JP2012224800A - Asphalt for pavement, and method for producing the same - Google Patents
Asphalt for pavement, and method for producing the same Download PDFInfo
- Publication number
- JP2012224800A JP2012224800A JP2011095676A JP2011095676A JP2012224800A JP 2012224800 A JP2012224800 A JP 2012224800A JP 2011095676 A JP2011095676 A JP 2011095676A JP 2011095676 A JP2011095676 A JP 2011095676A JP 2012224800 A JP2012224800 A JP 2012224800A
- Authority
- JP
- Japan
- Prior art keywords
- asphalt
- solvent
- pitch
- pavement
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010426 asphalt Substances 0.000 title claims abstract description 82
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000002904 solvent Substances 0.000 claims abstract description 36
- 239000003921 oil Substances 0.000 claims abstract description 31
- 239000010779 crude oil Substances 0.000 claims abstract description 27
- 238000004821 distillation Methods 0.000 claims abstract description 27
- 238000002156 mixing Methods 0.000 claims abstract description 27
- 230000035515 penetration Effects 0.000 claims abstract description 12
- 238000005292 vacuum distillation Methods 0.000 claims description 12
- 238000000605 extraction Methods 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 7
- 238000002407 reforming Methods 0.000 claims description 3
- 238000005238 degreasing Methods 0.000 claims 2
- 230000003197 catalytic effect Effects 0.000 abstract description 3
- 238000005194 fractionation Methods 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 21
- 239000000203 mixture Substances 0.000 description 17
- 238000005452 bending Methods 0.000 description 14
- 238000010998 test method Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 6
- 239000003208 petroleum Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000000638 solvent extraction Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 239000001273 butane Substances 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 241001281643 Solus Species 0.000 description 1
- 238000001833 catalytic reforming Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Working-Up Tar And Pitch (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、耐流動性、耐ひび割れ性に優れた舗装用アスファルトおよびその製造方法に関するものである。具体的には、アススファルト混合物を製造する際、アスファルテン含有量の高いSDAピッチを混合することにより、耐流動性、耐ひび割れ性に優れた、25℃における針入度40〜80の舗装用アスファルトを製造する方法に関するものである。 The present invention relates to a paving asphalt excellent in fluid resistance and crack resistance and a method for producing the same. Specifically, when producing an asphalt mixture, by mixing an SDA pitch having a high asphaltene content, the asphalt for paving has excellent flow resistance and crack resistance and has a penetration of 40 to 80 at 25 ° C. It is related with the method of manufacturing.
舗装用アスファルトには、原油を蒸留して製造した25℃における針入度(1/10mm)が40〜100のストレートアスファルトが一般的に使われているが、アスファルト舗装を取り巻く状況の変化として、アスファルト舗装のストック増大とコスト縮減の要求から舗装供用寿命を出来るだけ長く延ばすため、耐流動性や耐ひび割れ性に優れた舗装用アスファルトが要求されている。
特許文献1(特開2001−262157号公報)には、アスファルト舗装の破損原因であるわだち掘れ、疲労ひびわれ、低温ひび割れを起こさない良好な供用可能温度を有することを目的として、特殊な原油混合物を減圧蒸留して得た残油を含む、25℃における針入度(1/10mm)が45以上71以下、かつ180℃における動粘度が90mm2/s以下となるように調整したストレートアスファルトの製造方法が開示されている。
また、わだち掘れを改善するため、原油を蒸留して得られた減圧残油を、更に200〜300℃の加熱下で空気を数時間吹き込んで製造する、いわゆるセミブローンアスファルトが提案されている(非特許文献1参照)。しかしながら、これらの製造方法は特殊な原油を使用する、あるいは蒸留操作に加えて煩雑なブローイング操作(減圧残油を200〜300℃の加熱下で、空気を数時間吹き込む操作)が必要という問題があった。
Asphalt for pavement, straight asphalt with a penetration (1/10 mm) at 25 ° C. produced by distilling crude oil of 40-100 is generally used, but as a change in the situation surrounding asphalt pavement, In order to extend the pavement service life as long as possible due to the demand for increased stock and cost reduction of asphalt pavement, paving asphalt with excellent flow resistance and crack resistance is required.
Patent Document 1 (Japanese Patent Laid-Open No. 2001-262157) discloses a special crude oil mixture for the purpose of having a good serviceable temperature that does not cause rutting, fatigue cracking, and low-temperature cracking, which are causes of asphalt pavement damage. Production of straight asphalt containing residual oil obtained by distillation under reduced pressure and adjusted so that the penetration (1/10 mm) at 25 ° C. is 45 or more and 71 or less and the kinematic viscosity at 180 ° C. is 90 mm 2 / s or less. A method is disclosed.
Further, in order to improve rutting, so-called semi-blown asphalt has been proposed in which a vacuum residue obtained by distilling crude oil is further produced by blowing air for several hours under heating at 200 to 300 ° C. ( Non-patent document 1). However, these production methods require the use of a special crude oil or a complicated blowing operation (an operation in which air is blown for several hours under heating at 200 to 300 ° C.) in addition to a distillation operation. there were.
そこで、本発明では、セミブローイング等の煩雑な操作を行うことなく、耐流動性および耐ひび割れ性に優れた舗装用アスファルトを製造する方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for producing asphalt for paving excellent in fluid resistance and crack resistance without performing complicated operations such as semi-blowing.
本発明者等は、前記課題を解決するため、舗装用アスファルトおよびその製造方法について鋭意研究した結果、一般に使用されている60/80、80/100ストレートアスファルトおよびアスファルト乳剤等に使用される150/200ストレートアスファルトと骨材をミキサーで混合し、アスファルト混合物を製造する際に、アスファルテン含有量の高い溶剤脱れきピッチ(SDAピッチ)を添加し混合することにより、耐流動性および耐ひび割れ性に優れた25℃における針入度が40〜80の舗装用アスファルトを製造する方法を完成するに至った。 In order to solve the above-mentioned problems, the present inventors have conducted extensive research on asphalt for pavement and a method for producing the same, and as a result, 150/80, 80/100 straight asphalt and asphalt emulsion that are generally used are used. 200 straight asphalt and aggregate are mixed with a mixer to produce an asphalt mixture. By adding and mixing a solvent devolatilization pitch (SDA pitch) with a high asphaltene content, it is excellent in flow resistance and crack resistance. In addition, a method for producing asphalt for paving having a penetration of 40 to 80 at 25 ° C. has been completed.
すなわち、本発明は、(A)25℃における針入度(1/10mm)が60〜200のストレートアスファルト3〜7重量部、(B)骨材100重量部、および(C)常圧蒸留残油および減圧蒸留残油から選ばれる少なくとも1つを含む残油を、原油を常圧蒸留して分留されるナフサ留分を接触改質して得られるライトリフォーメイトを溶剤として抽出処理して得られる、軟化点が80〜200℃、アスファルテン含有量が30〜70質量%の性状を有する溶剤脱れきピッチ(SDAピッチ)をストレートアスファルト配合量の3〜30質量%配合してなる舗装用アスファルトに関する。 That is, the present invention comprises (A) 3 to 7 parts by weight of straight asphalt having a penetration (1/10 mm) at 25 ° C. of 60 to 200, (B) 100 parts by weight of aggregate, and (C) atmospheric distillation residue. A residue containing at least one selected from oil and vacuum distillation residue is subjected to extraction treatment using light reformate obtained by contact reforming a naphtha fraction obtained by atmospheric distillation of crude oil as a solvent. Asphalt for pavement obtained by blending 3-30% by mass of straight asphalt blending amount of solvent debonding pitch (SDA pitch) having a softening point of 80-200 ° C. and an asphaltene content of 30-70% by mass. About.
また本発明は、(A)25℃における針入度(1/10mm)が60〜200のストレートアスファルト3〜7重量部、(B)骨材100重量部、および(C)常圧蒸留残油および減圧蒸留残油から選ばれる少なくとも1つを含む残油を、原油を常圧蒸留して分留されるナフサ留分を接触改質して得られるライトリフォーメイトを溶剤として抽出処理して得られる、軟化点が80〜200℃、アスファルテン含有量が30〜70質量%の性状を有する溶剤脱れきピッチ(SDAピッチ)をストレートアスファルト配合量の3〜30質量%混合することを特徴とする舗装用アスファルトの製造方法に関する。 The present invention also includes (A) 3 to 7 parts by weight of straight asphalt having a penetration (1/10 mm) at 25 ° C. of 60 to 200, (B) 100 parts by weight of aggregate, and (C) atmospheric distillation residue. And a residual oil containing at least one selected from reduced-pressure distillation residual oil by extraction treatment using light reformate obtained by catalytic reforming of a naphtha fraction obtained by atmospheric distillation of crude oil as a solvent. A pavement characterized by mixing 3-30% by mass of a straight asphalt blending amount with a solvent deasphalting pitch (SDA pitch) having a softening point of 80-200 ° C. and an asphaltene content of 30-70% by mass. The present invention relates to a manufacturing method for asphalt.
また本発明は、(C)溶剤脱れきピッチの粒度が5mm以下であることを特徴とする前記記載の舗装用アスファルトの製造方法に関する。 Moreover, this invention relates to the manufacturing method of the asphalt for pavements of the said description, wherein the particle size of (C) solvent debris pitch is 5 mm or less.
本発明の舗装用アスファルトは、ホイールトラッキング試験における動的安定度が800回/mm以上であり、耐流動性に優れ、かつ耐ひび割れ性に優れている。 The asphalt for paving of the present invention has a dynamic stability of 800 times / mm or more in a wheel tracking test, is excellent in flow resistance, and is excellent in crack resistance.
本発明の舗装用アスファルトの(A)成分として用いられるストレートアスファルトは、25℃における針入度(1/10mm)が60〜200、好ましくは70〜150のものである。また、軟化点が30〜55℃、好ましくは35〜50℃、120℃における動粘度が100〜1100mm2/s、好ましくは200〜900mm2/sの性状を有するものである。
ストレートアスファルトの25℃における針入度が上記範囲を逸脱する場合は、舗装用アスファルトの耐流動性が低下するため好ましくない。軟化点が上記範囲を逸脱する場合は、舗装用アスファルトの耐ひび割れ性が劣るため好ましくない。120℃における動粘度が上記範囲を逸脱する場合は、舗装用アスファルトの耐流動性が低下するため好ましくない。
なお、ここでいう25℃における針入度(1/10mm)、軟化点、120℃における動粘度は、JIS K2207「石油アスファルト」に準拠して求められる値である。
The straight asphalt used as the component (A) of the asphalt for paving of the present invention has a penetration (1/10 mm) at 25 ° C. of 60 to 200, preferably 70 to 150. Further, the softening point is 30 to 55 ° C., preferably 35 to 50 ° C., and the kinematic viscosity at 120 ° C. is 100 to 1100 mm 2 / s, preferably 200 to 900 mm 2 / s.
When the penetration of straight asphalt at 25 ° C. is out of the above range, the flow resistance of the asphalt for paving deteriorates, which is not preferable. When the softening point deviates from the above range, it is not preferable because the crack resistance of the asphalt for paving is inferior. When the kinematic viscosity at 120 ° C. deviates from the above range, the flow resistance of the asphalt for pavement decreases, which is not preferable.
In addition, the penetration (1/10 mm) at 25 ° C., the softening point, and the kinematic viscosity at 120 ° C. are values determined in accordance with JIS K2207 “Petroleum Asphalt”.
本発明に用いられるストレートアスファルトは、原油を常圧蒸留して得られる常圧蒸留残油、原油を常圧蒸留および減圧蒸留して得られる減圧蒸留残油等から製造することができる。
当該ストレートアスファルトを得るための原油としては、前記の性状を有するストレートアスファルトが得られればどんな種類の原油でもよい。具体的には、パラフィン基原油とナフテン基原油の中間に位置する中間基原油およびナフテン基原油が好ましく、例えばアラビアンライト原油、イスムス原油、イラニアンヘビー原油、イラニアンライト原油、バチャケロ原油、ディアファナ原油、フート原油、クウェート原油、ラタウェー原油、アルライアン原油、エオシン原油、ソリューシュ原油が挙げられ、これらの原油は、単独でも、また混合して用いることもできる。
また、前記所定のストレートアスファルト性状を満足しさえすれば、残油以外の他のアスファルト基材を配合して本発明に係るストレートアスファルトとしてもよい。
ストレートアスファルトは、これらの原油を通常400℃未満で常圧蒸留した後、得られる常圧蒸留残油をカット温度500〜650℃の範囲で減圧蒸留することにより得ることができる。
The straight asphalt used in the present invention can be produced from an atmospheric distillation residue obtained by subjecting crude oil to atmospheric distillation, a vacuum distillation residue obtained by subjecting crude oil to atmospheric distillation and vacuum distillation, and the like.
The crude oil for obtaining the straight asphalt may be any kind of crude oil as long as the straight asphalt having the above-mentioned properties can be obtained. Specifically, intermediate and naphthenic crude oils located between paraffinic and naphthenic crude oils are preferred. Examples include crude oil, Kuwait crude oil, Lattaway crude oil, Allian crude oil, eosin crude oil, and Solus crude oil, and these crude oils can be used alone or in combination.
Further, as long as the predetermined straight asphalt properties are satisfied, other asphalt base materials other than the residual oil may be blended to form the straight asphalt according to the present invention.
Straight asphalt can be obtained by subjecting these crude oils to atmospheric distillation at usually less than 400 ° C., and then subjecting the resulting atmospheric distillation residue to vacuum distillation at a cut temperature of 500 to 650 ° C.
本発明の舗装用アスファルトを得るためには、骨材100重量部に対して、ストレートアスファルトが3〜7重量部、好ましくは3〜6重量部、より好ましくは4〜6重量部、最も好ましくは5.5重量部配合する。ストレートアスファルトが3重量部未満の場合は、骨材を皮膜するアスファルト量が少なく、骨材のはく離が早期に発生し、舗装が破損する等の点で好ましくない。一方、7重量部を超える場合は、アスファルト量が多いことから、舗装直後にわだち掘れが発生することから耐流動性に劣る等の点で好ましくない。 In order to obtain the paving asphalt of the present invention, the straight asphalt is 3 to 7 parts by weight, preferably 3 to 6 parts by weight, more preferably 4 to 6 parts by weight, most preferably 100 parts by weight of the aggregate. Add 5.5 parts by weight. When the straight asphalt is less than 3 parts by weight, the amount of asphalt that coats the aggregate is small, the aggregate peels off early, and the pavement is damaged. On the other hand, when the amount exceeds 7 parts by weight, the amount of asphalt is large, and rutting occurs immediately after paving, which is not preferable in terms of poor flow resistance.
本発明の舗装用アスファルトの(C)成分として用いられる溶剤脱れきピッチ(SDAピッチ)は、軟化点が80〜200℃、好ましくは100〜180℃、アスファルテン含有量が30〜70質量%、好ましくは35〜65質量%の性状を有するものである。
SDAピッチの軟化点が上記範囲を逸脱する場合は、舗装用アスファルトの耐流動性および耐ひび割れ性が低下するため好ましくない。SDAピッチ中のアスファルテン含有量が上記範囲を逸脱する場合は、耐流動性が低下するため好ましくない。
なお、ここでいう軟化点とは、JIS K2207「石油アスファルト−軟化点試験方法(環球法)」により測定した値である。また、アスファルテンは、石油学会規格JPI−5S−22−83「アスファルテンのカラムクロマトグラフィーによる組成分析法」により測定した値である。
The solvent removal pitch (SDA pitch) used as the component (C) of the asphalt for paving of the present invention has a softening point of 80 to 200 ° C, preferably 100 to 180 ° C, and an asphaltene content of 30 to 70% by mass, preferably Has a property of 35 to 65% by mass.
When the softening point of the SDA pitch is out of the above range, the flow resistance and crack resistance of the asphalt for pavement are lowered, which is not preferable. If the asphaltene content in the SDA pitch is out of the above range, the flow resistance is lowered, which is not preferable.
In addition, the softening point here is a value measured by JIS K2207 “Petroleum Asphalt—Softening Point Test Method (Ring and Ball Method)”. Further, asphaltenes are values measured by the Petroleum Institute Standard JPI-5S-22-83 “Asphaltene Composition Analysis Method by Column Chromatography”.
また、SDAピッチの粒径は5mm以下であることが好ましい。SDAピッチの粒径が5mmより大きい場合は、ミキサーの混合時に十分溶解せず、舗装用アスファルトの耐流動性が低下するため好ましくない。 The particle size of the SDA pitch is preferably 5 mm or less. When the particle size of the SDA pitch is larger than 5 mm, it is not preferable because it does not dissolve sufficiently during mixing with the mixer and the flow resistance of the asphalt for pavement decreases.
(C)成分の溶剤脱れきピッチ(SDAピッチ)は、常圧蒸留残油および減圧蒸留残油から選ばれる少なくとも1つを含む残油を、原油を常圧蒸留して分留されるナフサ留分を接触改質して得られるライトリフォーメイトを溶剤として抽出することによって得られる。
なお、常圧蒸留残油は、原油の精製工程において用いられる常圧蒸留装置により原油を常圧蒸留した際に得られる残油であり、減圧蒸留残油は、当該常圧蒸留残油をさらに減圧蒸留装置によって減圧蒸留することにより分離された残油である。また、本発明に用いられる残油は、常圧蒸留残油であってもよいし、減圧蒸留残油であってもよいし、また常圧蒸留残油と減圧蒸留残油との混合物であってもよい。
The component (C) solvent-removing pitch (SDA pitch) is a naphtha fraction obtained by subjecting a crude oil to atmospheric distillation to obtain a residual oil containing at least one selected from an atmospheric distillation residual oil and a vacuum distillation residual oil. It is obtained by extracting light reformate obtained by catalytic modification of the component as a solvent.
The atmospheric distillation residue is a residue obtained when the crude oil is subjected to atmospheric distillation by an atmospheric distillation apparatus used in the crude oil refining process, and the vacuum distillation residue further includes the atmospheric distillation residue. It is a residual oil separated by vacuum distillation using a vacuum distillation apparatus. The residual oil used in the present invention may be an atmospheric distillation residual oil, a vacuum distillation residual oil, or a mixture of an atmospheric distillation residual oil and a vacuum distillation residual oil. May be.
前述のライトリフォーメートは、以下の方法で製造されることが好ましい。まず、原油を常圧蒸留装置によって分留して、ナフサ留分(主に30〜230℃の留分)を得る。ナフサ留分は、常圧蒸留装置によって軽質ナフサ留分(例えば沸点30〜90℃相当)と重質ナフサ留分(例えば沸点80〜180℃相当)とに予め分留して、その後水素化精製(水素化脱硫処理)しても良いし、水素化精製(水素化脱硫処理)装置でナフサ留分を処理した後、軽質ナフサと重質ナフサに分留しても良い。
続いて、接触改質装置によって重質ナフサ(主として沸点80〜180℃)を改質して芳香族系炭化水素を主体とするリフォーメートとする。
その後、精留装置によってリフォーメートを、炭素数5の炭化水素を主成分とするライトリフォーメートと、C6+留分とに分離する。C6+留分は、炭素数6以上の芳香族系炭化水素を主成分とするものであり、他に炭素数6以上の飽和炭化水素、オレフィン系炭化水素、及びナフテン系炭化水素などの成分を含むものである。ライトリフォーメート及びC6+留分に含まれる各成分は、例えば、GC(ガスクロマトグラフ)分析(JIS K2536「石油製品−成分試験方法」)などにより求めることができる。
ライトリフォーメートとC6+留分との分離条件は、ライトリフォーメート中にベンゼンが含まれないように分離できれば特に限定されるものではないが、例えばライトリフォーメート中のC6+留分が30容量%以下となるように適宜調整される。このようにして得られたライトリフォーメートは、ブタンを5〜15容量%、ペンタンを60〜80容量%、ヘキサンを5〜30容量%含むものである。なお、ここでいうブタン、ペンタン、ヘキサンとは、各々炭素数4、5、6のノルマルパラフィンとイソパラフィンの混合物であってもよい。
The aforementioned light reformate is preferably produced by the following method. First, crude oil is fractionated by an atmospheric distillation device to obtain a naphtha fraction (mainly a fraction of 30 to 230 ° C.). The naphtha fraction is fractionated in advance into a light naphtha fraction (for example, corresponding to a boiling point of 30 to 90 ° C.) and a heavy naphtha fraction (for example, corresponding to a boiling point of 80 to 180 ° C.) by an atmospheric distillation apparatus, and then hydrorefined. (Hydrodesulfurization treatment) may be performed, or after the naphtha fraction is treated with a hydrorefining (hydrodesulfurization treatment) apparatus, it may be fractionated into light naphtha and heavy naphtha.
Subsequently, heavy naphtha (mainly boiling point 80 to 180 ° C.) is reformed by a catalytic reformer to obtain a reformate mainly composed of aromatic hydrocarbons.
Thereafter, the reformate is separated into a light reformate mainly composed of a hydrocarbon having 5 carbon atoms and a C6 + fraction by a rectifier. The C6 + fraction is mainly composed of aromatic hydrocarbons having 6 or more carbon atoms, and other components such as saturated hydrocarbons, olefinic hydrocarbons, and naphthenic hydrocarbons having 6 or more carbon atoms. It is a waste. Each component contained in the light reformate and the C6 + fraction can be determined by, for example, GC (gas chromatograph) analysis (JIS K2536 “Petroleum product-component test method”).
The separation conditions for the light reformate and the C6 + fraction are not particularly limited as long as they can be separated so that benzene is not included in the light reformate. For example, the C6 + fraction in the light reformate is 30% by volume or less. It adjusts suitably so that it may become. The light reformate thus obtained contains 5 to 15% by volume of butane, 60 to 80% by volume of pentane, and 5 to 30% by volume of hexane. The butane, pentane, and hexane referred to here may be a mixture of normal paraffins and isoparaffins having 4, 5, and 6 carbon atoms, respectively.
本発明で用いる(C)溶剤脱れきピッチ(SDAピッチ)は、前述の残油を前述のライトリフォーメートを溶剤として抽出処理することにより得られる。抽出処理する際には、溶剤抽出装置のミキサーなどの混合装置によって、残油と溶剤とを混合してから、溶剤の臨界圧力以上で臨界温度以下の一定の条件に保たれている溶剤抽出装置のアスファルテン分離槽に供給される。アスファルテン分離槽内では、残油に含まれるアスファルトが沈殿し、沈殿物はアスファルテン分離槽の底部から連続的に抜出され、ストリッパーによってわずかに含まれる溶剤が除去されて、溶剤脱れきピッチ(SDAピッチ)とされる。なお、アスファルテン分離槽の上部から抜き出された油は脱れき油(DAO:Deasphalted Oil)として利用される。 The (C) solvent removal pitch (SDA pitch) used in the present invention can be obtained by subjecting the aforementioned residual oil to extraction using the aforementioned light reformate as a solvent. When performing the extraction process, the residual oil and the solvent are mixed by a mixing device such as a mixer of the solvent extraction device, and then the solvent extraction device is maintained at a constant condition that is higher than the critical pressure of the solvent and lower than the critical temperature. To the asphaltene separation tank. In the asphaltene separation tank, the asphalt contained in the residual oil is precipitated, and the precipitate is continuously withdrawn from the bottom of the asphaltene separation tank, and the solvent slightly contained is removed by the stripper to remove the solvent removal pitch (SDA). Pitch). The oil extracted from the upper part of the asphaltene separation tank is used as deasphalted oil (DAO).
ライトリフォーメートを溶剤として残油を抽出処理する際には、抽出温度を150℃〜200℃とし、溶剤と残油との流量比(溶剤/残油)を5/1〜8/1として行うことが好ましい。
残油の抽出温度は、残油の性状に応じて適宜決定されるものであって、溶剤脱れきピッチの軟化点が一定となるように調整される。抽出温度が150℃未満であると、溶剤脱れきピッチの軟化点が200℃以上となり、溶剤抽出装置内からSDAピッチを取り出すことが困難となり、溶剤脱れきピッチの生産性が低下する。抽出温度が200℃を超えると、溶剤脱れきピッチの軟化点が100℃以下となり、SDAピッチ中のアスファルテン分が低下し、好ましくない。 また、溶剤と残油との流量比(溶剤/残油)が5/1未満であると、溶剤が少ないため、アスファルテン分離槽での抽出効率が低下し、SDAピッチ中のアスファルテン分が低下し、好ましくない。溶剤と残油との比(溶剤/残油)が8/1を超えると、必要以上の溶剤を循環させることで、溶剤抽出装置のエネルギー消費量が増大し、非経済的な運転となり、好ましくない。このようにして、軟化点が80〜200℃、アスファルテン含有量が30〜70質量%である溶剤脱れきピッチを得ることができる。
なお、ここでいう軟化点とは、JIS K2207「石油アスファルト−軟化点試験方法(環球法)」により測定した値である。また、アスファルテンは、石油学会規格JPI−5S−22−83「アスファルテンのカラムクロマトグラフィーによる組成分析法」により測定した値である。
When the residual oil is extracted using light reformate as a solvent, the extraction temperature is set to 150 ° C. to 200 ° C., and the flow rate ratio of the solvent to the residual oil (solvent / resid oil) is set to 5/1 to 8/1. It is preferable.
The extraction temperature of the residual oil is appropriately determined according to the properties of the residual oil, and is adjusted so that the softening point of the solvent removal pitch becomes constant. When the extraction temperature is less than 150 ° C., the softening point of the solvent removal pitch becomes 200 ° C. or more, and it becomes difficult to take out the SDA pitch from the solvent extraction apparatus, and the productivity of the solvent removal pitch decreases. When the extraction temperature exceeds 200 ° C., the softening point of the solvent removal pitch becomes 100 ° C. or less, and the asphaltene content in the SDA pitch decreases, which is not preferable. Also, if the flow rate ratio of solvent to residual oil (solvent / residual oil) is less than 5/1, the amount of solvent is small, so the extraction efficiency in the asphaltene separation tank decreases, and the asphaltene content in the SDA pitch decreases. It is not preferable. If the ratio of solvent to residual oil (solvent / residual oil) exceeds 8/1, it is preferable to circulate more solvent than necessary to increase the energy consumption of the solvent extraction device, resulting in uneconomical operation. Absent. In this way, it is possible to obtain a solvent debonding pitch having a softening point of 80 to 200 ° C. and an asphaltene content of 30 to 70% by mass.
In addition, the softening point here is a value measured by JIS K2207 “Petroleum Asphalt—Softening Point Test Method (Ring and Ball Method)”. Further, asphaltenes are values measured by the Petroleum Institute Standard JPI-5S-22-83 “Asphaltene Composition Analysis Method by Column Chromatography”.
(C)成分の配合割合は、(A)成分のストレートアスファルトの配合量の3〜30質量%(ストレートアスファルト100重量部に対して3〜30重量部)であり、好ましくは5〜25質量%である。(C)成分の配合割合がストレートアスファルト配合量の3質量%より少ないと、骨材のはく離が生じ、舗装が破損し、また30質量%を超えると耐流動性に劣り、わだち掘れにより舗装が破損するため好ましくない。 The blending ratio of the component (C) is 3 to 30% by weight (3 to 30 parts by weight with respect to 100 parts by weight of the straight asphalt), preferably 5 to 25% by weight of the blended amount of the straight asphalt of the component (A). It is. If the blending ratio of the component (C) is less than 3% by mass of the straight asphalt blending amount, the aggregate will peel off and the pavement will be damaged. If it exceeds 30% by mass, the flow resistance will be inferior. Since it breaks, it is not preferable.
本発明の舗装用アスファルトの(B)成分として用いられる骨材は特に限定されるものではないが、具体的には以下に記載するものが使用される。例えば、粗骨材(6,7号砕石)、細骨材(粗砂、細砂、スクリーニング)およびフィーラ(石粉)を配合してなる合成粒度の骨材等が挙げられる。 The aggregate used as the component (B) of the asphalt for paving of the present invention is not particularly limited, but specifically, those described below are used. Examples thereof include aggregates having a synthetic particle size obtained by blending coarse aggregate (6, 7 crushed stone), fine aggregate (coarse sand, fine sand, screening) and feeler (stone powder).
本発明の舗装用アスファルトは、(A)成分のストレートアスファルト、(B)成分の骨材、および(C)成分の溶剤脱れきピッチを所定量配合し、ミキサーで混合することにより製造することができる。また、(A)成分と(B)成分を混合後、(C)成分を配合して混合してもよく、また(A)成分と(C)成分を混合後、(B)成分を配合して混合してもよい。
混合条件は特に限定されるものではなく、通常の条件を採用することができる。例えば、温度150〜180℃で、3〜6分、ミキサーで混合する方法が挙げられる。
The asphalt for paving of the present invention can be produced by blending a predetermined amount of straight asphalt of component (A), aggregate of component (B), and solvent removal pitch of component (C) and mixing with a mixer. it can. Moreover, after mixing (A) component and (B) component, you may mix and mix (C) component, and after mixing (A) component and (C) component, mix (B) component. May be mixed.
The mixing conditions are not particularly limited, and normal conditions can be adopted. For example, a method of mixing with a mixer at a temperature of 150 to 180 ° C. for 3 to 6 minutes can be mentioned.
本発明の方法で得られる舗装用アスファルトは、ホイールトラッキング試験における動的安定度が800回/mm以上であり、耐流動性に優れ、かつ耐ひび割れ性に優れている。 The asphalt for paving obtained by the method of the present invention has a dynamic stability of 800 times / mm or more in a wheel tracking test, is excellent in flow resistance, and is excellent in crack resistance.
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに制限されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
(舗装用アスファルトの性能評価)
本発明における舗装用アスファルトの性能について、ホイールトラッキング試験、曲げ試験により評価した。評価方法の詳細を以下に記載する。
(Performance evaluation of asphalt for paving)
The performance of the asphalt for paving in the present invention was evaluated by a wheel tracking test and a bending test. Details of the evaluation method are described below.
(ホイールトラッキング試験方法および曲げ試験方法)
耐流動性はホイールトラッキング試験による動的安定度により評価した。また耐ひび割れ性は曲げ試験により評価した。
なお、ホイールトラッキング試験および曲げ試験は、各々、社団法人 日本道路協会「舗装試験法便覧」の3−7−3「ホイールトラッキング試験方法」、3−7−5「曲げ試験方法」記載の方法で行った。以下に試験法の概略を記す。
(Wheel tracking test method and bending test method)
The flow resistance was evaluated by dynamic stability by wheel tracking test. The crack resistance was evaluated by a bending test.
The wheel tracking test and the bending test are the methods described in 3-7-3 “Wheel Tracking Test Method” and 3-7-5 “Bending Test Method” of the Japan Road Association “Pavement Test Method Handbook”, respectively. went. The outline of the test method is described below.
(1)ホイールトラッキング試験:社団法人 日本道路協会「舗装試験法便覧」の3−7−3「ホイールトラッキング試験方法」
アスファルトと骨材を加熱混合したアスファルト混合物を所定の型枠(300×300×50mm)に入れ整形した供試体を60℃の恒温室で規定荷重(686±10N)の小型車輪を往復させ、45分および60分における変形量(わだち掘れ量)を測定し、動的安定度(回/mm)を求め、混合物のわだち掘れに対する抵抗性を評価する。
動的安定度(DS:Dynamic Stability)の値は大きいほど、高温時における加熱アスファルト混合物の耐流動性の良いことを示す。一般的には、わだち掘れが起こらないためには動的安定度が500以上である必要がある。
(1) Wheel Tracking Test: 3-7-3 “Wheel Tracking Test Method” in the Japan Road Association “Pavement Test Method Handbook”
An asphalt mixture obtained by heating and mixing asphalt and aggregate is put in a predetermined mold (300 × 300 × 50 mm), and a test piece is reciprocated in a constant temperature room at 60 ° C. with a small wheel with a specified load (686 ± 10 N). The amount of deformation (rubbing amount) at 60 minutes and 60 minutes is measured, the dynamic stability (times / mm) is determined, and the resistance of the mixture to rutting is evaluated.
The larger the value of the dynamic stability (DS), the better the flow resistance of the heated asphalt mixture at a high temperature. Generally, in order to prevent rutting, the dynamic stability needs to be 500 or more.
(2)曲げ試験:社団法人 日本道路協会「舗装試験法便覧」の3−7−5「曲げ試験方法」
アスファルトと骨材を加熱混合したアスファルト混合物を所定の型枠(300×300×50mm)に入れ、整形した後、300×100×50mmの形状の供試体を切り出して供試体を作製し、−10℃で養生後、供試体を載荷試験機にセットし、載荷速度50mm/minで中央部に集中載荷する。最大荷重を示して供試体が破断するまで載荷を行い、荷重と変形量を求め、破断時(最大荷重時)の曲げ強度および破断時のひずみを求める。
一般的に、破断時の曲げ強度およびひずみの値は大きいほど、ひび割れに対する耐久性が良いことを示す。
(2) Bending test: 3-7-5 “Bending test method” in the Japan Road Association “Pavement Test Method Handbook”
An asphalt mixture obtained by heating and mixing asphalt and aggregate is put into a predetermined mold (300 × 300 × 50 mm) and shaped, and then a specimen having a shape of 300 × 100 × 50 mm is cut out to prepare a specimen, −10 After curing at 0 ° C., the specimen is set on a loading tester and concentratedly loaded at the center at a loading speed of 50 mm / min. The sample is loaded until the specimen breaks, showing the maximum load, and the load and amount of deformation are obtained, and the bending strength at break (at the maximum load) and strain at break are obtained.
In general, the larger the bending strength and strain value at break, the better the durability against cracking.
(3)評価方法
ホイールトラッキング試験結果より、動的安定度が800回/mm以上である場合は、「わだち掘れが起こらない:○」、500回/mm以上800回/mm未満である場合は、「場合によってはわだち掘れが起こる:△」、500回/mm未満である場合は、「わだち掘れが起こる:×」と評価した。
さらに、曲げ試験結果より、「ひび割れが無し:○」、「場合によってはひび割れする:△」、「ひび割れ有り:×」と評価した。
(3) Evaluation method From the results of the wheel tracking test, when the dynamic stability is 800 times / mm or more, “no rutting occurs: ○”, when 500 times / mm or more and less than 800 times / mm. , “In some cases, rutting occurs: Δ”, and when it is less than 500 times / mm, it was evaluated as “W rutting occurs: x”.
Furthermore, from the bending test results, it was evaluated that “no cracks: ○”, “cracks in some cases: Δ”, “with cracks: ×”.
(実施例1〜3)
本発明の製造方法により、(1)アスファルトおよび骨材をミキサーにそれぞれの所定量を投入後、(2)溶剤脱れきピッチ(SDAピッチ)の所定量を添加し、約150℃のミキサーで攪拌混合しアスファルト混合物を製造し、これらのアスファルト混合物について、前述のホイールトラッキング試験および曲げ試験を行い、耐流動性および耐ひび割れ性を評価した。各成分の性状、混合割合および評価結果を表1に示す。なお、骨材配合はアスファルト舗装要網に記載された密粒度アスコン(13)の中央値とした。
実施例1〜3のいずれも、耐流動性および耐ひび割れ性において優れた特性を示した。
(Examples 1-3)
According to the production method of the present invention, (1) a predetermined amount of asphalt and aggregate is put into a mixer, and then (2) a predetermined amount of solvent removal pitch (SDA pitch) is added and stirred with a mixer at about 150 ° C. Asphalt mixtures were prepared by mixing, and the above-mentioned wheel tracking test and bending test were performed on these asphalt mixtures to evaluate the flow resistance and crack resistance. Table 1 shows the properties, mixing ratios and evaluation results of each component. The aggregate composition was set to the median value of the dense particle size ascon (13) described in the asphalt pavement mesh.
All of Examples 1 to 3 exhibited excellent characteristics in flow resistance and crack resistance.
(比較例1)
比較例1はSDAピッチとして軟化点が低く、かつアスファルテン含有量が小さいものを用いて製造したものであり、実施例1〜3と同様に、前述のホイールトラッキング試験および曲げ試験を行い、耐流動性および耐ひび割れ性を評価した。
その結果、耐流動性および耐ひび割れ性のいずれにおいても、不十分な性能であった。
(Comparative Example 1)
Comparative Example 1 was produced using an SDA pitch having a low softening point and a low asphaltene content, and in the same manner as in Examples 1 to 3, the above-mentioned wheel tracking test and bending test were conducted, and the flow resistance was And crack resistance were evaluated.
As a result, it was insufficient performance in both flow resistance and crack resistance.
(比較例2)
比較例2はSDAピッチとして軟化点が高い、かつアスファルテン含有量が大きいものを用いて製造したものであり、実施例1〜3と同様に、前述のホイールトラッキング試験および曲げ試験を行い、耐流動性および耐ひび割れ性を評価した。
その結果、耐流動性および耐ひび割れ性のいずれにおいても、不十分な性能であった。
(Comparative Example 2)
Comparative Example 2 was produced using an SDA pitch having a high softening point and a high asphaltene content, and in the same manner as in Examples 1 to 3, the above-mentioned wheel tracking test and bending test were conducted, and the flow resistance was And crack resistance were evaluated.
As a result, it was insufficient performance in both flow resistance and crack resistance.
(比較例3)
比較例3は、SDAピッチの粒径が大きいものを用いて製造したものであり、実施例1〜3と同様に、前述のホイールトラッキング試験および曲げ試験を行い、耐流動性および耐ひび割れ性を評価した。
その結果、十分溶解し難いことから耐ひび割れ性においては不十分な性能であった。
(Comparative Example 3)
Comparative Example 3 was manufactured using a SDA pitch having a large particle diameter, and in the same manner as in Examples 1 to 3, the above-described wheel tracking test and bending test were performed to obtain fluid resistance and crack resistance. evaluated.
As a result, since it was difficult to dissolve sufficiently, the crack resistance was insufficient.
本発明の舗装用アスファルトは、耐流動性、耐ひび割れ性に優れており産業上の価値は大きい。 The asphalt for paving of the present invention is excellent in fluid resistance and crack resistance and has great industrial value.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011095676A JP5661545B2 (en) | 2011-04-22 | 2011-04-22 | Paving asphalt and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011095676A JP5661545B2 (en) | 2011-04-22 | 2011-04-22 | Paving asphalt and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012224800A true JP2012224800A (en) | 2012-11-15 |
JP5661545B2 JP5661545B2 (en) | 2015-01-28 |
Family
ID=47275334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011095676A Active JP5661545B2 (en) | 2011-04-22 | 2011-04-22 | Paving asphalt and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5661545B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015081279A (en) * | 2013-10-22 | 2015-04-27 | Jx日鉱日石エネルギー株式会社 | Hard asphalt composition, goose asphalt mixture and manufacturing method therefor |
KR20170011981A (en) * | 2015-07-22 | 2017-02-02 | 한국건설기술연구원 | Low cost and Hi-performance Asphalt Binder Composition for Asphalt Pavement Using Residue produced during Solvent De-Asphalting Process, And Manufacturing Method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06116499A (en) * | 1992-10-06 | 1994-04-26 | Nippon Oil Co Ltd | Production of paving asphalt |
JP2012007063A (en) * | 2010-06-24 | 2012-01-12 | Jx Nippon Oil & Energy Corp | Asphalt for pavement, and method for producing the same |
-
2011
- 2011-04-22 JP JP2011095676A patent/JP5661545B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06116499A (en) * | 1992-10-06 | 1994-04-26 | Nippon Oil Co Ltd | Production of paving asphalt |
JP2012007063A (en) * | 2010-06-24 | 2012-01-12 | Jx Nippon Oil & Energy Corp | Asphalt for pavement, and method for producing the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015081279A (en) * | 2013-10-22 | 2015-04-27 | Jx日鉱日石エネルギー株式会社 | Hard asphalt composition, goose asphalt mixture and manufacturing method therefor |
KR20170011981A (en) * | 2015-07-22 | 2017-02-02 | 한국건설기술연구원 | Low cost and Hi-performance Asphalt Binder Composition for Asphalt Pavement Using Residue produced during Solvent De-Asphalting Process, And Manufacturing Method thereof |
KR101713590B1 (en) | 2015-07-22 | 2017-03-09 | 한국건설기술연구원 | Low cost and Hi-performance Asphalt Binder Composition for Asphalt Pavement Using Residue produced during Solvent De-Asphalting Process, And Manufacturing Method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5661545B2 (en) | 2015-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI412586B (en) | Process oil, manufacturing method of deasphalted oil, manufacturing method of extract and manufacturing method of process oil | |
US9493708B2 (en) | Process for producing caking additive for coke production and process for producing coke | |
JP5230691B2 (en) | Paving asphalt and method for producing the same | |
JP4947473B2 (en) | High quality asphalt containing petroleum pitch and method for producing the same | |
JP5744766B2 (en) | Reclaimed asphalt reclaim additive composition and reclaimed asphalt pavement material | |
JP4856500B2 (en) | Asphalt binder | |
JP6534291B2 (en) | Asphalt regeneration additive composition | |
CN109535747B (en) | No. 30 hard road asphalt and preparation method thereof | |
US20220243066A1 (en) | Upgrading asphalt by incorporation of bio-oils | |
JP2005154465A (en) | Reclaiming additive composition for asphalt pavement waste material | |
JP4739944B2 (en) | Method for producing paving asphalt and paving asphalt obtained thereby | |
KR102608627B1 (en) | High performance process oil | |
JP5661545B2 (en) | Paving asphalt and method for producing the same | |
US20140135431A1 (en) | Asphalt compositions with cracking resistance additives | |
US20240076498A1 (en) | Asphalt binders and related methods and uses | |
JP6300749B2 (en) | Rigid asphalt composition, goose asphalt mixture and method for producing them | |
JP5818765B2 (en) | Asphalt composition for pavement and method for producing the same | |
US20140076777A1 (en) | Upgrading properties of asphalts with wax | |
JP4169343B2 (en) | Recycle additive composition for asphalt pavement waste | |
JP3695872B2 (en) | Modified asphalt composition | |
CA2917826A1 (en) | Process for producing a bitumen product | |
JP6097668B2 (en) | Rigid asphalt composition, goose asphalt mixture and method for producing them | |
JP7195083B2 (en) | Additive for reclaiming deteriorated asphalt and method for producing reclaimed asphalt mixture | |
JP6325435B2 (en) | Asphalt composition | |
JP6870887B2 (en) | Manufacturing method of additive for recycled asphalt, additive for recycled asphalt, and additive for recycled asphalt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130724 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140513 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140617 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141203 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5661545 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |