JP3848935B2 - Paving asphalt - Google Patents

Paving asphalt Download PDF

Info

Publication number
JP3848935B2
JP3848935B2 JP2003189048A JP2003189048A JP3848935B2 JP 3848935 B2 JP3848935 B2 JP 3848935B2 JP 2003189048 A JP2003189048 A JP 2003189048A JP 2003189048 A JP2003189048 A JP 2003189048A JP 3848935 B2 JP3848935 B2 JP 3848935B2
Authority
JP
Japan
Prior art keywords
asphalt
crude oil
penetration
molecular weight
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003189048A
Other languages
Japanese (ja)
Other versions
JP2005023173A (en
Inventor
勲 本城
健一 小林
孝男 品田
勝彦 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2003189048A priority Critical patent/JP3848935B2/en
Priority to CN 200410061764 priority patent/CN1609167A/en
Publication of JP2005023173A publication Critical patent/JP2005023173A/en
Application granted granted Critical
Publication of JP3848935B2 publication Critical patent/JP3848935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Road Paving Structures (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は重交通道路舗装用アスファルトに関するものである。
【0002】
【従来の技術】
従来の道路舗装用アスファルトは、原油を常圧蒸留して得られた常圧残油をさらに減圧蒸留して得られる25℃における針入度40〜100のストレートアスファルトが使用されているが、重交通道路においてわだち掘れが顕著となり、車両の走行安全に支障をきたすという問題がある。
【0003】
この対策として、わだち掘れの少ない、25℃における針入度40〜100で、60℃における粘度が従来のストレートアスファルトより高いアスファルトが要求されている。
【0004】
そこで、従来は原油を蒸留して得られる減圧残油を、さらに200〜300℃の加熱下で空気を数時間吹き込んで製造したセミブロ一ンアスフアルトを用いていた(非特許文献1参照)。このセミブローンアスファルトは、アスファルト舗装道路のわだち掘れを防止する改質アスファルトである。しかしながら、セミブローンアスファルトを製造する方法はストレートアスファルトの製造方法に比べて、蒸留操作に加えて煩雑なブローイング操作(減圧残油をさらに200〜300℃の加熱下で空気を数時間吹き込む操作)が必要であり、また反応に伴う廃ガスの処理設備が必要という欠点がある。またセミブローンアスファルトで舗装した道路ではひび割れを起こし易い。
さらに、セミブローンアスファルトは輸送時、貯蔵時および道路舗装用骨材との混合時の加熱で、変質しやすいという欠点がある。
【0005】
【非特許文献1】
多田、伊藤、アスファルト、(社)日本アスファルト協会、Vol.23、No.157、41ページ
【0006】
【発明が解決しようとする課題】
本発明は、耐わだち掘れ性に優れ、かつ熱安定性に優れた舗装用アスファルトを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者等は、前記課題を解決するために鋭意研究した結果、特定な性状を有する鉱油系アスファルトが、耐わだち掘れ性および熱安定性に優れていることを見出し、本発明を完成するに至った。
【0008】
すなわち、本発明の第1は、25℃における針入度が30〜80、芳香族分の数平均分子量が850以上、レジン分の数平均分子量が1400以上であることを特徴とする舗装用アスファルトに関するものである。
【0009】
本発明の第2は、本発明の第1の舗装用アスファルトが、(1)減圧蒸留のカット温度が600℃未満、25℃における針入度が100以下、25℃における針入度が40〜100の範囲でPVNが−0.5以上のストレートアスファルトが得られる原油、
(2)減圧蒸留のカット温度が600℃以上、25℃における針入度が100以上の減圧残油が得られる原油、
を混合し、常圧蒸留した後、減圧蒸留を行うことによって得られるものであることを特徴とする舗装用アスファルトに関するものである。
【0010】
本発明の第3は、本発明の第1の舗装用アスファルトが、脱れきアスファルトに沸点400℃以上の脱れき油または留出油を混合することによって得られるものであることを特徴とする舗装用アスファルトに関するものである。
【0011】
【発明の実施の形態】
本発明のアスファルトは、わだち掘れを起こりにくくし、施工時の作業性の悪化を防止する観点から、25℃における針入度が30〜80、好ましくは40〜80、さらに好ましくは40〜60、芳香族分の数平均分子量が850以上、好ましくは850〜2500、さらに好ましくは1000〜2000、レジン分の数平均分子量が1400以上、好ましくは1400〜3000、さらに好ましくは1500〜2500である。
【0012】
芳香族分の数平均分子量が850未満、レジン分の数平均分子量が1400未満の場合には、60℃における粘度が式(1)で求めた値より低くなり、重交通道路においてわだち掘れが起こり易くなる。
【0013】
1ogY=6.16−0.109PT+1.84×10−3PT−1.53×10−5PT+4.80×1O−8PT ……(1)
この式(1)において、
Y=アスファルトの60℃における粘度(ポアズ(P))
PT=アスファルトの25℃における針入度
【0014】
また芳香族分の数平均分子量が850未満あるいはレジン分の数平均分子量が1400未満の場合であっても、60℃における粘度が式(1)で求めた値より高くなる場合があるが、このアスファルトは薄膜加熱試験による60℃粘度比が3.0以上となり、熱安定性が劣る。例えばセミブローンアスファルトが挙げられる。
【0015】
また、本発明のアスファルトの芳香族分およびレジン分の分子量分布としては芳香族分の分子量が好ましくは850以上の割合が60%以上、さらに好ましくは1000〜10000の割合が45%以上、特に50〜95%で、かつ、レジン分の分子量が好ましくは1400以上の割合が60%以上、さらに好ましくは1500〜10000の割合が45%以上、特に50〜95%の範囲である。
【0016】
本発明のアスファルトは以下の組成を有する。その組成として、飽和分は好ましくは8〜30質量%、より好ましくは10〜25質量%で、芳香族分は好ましくは25〜60質量%、より好ましくは30〜55質量%で、レジン分は好ましくは12〜35質量%、より好ましくは15〜30質量%の範囲である。アスファルテン分は好ましくは1〜30質量%、より好ましくは8〜25質量%の範囲である。
【0017】
なお、本発明でいうアスファルテン分、レジン分、芳香族分および飽和分は石油学会規格JPI−5S−22−83のアスファルトのカラムクロマトグラフィーによる組成分析法で測定した。数平均分子量はASTM D2503に準拠した蒸気圧浸透圧法で測定した。分子量分布はGPC(ゲルパーミエーションクロマトグラフィー)分析法で測定した。分析条件は、カラム:東ソー(株)製G3000H8・G2000H8、溶媒:テトラヒドロフラン、温度:23℃であり、検量線の作成にはポリスチレン標準物質を用いた。
【0018】
本発明のアスファルトの製造方法は、例えば、下記に示す(1)の原油(以下原油(1)という。)と(2)の原油(以下原油(2)という。)を混合し、常圧蒸留した後、減圧蒸留を行なうことにより製造できる。
【0019】
(1)減圧蒸留のカット温度が600℃未満で、25℃における針入度が100以下、25℃における針入度が40〜100の範囲でPVNが−0.5以上のストレートアスファルトが得られる原油。
【0020】
(2)減圧蒸留のカット温度が600℃以上で、25℃における針入度が100以上、の性状を有する減圧残油が得られる原油。
【0021】
前記のPVN(Penetration Viscosity Number)は次式で表わされる。
PVN=[(logL−logX)/(logL−logM)]×(−1.5)
logL=4.25800−0.79674logPT
logM=3.46289−0.61094logPT
L:PVN=0.0における135℃動粘度(cSt)
M:PVN=−1.5における135℃動粘度(cSt)
X:アスファルトの135℃動粘度(cSt)
PT:アスファルトの25℃における針入度(1/10mm)
【0022】
前記性状のストレートアスファルトあるいは減圧残油が得られればどんな種類の原油でもよい。
【0023】
原油(1)としては、中間基原油およびナフテン基原油が好ましく、例えばカフジ原油、アラビアンヘビー原油、マヤ原油、ボスカン原油、フート原油、クェート原油、ラタウェー原油、アルライアン原油、エシオン原油、ソリューシュ原油等が挙げられる。これらの原油は混合して用いることができる。中間基原油の内、好ましいのはカフジ油、マヤ油、ラタウェー原油、アルライアン原油、エシオン原油、ソリューシュ原油である。
【0024】
原油(2)としては、中問基原油が好ましく、例えばマーバン原油、ベリー原油、ウムシャイフ原油、ロアーザクム原油、オマーン原油、エコフィスク原油、スエズミックス原油、アラビアンエキストラライトが挙げられる。これらの原油は混合して用いることができる。
【0025】
原油(1)と原油(2)の混合割合は、2〜95容量%:98〜5容量%(全体で100容量%)が好ましく、さらに5〜90容量%:95〜10容量%が好ましい。
【0026】
原油(1)と原油(2)との混合原油を常圧蒸留した残油からストレートアスファルトを採取する際の減圧蒸留のカット温度は650℃未満、好ましくは450〜590℃の範囲である。この減圧蒸留のカット温度はアスファルトの25℃における針入度が30〜80になるように選択する。
【0027】
本発明において、原油の常圧蒸留、減圧蒸留は通常の方法で行うことができる。
【0028】
また、溶剤脱れきで得られた脱れきアスファルトに、沸点400℃以上の脱れき油または留出油等を混合することによっても本発明の舗装用アスファルトが製造できる。脱れきアスファルトとは原油から得られる減圧残油を溶剤脱れき法(溶剤としてプロパン、ブタン、n一ペンタン等を用い、圧力20〜40kg/cmの加圧下で、抽出温度40〜190℃の条件で抽出を行う)で、溶剤に抽出されずに残ったアスファルテン分を13質量%以上含む残油である。脱れき油は前記溶剤脱れき法で溶剤に抽出された飽和分の多い、沸点が400℃以上、好ましくは500〜750℃の油である。留出油は減圧蒸留で得られた、沸点が400℃以上、好ましくは450〜600℃の留分である。
【0029】
脱れき油および留出油の飽和分含有量は、6質量%以上が好ましく、さらに6〜50質量%が好ましく、特に15〜40質量%が好ましい。飽和分の測定はASTM D2549“Standard Test Method for Separation of Representative Aromatics and Nonaromatics Fraction of High−Boiling Oils by Elution Chromatography”で規定された溶出クロマト分析法で行なった。
【0030】
脱れきアスファルトに対する脱れき油または留出油の混合割合は、好ましくは5〜80質量%、さらに好ましくは5〜70質量%の範囲である。脱れき油または留出油の混合割合は、混合したアスファルトの飽和分が好ましくは8〜30質量%、さらに好ましくは10〜25質量%、芳香族分が好ましくは25〜60質量%、さらに好ましくは30〜55質量%になるように選択する。
【0031】
脱れきアスファルトと脱れき油または留出油の混合割合は、アスファルトの針入度が30〜80になるように混合する。
【0032】
本発明において、原油(1)と原油(2)の混合方法、あるいは脱れきアスファルトと脱れき油または留出油の混合方法は通常の方法で行なうことができる。例えば、タンクブレンド、ラインブレンドミキサー等がある。タンクブレンドとは、タンク内でジェットミキサー、プロペラミキサー等で混合する方法である。ラインブレンドミキサーとは、配管で・移送する際に配管内を乱流にして混合する方法である。
【0033】
【実施例】
以下に、本発明を次の実施例等により詳細に説明する。
原油(1)、原油(2)に分類される原油から得られたストレートアスファルトおよび減圧残油の減圧蒸留のカット温度、25℃における針入度(1/10mm)、PVNの値を表1に示す。
【0034】
<実施例1>
原油(A)(原油(1))50容量%と原油(a)(原油(2))50容量%を混合し、この混合原油を常圧蒸留し、得られた常圧残油をカット温度570℃まで減圧蒸留してストレートアスファルトを得た。その性状を表2に示した。
【0035】
<実施例2>
原油(B)(原油(1))50容量%と原油(b)(原油(2))50容量%を混合し、この混合原油を常圧蒸留し、得られた常圧残油をカット温度560℃まで減圧蒸留してストレートアスファルトを得た。その性状を表2に示した。
【0036】
<実施例3>
原油(C)(原油(1))50容量%と原油(c)(原油(2))50容量%を混合し、この混合原油を常圧蒸留し、得られた常圧残油をカット温度550℃まで減圧蒸留してストレートアスファルトを得た。その性状を表2に示した。
【0037】
<実施例4>
原油(D)の減圧残油をn−ペンタンで溶剤脱れき処理して得られた脱れきアスファルト(針入度0、軟化点166℃)39容量%と脱れき油(100℃動粘度30cSt)61容量%を混合して、ストレートアスファルトを得た。その性状を表2に示した。脱れきアスファルトおよび脱れき油の性状を表3にそれぞれ示した。
【0038】
<実施例5>
実施例4と同様の脱れきアスファルト(針入度0、軟化点166℃)50容量%と留出油(100℃動粘度18cSt)50容量%を混合して、ストレートアスファルトを得た。その性状を表2に示した。脱れきアスファルトおよび留出油の性状を表3にそれぞれ示した。
【0039】
<比較例1>
市販のストレートアスファルトの性状を表2に示した。
【0040】
<比較例2>
市販のセミブローンアスファルト1の性状を表2に示した。
【0041】
<比較例3>
市販のセミブローンアスファルト2の性状を表2に示した。
【0042】
【表1】

Figure 0003848935
【0043】
*1:薄膜加熱試験の60℃粘度比はJIS K2207に従って測定した。
【0044】
【表2】
Figure 0003848935
【0045】
【表3】
Figure 0003848935
【0046】
実施例1〜5で得られたアスファルトは60℃における粘度が前記の式(1)で求めた値より大きく、薄膜加熱試験による60℃粘度比が2.0〜2.4と小さく、耐わだち掘れ性および熱安定性に優れていることが明らかである。
【0047】
比較例1は60℃における粘度が前記の式(1)で求めた値より小さいので、耐わだち掘れ性が劣る。
【0048】
比較例2および3は薄膜加熱試験による60℃粘度比が3.O以上であるので、熱安定性が劣る。
【0049】
【発明の効果】
本発明のアスファルトは、60℃における粘度が式(1)で求めた値以上になり、耐わだち掘れ性が優れ、また、薄膜加熱試験後の60℃粘度比が3.0未満、好ましくは1.5〜2.5の範囲内となり、熱安定性が優れている。
【0050】
このアスファルトを用いれば、従来のストレートアスファルトに比べ、アスファルト舗装道路においてわだち掘れが非常に少なくなるという利点がある。また、ゴムや熱可塑性樹脂を添加した改質アスファルトの基材としても優れている。
【0051】
また、従来のセミブローンアスファルトの製造における、原油を蒸留して減圧残油を得た後、さらにこの減圧残油を煩雑なブローイング操作を行う必要がなく、簡単な操作で目的のアスファルトが得られるという利点がある。また、セミブローンアスファルトで舗装した道路ではひび割れが起こり易く、さらに、セミブローンアスファルトは輸送時、貯蔵時、道路舗装用骨材との混合時の加熱で変質し易いが、本発明で得られたアスファルトはこれらの問題が殆どない。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to asphalt for heavy traffic road paving.
[0002]
[Prior art]
Conventional asphalt for road pavement uses straight asphalt having a penetration of 40 to 100 at 25 ° C. obtained by further distilling atmospheric residual oil obtained by atmospheric distillation of crude oil. There is a problem that rubbing is noticeable on the traffic road, which hinders vehicle safety.
[0003]
As a countermeasure, there is a demand for an asphalt with less penetration, having a penetration of 40 to 100 at 25 ° C. and having a viscosity at 60 ° C. higher than that of conventional straight asphalt.
[0004]
Thus, conventionally, semi-brominated asphalt produced by distilling crude oil into a vacuum residue obtained by blowing air for several hours under heating at 200 to 300 ° C. has been used (see Non-Patent Document 1). This semi-blown asphalt is a modified asphalt that prevents rutting of the asphalt paved road. However, the method for producing semi-blown asphalt is more complicated than the straight asphalt production method in that it involves a complicated blowing operation (an operation in which air is blown for several hours under heating at 200 to 300 ° C. under reduced pressure residue). There is a disadvantage that it is necessary, and a waste gas treatment facility associated with the reaction is necessary. Moreover, it is easy to crack on the road paved with semi-blown asphalt.
Further, semi-blown asphalt has a drawback that it is easily changed in quality by heating during transportation, storage, and mixing with aggregate for road paving.
[0005]
[Non-Patent Document 1]
Tada, Ito, Asphalt, Japan Asphalt Association, Vol. 157, 41 pages [0006]
[Problems to be solved by the invention]
An object of the present invention is to provide an asphalt for paving which is excellent in rutting resistance and excellent in thermal stability.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that a mineral oil asphalt having a specific property is excellent in rutting resistance and thermal stability, and to complete the present invention. It came.
[0008]
That is, the first aspect of the present invention is an asphalt for pavement characterized by having a penetration of 30 to 80 at 25 ° C., an aromatic number average molecular weight of 850 or more, and a resin number average molecular weight of 1400 or more. It is about.
[0009]
As for the 2nd of this invention, the 1st pavement asphalt of this invention is (1) The cut temperature of vacuum distillation is less than 600 degreeC, the penetration degree in 25 degreeC is 100 or less, and the penetration degree in 25 degreeC is 40- Crude oil capable of obtaining straight asphalt with PVN of -0.5 or more in the range of 100,
(2) Crude oil from which a vacuum residue having a cut temperature of 600 ° C. or higher at 25 ° C. and a penetration of 100 or higher at 25 ° C. is obtained,
Is obtained by performing distillation under reduced pressure after mixing and atmospheric distillation.
[0010]
According to a third aspect of the present invention, the first pavement asphalt according to the present invention is obtained by mixing a deasphalted oil or a distillate having a boiling point of 400 ° C. or higher with the deasphalted asphalt. For asphalt.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The asphalt of the present invention has a penetration of 30 to 80 at 25 ° C, preferably 40 to 80, more preferably 40 to 60, from the viewpoint of preventing rutting and preventing deterioration of workability during construction. The number average molecular weight of the aromatic component is 850 or more, preferably 850 to 2500, more preferably 1000 to 2000, and the number average molecular weight of the resin is 1400 or more, preferably 1400 to 3000, more preferably 1500 to 2500.
[0012]
When the aromatic number average molecular weight is less than 850 and the resin number average molecular weight is less than 1400, the viscosity at 60 ° C. is lower than the value obtained by equation (1), and rutting occurs on heavy traffic roads. It becomes easy.
[0013]
1ogY = 6.16-0.109PT + 1.84 × 10 -3 PT 2 -1.53 × 10 -5 PT 3 + 4.80 × 1O -8 PT 4 ...... (1)
In this equation (1),
Y = viscosity of asphalt at 60 ° C. (poise (P))
PT = penetration of asphalt at 25 ° C
Further, even when the aromatic number average molecular weight is less than 850 or the resin number average molecular weight is less than 1400, the viscosity at 60 ° C. may be higher than the value obtained by the formula (1). Asphalt has a viscosity ratio of 3.0 or higher in a thin film heating test of 3.0 or more, and is poor in thermal stability. An example is semi-blown asphalt.
[0015]
The molecular weight distribution of the aromatic and resin components of the asphalt of the present invention is preferably such that the molecular weight of the aromatic component is preferably 850 or more, more preferably 60% or more, more preferably 1000 to 10,000 is 45% or more, particularly 50 The ratio of the molecular weight of the resin is preferably at least 1400 or more, more preferably 60% or more, and even more preferably, the ratio of 1500 to 10000 is 45% or more, particularly 50 to 95%.
[0016]
The asphalt of the present invention has the following composition. As the composition, the saturated content is preferably 8 to 30% by mass, more preferably 10 to 25% by mass, the aromatic content is preferably 25 to 60% by mass, more preferably 30 to 55% by mass, and the resin content is Preferably it is 12-35 mass%, More preferably, it is the range of 15-30 mass%. The asphaltene content is preferably in the range of 1-30% by weight, more preferably 8-25% by weight.
[0017]
In addition, asphaltene content, resin content, aromatic content and saturated content in the present invention were measured by a composition analysis method using asphalt column chromatography according to JPI-5S-22-83 of the Petroleum Institute of Japan. The number average molecular weight was measured by the vapor pressure osmotic pressure method based on ASTM D2503. The molecular weight distribution was measured by GPC (gel permeation chromatography) analysis. The analytical conditions were: column: G3000H8 / G2000H8 manufactured by Tosoh Corporation, solvent: tetrahydrofuran, temperature: 23 ° C., and a standard polystyrene material was used to prepare a calibration curve.
[0018]
The method for producing asphalt according to the present invention includes, for example, mixing the following crude oil (1) (hereinafter referred to as crude oil (1)) and crude oil (2) (hereinafter referred to as crude oil (2)), followed by atmospheric distillation. Then, it can be manufactured by performing vacuum distillation.
[0019]
(1) A straight asphalt with a PVN of −0.5 or more is obtained when the cut temperature of vacuum distillation is less than 600 ° C., the penetration at 25 ° C. is 100 or less, and the penetration at 25 ° C. is 40 to 100. crude oil.
[0020]
(2) Crude oil from which a reduced-pressure residual oil having properties such that the cut temperature of vacuum distillation is 600 ° C. or higher and the penetration at 25 ° C. is 100 or higher is obtained.
[0021]
The PVN (Penetration Visibility Number) is expressed by the following equation.
PVN = [(log L−log X) / (log L−log M)] × (−1.5)
log L = 4.225800-0.79674 logPT
logM = 3.46289-0.61094logPT
L: 135 ° C. kinematic viscosity at PVN = 0.0 (cSt)
M: 135 ° C. kinematic viscosity (cSt) at PVN = −1.5
X: 135 ° C. kinematic viscosity (cSt) of asphalt
PT: penetration of asphalt at 25 ° C. (1/10 mm)
[0022]
Any kind of crude oil may be used as long as the above-described straight asphalt or vacuum residue is obtained.
[0023]
Crude oil (1) is preferably intermediate base oil and naphthenic base oil, such as Kafuji crude oil, Arabian heavy crude oil, Maya crude oil, Boskan crude oil, Foot crude oil, Kuwait crude oil, Lattaway crude oil, Allian crude oil, Esion crude oil, Solish crude oil, etc. Is mentioned. These crude oils can be mixed and used. Of the intermediate base crude oils, preferred are Kafuji oil, Maya oil, Rataway crude oil, Allian crude oil, Esion crude oil, and Solish crude oil.
[0024]
The crude oil (2) is preferably a medium base crude oil such as Murban crude oil, Berry crude oil, Umshaif crude oil, Lower Zakum crude oil, Oman crude oil, Ecofisk crude oil, Suezmix crude oil or Arabian extralite. These crude oils can be mixed and used.
[0025]
The mixing ratio of crude oil (1) and crude oil (2) is preferably 2 to 95% by volume: 98 to 5% by volume (100% by volume as a whole), more preferably 5 to 90% by volume: 95 to 10% by volume.
[0026]
The cut temperature of vacuum distillation when collecting straight asphalt from the residual oil obtained by atmospheric distillation of crude oil (1) and crude oil (2) is less than 650 ° C, preferably in the range of 450 to 590 ° C. The cut temperature of this vacuum distillation is selected so that the penetration of asphalt at 25 ° C. is 30-80.
[0027]
In the present invention, atmospheric distillation and vacuum distillation of crude oil can be carried out by conventional methods.
[0028]
Further, the asphalt for paving of the present invention can also be produced by mixing a deasphalted oil or a distillate oil having a boiling point of 400 ° C. or higher with a deasphalted asphalt obtained by solvent deasphalting. Deasphalted asphalt is a method for removing vacuum residue obtained from crude oil using a solvent deburring method (propane, butane, n-pentane, etc. as a solvent, pressure of 20 to 40 kg / cm, extraction temperature of 40 to 190 ° C.) The residual oil contains 13% by mass or more of the asphaltene remaining without being extracted in the solvent. The deasphalted oil is an oil having a high boiling point of 400 ° C. or higher, preferably 500 to 750 ° C., having a large amount of saturated components extracted into the solvent by the solvent deasphalting method. The distillate oil is a fraction obtained by distillation under reduced pressure and having a boiling point of 400 ° C. or higher, preferably 450 to 600 ° C.
[0029]
6 mass% or more is preferable, 6-50 mass% is preferable, and 15-40 mass% is especially preferable. Saturation was measured by ASTM D2549 “Standard Test Method for Separation of Reproducible Aromatics and Nonaromatics Fraction of High-Boiling Oils by Elution”.
[0030]
The mixing ratio of the devolatilized oil or the distillate oil with respect to the devolatilized asphalt is preferably 5 to 80% by mass, more preferably 5 to 70% by mass. The mixing ratio of the deasphalted oil or distillate is preferably 8 to 30% by mass, more preferably 10 to 25% by mass, and preferably 25 to 60% by mass, and more preferably 25 to 60% by mass of the aromatic content. Is selected to be 30 to 55% by mass.
[0031]
The mixing ratio of deasphalted asphalt and deasphalted oil or distillate is mixed so that the penetration of asphalt is 30-80.
[0032]
In the present invention, the method of mixing crude oil (1) and crude oil (2), or the method of mixing deasphalted asphalt with deasphalted oil or distillate oil can be carried out by a usual method. For example, there are a tank blend, a line blend mixer, and the like. Tank blending is a method of mixing in a tank with a jet mixer, propeller mixer or the like. The line blend mixer is a method in which the inside of the pipe is turbulent and mixed when transferred by the pipe.
[0033]
【Example】
Hereinafter, the present invention will be described in detail by the following examples.
Table 1 shows the cut temperature of vacuum distillation of straight asphalt and vacuum residue obtained from crude oil classified as crude oil (1) and crude oil (2), penetration at 25 ° C (1/10 mm), and PVN values. Show.
[0034]
<Example 1>
50% by volume of crude oil (A) (crude oil (1)) and 50% by volume of crude oil (a) (crude oil (2)) are mixed, this mixed crude oil is subjected to atmospheric distillation, and the resulting normal pressure residual oil is cut temperature. Distilled under reduced pressure to 570 ° C. to obtain straight asphalt. The properties are shown in Table 2.
[0035]
<Example 2>
50% by volume of crude oil (B) (crude oil (1)) and 50% by volume of crude oil (b) (crude oil (2)) are mixed, this mixed crude oil is subjected to atmospheric distillation, and the resulting atmospheric residual oil is cut temperature. Distilled under reduced pressure to 560 ° C. to obtain straight asphalt. The properties are shown in Table 2.
[0036]
<Example 3>
50% by volume of crude oil (C) (crude oil (1)) and 50% by volume of crude oil (c) (crude oil (2)) are mixed, this mixed crude oil is subjected to atmospheric distillation, and the resulting atmospheric residual oil is cut temperature. Distilled under reduced pressure to 550 ° C. to obtain straight asphalt. The properties are shown in Table 2.
[0037]
<Example 4>
39% by volume of deasphalted asphalt (penetration 0, softening point 166 ° C.) obtained by subjecting crude oil (D) to a solvent deasphalting treatment with n-pentane, and deasphalted oil (100 ° C. kinematic viscosity 30 cSt) 61 vol% was mixed to obtain straight asphalt. The properties are shown in Table 2. Properties of deasphalted asphalt and deasphalted oil are shown in Table 3, respectively.
[0038]
<Example 5>
50% by volume of deasphalted asphalt (zero penetration, softening point 166 ° C.) similar to Example 4 and 50% by volume of distillate oil (100 ° C. kinematic viscosity 18 cSt) were mixed to obtain straight asphalt. The properties are shown in Table 2. The properties of deasphalted asphalt and distillate oil are shown in Table 3, respectively.
[0039]
<Comparative Example 1>
Properties of commercially available straight asphalt are shown in Table 2.
[0040]
<Comparative example 2>
The properties of commercially available semi-blown asphalt 1 are shown in Table 2.
[0041]
<Comparative Example 3>
Properties of commercially available semi-blown asphalt 2 are shown in Table 2.
[0042]
[Table 1]
Figure 0003848935
[0043]
* 1: The 60 ° C. viscosity ratio in the thin film heating test was measured according to JIS K2207.
[0044]
[Table 2]
Figure 0003848935
[0045]
[Table 3]
Figure 0003848935
[0046]
The asphalt obtained in Examples 1 to 5 has a viscosity at 60 ° C. larger than the value obtained by the above formula (1), and the 60 ° C. viscosity ratio by the thin film heating test is as small as 2.0 to 2.4. It is clear that excavation and thermal stability are excellent.
[0047]
In Comparative Example 1, since the viscosity at 60 ° C. is smaller than the value obtained by the above formula (1), the rutting resistance is inferior.
[0048]
Comparative Examples 2 and 3 had a viscosity ratio of 3.degree. Since it is O or more, thermal stability is inferior.
[0049]
【The invention's effect】
The asphalt of the present invention has a viscosity at 60 ° C. equal to or higher than the value obtained by the formula (1), has excellent rutting resistance, and has a viscosity ratio of less than 3.0 at 60 ° C. after a thin film heating test, preferably 1 It is in the range of 0.5 to 2.5, and the thermal stability is excellent.
[0050]
If this asphalt is used, there is an advantage that rutting is extremely reduced on an asphalt pavement road as compared with the conventional straight asphalt. It is also excellent as a modified asphalt base material to which rubber or thermoplastic resin is added.
[0051]
In addition, in the production of conventional semi-blown asphalt, after the crude oil is distilled to obtain a vacuum residue, it is not necessary to perform a complicated blowing operation of the vacuum residue, and the target asphalt can be obtained by a simple operation. There is an advantage. In addition, cracks are likely to occur on roads paved with semi-blown asphalt.Furthermore, semi-blown asphalt is easily deteriorated by heating during transportation, storage, and mixing with aggregate for road paving. Asphalt has few of these problems.

Claims (3)

25℃における針入度が30〜80、芳香族分の数平均分子量が850以上、レジン分の数平均分子量が1400以上である舗装用アスファルトであって、
アスファルトの60℃における粘度が、次ぎの式(1)により求められる値を上回るものであることを特徴とする舗装用アスファルト。
1ogY=6.16−0.109PT+1.84×10 −3 PT −1.53×10 −5 PT +4.80×10 −8 PT ……(1)
この式(1)において、
Y=アスファルトの60℃における粘度(ポアズ(P))
PT:アスファルトの25℃における針入度(1/10mm)
Asphalt for paving having a penetration of 30 to 80 at 25 ° C., an aromatic number average molecular weight of 850 or more, and a resin number average molecular weight of 1400 or more,
An asphalt for paving, wherein the asphalt has a viscosity at 60 ° C. higher than the value obtained by the following formula (1).
1ogY = 6.16-0.109PT + 1.84 × 10 −3 PT 2 −1.53 × 10 −5 PT 3 + 4.80 × 10 −8 PT 4 ...... (1)
In this equation (1),
Y = viscosity of asphalt at 60 ° C. (poise (P))
PT: penetration of asphalt at 25 ° C. (1/10 mm)
(1)減圧蒸留のカット温度が600℃未満、25℃における針入度が100以下、25℃における針入度が40〜100の範囲でPVNが−0.5以上のストレートアスファルトが得られる原油、
(2)減圧蒸留のカット温度が600℃以上、25℃における針入度が100以上の減圧残油が得られる原油、
を混合し、常圧蒸留した後、減圧蒸留を行うことによって得られる、25℃における針入度が30〜80、芳香族分の数平均分子量が850以上、レジン分の数平均分子量が1400以上である舗装用アスファルト。
ここで、前記PVN( Penetration Viscosity Number )は、次式で表わされるものである。
PVN=[(logL−logX)/(logL−logM)]×(−1.5)
logL=4.25800−0.79674logPT
logM=3.46289−0.61094logPT
L:PVN=0.0における135℃動粘度(cSt)
M:PVN=−1.5における135℃動粘度(cSt)
X:アスファルトの135℃動粘度(cSt)
PT:アスファルトの25℃における針入度(1/10mm)
(1) Crude oil from which straight asphalt having a PVN of −0.5 or more is obtained when the cut temperature of vacuum distillation is less than 600 ° C., the penetration at 25 ° C. is 100 or less, and the penetration at 25 ° C. is 40-100. ,
(2) Crude oil from which a reduced-pressure residual oil having a cut-off pressure of 600 ° C. or higher and a penetration at 25 ° C. of 100 or higher is obtained,
Obtained by mixing at atmospheric pressure and then performing distillation under reduced pressure, the penetration at 25 ° C. is 30 to 80, the number average molecular weight of aromatics is 850 or more, and the number average molecular weight of resins is 1400 or more. paving asphalt is.
Here, the PVN ( Penetration Viscosity Number ) is expressed by the following equation.
PVN = [(log L−log X) / (log L−log M)] × (−1.5)
log L = 4.225800-0.79674 logPT
logM = 3.46289-0.61094logPT
L: 135 ° C. kinematic viscosity at PVN = 0.0 (cSt)
M: 135 ° C. kinematic viscosity (cSt) at PVN = −1.5
X: 135 ° C. kinematic viscosity (cSt) of asphalt
PT: penetration of asphalt at 25 ° C. (1/10 mm)
アスファルトの芳香族分およびレジン分の分子量分布としては芳香族分の分子量が850以上の割合が60質量%以上で、かつ、レジン分の分子量が1400以上の割合が60質量%以上である請求項1記載の舗装用アスファルト。 The molecular weight distribution of the aromatic content and the resin content of the asphalt is such that the ratio of the molecular weight of the aromatic component is 850 or more is 60% by mass or more, and the ratio of the molecular weight of the resin is 1400 or more is 60% by mass or more. The asphalt for pavements according to 1 .
JP2003189048A 2003-06-30 2003-06-30 Paving asphalt Expired - Lifetime JP3848935B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003189048A JP3848935B2 (en) 2003-06-30 2003-06-30 Paving asphalt
CN 200410061764 CN1609167A (en) 2003-06-30 2004-06-30 Asphalt for paving

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189048A JP3848935B2 (en) 2003-06-30 2003-06-30 Paving asphalt

Publications (2)

Publication Number Publication Date
JP2005023173A JP2005023173A (en) 2005-01-27
JP3848935B2 true JP3848935B2 (en) 2006-11-22

Family

ID=34187378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189048A Expired - Lifetime JP3848935B2 (en) 2003-06-30 2003-06-30 Paving asphalt

Country Status (1)

Country Link
JP (1) JP3848935B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1900221B (en) * 2005-05-17 2011-06-22 新日本石油株式会社 Asphalt for pavement and its manufacturing method
JP4698476B2 (en) * 2005-05-17 2011-06-08 Jx日鉱日石エネルギー株式会社 Paving asphalt and method for producing the same
JP4739944B2 (en) * 2005-12-27 2011-08-03 Jx日鉱日石エネルギー株式会社 Method for producing paving asphalt and paving asphalt obtained thereby
CN112694762A (en) * 2019-10-23 2021-04-23 中国石油化工股份有限公司 No. 50 asphalt and preparation method and application thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587485A (en) * 1981-07-07 1983-01-17 Toa Nenryo Kogyo Kk Two-stage vacuum distillation method and apparatus therefor
GB8608302D0 (en) * 1986-04-04 1986-05-08 Shell Int Research Preparation of bitumen
DD289553A5 (en) * 1989-07-25 1991-05-02 Veb Pck Schwedt,De ROAD BITUMEN
US5173172A (en) * 1991-08-19 1992-12-22 Exxon Research And Engineering Company Production of hard asphalts by ultrafiltration of vacuum residua
JPH06116499A (en) * 1992-10-06 1994-04-26 Nippon Oil Co Ltd Production of paving asphalt
JP2958231B2 (en) * 1993-12-29 1999-10-06 コスモ石油株式会社 Blown asphalt for waterproofing work and method of manufacturing the same
JP3695872B2 (en) * 1996-01-10 2005-09-14 出光興産株式会社 Modified asphalt composition
JP3537598B2 (en) * 1996-06-18 2004-06-14 株式会社コスモ総合研究所 Straight asphalt composition for paving
JPH1060286A (en) * 1996-08-26 1998-03-03 Cosmo Sogo Kenkyusho:Kk Modified asphalt composition for paving
JP2000186211A (en) * 1998-12-22 2000-07-04 Nippon Mitsubishi Oil Corp Paving asphalt
JP3895515B2 (en) * 2000-03-15 2007-03-22 株式会社ジョモテクニカルリサーチセンター Straight asphalt and manufacturing method thereof
JP2002003858A (en) * 2000-06-26 2002-01-09 Idemitsu Kosan Co Ltd Asphalt

Also Published As

Publication number Publication date
JP2005023173A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
US6414056B1 (en) Asphalt compositions and method for making (LAW617)
US5961709A (en) Environmentally improved asphalt compositions and their preparation
TWI412586B (en) Process oil, manufacturing method of deasphalted oil, manufacturing method of extract and manufacturing method of process oil
JP5192136B2 (en) Process oil for rubber
US10155866B2 (en) Compositions including asphalt component and graphite component
Nassar et al. Evaluation of the effect of waste polystyrene on performance of asphalt binder
JP5230691B2 (en) Paving asphalt and method for producing the same
CN109535747B (en) No. 30 hard road asphalt and preparation method thereof
JP4739944B2 (en) Method for producing paving asphalt and paving asphalt obtained thereby
JPH06116499A (en) Production of paving asphalt
JP3848935B2 (en) Paving asphalt
JP4778670B2 (en) Propane deasphalted asphalt and straight asphalt manufactured using the same
JP6300749B2 (en) Rigid asphalt composition, goose asphalt mixture and method for producing them
JP2003514055A (en) How to improve asphalt properties
US20170349725A1 (en) Oligoterpenes as rejuvenating agent in asphalt
JP3837127B2 (en) Method for manufacturing straight asphalt for paving
JP3695872B2 (en) Modified asphalt composition
JP2001262157A (en) Straight asphalt and method for producing the same
EP2935523B1 (en) Method for forming a synergistic asphalt crude composition
JP5818765B2 (en) Asphalt composition for pavement and method for producing the same
JP3537598B2 (en) Straight asphalt composition for paving
JP2003012931A (en) Binder composition for asphalt pavement and its manufacturing method
EP1352031B1 (en) A bitumen composition, its manufacture and use
JP6097668B2 (en) Rigid asphalt composition, goose asphalt mixture and method for producing them
CA1249105A (en) Road asphalt compositions containing visbreaking residues

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051021

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

R150 Certificate of patent or registration of utility model

Ref document number: 3848935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term