JP3695872B2 - Modified asphalt composition - Google Patents

Modified asphalt composition Download PDF

Info

Publication number
JP3695872B2
JP3695872B2 JP00199897A JP199897A JP3695872B2 JP 3695872 B2 JP3695872 B2 JP 3695872B2 JP 00199897 A JP00199897 A JP 00199897A JP 199897 A JP199897 A JP 199897A JP 3695872 B2 JP3695872 B2 JP 3695872B2
Authority
JP
Japan
Prior art keywords
asphalt
weight
amount
modified asphalt
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00199897A
Other languages
Japanese (ja)
Other versions
JPH09249810A (en
Inventor
光喜 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP00199897A priority Critical patent/JP3695872B2/en
Publication of JPH09249810A publication Critical patent/JPH09249810A/en
Application granted granted Critical
Publication of JP3695872B2 publication Critical patent/JP3695872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、改質アスファルト組成物に関し、詳しくはタフネス・テナシティ試験強度に優れた改質アスファルト組成物に関する。
【0002】
【従来の技術】
アスファルトは防水性、耐薬品性に優れ、また安価であるため使いやすい材料として、道路舗装、ルーフィング材、シーリング材、接着剤、水路ライニング等の分野で広く利用されている。しかし、アスファルトを使用する際の問題点として、高温時の軟化および低温時の脆化がある。このような問題点があるため、道路舗装においては、夏場の轍掘れの発生があり、また、その他の利用においても同様な問題が発生している。そこで、これらの問題を解決するために、高性能なアスファルトが求められ、そのために従来よりゴム、熱可塑性樹脂、熱可塑性エラストマー、熱硬化性樹脂等を添加した、所謂改質アスファルトが製造されている。
【0003】
なかでも、熱可塑性エラストマーは分子中にゴム部分と樹脂部分を有するため、高温での軟化および低温での脆化の双方に対して改質効果を示す。また、ゴム等に比較してアスファルトに溶解しやすく、例えば溶液、乳濁液、ラテックスの形態で添加する必要がないため、主なアスファルト改質材として使用されている。例えば、特公昭47−17319号公報にアスファルトビチューメンの改質材として開示されている。しかしながら、改質アスファルトのタフネス・テナシティ試験強度については満足すべき結果は得られていない。
【0004】
ここで、タフネス・テナシティ試験はアスファルトの引っ張り試験の一つであり、一定の大きさの金属半球を球面を下にして所定容器中のアスファルト試料中に埋め、一定の温度および速度で金属半球を引き抜く際に要する仕事量を求めるものである。タフネス強度が大きいほどアスファルトが金属半球を把握しているための抵抗力が大きく、テナシティ強度が大きいほどアスファルトの大きな変形に対する抵抗力が大きいことを示しており、タフネス・テナシティ試験はアスファルトの実用物性に対して最も優れた試験法と言える。
【0005】
近年では、アスファルトのより一層の高性能化が求められ、その方策として改質材の添加量を増加することも考えられるが、高温での貯蔵中、または移送中に改質材とアスファルトが分離し、性能が劣化するという問題あり、またコストアップにもつながり、改質材が少量でも所望の強度が得られる改質アスファルト組成物が望まれている。
【0006】
一方、アスファルトには、ストレートアスファルト、ブローンアスファルトおよび溶剤脱瀝アスファルトがある。ストレートアスファルトは、原油から常圧蒸留によって石油ガス、ガソリン、ナフサ、灯油、軽油等を留出させ、さらに減圧蒸留によって潤滑油留分を分離した塔底留出物で、主として道路舗装に用いられている。また、ブローンアスファルトは、ストレートアスファルトに200〜260℃の温度で空気を吹き込んで酸化縮合、重合反応を行わせたもので、防水、防錆、保温用として用いられている。さらに、溶剤脱瀝アスファルトは、減圧蒸留残渣油からプロパン等を溶剤として高粘度高級潤滑油留分(ブライトストック等)を抽出した残渣分であるが、この溶剤脱瀝アスファルトは、いくぶん可塑性で固く、しかも脆くて延性に欠けるピッチ状の固形物で感温性が大きいため、道路舗装用および建築用等のアスファルトとしては不適当であり、あまり利用価値がないのが現状である。
【0007】
【発明が解決しようとする課題】
本発明は、上記観点からなされたもので、改質材が少量でもタフネス・テナシティ試験強度に優れた改質アスファルト組成物を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明者は上記の課題を解決すべく鋭意研究を重ねた結果、従来は利用価値が小さいとされていた溶剤脱瀝アスファルトを特定の割合で含むアスファルト部に熱可塑性エラストマーを配合してなる改質アスファルト組成物が、意外にも改質材が少量でもタフネス・テナシティ試験強度に優れていることを見出し本発明を完成したものである。
【0009】
すなわち、本発明は、アスファルト部に熱可塑性エラストマーを配合してなる改質アスファルトにおいて、アスファルト部が40〜95重量%の溶剤脱瀝アスファルトを含むことを特徴とする改質アスファルト組成物を提供するものである。
【0010】
【発明の実施の形態】
以下に、本発明の実施の形態を説明する。
本発明におけるアスファルト部は、アスファルト部全量基準で、40〜95重量%、好ましくは50〜95重量%の溶剤脱瀝アスファルトを含んでいる。該溶剤脱瀝アスファルトは、25℃における針入度が0〜40、軟化点(環球法)が50〜90℃で、石油精製工程における減圧蒸留装置の残渣油を原料として、溶剤脱瀝装置で、メタン、エタン、プロパン、ブタン、ペンタン等の溶剤によりブライトストック等の高粘度高級潤滑油留分を抽出し、抽出されずに沈殿分離されたアスファルトをいい、なかでも、溶剤としてプロパン、あるいはプロパンとブタンの混合物が使用されるプロパン脱瀝アスファルトが好ましい。アスファルト部中の溶剤脱瀝アスファルトの量が上記下限値未満では、タフネス・テナシティ試験強度が満足されない。一方、上限値を超えると、タフネス・テナシティ試験強度が満足されないし、さらに脆化が問題となる。
【0011】
アスファルト部中の溶剤脱瀝アスファルト以外は、所謂カットバック油といい、溶剤脱瀝アスファルトの針入度を調節する目的で混合される。該カットバック油は、溶剤脱瀝アスファルトより軟質の石油製品、石油半製品であれば特に制限はなく、例えば、常圧蒸留装置あるいは減圧蒸留装置で処理して得られる留出油、常圧蒸留残渣油、減圧蒸留残渣油、ストレートアスファルト、潤滑油の溶剤精製装置から得られる抽出油等を挙げることができる。
【0012】
次に、本発明の熱可塑性エラストマーは、スチレン−ブタジエンブロック共重合体、スチレン−イソプレンブロツク共重合体、スチレン−エチレン−ブチレンブロック共重合体など高分子学会編集の「エラストマー」P61〜P83に記載の任意のものが使用できる。なかでも、スチレン系熱可塑性エラストマーが好適に使用できる。
【0013】
該熱可塑性エラストマーの量は、改質アスフアルト組成物全量基準で、0.1〜20重量%、好ましくは2〜15重量%、更に好ましくは2〜6重量%である。該熱可塑性エラストマーの量が下限値未満では、改質効果に乏しく、上限値を超えると、相溶性に乏しく望ましくない。
また、これらの改質アスファルト組成物に、所望の性状によってはさらにゴム、熱可塑性樹脂、熱硬化性樹脂、油脂、可塑剤、鉱油、脂肪酸等を添加することができるし、使用目的に応じて、さらに砕石、砂、無機フィラー等の骨材を混合することもできる。
【0014】
【実施例】
以下に、実施例により本発明を更に具体的に説明するが、本発明はこれらの例によってなんら制限されるものではない。
実施例1
針入度5、軟化点69.3℃のプロパン脱瀝アスファルト77.6重量部、針入度350の減圧蒸留残渣油19.4重量部およびスチレン−ブタジエンブロック共重合体(旭化成工業(株)製;タフプレン315)3重量部を180℃で加熱、攪拌混合し、改質アスファルト組成物を製造した。その後、改質アスファルト組成物のタフネス・テナシティ試験(日本道路協会編集、舗装試験法便覧、P456〜P461参照)を行った。その結果を第1表に示す。なお、針入度および軟化点はJIS K 2207に従って測定した値である。
【0015】
実施例2
実施例1において、プロパン脱瀝アスファルトの量を58.2重量部および減圧蒸留残渣油の量を38.8重量部に代えたこと以外は同様にして改質アスファルト組成物を製造し、タフネス・テナシティ試験を行った。その結果を第1表に示す。
【0016】
比較例1
実施例1において、プロパン脱瀝アスファルトの量を97.0重量部および減圧蒸留残渣油の量を0重量部に代えたこと以外は同様にして改質アスファルト組成物を製造し、タフネス・テナシティ試験を行った。その結果を第1表に示す。
【0017】
比較例2
実施例1において、プロパン脱瀝アスファルトの量を29.1重量部および減圧蒸留残渣油の量を67.9重量部に代えたこと以外は同様にして改質アスファルト組成物を製造し、タフネス・テナシティ試験を行った。その結果を第1表に示す。
【0018】
参考例1
実施例1において、プロパン脱瀝アスファルトの量を80.0重量部、減圧蒸留残渣油の量を20.0重量部およびスチレン−ブタジエンブロック共重合体の量を0重量部に代えたこと以外は同様にして改質アスファルト組成物を製造し、タフネス・テナシティ試験を行った。その結果を第1表に示す。
【0019】
参考例2
実施例1において、プロパン脱瀝アスファルトの量を60.0重量部、減圧蒸留残渣油の量を40.0重量部およびスチレン−ブタジエンブロック共重合体の量を0重量部に代えたこと以外は同様にして改質アスファルト組成物を製造し、タフネス・テナシティ試験を行った。その結果を第1表に示す。
【0020】
比較例3
比較例1において、プロパン脱瀝アスファルトを針入度77、軟化点48.0℃のストレートアスファルトに代えたこと以外は同様にして改質アスファルトを製造し、タフネス・テナシティ試験を行った。その結果を第1表に示す。
【0021】
比較例4
比較例1において、プロパン脱瀝アスファルト97.0重量部を針入度77、軟化点48.0℃のストレートアスファルト93.0重量部およびスチレン−ブタジエンブロック共重合体の量を7.0重量部に代えたこと以外は同様にして改質アスファルトを製造し、タフネス・テナシティ試験を行った。その結果を第1表に示す。
【0022】
【表1】

Figure 0003695872
【0023】
【表2】
Figure 0003695872
【0024】
*1)プロパン脱瀝アスファルト
*2)減圧蒸留残渣油
*3)ストレートアスファルト
*4)スチレン−ブタジエンブロック共重合体
なお、上記のアスファルト部の組成分析は下記第2表の条件で行った。
【0025】
【表3】
Figure 0003695872
【0026】
上記実施例,比較例及び参考例より次のことが分かる。
▲1▼比較例1,2から分かるように、アスファルト部のPDAS(プロパン脱瀝アスファルト)量が多すぎるとアスファルテン分が多くなり、PDAS量が少なすぎるとアスファルテン分が少なくなっている。
▲2▼実施例から分かるように、アスファルト部のアスファルテン分が12〜16重量%の場合がタフネス・テナシティ試験強度の点で好ましい。
▲3▼参考例から分かるように、ゴム(SBS)を配合しないものはアスファルト部の組成が同じでも実施例に比べ良い結果は得られない。
▲4▼比較例3,4のようにSA(ストレートアスファルト)を用いると芳香族分が少なくなり、SBSを7重量%加えないと良好なタフネス・テナシティ試験強度が得られないが、PDASを用いると実施例1,2から分かるように、芳香族分は62重量%以上となりタフネス・テナシティ試験強度は良好となる。
▲5▼比較例3,4よりSAを用いると、PDASを用いた実施例に比べてアスファルト部のレジン分,飽和分がともに多いことが分かる。
【0027】
【発明の効果】
本発明の改質アスファルト組成物は、改質材としての熱可塑性エラストマーが少量でも、タフネス・テナシティ試験強度に優れている。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a modified asphalt composition, and more particularly to a modified asphalt composition excellent in toughness tenacity test strength.
[0002]
[Prior art]
Asphalt is widely used in fields such as road pavement, roofing materials, sealing materials, adhesives, and waterway linings as an easy-to-use material because it has excellent waterproofness and chemical resistance and is inexpensive. However, problems when using asphalt include softening at high temperatures and embrittlement at low temperatures. Because of such problems, road pavements are subject to summer digging, and similar problems occur in other uses. Therefore, in order to solve these problems, high-performance asphalt is required, and for that purpose, so-called modified asphalt to which rubber, thermoplastic resin, thermoplastic elastomer, thermosetting resin, etc. are added has been manufactured. Yes.
[0003]
Especially, since a thermoplastic elastomer has a rubber part and a resin part in the molecule, it exhibits a modification effect for both softening at high temperature and embrittlement at low temperature. In addition, it is easily dissolved in asphalt as compared to rubber and the like, and it is not necessary to add it in the form of, for example, a solution, an emulsion, or a latex. Therefore, it is used as a main asphalt modifier. For example, it is disclosed in Japanese Patent Publication No. 47-17319 as an asphalt bitumen modifier. However, satisfactory results have not been obtained for the toughness tenacity test strength of the modified asphalt.
[0004]
Here, the toughness tenacity test is one of the asphalt tensile tests, in which a metal hemisphere of a certain size is buried in an asphalt sample in a predetermined container with the spherical surface down, and the metal hemisphere is filled at a constant temperature and speed. The amount of work required for drawing out is obtained. As the toughness strength increases, the resistance of the asphalt to grasp the metal hemisphere increases, and as the tenacity strength increases, the resistance to large deformation of the asphalt increases, indicating that the toughness tenacity test is a practical property of asphalt. It can be said that it is the most excellent test method.
[0005]
In recent years, there has been a demand for higher performance of asphalt, and it may be possible to increase the amount of modifier added. However, the modifier and asphalt are separated during storage at high temperatures or during transportation. However, there is a problem that the performance is deteriorated, and the cost is increased, and a modified asphalt composition that can obtain a desired strength even with a small amount of the modifying material is desired.
[0006]
On the other hand, asphalt includes straight asphalt, blown asphalt and solvent deasphalted asphalt. Straight asphalt is a bottom distillate obtained by distilling petroleum gas, gasoline, naphtha, kerosene, light oil, etc. from crude oil by atmospheric distillation, and separating the lubricating oil fraction by vacuum distillation, and is mainly used for road paving. ing. Further, blown asphalt is obtained by blowing straight air into a straight asphalt at a temperature of 200 to 260 ° C. to cause oxidation condensation and polymerization reaction, and is used for waterproofing, rust prevention, and heat retention. Furthermore, solvent deasphalted asphalt is a residue obtained by extracting high-viscosity high-grade lubricating oil fractions (bright stock, etc.) from vacuum distillation residue oil using propane as a solvent, but this solvent deasphalted asphalt is somewhat plastic and hard. In addition, since it is a brittle and lacking ductility and has a high temperature sensitivity, it is unsuitable as asphalt for road paving and construction, and is not very useful.
[0007]
[Problems to be solved by the invention]
The present invention has been made from the above viewpoint, and an object of the present invention is to provide a modified asphalt composition excellent in toughness and tenacity test strength even with a small amount of the modifying material.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventor has modified a thermoplastic elastomer into an asphalt portion containing a solvent deasphalted asphalt, which has conventionally been regarded as having a low utility value, in a specific ratio. The present invention has been completed by finding that the quality asphalt composition is surprisingly excellent in toughness and tenacity test strength even with a small amount of modifier.
[0009]
That is, the present invention provides a modified asphalt composition characterized in that the asphalt part contains 40 to 95% by weight of solvent-deasphalted asphalt in a modified asphalt obtained by blending a thermoplastic elastomer in the asphalt part. Is.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
The asphalt part in the present invention contains 40 to 95% by weight, preferably 50 to 95% by weight of solvent deasphalted asphalt based on the total amount of asphalt part. The solvent deasphalting asphalt has a penetration of 0 to 40 at 25 ° C., a softening point (ring and ball method) of 50 to 90 ° C., and a residual oil from a vacuum distillation apparatus in a petroleum refining process as a raw material. Asphalt extracted from high-viscosity high-grade lubricating oil fractions such as bright stock with solvents such as methane, ethane, propane, butane, and pentane, and extracted and separated without extraction. Among them, propane or propane as a solvent Propane deasphalted asphalt in which a mixture of propane and butane is used is preferred. If the amount of the solvent deasphalted asphalt in the asphalt part is less than the above lower limit value, the toughness tenacity test strength is not satisfied. On the other hand, when the upper limit is exceeded, the toughness tenacity test strength is not satisfied, and further embrittlement becomes a problem.
[0011]
Except for the solvent deasphalted asphalt in the asphalt part, it is called so-called cutback oil and is mixed for the purpose of adjusting the penetration of the solvent deasphalted asphalt. The cutback oil is not particularly limited as long as it is a petroleum product or a semi-finished petroleum product that is softer than solvent-desulfurized asphalt. For example, a distillate obtained by treatment with an atmospheric distillation apparatus or a vacuum distillation apparatus, an atmospheric distillation Examples thereof include residual oil, vacuum distillation residual oil, straight asphalt, and extracted oil obtained from a solvent refining apparatus for lubricating oil.
[0012]
Next, the thermoplastic elastomer of the present invention is described in “Elastomers” P61 to P83 edited by the Society of Polymer Sciences, such as styrene-butadiene block copolymer, styrene-isoprene block copolymer, styrene-ethylene-butylene block copolymer. Any of these can be used. Of these, styrenic thermoplastic elastomers can be preferably used.
[0013]
The amount of the thermoplastic elastomer is 0.1 to 20% by weight, preferably 2 to 15% by weight, more preferably 2 to 6% by weight, based on the total amount of the modified asphalt composition. If the amount of the thermoplastic elastomer is less than the lower limit, the reforming effect is poor, and if it exceeds the upper limit, the compatibility is poor and undesirable.
Depending on the desired properties, rubber, thermoplastic resin, thermosetting resin, fats and oils, plasticizer, mineral oil, fatty acid, etc. can be added to these modified asphalt compositions, depending on the purpose of use. Furthermore, aggregates such as crushed stone, sand and inorganic filler can also be mixed.
[0014]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
Example 1
77.6 parts by weight of propane deasphalted asphalt having a penetration of 5 and a softening point of 69.3 ° C., 19.4 parts by weight of vacuum distillation residue oil having a penetration of 350 and a styrene-butadiene block copolymer (Asahi Kasei Corporation) Manufactured; Tuffprene 315) 3 parts by weight was heated at 180 ° C. and stirred to prepare a modified asphalt composition. Then, the toughness tenacity test of the modified asphalt composition (edited by the Japan Road Association, pavement test method manual, see P456 to P461) was performed. The results are shown in Table 1. The penetration and softening point are values measured according to JIS K 2207.
[0015]
Example 2
A modified asphalt composition was produced in the same manner as in Example 1 except that the amount of propane-desulfurized asphalt was changed to 58.2 parts by weight and the amount of the vacuum distillation residue oil was changed to 38.8 parts by weight. A tenacity test was conducted. The results are shown in Table 1.
[0016]
Comparative Example 1
A modified asphalt composition was produced in the same manner as in Example 1 except that the amount of propane-desulfurized asphalt was changed to 97.0 parts by weight and the amount of vacuum residue oil was changed to 0 parts by weight, and the toughness tenacity test was conducted. Went. The results are shown in Table 1.
[0017]
Comparative Example 2
A modified asphalt composition was prepared in the same manner as in Example 1 except that the amount of propane-desulfurized asphalt was changed to 29.1 parts by weight and the amount of residual oil under reduced pressure was changed to 67.9 parts by weight. A tenacity test was conducted. The results are shown in Table 1.
[0018]
Reference example 1
In Example 1, except that the amount of propane desulfurized asphalt was changed to 80.0 parts by weight, the amount of vacuum distillation residue oil was changed to 20.0 parts by weight, and the amount of styrene-butadiene block copolymer was changed to 0 parts by weight. Similarly, a modified asphalt composition was produced, and a toughness tenacity test was conducted. The results are shown in Table 1.
[0019]
Reference example 2
In Example 1, except that the amount of propane desulfurized asphalt was changed to 60.0 parts by weight, the amount of vacuum distillation residue oil was changed to 40.0 parts by weight, and the amount of styrene-butadiene block copolymer was changed to 0 parts by weight. Similarly, a modified asphalt composition was produced, and a toughness tenacity test was conducted. The results are shown in Table 1.
[0020]
Comparative Example 3
A modified asphalt was produced in the same manner as in Comparative Example 1 except that the propane deasphalted asphalt was replaced with straight asphalt having a penetration of 77 and a softening point of 48.0 ° C., and a toughness tenacity test was performed. The results are shown in Table 1.
[0021]
Comparative Example 4
In Comparative Example 1, 97.0 parts by weight of propane deasphalted asphalt was 93.0 parts by weight of straight asphalt having a penetration of 77, a softening point of 48.0 ° C., and 7.0 parts by weight of styrene-butadiene block copolymer. A modified asphalt was produced in the same manner except that the toughness tenacity test was conducted. The results are shown in Table 1.
[0022]
[Table 1]
Figure 0003695872
[0023]
[Table 2]
Figure 0003695872
[0024]
* 1) Propane deasphalted asphalt * 2) Vacuum distillation residue oil * 3) Straight asphalt * 4) Styrene-butadiene block copolymer The composition analysis of the asphalt part was performed under the conditions shown in Table 2 below.
[0025]
[Table 3]
Figure 0003695872
[0026]
The following can be seen from the above Examples, Comparative Examples and Reference Examples.
(1) As can be seen from Comparative Examples 1 and 2, when the amount of PDAS (propane deasphalted asphalt) in the asphalt portion is too large, the amount of asphaltenes increases, and when the amount of PDAS is too small, the amount of asphaltenes decreases.
{Circle around (2)} As can be seen from the examples, the asphaltene content in the asphalt part is preferably 12 to 16% by weight in terms of toughness and tenacity test strength.
{Circle around (3)} As can be seen from the reference examples, those without rubber (SBS) do not give better results than the examples even if the composition of the asphalt part is the same.
(4) When SA (straight asphalt) is used as in Comparative Examples 3 and 4, the aromatic content decreases, and if 7% by weight of SBS is not added, good toughness and tenacity test strength cannot be obtained, but PDAS is used. As can be seen from Examples 1 and 2, the aromatic content is 62% by weight or more, and the toughness tenacity test strength is good.
(5) From the comparative examples 3 and 4, it can be seen that when SA is used, both the resin content and the saturated content of the asphalt part are larger than those in the example using PDAS.
[0027]
【The invention's effect】
The modified asphalt composition of the present invention is excellent in toughness and tenacity test strength even with a small amount of thermoplastic elastomer as a modifying material.

Claims (3)

アスファルト部に熱可塑性エラストマーを配合してなる改質アスファルト組成物において、アスファルト部が40〜95重量%の溶剤脱瀝アスファルトを含むことを特徴とする改質アスファルト組成物。A modified asphalt composition comprising a thermoplastic elastomer in an asphalt part, wherein the asphalt part contains 40 to 95% by weight of solvent deasphalted asphalt. アスファルト部が50〜95重量%の溶剤脱瀝アスファルトを含むことを特徴とする請求項1記載の改質アスファルト組成物。2. The modified asphalt composition according to claim 1, wherein the asphalt part contains 50 to 95% by weight of solvent deasphalted asphalt. 溶剤脱瀝アスファルトがプロパン脱瀝アスファルトである請求項1又は2記載の改質アスファルト組成物。The modified asphalt composition according to claim 1 or 2, wherein the solvent deasphalted asphalt is propane deasphalted asphalt.
JP00199897A 1996-01-10 1997-01-09 Modified asphalt composition Expired - Fee Related JP3695872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00199897A JP3695872B2 (en) 1996-01-10 1997-01-09 Modified asphalt composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-2331 1996-01-10
JP233196 1996-01-10
JP00199897A JP3695872B2 (en) 1996-01-10 1997-01-09 Modified asphalt composition

Publications (2)

Publication Number Publication Date
JPH09249810A JPH09249810A (en) 1997-09-22
JP3695872B2 true JP3695872B2 (en) 2005-09-14

Family

ID=26335309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00199897A Expired - Fee Related JP3695872B2 (en) 1996-01-10 1997-01-09 Modified asphalt composition

Country Status (1)

Country Link
JP (1) JP3695872B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112980485A (en) * 2021-03-01 2021-06-18 新疆佳宇恒能源科技有限公司 Method for preparing asphalt by using propane

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186211A (en) * 1998-12-22 2000-07-04 Nippon Mitsubishi Oil Corp Paving asphalt
JP3848935B2 (en) * 2003-06-30 2006-11-22 新日本石油株式会社 Paving asphalt
KR101139059B1 (en) * 2005-07-20 2012-04-30 에스케이에너지 주식회사 High quality asphalt containing pitch and preparing method thereof
CN101880548B (en) * 2010-04-07 2013-09-25 中国石油化工股份有限公司 Novel method for obtaining concoction soft component of high-grade road asphalt
CN104650602B (en) * 2015-02-06 2018-01-02 中国石油大学(华东) A kind of advanced road hard grades of bitumen and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112980485A (en) * 2021-03-01 2021-06-18 新疆佳宇恒能源科技有限公司 Method for preparing asphalt by using propane

Also Published As

Publication number Publication date
JPH09249810A (en) 1997-09-22

Similar Documents

Publication Publication Date Title
TWI412586B (en) Process oil, manufacturing method of deasphalted oil, manufacturing method of extract and manufacturing method of process oil
US7439286B2 (en) Modified asphalt compositions
JP6613247B2 (en) Asphalt binder composition and method for making and using it
US8198350B2 (en) Polymer-modified asphalt with a crosslinking agent and methods of preparing
US7202290B2 (en) Modified asphalt compositions
WO1999058600A1 (en) Asphalt compositions and method of preparation
WO2010077141A1 (en) Asphalt composition
JP2006522209A (en) Ethylene / alkyl acrylate copolymers produced in tubular reactors as polymer modifiers for asphalt
US6972047B2 (en) Incorporation of gilsonite into asphalt compositions
JP3695872B2 (en) Modified asphalt composition
KR100651350B1 (en) Composition for reforming asphalt and preparing method for asphalt mixture using the same
JP4582956B2 (en) Paving binder composition and method for producing the same
JP4778670B2 (en) Propane deasphalted asphalt and straight asphalt manufactured using the same
JP6545059B2 (en) Polymer modified asphalt composition
JP4601302B2 (en) Asphalt epoxy resin composition
US20170349725A1 (en) Oligoterpenes as rejuvenating agent in asphalt
CA2235310A1 (en) Asphalt compositions and process for low temperature paving applications
Firyal et al. Synthesis and Characterization of New‎ Copolymers as Asphalt Additives
CA2235727C (en) Low temperature pavement binders and methods of their preparation
EP1352031A1 (en) A bitumen composition, its manufacture and use
EP1205520A1 (en) Method for preparation of stable bitumen polymer compositions
JPH06107953A (en) Modified asphalt
WO2000023522A1 (en) Polymer modified asphalt mixture
MA et al. Synthesis and Characterization of New Copolymers as Asphalt Additives

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees