々示す。   However, b3 and b4 show the length of the titanium alloy forging material in the direction parallel to b2 (defined in claim 3) after the forging process for producing the titanium alloy forging material, b3 shows the length of the longest part, b4 Indicates the length of the shortest part, respectively.

本発明のチタン合金ビレットおよびチタン合金ビレットの製造方法並びにチタン合金鍛造材の製造方法によると、チタン合金鍛造材を製造するために金型の形状に工夫を凝らす等、鍛造工程に細かな工夫を凝らすことなくても、比較的簡便な鍛造工程で異方性の小さいα+β型のチタン合金製品を製造することができる。   According to the titanium alloy billet and the titanium alloy billet manufacturing method and the titanium alloy forging material manufacturing method of the present invention, the ingenuity of the forging process is devised, such as devising the shape of the mold to produce the titanium alloy forging material. Even without elaboration, an α + β type titanium alloy product having a small anisotropy can be produced by a relatively simple forging process.

α+β型チタン合金のα相を示す斜視図である。It is a perspective view which shows the alpha phase of an alpha + beta type titanium alloy. α相のc軸の、ビレットの長手方向からY方向に向かう傾きを例示するチタン合金ビレットの横断面図である。It is a cross-sectional view of a titanium alloy billet illustrating the inclination of the α-phase c-axis from the billet longitudinal direction to the Y direction. α相のc軸の、ビレットの長手方向からX方向に向かう傾きを例示するチタン合金ビレットの縦断面図である。It is a longitudinal cross-sectional view of the titanium alloy billet which illustrates the inclination of the c-axis of the α phase from the billet longitudinal direction to the X direction. α相のc軸方向の集積位置と集積度を示す説明図である。It is explanatory drawing which shows the accumulation position and accumulation degree of c phase direction of (alpha) phase.

α相とβ相でなる金属組織を有するα+β型チタン合金素材を用いて異方性の小さいチタン合金製品を鍛造により得ようとすると、従来は金型形状等に非常に複雑且つ細かな工夫を凝らす等の鍛造工程を経なければ製造することができず、それが大きな要因となりα+β型チタン合金製品のコストアップを招いていた。   When trying to obtain titanium alloy products with low anisotropy by forging using α + β type titanium alloy material with a metal structure consisting of α phase and β phase, it has conventionally been very complicated and finely devised to mold shape etc. It cannot be produced unless it is subjected to a forging process such as scouring, and this is a major factor, leading to an increase in the cost of α + β type titanium alloy products.

本発明者らは、金型形状等に工夫を凝らさなくても比較的簡便な鍛造工程で異方性の小さいα+β型のチタン合金製品(チタン合金鍛造材)を製造することができる発明を見出すために鋭意研究を進めた。その結果、α+β型チタン合金製品の製造工程の途中で得られるチタン合金ビレットのα相のc軸方向(図1に示す)をある特定の範囲に集積させてチタン合金ビレットの段階で異方性を付与しておいて、そのチタン合金ビレットをチタン合金製品の製造に用いれば、比較的簡便な鍛造工程により異方性の小さいα+β型チタン合金製品を製造することができることを知見し、本発明の完成に至った。   The present inventors have found an invention capable of producing an α + β type titanium alloy product (titanium alloy forging material) having a small anisotropy by a relatively simple forging process without elaborating the mold shape or the like. In order to achieve this goal, we have conducted extensive research. As a result, the c-axis direction (shown in FIG. 1) of the α phase of the titanium alloy billet obtained in the course of the manufacturing process of the α + β type titanium alloy product is accumulated in a specific range and is anisotropic at the stage of the titanium alloy billet. When the titanium alloy billet is used for the production of titanium alloy products, it has been found that α + β type titanium alloy products with small anisotropy can be produced by a relatively simple forging process. It was completed.

以下、本発明を添付図面に示す実施形態に基づき詳細に説明する。まず、チタン合金製品の製造工程の途中に得られるチタン合金ビレットについて詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings. First, the titanium alloy billet obtained in the middle of the manufacturing process of the titanium alloy product will be described in detail.

α+β型チタン合金は、その金属組織が稠密六方晶のα相と体心立方晶のβ相で構成されている。これら金属組織のうち、β相は体心立方晶であるので等方的な特性を有しているが、図1に示すような結晶構造(稠密六方晶)のα相は、結晶セルの方向、特にc軸方向とc軸と垂直な方向で特性が大きく異なっている。従って、α+β型のチタン合金製品は、α相の結晶セルの配向方向によっては、機械的特性を始め種々の特性に異方性を生じることがある。   The α + β-type titanium alloy is composed of a dense hexagonal α phase and a body-centered cubic β phase. Among these metal structures, the β phase is isotropic because it is a body-centered cubic crystal, but the α phase having a crystal structure (dense hexagonal crystal) as shown in FIG. In particular, the characteristics are greatly different between the c-axis direction and the direction perpendicular to the c-axis. Therefore, an α + β type titanium alloy product may cause anisotropy in various characteristics including mechanical characteristics depending on the orientation direction of the α-phase crystal cell.

異方性の小さいα+β型チタン合金製品を得るための条件として最も好ましいのは、結晶方位(集合組織)がランダムに配向している場合である。また、たとえ結晶方位の集積が存在していたとしても、集積箇所が複数存在し、且つ、それら集積位置が空間的に分散しておれば(それらの向きが様々であれば)、チタン合金製品の異方性は小さくなる。すなわち、最終製品の段階で上記したどちらかの条件を満たしていることが、異方性の小さいα+β型チタン合金製品を得るための条件である。   The most preferable condition for obtaining an α + β type titanium alloy product with small anisotropy is when the crystal orientation (texture) is randomly oriented. Moreover, even if there is an accumulation of crystal orientations, if there are a plurality of accumulation locations and the accumulation positions are spatially dispersed (if their orientations are different), the titanium alloy product The anisotropy of becomes smaller. That is, satisfying one of the above-mentioned conditions at the final product stage is a condition for obtaining an α + β-type titanium alloy product with low anisotropy.

チタン合金ビレットを用いて型鍛造によりチタン合金製品を製造する際に、チタン合金ビレットのビレット径よりチタン合金製品の長さが大きい場合、チタン合金ビレットの長手方向とチタン合金製品の最大長さ方向が一致するようにしてチタン合金製品を製造することになる。   When manufacturing titanium alloy products by die forging using titanium alloy billets, if the length of the titanium alloy product is larger than the billet diameter of the titanium alloy billet, the longitudinal direction of the titanium alloy billet and the maximum length direction of the titanium alloy product Titanium alloy products are manufactured in such a way as to match.

この場合、チタン合金ビレットに対し、ビレットの長手方向と直交する垂直方向から主に変形を加えることとなる。主な変形を一方向に限定できれば生産性は向上するが、加工前の素材(チタン合金ビレット)の結晶方位(集合組織)がランダムに配向している場合には、加工後のチタン合金製品に特定の集合組織が形成され、結果として強い異方性が生じる可能性が高くなる。その理由は、α相のc軸は加工方向に直交する方向(垂直方向)に集積する傾向があるためである。   In this case, the titanium alloy billet is mainly deformed from the vertical direction orthogonal to the longitudinal direction of the billet. If the main deformation can be limited to one direction, the productivity will be improved. However, if the crystal orientation (texture) of the raw material (titanium alloy billet) is randomly oriented, A specific texture is formed, and as a result, a strong anisotropy is likely to occur. This is because the α-phase c-axis tends to accumulate in a direction (vertical direction) orthogonal to the processing direction.

チタン合金製品に生じる異方性を低減するためには、最終製品の段階で前記した2つの条件のうちどちらかの条件を満たしておく必要があるが、本発明者らはこれらの条件を満たすことができる方法を見出すために、鋭意検討を行った。   In order to reduce the anisotropy generated in the titanium alloy product, it is necessary to satisfy one of the two conditions described above at the final product stage, but the present inventors satisfy these conditions. In order to find a method that can do this, we have intensively studied.

前記したように、α相のc軸は加工方向に直交する方向(垂直方向)に集積する傾向がある。また、鍛伸方向にも集積する傾向がある。これらの傾向を踏まえ検討を行った結果、チタン合金ビレットの段階でα相のc軸方向をある特定の範囲に集積させて、敢えてチタン合金ビレットの段階では異方性を付与させておくことが、異方性の小さいα+β型チタン合金製品(チタン合金鍛造材)を得るために有効であることが分かった。   As described above, the α-phase c-axis tends to accumulate in a direction (vertical direction) perpendicular to the processing direction. There is also a tendency to accumulate in the forging direction. As a result of studying based on these trends, it is possible to accumulate the c-axis direction of the α phase in a certain range at the stage of titanium alloy billet and to add anisotropy at the stage of titanium alloy billet. It was found that this is effective for obtaining an α + β type titanium alloy product (titanium alloy forged material) having a small anisotropy.

前記したように、チタン合金製品はチタン合金ビレットから型鍛造により製造されるが、その型鍛造工程で、α相のc軸と平行、もしくはそれに近い方向に変形を加えると、α相は変形方向に対して垂直方向に配向しようとするが、全ての結晶粒が同時には配向せずに、一部の結晶粒は加工方向と平行な概ね初期状態を保ったままの状態となり、また、一部は配向途中の段階となる。また、鍛伸が加わる場合には鍛伸方向に配向する結晶粒も存在する。その結果、型鍛造段階での加工方向が一定方向であるにも係わらず、α相が極端に集積することが避けられ、異方性の小さいチタン合金製品を得ることが可能となる。   As described above, a titanium alloy product is manufactured from a titanium alloy billet by die forging. In the die forging process, if the α phase is deformed in a direction parallel to or close to the c axis of the α phase, the α phase is deformed. However, all crystal grains are not oriented at the same time, and some of the grains remain in an almost initial state parallel to the processing direction. Is a stage in the middle of alignment. In addition, when forging is applied, there are crystal grains oriented in the forging direction. As a result, despite the fact that the processing direction at the die forging stage is a constant direction, it is possible to avoid the accumulation of α-phase extremely and to obtain a titanium alloy product having a small anisotropy.

例えば、図2〜4に示すように、ビレットの長手方向からY方向(ビレット鍛造時の強圧下方向)に向かって±30°以内で(図2は0°の例を示す。)、且つ、ビレットの長手方向からX方向(Y方向および長手方向に垂直な方向)に向かって±40°〜90°の範囲に、α相のc軸方向を集積させれば良い。もしこの範囲を外れてα相のc軸方向が集積しておれば、仮に集積度が3以上であっても、型鍛造工程にて一方向から主に変形を加えた際に、型鍛造後に集合組織が形成され、その結果、機械的特性に異方性を生じる。   For example, as shown in FIGS. 2 to 4, within ± 30 ° from the longitudinal direction of the billet toward the Y direction (the downward direction of strong pressure during billet forging) (FIG. 2 shows an example of 0 °), and The α-phase c-axis direction may be accumulated in a range of ± 40 ° to 90 ° from the longitudinal direction of the billet in the X direction (the direction perpendicular to the Y direction and the longitudinal direction). If the c-axis direction of the α phase is accumulated outside this range, even if the degree of accumulation is 3 or more, when deformation is mainly applied from one direction in the die forging process, A texture is formed, resulting in anisotropy in the mechanical properties.

尚、α相のc軸方向を、ビレットの長手方向からY方向に向かって±10°以内の範囲に集積させることがより好ましく、また、ビレットの長手方向からX方向に向かって±60°〜70°の範囲に集積させることがより好ましい。   The α-phase c-axis direction is more preferably accumulated within a range of ± 10 ° from the longitudinal direction of the billet toward the Y direction, and from ± 60 ° to the X direction from the longitudinal direction of the billet. It is more preferable to accumulate in a range of 70 °.

また、先に説明したように集積度は3以上とする必要がある。集積度が3未満の場合、その後の型鍛造工程で一方向に大きな歪みを加えると、その加工により別の方向にα相のc軸が集積し、機械的特性に異方性が生じる虞がある。   Further, as described above, the degree of integration needs to be 3 or more. When the degree of integration is less than 3, if a large strain is applied in one direction in the subsequent die forging process, the c-axis of the α phase may accumulate in another direction due to the processing, and anisotropy may occur in the mechanical characteristics. is there.

本発明は、α+β型チタン合金であれば適用することができるが、特に、AMS4928で規定される成分で形成されていることが好ましい。つまり、Al:5.50〜6.75質量%、V:3.50〜4.50質量%を含有し、残部がTiおよび不可避的不純物であるチタン合金で形成されていることが好ましい。不可避的不純物としては、おおよそN:0.05質量%、C:0.08質量%、H:0.015質量%、Fe:0.30質量%、O:0.20質量%を含有する。   The present invention can be applied to any α + β type titanium alloy. In particular, it is preferably formed of a component specified by AMS4928. That is, it is preferable that Al: 5.50 to 6.75% by mass, V: 3.50 to 4.50% by mass, with the balance being Ti and an inevitable impurity titanium alloy. As an unavoidable impurity, N: 0.05 mass%, C: 0.08 mass%, H: 0.015 mass%, Fe: 0.30 mass%, O: 0.20 mass% are contained.

また、チタン合金ビレットは、AMS4981で規定されるチタン合金で形成されていても良い。AMS4981で規定されるチタン合金は、主添加元素として、Al、Sn、ZrおよびMoを含有し、その含有量は、Al:5.50〜6.50質量%、Sn:1.75〜2.25質量%、Zr:3.50〜4.50質量%、Mo:5.50〜6.50質量%であって、残部はTiおよび不可避的不純物である。不可避的不純物としては、おおよそN:0.04質量%、C:0.08質量%、H:0.015質量%、Fe:0.15質量%、O:0.15質量%を含有する。   The titanium alloy billet may be formed of a titanium alloy specified by AMS4981. The titanium alloy specified by AMS4981 contains Al, Sn, Zr and Mo as main additive elements, and the contents thereof are Al: 5.50 to 6.50 mass%, Sn: 1.75 to 2.75. 25% by mass, Zr: 3.50 to 4.50% by mass, Mo: 5.50 to 6.50% by mass, with the balance being Ti and inevitable impurities. As inevitable impurities, N: 0.04 mass%, C: 0.08 mass%, H: 0.015 mass%, Fe: 0.15 mass%, and O: 0.15 mass% are contained.

次に、本発明のチタン合金ビレットの製造方法について説明する。   Next, the manufacturing method of the titanium alloy billet of this invention is demonstrated.

通常、チタン合金ビレットは、(a)β域鍛造→(b)α+β域鍛造→(c)β熱処理→(d)α+β域鍛造という各工程を経て製造されるが、原材料の化学組成や工程の順序並びに工程毎の諸条件という複数の条件によって、製造されるチタン合金ビレットの物性や組織状態は変化するので、一連の製造工程として総合的に条件を選択して決定すべきであって、必ずしも工程の順序や工程毎の条件を厳密に規定することは適切ではない。   Usually, a titanium alloy billet is manufactured through each process of (a) β region forging → (b) α + β region forging → (c) β heat treatment → (d) α + β region forging. The physical properties and structure of the titanium alloy billet to be manufactured vary depending on the order and the conditions of each process, so the conditions should be selected and determined comprehensively as a series of manufacturing processes. It is not appropriate to strictly define the order of processes and the conditions for each process.

しかしながら、本発明のチタン合金ビレットを製造するための製造条件を、本発明者らが鋭意検討したところ、以下に示す製造条件を採用することで、本発明で意図する異方性を付与したチタン合金ビレットを確実に製造することができることを確認した。   However, when the present inventors diligently studied the production conditions for producing the titanium alloy billet of the present invention, titanium having the anisotropy intended by the present invention was adopted by adopting the production conditions shown below. It was confirmed that the alloy billet can be produced reliably.

その製造条件は、前記した(d)α+β鍛造工程において、チタン合金素材を用いて事前に鍛造された中間素材を、β変態温度未満(α+β温度域)の温度で加熱した後に、下記した式(1)〜式(3)を満足する条件で鍛造を行うことである。   The manufacturing conditions are as follows: (d) in the α + β forging step, an intermediate material previously forged using a titanium alloy material is heated at a temperature lower than the β transformation temperature (α + β temperature range), and the following formula ( Forging is performed under conditions that satisfy 1) to (3).

各条件式は以下に示すとおりである。
(a1×b2)/(a2×b1)≧1.5・・・式(1)
(a1−a2)/a1≧0.4・・・式(2)
A2/A1≧0.6・・・式(3)
但し、a1,b1,A1は強圧下鍛造前の中間素材の長手方向に直交する断面形状を計測したもので、a1は強圧下方向の中間素材の長さを、b1はa1に直交する方向の中間素材の長さを、A1は断面積を、夫々示し、また、a2,b2,A2は鍛造後の中間素材の長手方向に直交する断面形状を計測したもので、a2は強圧下方向の中間素材の長さを、b2はa2に直交する方向の中間素材の長さを、A2は断面積を、夫々示す。
Each conditional expression is as follows.
(A1 × b2) / (a2 × b1) ≧ 1.5 (1)
(A1-a2) /a1≧0.4 Formula (2)
A2 / A1 ≧ 0.6 Formula (3)
However, a1, b1, and A1 are cross-sectional shapes that are orthogonal to the longitudinal direction of the intermediate material before forging under strong pressure, a1 is the length of the intermediate material in the downward direction, and b1 is in the direction orthogonal to a1. A1 indicates the length of the intermediate material, A1 indicates the cross-sectional area, and a2, b2, and A2 indicate the cross-sectional shape orthogonal to the longitudinal direction of the intermediate material after forging, and a2 indicates the intermediate direction of the strong pressure downward The length of the material, b2 indicates the length of the intermediate material in the direction orthogonal to a2, and A2 indicates the cross-sectional area.

中間素材の鍛造を開始する前にβ変態温度以上の温度で加熱した場合、鍛造で導入される歪みが効果的に蓄積されず、チタン合金ビレットに所望の異方性を付与することができない。従って、中間素材の鍛造を開始する前の加熱温度は、β変態温度未満(α+β温度域)の温度とする。   When heating at a temperature equal to or higher than the β transformation temperature before starting forging of the intermediate material, strain introduced by forging is not effectively accumulated, and desired anisotropy cannot be imparted to the titanium alloy billet. Therefore, the heating temperature before starting forging of the intermediate material is set to a temperature lower than the β transformation temperature (α + β temperature range).

式(1)では、チタン合金ビレットが異方性を得るために必要な、強圧下方向とその方向に直交する方向の変形量の比を規定する。(a1×b2)/(a2×b1)から求められる値が1.5より小さい値であると、チタン合金ビレットに十分な異方性を付与することができない。従って、(a1×b2)/(a2×b1)≧1.5とする。   Equation (1) defines the ratio of the amount of deformation in the direction of strong pressure and the direction perpendicular to the direction required for the titanium alloy billet to obtain anisotropy. If the value obtained from (a1 × b2) / (a2 × b1) is smaller than 1.5, sufficient anisotropy cannot be imparted to the titanium alloy billet. Therefore, (a1 × b2) / (a2 × b1) ≧ 1.5.

式(2)では、中間素材の鍛造による強圧下方向の変形量を規定する。(a1−a2)/a1から求められる値が0.4より小さい値であると、式(1)による条件を満たしても、変形量そのものが小さいため、チタン合金ビレットに十分な異方性を付与することができない。従って、(a1−a2)/a1≧0.4とする。   Equation (2) defines the amount of deformation in the direction of strong pressure by forging the intermediate material. When the value obtained from (a1-a2) / a1 is a value smaller than 0.4, even if the condition according to Equation (1) is satisfied, the deformation amount itself is small, so that the titanium alloy billet has sufficient anisotropy. Cannot be granted. Therefore, (a1-a2) /a1≧0.4.

式(3)では、中間素材を鍛造した時の長手方向への素材流出量を規定する。A2/A1から求められる値が0.6より小さい値であると、式(1)および式に(2)よる条件を満たしても、強圧下鍛造により素材が長手方向に流出してしまっているため、チタン合金ビレットに所望の異方性を付与することができない。従って、A2/A1≧0.6とする。   In Formula (3), the material outflow amount in the longitudinal direction when the intermediate material is forged is defined. If the value obtained from A2 / A1 is a value smaller than 0.6, the material has flowed out in the longitudinal direction by strong forging even if the conditions according to Equation (1) and Equation (2) are satisfied. Therefore, desired anisotropy cannot be imparted to the titanium alloy billet. Therefore, A2 / A1 ≧ 0.6.

尚、式(1)〜式(3)を満足する条件で中間素材に鍛造を施した後、α+β温度域で中間素材を長手方向に垂直な断面の形状が等方的に変化する鍛伸を行っても構わない。尚、この鍛伸による(強圧下方向の変形量)/(強圧下方向に直交する方向の変形量)は、1.1以内に収めなければならない。   In addition, after forging the intermediate material under the conditions satisfying the expressions (1) to (3), forging in which the shape of the cross section perpendicular to the longitudinal direction of the intermediate material isotropically changes in the α + β temperature range. You can go. It should be noted that the amount of deformation in the direction of strong pressure / (the amount of deformation in the direction perpendicular to the direction of strong pressure) by this forging must be within 1.1.

前記鍛造工程の途中及び前記鍛造工程の後に、中間素材及びチタン合金ビレットをβ変態点以上の温度で加熱してはならない。中間素材及びチタン合金ビレットをβ変態点以上に加熱すると、式(1)から式(3)を満足する条件で鍛造を施すことで付与された異方性が消失してしまう。   During the forging process and after the forging process, the intermediate material and the titanium alloy billet should not be heated at a temperature equal to or higher than the β transformation point. When the intermediate material and the titanium alloy billet are heated to the β transformation point or higher, the anisotropy imparted by forging under the conditions satisfying the formulas (1) to (3) is lost.

次に、このチタン合金ビレットを用いてチタン合金鍛造材(チタン合金製品)を製造する方法について説明する。   Next, a method for producing a titanium alloy forged material (titanium alloy product) using the titanium alloy billet will be described.

チタン合金鍛造材はチタン合金ビレットから型鍛造により製造されるが、型鍛造工程で、前記した強圧下鍛造による強圧下方向と平行な方向に歪みを加えると、チタン合金ビレットが既に有する集合組織(強圧下方向に直交する垂直方向にα相のc軸が配向している。)が更に助長されてしまう。つまり、機械的特性の異方性が助長されてしまい、異方性が更に大きくなる。   Titanium alloy forgings are manufactured from titanium alloy billets by die forging. In the die forging process, if a strain is applied in the direction parallel to the direction of strong rolling by the above-described strong rolling forging, the texture of the titanium alloy billet already exists ( The α-phase c-axis is oriented in the vertical direction perpendicular to the direction of strong pressure.) Is further promoted. That is, the anisotropy of mechanical properties is promoted, and the anisotropy is further increased.

これに対し、強圧下方向と直交する方向から歪みを加える場合、変形方向はα相のc軸の配向方向と略一致する。α相は変形方向に対して垂直方向に配向しようとするが、全ての結晶粒が同時には配向せずに、一部の結晶粒は加工方向と平行な概ね初期状態を保っており、また、一部は配向途中の段階となる。その結果、型鍛造段階での加工方向が一定方向であるに係わらず、α相が極端に集積することが避けられ、異方性の小さいチタン合金製品を得ることが可能となる。   On the other hand, when strain is applied from the direction orthogonal to the direction of strong pressure, the deformation direction substantially coincides with the orientation direction of the α-phase c-axis. The α phase tends to be oriented in a direction perpendicular to the deformation direction, but all the crystal grains are not oriented at the same time, and some of the crystal grains are generally in an initial state parallel to the processing direction. Some are in the middle of alignment. As a result, regardless of the processing direction in the die forging stage being a constant direction, it is possible to avoid the accumulation of the α phase extremely and to obtain a titanium alloy product having a small anisotropy.

具体的には、この型鍛造工程では、チタン合金ビレットをβ変態点未満(α+β温度域)の温度で加熱した後に、前記強圧下方向と長手方向に直交する方向の±10°の範囲内に位置する方向から下記式(4)および式(5)を満足する条件で、前記チタン合金ビレットに変形を加え、チタン合金鍛造材を製造すれば良い。   Specifically, in this die forging process, the titanium alloy billet is heated at a temperature below the β transformation point (α + β temperature range), and then within a range of ± 10 ° in the direction perpendicular to the strong pressure lowering direction and the longitudinal direction. What is necessary is just to produce a titanium alloy forging material by adding a deformation | transformation to the said titanium alloy billet on the conditions which satisfy | fill following formula (4) and formula (5) from the direction of a position.

各条件式は以下に示すとおりである。
(b2−b3)/b2≧0.2・・・式(4)
(b2−b4)/b2≦0.6・・・式(5)
但し、b3,b4はチタン合金鍛造材を製造する鍛造工程後のb2(請求項3で定義)と平行する方向のチタン合金鍛造材の長さを示し、b3は最長部の長さを、b4は最短部の長さを、夫々示す。
Each conditional expression is as follows.
(B2-b3) /b2≧0.2 (4)
(B2-b4) /b2≦0.6 (5)
However, b3 and b4 show the length of the titanium alloy forging material in the direction parallel to b2 (defined in claim 3) after the forging process for producing the titanium alloy forging material, b3 shows the length of the longest part, b4 Indicates the length of the shortest part, respectively.

チタン合金鍛造材の鍛造を開始する前にβ変態温度以上の温度で加熱した場合、式(1)から式(3)を満足する条件で鍛造を施すことで付与した異方性が消失してしまう。従って、チタン合金鍛造材の鍛造中間素材の鍛造を開始する前の加熱温度は、β変態温度未満(α+β温度域)の温度とする。   When the titanium alloy forging material is heated at a temperature equal to or higher than the β transformation temperature before starting forging, the anisotropy imparted by forging under conditions satisfying the expressions (1) to (3) disappears. End up. Therefore, the heating temperature before starting forging of the forged intermediate material of the titanium alloy forged material is set to a temperature lower than the β transformation temperature (α + β temperature range).

式(4)では、チタン合金ビレットを用いてチタン合金鍛造材(チタン合金製品)が製造される過程での、結晶の分散度合い(チタン合金ビレットの段階での強い異方性が低減される度合い)を規定する。(b2−b3)/b2から求められる値が0.2より小さい値であると、チタン合金ビレットを製造する工程で強圧下方向と直交する方向に付与された強い異方性が殆ど残存することとなり、チタン合金鍛造材の異方性を軽減することができなくなる。従って、(b2−b3)/b2≧0.2とする。   In formula (4), the degree of dispersion of crystals (the degree to which strong anisotropy at the stage of titanium alloy billet is reduced) in the process of manufacturing a titanium alloy forged material (titanium alloy product) using a titanium alloy billet ). When the value obtained from (b2-b3) / b2 is a value smaller than 0.2, strong anisotropy imparted in the direction perpendicular to the direction of strong reduction remains in the step of manufacturing the titanium alloy billet. Thus, the anisotropy of the titanium alloy forged material cannot be reduced. Therefore, (b2−b3) /b2≧0.2.

式(5)では、チタン合金ビレットを用いてチタン合金鍛造材(チタン合金製品)が製造される過程での、結晶の分散度合いを規定する。(b2−b4)/b2から求められる値が0.6より大きな値であると、チタン合金鍛造材を製造する型鍛造工程で、変形方向と垂直方向にc軸が配向するα相の割合が必要以上に増加し、チタン合金ビレットの状態とは異なる方向に異方性が形成されるため、チタン合金鍛造材の異方性を軽減することができなくなる。従って、(b2−b4)/b2≦0.6とする。   Formula (5) defines the degree of dispersion of crystals in the process of manufacturing a titanium alloy forged material (titanium alloy product) using a titanium alloy billet. When the value obtained from (b2-b4) / b2 is a value larger than 0.6, the ratio of the α phase in which the c-axis is oriented in the direction perpendicular to the deformation direction in the die forging process for producing the titanium alloy forged material Since anisotropy is formed in a direction different from the state of the titanium alloy billet, the anisotropy of the titanium alloy forged material cannot be reduced. Therefore, (b2−b4) /b2≦0.6.

以下実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, but may be implemented with appropriate modifications within a range that can be adapted to the gist of the present invention. These are all included in the technical scope of the present invention.

本実施例の試験では、まず、φ840mmのTi−6Al−4V鋳塊を用いて、(a)β域鍛造→(b)α+β域鍛造→(c)β熱処理→(d)α+β域鍛造という各工程を経てチタン合金ビレットを得た。   In the test of this example, first, using a Ti-6Al-4V ingot of φ840 mm, each of (a) β region forging → (b) α + β region forging → (c) β heat treatment → (d) α + β region forging Through the process, a titanium alloy billet was obtained.

具体的には、(a)β域鍛造の後、(b)α+β域鍛造工程で、表1に示す種々の鍛造前の断面形状に仕上げて中間素材とし、続いて(c)β熱処理を、1050℃に1.5時間保持後、水冷却を行うという条件で施し、700℃で2.5時間の条件で応力ひずみ除去を行った。その後、β熱処理後の中間素材を加熱炉でβ変態温度未満の950℃に加熱(用いたチタン合金のβ変態温度は995℃)し、3時間保持した後に加熱炉から取り出し、表1に記載の鍛造後の形状となるようにして(d)α+β域鍛造を施した。その後、再度、950℃に加熱して3時間保持した後、断面形状がφ270mmになるように鍛造加工してチタン合金ビレットを得た。尚、表2に式(1)〜式(3)により求められた値を示す。   Specifically, after (a) β zone forging, (b) α + β zone forging step, finish various cross-sectional shapes before forging shown in Table 1 as an intermediate material, then (c) β heat treatment, After holding at 1050 ° C. for 1.5 hours, water cooling was performed, and stress strain removal was performed at 700 ° C. for 2.5 hours. Thereafter, the intermediate material after the β heat treatment was heated to 950 ° C. below the β transformation temperature in the heating furnace (the β transformation temperature of the titanium alloy used was 995 ° C.), held for 3 hours, then taken out of the heating furnace and listed in Table 1. (D) α + β region forging was performed so as to obtain the shape after forging. Then, after heating again to 950 degreeC and hold | maintaining for 3 hours, it forged so that a cross-sectional shape might be set to 270 mm, and obtained the titanium alloy billet. Table 2 shows values obtained by the formulas (1) to (3).

(集合組織評価)
円柱形状の各チタン合金ビレットの円周方向の中心から、図2に示すような長手方向と直交する断面を評価面とする試料を夫々切り出した。それら評価面をエメリー紙(♯2400)で研磨した後、鏡面研磨を実施し、測定に供した。
(Texture evaluation)
Samples each having a cross section perpendicular to the longitudinal direction as shown in FIG. 2 as an evaluation surface were cut out from the center in the circumferential direction of each cylindrical titanium billet. These evaluation surfaces were polished with emery paper (# 2400), and then mirror polishing was performed for measurement.

集合組織評価は、X線正極点図測定により実施した。具体的には、リガク製X線回析装置(RINT−5000)を用い、Cuターゲットで、ターゲット出力40kV−200mAの条件で反射法により、α相の{0002}集合組織測定を行い、標準化処理した後、測定結果を出力した。集積度を0.5ピッチで出力し、集積位置並びにその集積度を評価した。結果を表2に示す。尚、{0002}はα相のc軸方向に直交する面である。   The texture evaluation was carried out by measuring the X-ray positive dot diagram. Specifically, using a Rigaku X-ray diffractometer (RINT-5000), a {0002} texture measurement of α phase is performed by a reflection method under the condition of a target output of 40 kV-200 mA with a Cu target, and a standardization process After that, the measurement result was output. The integration degree was output at 0.5 pitch, and the integration position and the integration degree were evaluated. The results are shown in Table 2. In addition, {0002} is a plane orthogonal to the c-axis direction of the α phase.

図4は測定結果を出力した事例である。縦軸(Y方向:強圧下方向)および横軸(X方向:強圧下方向に垂直方向)の目盛りは10°ごとに付した目盛りであり、縦軸(Y方向)は、α相のc軸の、ビレットの長手方向からY方向に向かう傾き角を、横軸(X方向)は、α相のc軸の、ビレットの長手方向からX方向に向かう傾き角を、夫々示している。また、等高線から引き出した数字は集積度であり、0.5ピッチで表示している。図4によると、ビレットの長手方向からY方向(強圧下方向)に向かって±30°以内で、且つ、ビレットの長手方向からX方向(Y方向および長手方向に垂直な方向)に向かって±40°〜90°の範囲に、α相のc軸方向が集積していることが分かり、また、その集積度は3以上であることが分かる。   FIG. 4 shows an example of outputting measurement results. The scale of the vertical axis (Y direction: strong pressure downward direction) and the horizontal axis (X direction: vertical direction to the strong pressure downward direction) is a scale given every 10 °, and the vertical axis (Y direction) is the c axis of the α phase. The horizontal axis (X direction) indicates the inclination angle of the α-phase c-axis from the longitudinal direction of the billet to the X direction, respectively. Also, the numbers drawn from the contour lines are the degree of integration and are displayed at 0.5 pitches. According to FIG. 4, it is within ± 30 ° from the longitudinal direction of the billet toward the Y direction (strong downward direction), and ± from the longitudinal direction of the billet to the X direction (direction perpendicular to the Y direction and the longitudinal direction). It can be seen that the c-axis direction of the α-phase is accumulated in the range of 40 ° to 90 °, and the degree of accumulation is 3 or more.

Figure 2012224935
Figure 2012224935

Figure 2012224935
Figure 2012224935

次に、前記チタン合金ビレットを950℃に加熱保持し、長手方向および強圧下方向と直交する方向に、(b2−b3)=0.4を満足する条件で鍛造を行い、室温まで冷却してチタン合金鍛造材とした。その後、上記した方法と同じ要領で集合組織評価を行い、前記チタン合金ビレットと同様に集積度を求めた。ここで求めた集積度が1.5以上の領域が5箇所以上存在し、且つ夫々のピーク位置が十分離れている(50°以上を合格とした)場合に、マクロ的に異方性が小さく等方的なチタン合金鍛造材(α+β型のチタン合金製品)が得られたと判断した。結果を鍛造材として表2に示す。   Next, the titanium alloy billet is heated and held at 950 ° C., forged in a direction perpendicular to the longitudinal direction and the direction of strong pressure under the condition (b2-b3) = 0.4, and cooled to room temperature. A titanium alloy forged material was used. Thereafter, texture evaluation was performed in the same manner as described above, and the degree of integration was determined in the same manner as the titanium alloy billet. When there are five or more regions where the degree of integration obtained here is 1.5 or more and each peak position is sufficiently separated (50 ° or more is regarded as acceptable), the anisotropy is small macroscopically. It was judged that an isotropic titanium alloy forged material (α + β type titanium alloy product) was obtained. The results are shown in Table 2 as forging materials.

No.1およびNo.2は、式(1)〜式(3)を満足する製造要件で製造したチタン合金ビレットである。その結果、チタン合金ビレットの集合組織(集積位置と集積度)は本発明の要件を満足し、そのチタン合金ビレットから製造したチタン合金鍛造材は、異方性が小さく等方的なチタン合金鍛造材となった。   No. 1 and no. 2 is a titanium alloy billet manufactured with manufacturing requirements satisfying the formulas (1) to (3). As a result, the texture (accumulation position and integration degree) of the titanium alloy billet satisfies the requirements of the present invention, and the titanium alloy forging produced from the titanium alloy billet has a small anisotropy and isotropic titanium alloy forging. It became a material.

これに対し、No.3およびNo.4は、製造要件のうち式(1)および式(2)が本発明の要件を満足せず、No.5は、式(1)〜式(3)の全てが本発明の要件を満足しない。その結果、チタン合金ビレットの集合組織(集積位置と集積度)が本発明の要件を満足せず、そのチタン合金ビレットから製造したチタン合金鍛造材は、異方性が大きなチタン合金鍛造材となった。   In contrast, no. 3 and no. No. 4 shows that, among the manufacturing requirements, the formulas (1) and (2) do not satisfy the requirements of the present invention. 5, all of the formulas (1) to (3) do not satisfy the requirements of the present invention. As a result, the texture (accumulation position and degree of accumulation) of the titanium alloy billet does not satisfy the requirements of the present invention, and the titanium alloy forged material produced from the titanium alloy billet is a titanium alloy forged material having large anisotropy. It was.

Claims (5)

α相とβ相でなる金属組織を有するチタン合金ビレットであって、
ビレットの長手方向からY方向(強圧下方向)に向かって±30°以内で、且つ、ビレットの長手方向からX方向(Y方向および長手方向に垂直な方向)に向かって±40°〜90°の範囲に、α相のc軸方向が集積しており、
その集積度が3以上であることを特徴とするチタン合金ビレット。
A titanium alloy billet having a metal structure composed of an α phase and a β phase,
Within ± 30 ° from the longitudinal direction of the billet toward the Y direction (high pressure downward direction), and ± 40 ° to 90 ° from the longitudinal direction of the billet toward the X direction (direction perpendicular to the Y direction and the longitudinal direction) The c-axis direction of the α phase is accumulated in the range of
A titanium alloy billet having an integration degree of 3 or more.
質量%で、Al:5.50〜6.75%、V:3.50〜4.50%を含有し、残部がTiおよび不可避的不純物であるチタン合金で形成されていることを特徴とする請求項1記載のチタン合金ビレット。   It is characterized by containing Al: 5.50 to 6.75%, V: 3.50 to 4.50%, and the balance being made of Ti and a titanium alloy that is an inevitable impurity. The titanium alloy billet according to claim 1. チタン合金素材を用いてチタン合金ビレットを製造するにあたり、
チタン合金素材を用いて鍛造された中間素材をβ変態温度未満の温度で加熱した後に、 下記式(1)〜式(3)を満足する条件で鍛造を行い、
チタン合金ビレットを製造することを特徴とするチタン合金ビレットの製造方法。
(a1×b2)/(a2×b1)≧1.5・・・式(1)
(a1−a2)/a1≧0.4・・・式(2)
A2/A1≧0.6・・・式(3)
但し、a1,b1,A1は強圧下鍛造前の中間素材の長手方向に直交する断面形状を計測したもので、a1は強圧下方向の中間素材の長さを、b1はa1に直交する方向の中間素材の長さを、A1は断面積を、夫々示し、また、a2,b2,A2は鍛造後の中間素材の長手方向に直交する断面形状を計測したもので、a2は強圧下方向の中間素材の長さを、 b2はa2に直交する方向の中間素材の長さを、A2は断面積を、夫々示す。
In manufacturing titanium alloy billets using titanium alloy materials,
After heating an intermediate material forged using a titanium alloy material at a temperature lower than the β transformation temperature, forging is performed under conditions satisfying the following formulas (1) to (3):
A method for producing a titanium alloy billet, characterized by producing a titanium alloy billet.
(A1 × b2) / (a2 × b1) ≧ 1.5 (1)
(A1-a2) /a1≧0.4 Formula (2)
A2 / A1 ≧ 0.6 Formula (3)
However, a1, b1, and A1 are cross-sectional shapes that are orthogonal to the longitudinal direction of the intermediate material before forging under strong pressure, a1 is the length of the intermediate material in the downward direction, and b1 is in the direction orthogonal to a1. A1 indicates the length of the intermediate material, A1 indicates the cross-sectional area, and a2, b2, and A2 indicate the cross-sectional shape orthogonal to the longitudinal direction of the intermediate material after forging, and a2 indicates the intermediate direction of the strong pressure downward The length of the material, b2 indicates the length of the intermediate material in the direction orthogonal to a2, and A2 indicates the cross-sectional area.
前記チタン合金素材が、質量%で、Al:5.50〜6.75%、V:3.50〜4.50%を含有し、残部がTiおよび不可避的不純物であるチタン合金であることを特徴とする請求項3記載のチタン合金ビレットの製造方法。   The titanium alloy material is a titanium alloy containing, by mass%, Al: 5.50 to 6.75%, V: 3.50 to 4.50%, and the balance being Ti and inevitable impurities. The method for producing a titanium alloy billet according to claim 3. 請求項1または請求項2記載のチタン合金ビレットを用いてチタン合金鍛造材を製造するにあたり、
チタン合金ビレットをβ変態点未満の温度で加熱した後に、前記強圧下方向と直交し、 且つ長手方向と直交する方向から±10°の範囲内に位置する方向より下記式(4)および式(5)を満足する条件で、前記チタン合金ビレットに変形を加え、チタン合金鍛造材を製造することを特徴とするチタン合金鍛造材の製造方法。
(b2−b3)/b2≧0.2・・・式(4)
(b2−b4)/b2≦0.6・・・式(5)
但し、b3,b4はチタン合金鍛造材を製造する鍛造工程後のb2(請求項3で定義)と平行する方向のチタン合金鍛造材の長さを示し、b3は最長部の長さを、b4は最短部の長さを、夫々示す。
In producing a titanium alloy forged material using the titanium alloy billet according to claim 1 or claim 2,
After heating the titanium alloy billet at a temperature less than the β transformation point, the following formulas (4) and (4) are obtained from a direction that is perpendicular to the direction of strong pressure and within a range of ± 10 ° from the direction perpendicular to the longitudinal direction: 5. A method for producing a titanium alloy forged material comprising producing a titanium alloy forged material by deforming the titanium alloy billet under the conditions satisfying 5).
(B2-b3) /b2≧0.2 (4)
(B2-b4) /b2≦0.6 (5)
However, b3 and b4 show the length of the titanium alloy forging material in the direction parallel to b2 (defined in claim 3) after the forging step for producing the titanium alloy forging material, b3 shows the length of the longest part, b4 Indicates the length of the shortest part, respectively.
JP2011096050A 2011-04-22 2011-04-22 Titanium alloy billet, method for producing titanium alloy billet, and method for producing titanium alloy forged material Expired - Fee Related JP5748267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011096050A JP5748267B2 (en) 2011-04-22 2011-04-22 Titanium alloy billet, method for producing titanium alloy billet, and method for producing titanium alloy forged material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011096050A JP5748267B2 (en) 2011-04-22 2011-04-22 Titanium alloy billet, method for producing titanium alloy billet, and method for producing titanium alloy forged material

Publications (2)

Publication Number Publication Date
JP2012224935A true JP2012224935A (en) 2012-11-15
JP5748267B2 JP5748267B2 (en) 2015-07-15

Family

ID=47275419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011096050A Expired - Fee Related JP5748267B2 (en) 2011-04-22 2011-04-22 Titanium alloy billet, method for producing titanium alloy billet, and method for producing titanium alloy forged material

Country Status (1)

Country Link
JP (1) JP5748267B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111074185A (en) * 2019-12-20 2020-04-28 西安交通大学 Heat treatment method capable of effectively reducing anisotropy of titanium alloy manufactured by laser additive
CN112642976A (en) * 2020-12-01 2021-04-13 太原理工大学 Two-stage non-isothermal forging method for controlling titanium alloy beta forging texture
CN112893725A (en) * 2020-12-29 2021-06-04 常州中钢精密锻材有限公司 Method for improving surface quality of titanium alloy forging
CN113305246A (en) * 2021-04-28 2021-08-27 宁夏中色金航钛业有限公司 Short-flow high-uniformity titanium alloy bar processing method
JP7307313B2 (en) 2019-03-20 2023-07-12 日本製鉄株式会社 α+β type titanium alloy bar and its manufacturing method
JP7307314B2 (en) 2019-03-20 2023-07-12 日本製鉄株式会社 α+β type titanium alloy bar and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215450A (en) * 1983-05-23 1984-12-05 Sumitomo Metal Ind Ltd Hot worked plate of ti-base material and its manufacture
JP2003073762A (en) * 2001-09-05 2003-03-12 Nkk Corp Titanium alloy material with high toughness and manufacturing method therefor
JP2009138218A (en) * 2007-12-05 2009-06-25 Nissan Motor Co Ltd Titanium alloy member and method for manufacturing titanium alloy member
JP2011012340A (en) * 2009-06-30 2011-01-20 General Electric Co <Ge> Titanium-containing article and method for making
WO2012115242A1 (en) * 2011-02-24 2012-08-30 新日本製鐵株式会社 α+β TYPE TITANIUM ALLOY SHEET WITH EXCELLENT COLD ROLLING PROPERTIES AND COLD HANDLING PROPERTIES, AND PRODUCTION METHOD THEREFOR
JP2013518181A (en) * 2010-01-22 2013-05-20 エイティーアイ・プロパティーズ・インコーポレーテッド Production of high-strength titanium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215450A (en) * 1983-05-23 1984-12-05 Sumitomo Metal Ind Ltd Hot worked plate of ti-base material and its manufacture
JP2003073762A (en) * 2001-09-05 2003-03-12 Nkk Corp Titanium alloy material with high toughness and manufacturing method therefor
JP2009138218A (en) * 2007-12-05 2009-06-25 Nissan Motor Co Ltd Titanium alloy member and method for manufacturing titanium alloy member
JP2011012340A (en) * 2009-06-30 2011-01-20 General Electric Co <Ge> Titanium-containing article and method for making
JP2013518181A (en) * 2010-01-22 2013-05-20 エイティーアイ・プロパティーズ・インコーポレーテッド Production of high-strength titanium
WO2012115242A1 (en) * 2011-02-24 2012-08-30 新日本製鐵株式会社 α+β TYPE TITANIUM ALLOY SHEET WITH EXCELLENT COLD ROLLING PROPERTIES AND COLD HANDLING PROPERTIES, AND PRODUCTION METHOD THEREFOR

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7307313B2 (en) 2019-03-20 2023-07-12 日本製鉄株式会社 α+β type titanium alloy bar and its manufacturing method
JP7307314B2 (en) 2019-03-20 2023-07-12 日本製鉄株式会社 α+β type titanium alloy bar and its manufacturing method
CN111074185A (en) * 2019-12-20 2020-04-28 西安交通大学 Heat treatment method capable of effectively reducing anisotropy of titanium alloy manufactured by laser additive
CN111074185B (en) * 2019-12-20 2021-08-13 西安交通大学 Heat treatment method capable of effectively reducing anisotropy of titanium alloy manufactured by laser additive
CN112642976A (en) * 2020-12-01 2021-04-13 太原理工大学 Two-stage non-isothermal forging method for controlling titanium alloy beta forging texture
CN112642976B (en) * 2020-12-01 2022-10-04 太原理工大学 Two-stage non-isothermal forging method for controlling titanium alloy beta forging texture
CN112893725A (en) * 2020-12-29 2021-06-04 常州中钢精密锻材有限公司 Method for improving surface quality of titanium alloy forging
CN113305246A (en) * 2021-04-28 2021-08-27 宁夏中色金航钛业有限公司 Short-flow high-uniformity titanium alloy bar processing method
CN113305246B (en) * 2021-04-28 2023-05-23 宁夏中色金航钛业有限公司 Short-process high-uniformity processing method of titanium alloy bar

Also Published As

Publication number Publication date
JP5748267B2 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
JP5748267B2 (en) Titanium alloy billet, method for producing titanium alloy billet, and method for producing titanium alloy forged material
KR102539690B1 (en) Titanium alloy wire rod and manufacturing method of titanium alloy wire rod
JP5592818B2 (en) Α-β type titanium alloy extruded material excellent in fatigue strength and method for producing the α-β type titanium alloy extruded material
KR101455913B1 (en) α+β TITANIUM ALLOY PART AND METHOD OF MANUFACTURING SAME
JP5166921B2 (en) Titanium alloy plate with high strength and excellent formability
JP2009228092A (en) Titanium sheet and method for producing titanium sheet
JP2012158776A (en) Pure titanium sheet excellent in balance between stamping formability and strength
WO2016152935A1 (en) Titanium plate, plate for heat exchanger, and separator for fuel cell
JP6719216B2 (en) α-β type titanium alloy
KR102364142B1 (en) Titanium alloy member
JP5594244B2 (en) Α + β type titanium alloy having a low Young&#39;s modulus of less than 75 GPa and method for producing the same
JP5937865B2 (en) Production method of pure titanium plate with excellent balance of press formability and strength, and excellent corrosion resistance
JP6696202B2 (en) α + β type titanium alloy member and manufacturing method thereof
JP6269836B2 (en) Titanium alloy member having shape change characteristic in the same direction as the machining direction
CN111032896B (en) Timepiece component
JP6577707B2 (en) Titanium plate, heat exchanger plate, fuel cell separator, and titanium plate manufacturing method
JP6432328B2 (en) High strength titanium plate and manufacturing method thereof
WO2017175569A1 (en) Titanium plate, heat exchanger plate, and fuel cell separator
JP6785366B2 (en) Titanium alloy material
JP5064356B2 (en) Titanium alloy plate having high strength and excellent formability, and method for producing titanium alloy plate
JP5503309B2 (en) Β-type titanium alloy with excellent fatigue strength
JP2017190480A (en) Titanium sheet
JP2016108652A (en) Titanium plate, heat exchanger plate and fuel cell separator
JP2008231553A (en) Method for producing low elastic titanium alloy sheet and titanium alloy sheet
JP2016023315A (en) Titanium plate and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150508

R150 Certificate of patent or registration of utility model

Ref document number: 5748267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees