JP2012222102A - Component orientation determining device and component orientation determining method - Google Patents

Component orientation determining device and component orientation determining method Download PDF

Info

Publication number
JP2012222102A
JP2012222102A JP2011085330A JP2011085330A JP2012222102A JP 2012222102 A JP2012222102 A JP 2012222102A JP 2011085330 A JP2011085330 A JP 2011085330A JP 2011085330 A JP2011085330 A JP 2011085330A JP 2012222102 A JP2012222102 A JP 2012222102A
Authority
JP
Japan
Prior art keywords
component
aspect ratio
image
standard data
directions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011085330A
Other languages
Japanese (ja)
Other versions
JP5627530B2 (en
Inventor
Shuichiro Kito
秀一郎 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Machine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Machine Manufacturing Co Ltd filed Critical Fuji Machine Manufacturing Co Ltd
Priority to JP2011085330A priority Critical patent/JP5627530B2/en
Publication of JP2012222102A publication Critical patent/JP2012222102A/en
Application granted granted Critical
Publication of JP5627530B2 publication Critical patent/JP5627530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a component orientation determining device which shortens processing time required for determining an orientation of a square-shaped component.SOLUTION: A component orientation determining device determines an orientation of a square-shaped component having a feature point indicating an orientation thereof by means of image processing. The component orientation determining device performs steps of: pre-storing standard data of an aspect ratio of the component in a storage device 14; taking an image of the component from bottom thereof by putting the whole figure thereof into one viewing field of a component-recognizing camera 12, when the component in production is sucked onto a suction nozzle; recognizing periphery of the component based on the taken image to calculate two aspect ratios when the component is viewed from two directions different 90-degree each other; comparing the two calculated values of aspect ratio with the standard data thereof stored in the storage device 14 to select two directional candidates corresponding to two calculated values of aspect ratio with smaller difference; and applying image processing on two of the images of the component, respectively, corresponding to the selected two directional candidates to identify an orientation of the component based on the direction from which the feature is recognized.

Description

本発明は、画像処理により部品の方向(向き)を判定する部品方向判定装置及び部品方向判定方法に関する発明である。   The present invention relates to a component direction determination device and a component direction determination method that determine the direction (direction) of a component by image processing.

例えば、部品実装機に部品を供給するフィーダの中には、供給する部品の方向が一定方向とはならないバルクフィーダやボウルフィーダがある。これらのフィーダを用いる部品実装機では、吸着ノズルに吸着した部品をその下方からカメラで撮像して、画像処理により部品の方向を判定し、判定した部品の方向が回路基板上の実装方向と異なる場合には、吸着ノズルを回動させて部品の方向を実装方向と一致させるようにしている。   For example, among feeders that supply components to a component mounting machine, there are bulk feeders and bowl feeders in which the direction of the components to be supplied is not constant. In a component mounter using these feeders, the component sucked by the suction nozzle is imaged from below by a camera, the direction of the component is determined by image processing, and the determined component direction is different from the mounting direction on the circuit board. In this case, the suction nozzle is rotated so that the component direction matches the mounting direction.

従来の部品方向判定方法は、特許文献1(特開2003−318599号公報)に記載されているように、部品の1つの角部に極性表示部を設け、該部品の4つの角部をカメラで1つずつ順番に撮像して画像処理し、その画像処理で極性表示部を認識できた角部の位置によって部品の方向を特定するようにしたものがある。   As described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-318599), a conventional component direction determination method is provided with a polarity display unit at one corner of a component, and the four corners of the component are captured by a camera. In this case, images are picked up one by one in order and processed, and the direction of the component is specified by the position of the corner where the polarity display portion can be recognized by the image processing.

特開2003−318599号公報JP 2003-318599 A

しかし、上記特許文献1の部品方向判定方法では、部品の4つの角部をカメラで1つずつ順番に撮像して画像処理するため、撮像と画像処理をそれぞれ最大4回ずつ行わなければならず、部品方向判定処理に時間がかかって生産性が低下するという問題がある。   However, in the component direction determination method of Patent Document 1 described above, four corners of a component are sequentially captured and imaged one by one with a camera, and thus imaging and image processing must each be performed a maximum of four times. There is a problem that the part direction determination processing takes time and productivity is lowered.

そこで、吸着ノズルに吸着した部品全体をカメラの視野内に収めて撮像し、その部品の画像に基づいて該部品の外縁を認識した後、該部品の画像のうちの4方向の角部を順番に画像処理し、その画像処理で極性表示部を認識できた角部の位置によって部品の方向を特定することが考えられている。   Therefore, the entire part sucked by the suction nozzle is imaged within the field of view of the camera, and after recognizing the outer edge of the part based on the image of the part, the corners in the four directions of the part image are sequentially displayed. It is considered that the direction of the component is specified by the position of the corner where the polarity display portion can be recognized by the image processing.

この部品方向判定方法では、撮像回数は1回で済むものの、画像処理を最大4回行わなければならず、やはり画像処理に時間がかかるという問題がある。一般に、部品実装機では、吸着ノズルで部品を吸着した直後に部品の方向を判定する撮像・画像処理を行うため、画像処理に時間がかかると、その分、基板への部品の実装が遅れてしまい、生産性が低下する。   In this component direction determination method, although the number of times of imaging is only one, the image processing has to be performed a maximum of four times, and there is still a problem that the image processing takes time. In general, component mounting machines perform imaging and image processing to determine the direction of a component immediately after the component is picked up by a suction nozzle. If image processing takes time, the mounting of the component on the board is delayed accordingly. As a result, productivity decreases.

そこで、本発明が解決しようとする課題は、部品の方向判定に要する処理時間を短縮して生産性を向上できる部品方向判定装置及び部品方向判定方法を提供することである。   Therefore, the problem to be solved by the present invention is to provide a component direction determination device and a component direction determination method that can shorten the processing time required for component direction determination and improve productivity.

上記課題を解決するために、請求項1に係る発明は、方向を示す特徴点を有する四角形状の部品全体をカメラの視野内に収めて撮像して、その撮像画像を処理して該部品の方向を判定する部品方向判定装置において、予め前記部品の縦横比の標準データを記憶した記憶手段と、前記カメラで撮像した前記部品の画像に基づいて該部品の外縁を認識して該部品の縦横比を算出する縦横比算出手段と、前記縦横比算出手段で求めた前記部品の縦横比の算出値と前記記憶手段に記憶された前記標準データとを比較して該部品の方向として可能性のある2方向の候補を選択する方向候補選択手段と、前記部品の画像のうちの前記方向候補選択手段で選択した2方向の候補に対応する部分をそれぞれ画像処理して前記特徴点を認識できた方向によって該部品の方向を特定する方向特定手段とを備えた構成としたものである。ここで、「方向を示す特徴点」は、例えば、部品の1つの角部等に設けた画像認識可能な方向表示マーク等であっても良いし、部品のうちの画像認識可能で且つ方向を特定可能な部分(例えば端子、リード、部品に付された文字・記号等)を特徴点として用いても良い。   In order to solve the above-described problem, the invention according to claim 1 is configured such that an entire rectangular part having a characteristic point indicating a direction is captured within the field of view of the camera, and the captured image is processed to process the part. In the component direction determination apparatus for determining the direction, the storage means that stores the standard data of the aspect ratio of the component in advance and the outer edge of the component by recognizing the outer edge of the component based on the image of the component captured by the camera The aspect ratio calculating means for calculating the ratio, the calculated value of the aspect ratio of the part obtained by the aspect ratio calculating means and the standard data stored in the storage means are compared, and the direction of the part The feature point can be recognized by performing image processing on a part corresponding to the candidate for two directions selected by the direction candidate selecting unit in the part image and a direction candidate selecting unit for selecting a candidate in two directions. Depending on the direction It is obtained by a structure in which a direction specifying means for specifying a direction of the goods. Here, the “feature point indicating the direction” may be, for example, an image recognizable direction display mark provided at one corner or the like of the component, or the image of the component is recognizable and indicates the direction. An identifiable portion (for example, a character or a symbol attached to a terminal, a lead, or a component) may be used as a feature point.

部品の縦横比(縦寸法と横寸法との比)が判明すれば、部品の方向として可能性のある方向の候補を2方向に絞ることができる。この点を考慮して、請求項1に係る発明では、予め、部品の縦横比の標準データを記憶手段に記憶しておき、部品全体をカメラの視野内に収めて撮像し、その画像から該部品の外縁を認識して該部品の縦横比を算出し、その縦横比の算出値を記憶手段に記憶された縦横比の標準データと比較して該部品の方向として可能性のある2方向の候補を選択し、該部品の画像のうちの選択した2方向の候補に対応する部分をそれぞれ画像処理して特徴点を認識できた方向によって該部品の方向を特定するものである。このようにすれば、画像処理する領域を半減できるため、部品の方向判定に要する処理時間を短縮でき、生産性を向上できる。   If the aspect ratio of the part (ratio between the vertical dimension and the horizontal dimension) is known, candidates for possible directions as the direction of the part can be narrowed down to two directions. In view of this point, in the invention according to claim 1, standard data of the aspect ratio of the part is stored in advance in the storage means, the entire part is captured within the field of view of the camera, and the image is taken from the image. Recognize the outer edge of the component, calculate the aspect ratio of the component, and compare the calculated value of the aspect ratio with the standard data of the aspect ratio stored in the storage means in two possible directions of the component. A candidate is selected, and the part corresponding to the selected candidate in two directions in the image of the part is subjected to image processing, and the direction of the part is specified by the direction in which the feature point can be recognized. In this way, since the image processing area can be halved, the processing time required for determining the direction of the part can be shortened, and the productivity can be improved.

但し、部品の形状が正方形(縦横比=1)の場合は、部品の方向として可能性のある方向の候補を2方向に絞ることができない。この点を考慮して、請求項2のように、縦横比算出手段で求めた部品の縦横比の算出値に基づいて該部品が正方形であると判定した場合は4方向の候補を選択し、部品の画像のうちの4方向の候補に対応する部分をそれぞれ画像処理して特徴点を認識できた方向によって該部品の方向を特定するようにすると良い。このようにすれば、部品の形状が正方形の場合でも、部品の方向を正確に特定することができる。   However, when the shape of the component is a square (aspect ratio = 1), candidates for possible directions as the direction of the component cannot be narrowed down to two directions. In consideration of this point, when it is determined that the part is a square based on the calculated value of the aspect ratio of the part obtained by the aspect ratio calculation unit as in claim 2, candidates for four directions are selected, It is preferable to specify the direction of the component based on the direction in which the feature points can be recognized by performing image processing on the parts corresponding to the candidates in the four directions in the component image. In this way, even when the shape of the component is a square, the direction of the component can be accurately specified.

ところで、部品の形状が長方形の場合は、部品の画像を90°異なる方向から見れば、1つの部品について、2通りの縦横比が求められる。
そこで、請求項3のように、部品の画像を90°異なる方向から見た2つの縦横比を算出し、これら2つの縦横比の算出値を記憶手段に記憶された縦横比の標準データと比較して、差が小さい方の縦横比の算出値に対応した2方向の候補を選択するようにしても良い。
By the way, when the shape of the component is rectangular, two aspect ratios can be obtained for one component when the component image is viewed from a direction different by 90 °.
Therefore, as in claim 3, the two aspect ratios of the part image viewed from 90 ° different directions are calculated, and the calculated values of the two aspect ratios are compared with the standard data of the aspect ratio stored in the storage means. Then, a candidate in two directions corresponding to the calculated value of the aspect ratio with the smaller difference may be selected.

或は、請求項4のように、予め、記憶手段に、部品を90°異なる方向から見た2つの縦横比の標準データを記憶しておき、縦横比算出手段で求めた部品の縦横比の算出値を記憶手段に記憶された2つの縦横比の標準データと比較して、差が小さい方の縦横比の標準データに対応した2方向の候補を選択するようにしても良い。   Alternatively, as in claim 4, the storage means stores in advance standard data of two aspect ratios when the parts are viewed from 90 degrees different directions, and the aspect ratio of the parts obtained by the aspect ratio calculation means is stored. The calculated value may be compared with the two aspect ratio standard data stored in the storage means, and the two-way candidates corresponding to the standard data having the smaller aspect ratio may be selected.

上記請求項1〜4に係る発明は、部品の方向を判定する必要のある様々な装置に適用して実施でき、例えば、供給する部品の方向が一定方向とはならないフィーダ(例えばバルクフィーダ、ボウルフィーダ等)を装着した部品実装機に適用しても良い。   The inventions according to the first to fourth aspects of the present invention can be implemented by being applied to various apparatuses that need to determine the direction of a component. For example, a feeder in which the direction of a component to be supplied is not a fixed direction (for example, a bulk feeder, a bowl) You may apply to the component mounting machine which mounted | worn the feeder etc.).

このような部品実装機に本発明を適用する場合は、請求項5のように、部品実装機の吸着ノズルに吸着した部品を下方からカメラで撮像し、方向特定手段で特定した部品の方向が回路基板上の実装方向と異なる場合に、吸着ノズルを回動させて部品の方向を実装方向と一致させるようにしても良い。このようにすれば、部品実装機に供給する部品の方向が一定方向とはならない場合でも、吸着ノズルに吸着した部品の方向を能率良く判定して該部品を回路基板に能率良く実装できる。   When the present invention is applied to such a component mounting machine, as in claim 5, the component sucked by the suction nozzle of the component mounting machine is imaged with a camera from below, and the direction of the component specified by the direction specifying means is determined. When the mounting direction is different from the mounting direction on the circuit board, the suction nozzle may be rotated so that the component direction matches the mounting direction. In this way, even when the direction of the component supplied to the component mounting machine is not a fixed direction, the direction of the component sucked by the suction nozzle can be determined efficiently and the component can be efficiently mounted on the circuit board.

尚、請求項6は、前記請求項1に記載の「部品方向判定装置」の発明と実質的に同じ技術思想を「部品方向判定方法」として記載したものである。   In addition, claim 6 describes the technical concept substantially the same as the invention of the “component direction determination device” described in claim 1 as a “component direction determination method”.

図1は本発明の実施例1における部品実装機の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a component mounter in Embodiment 1 of the present invention. 図2(A)〜(D)は部品の回転角と縦横比との関係を説明する図である。2A to 2D are diagrams for explaining the relationship between the rotation angle of the component and the aspect ratio. 図3は実施例1の部品方向判定プログラムの処理の流れを示すフローチャート(その1)である。FIG. 3 is a flowchart (part 1) illustrating the flow of processing of the component direction determination program according to the first embodiment. 図4は実施例1の部品方向判定プログラムの処理の流れを示すフローチャート(その2)である。FIG. 4 is a flowchart (part 2) illustrating the flow of processing of the component direction determination program according to the first embodiment. 図5は実施例2の部品方向判定プログラムの処理の流れを示すフローチャート(その1)である。FIG. 5 is a flowchart (part 1) illustrating the flow of processing of the component direction determination program according to the second embodiment. 図6は実施例2の部品方向判定プログラムの処理の流れを示すフローチャート(その2)である。FIG. 6 is a flowchart (part 2) illustrating the flow of processing of the component direction determination program according to the second embodiment.

以下、本発明を実施するための形態を部品実装機に適用して具体化した2つの実施例1,2を説明する。   Hereinafter, two embodiments 1 and 2, which are embodied by applying the mode for carrying out the present invention to a component mounter, will be described.

本発明の実施例1を図1乃至図4に基づいて説明する。
まず、図1に基づいて部品実装機全体の構成を概略的に説明する。
部品実装機の制御装置11には、吸着ノズル(図示せず)に吸着した部品全体をその下方から撮像する部品認識用カメラ12と、部品を実装する回路基板の基準位置マークや部品実装状態等を撮像する基板認識用カメラ13と、生産ジョブ(生産プログラム)、画像処理用部品データ、後述する部品方向候補データ等を記憶した記憶装置14(記憶手段)が接続されている。
A first embodiment of the present invention will be described with reference to FIGS.
First, based on FIG. 1, the structure of the whole component mounting machine is demonstrated roughly.
The control device 11 of the component mounting machine includes a component recognition camera 12 that images the entire component sucked by a suction nozzle (not shown) from below, a reference position mark of a circuit board on which the component is mounted, a component mounting state, and the like. And a storage device 14 (storage means) that stores a production job (production program), image processing component data, component direction candidate data to be described later, and the like.

部品実装機の稼働中に、制御装置11は、吸着ノズルを保持する装着ヘッド(図示せず)をX軸方向、Y軸方向、Z軸方向、θ方向に駆動するX軸モータ15、Y軸モータ16、Z軸モータ17及び回転モータ18の動作を制御して、テープフィーダ19、バルクフィーダ20、ボウルフィーダ等の部品供給装置から供給される部品を吸着ノズルで吸着し、当該部品をその下方から部品認識用カメラ12で撮像して、その撮像画像に基づいて吸着部品の外縁(エッジ)を検出して部品の外形形状を認識して、品種、吸着姿勢等を判定し、吸着ノズル(装着ヘッド)を回路基板上へ移動させて、当該部品を回路基板に実装する。   During operation of the component mounting machine, the control device 11 includes an X-axis motor 15 that drives a mounting head (not shown) that holds the suction nozzle in the X-axis direction, the Y-axis direction, the Z-axis direction, and the θ-direction, and the Y-axis. By controlling the operation of the motor 16, the Z-axis motor 17 and the rotary motor 18, the parts supplied from the parts feeder such as the tape feeder 19, the bulk feeder 20 and the bowl feeder are sucked by the suction nozzle, and the parts are moved downward. The image is picked up by the component recognition camera 12, the outer edge (edge) of the suction component is detected based on the captured image, the external shape of the component is recognized, the type, the suction posture, etc. are determined, and the suction nozzle (mounting) The head is moved onto the circuit board, and the component is mounted on the circuit board.

この際、バルクフィーダ20やボウルフィーダでは、供給する部品の方向が一定方向とはならないため、吸着ノズルに吸着した部品全体をその下方から部品認識用カメラ12の視野内に収めて撮像して、その撮像画像を処理して該部品の方向を判定し、判定した部品の方向が回路基板上の実装方向と異なる場合には、吸着ノズルを回動させて部品の方向を実装方向と一致させる。   At this time, in the bulk feeder 20 and the bowl feeder, since the direction of the component to be supplied is not a fixed direction, the entire component sucked by the suction nozzle is captured in the field of view of the component recognition camera 12 from below and imaged. The captured image is processed to determine the direction of the component. If the determined direction of the component is different from the mounting direction on the circuit board, the suction nozzle is rotated to match the direction of the component with the mounting direction.

以下、本実施例1の部品方向判定方法を説明する。
図2(A)〜(D)は、部品認識用カメラ12で撮像した部品の回転角と縦横比(縦寸法と横寸法との比)との関係を示している。ここで、方向判定の対象となる部品は、方向を示す特徴点21を有する四角形状の部品である。方向を示す特徴点21は、例えば、部品下面の1つの角部等に設けた画像認識可能な方向表示マーク等であっても良いし、部品のうちの画像認識可能で且つ方向を特定可能な部分(例えば端子、リード、部品下面に付された文字・記号等)を特徴点として用いても良い。
Hereinafter, the component direction determination method of the first embodiment will be described.
2A to 2D show the relationship between the rotation angle of the component imaged by the component recognition camera 12 and the aspect ratio (ratio between the vertical dimension and the horizontal dimension). Here, the part subjected to the direction determination is a rectangular part having a feature point 21 indicating the direction. The feature point 21 indicating the direction may be, for example, an image recognizable direction display mark provided at one corner or the like on the lower surface of the component, or the image of the component can be recognized and the direction can be specified. A portion (for example, a terminal, a lead, or a character / symbol attached to the lower surface of the component) may be used as a feature point.

部品の縦横比が判明すれば、部品の方向として可能性のある方向の候補を2方向に絞ることができる。これを図2の例で説明すると、部品の縦横比がa/bであれば、部品の方向として可能性のある方向は、(A)と(C)の2方向であり、部品の縦横比がb/aであれば、部品の方向として可能性のある方向は、(B)と(D)の2方向である。   If the aspect ratio of the component is known, the possible direction candidates as the component direction can be narrowed down to two directions. In the example of FIG. 2, if the aspect ratio of the component is a / b, the possible directions of the component are the two directions (A) and (C), and the aspect ratio of the component is If b / a, there are two possible directions of the component direction (B) and (D).

この点を考慮して、本実施例1では、生産で使用する部品のうち、方向判定が必要となる部品(以下「方向判定対象部品」という)について、予め、部品の縦横比の標準データを記憶装置14に記憶しておき、生産中に方向判定対象部品を吸着ノズルに吸着したときに、その部品全体をその下方から部品認識用カメラ12の視野内に収めて撮像し、その撮像画像から該部品の外縁を認識して、部品の画像を90°異なる方向から見た2つの縦横比を算出し、これら2つの縦横比の算出値を記憶装置14に記憶された縦横比の標準データと比較して、差が小さい方の縦横比の算出値に対応する2方向の候補を選択し、該部品の画像のうちの選択した2方向の候補に対応する部分をそれぞれ画像処理して特徴点21を認識できた方向によって該部品の方向を特定するようにしている。   In consideration of this point, in the first embodiment, standard data of the aspect ratio of a part is used in advance for a part that requires direction determination (hereinafter referred to as “direction determination target part”) among parts used in production. Stored in the storage device 14, when the direction determination target part is sucked by the suction nozzle during production, the entire part is captured from below in the field of view of the part recognition camera 12, and from the captured image By recognizing the outer edge of the part, two aspect ratios of the image of the part viewed from 90 ° different directions are calculated, and the calculated values of the two aspect ratios are stored in the storage device 14 as standard aspect ratio data. In comparison, a candidate in two directions corresponding to the calculated value of the aspect ratio with the smaller difference is selected, and a part corresponding to the selected candidate in the two directions in the image of the component is subjected to image processing, and a feature point This part depending on the direction in which 21 was recognized And so as to identify the direction of.

以上説明した本実施例1の部品方向判定処理は、部品実装機の制御装置11によって、図3及び図4の部品方向判定プログラムに従って実行される。本プログラムは、生産中に吸着ノズルに方向判定対象部品を吸着する毎に実行される。   The component direction determination process according to the first embodiment described above is executed by the control device 11 of the component mounter according to the component direction determination program shown in FIGS. This program is executed every time the direction determination target component is sucked to the suction nozzle during production.

本プログラムが起動されると、まずステップ101で、生産ジョブで指定された部品(吸着ノズルに吸着された方向判定対象部品)の縦横比の標準データを記憶装置14から読み込む。この後、ステップ102に進み、吸着ノズルに吸着した部品全体をその下方から部品認識用カメラ12の視野内に収めて撮像し、次のステップ103で、撮像画像から部品の外縁を認識する。   When this program is started, first, in step 101, standard data of the aspect ratio of the part specified in the production job (the direction determination target part sucked by the suction nozzle) is read from the storage device. Thereafter, the process proceeds to step 102, where the entire part sucked by the suction nozzle is captured from below in the field of view of the part recognition camera 12, and in the next step 103, the outer edge of the part is recognized from the captured image.

この後、ステップ104に進み、エラーであるか否かを判定する。ここで、エラーの発生原因としては、例えば、(1) 部品の外縁の認識に失敗した場合、(2) 吸着ノズルに部品が吸着されていない場合、(3) 部品の吸着位置ずれにより撮像画像から部品の一部がはみ出している場合、(4) 部品の外縁の認識結果が四角形以外の場合等が挙げられる。このステップ104で、エラーと判定されれば、ステップ105に進み、エラー処理を実行する。このエラー処理では、例えば、部品実装機の稼働を停止させたり、エラーの表示や警報音によって作業者にエラー発生を知らせる。   Thereafter, the process proceeds to step 104 to determine whether or not there is an error. Here, the cause of the error is, for example, (1) When the outer edge of the component fails to be recognized, (2) When the component is not attracted to the suction nozzle, (3) The captured image is caused by the displacement position of the component. If the part of the part protrudes from (4), the recognition result of the outer edge of the part is other than a square. If it is determined in step 104 that an error has occurred, the process proceeds to step 105 to execute error processing. In this error processing, for example, the operation of the component mounting machine is stopped, or the operator is notified of the occurrence of the error by displaying an error or an alarm sound.

一方、上記ステップ104でエラーではないと判定されれば、ステップ106に進み、撮像画像の部品の方向と正しい方向との回転角を0°と仮定して部品の縦寸法と横寸法を計測して縦横比(0°)を算出し、次のステップ107で、撮像画像の部品の方向と正しい方向との回転角を90°と仮定して部品の縦横比(90°)を算出する。これらステップ106、107の処理により、部品の画像を90°異なる方向から見た2つの縦横比が算出される。上述したステップ103〜107の処理が特許請求の範囲でいう縦横比算出手段としての役割を果たす。   On the other hand, if it is determined in step 104 that there is no error, the process proceeds to step 106, and the vertical and horizontal dimensions of the component are measured assuming that the rotation angle between the direction of the component in the captured image and the correct direction is 0 °. Then, the aspect ratio (0 °) is calculated, and in the next step 107, the aspect ratio (90 °) of the component is calculated assuming that the rotation angle between the direction of the component in the captured image and the correct direction is 90 °. By the processing of these steps 106 and 107, two aspect ratios when the part image is viewed from a direction different by 90 ° are calculated. The processes in steps 103 to 107 described above serve as aspect ratio calculation means in the claims.

この後、ステップ108に進み、縦横比(0°)と縦横比(90°)が「1±認識誤差」の範囲内であるか否かで、部品の形状が正方形であるか否かを判定し、正方形であると判定されれば、ステップ109に進み、生産ジョブで指定された部品の形状が正方形であるか否かを判定する。その結果、生産ジョブで指定された部品の形状が正方形ではないと判定されれば、生産ジョブで指定された部品が吸着ノズルに吸着されていないことを意味するため、ステップ105に進み、エラー処理を実行する。   Thereafter, the process proceeds to step 108, where it is determined whether or not the shape of the component is a square depending on whether the aspect ratio (0 °) and the aspect ratio (90 °) are within the range of “1 ± recognition error”. If it is determined that the shape is a square, the process proceeds to step 109 to determine whether or not the shape of the part designated in the production job is a square. As a result, if it is determined that the shape of the part specified in the production job is not a square, it means that the part specified in the production job is not picked up by the suction nozzle. Execute.

これに対し、上記ステップ109で、生産ジョブで指定された部品の形状が正方形であると判定されれば、吸着ノズルに吸着した部品の形状(正方形)が生産ジョブで指定された部品の形状(正方形)と一致すると判断して、ステップ110に進み、部品の方向の候補として、4方向を候補とし、次のステップ111で、4方向判定処理を実行する。これにより、部品の画像のうちの4方向の候補に対応する部分をそれぞれ画像処理して特徴点21を認識できた方向によって該部品の方向を特定する。この際、特徴点21を認識できた段階で、残りの方向の候補に対応する部分の画像処理を行わないようにしても良い。   On the other hand, if it is determined in step 109 that the shape of the part specified in the production job is a square, the shape (square) of the part sucked by the suction nozzle is changed to the shape of the part specified in the production job (square). (Square) is determined to match, and the process proceeds to Step 110, where the four directions are set as candidates for the component direction, and in the next Step 111, the four-direction determination process is executed. As a result, the direction of the part is specified by the direction in which the part corresponding to the candidate in the four directions in the part image is image-processed and the feature point 21 can be recognized. At this time, when the feature point 21 is recognized, the image processing of the portion corresponding to the remaining direction candidates may not be performed.

一方、上記ステップ108で、縦横比(0°)と縦横比(90°)が「1±認識誤差」の範囲から外れていて、部品の形状が正方形ではない(つまり長方形である)と判定されれば、図4のステップ112に進み、生産ジョブで指定された部品の形状が長方形であるか否かを判定する。その結果、生産ジョブで指定された部品の形状が長方形ではないと判定されれば、生産ジョブで指定された部品が吸着ノズルに吸着されていないことを意味するため、ステップ113に進み、エラー処理を実行する。   On the other hand, in step 108, it is determined that the aspect ratio (0 °) and the aspect ratio (90 °) are out of the range of “1 ± recognition error”, and the shape of the component is not a square (that is, a rectangle). Then, the process proceeds to step 112 in FIG. 4 to determine whether or not the shape of the part designated in the production job is a rectangle. As a result, if it is determined that the shape of the part specified in the production job is not rectangular, it means that the part specified in the production job is not picked up by the pick-up nozzle. Execute.

これに対し、上記ステップ112で、生産ジョブで指定された部品の形状が長方形であると判定されれば、吸着ノズルに吸着した部品の形状(長方形)が生産ジョブで指定された部品の形状(長方形)と一致すると判断して、ステップ114に進み、前記ステップ106で算出した回転角0°での縦横比(0°)の算出値と標準データとの差の絶対値を差(0°)として求めると共に、次のステップ115で、前記ステップ107で算出した回転角90°での縦横比(90°)の算出値と標準データとの差の絶対値を差(90°)として求める。   On the other hand, if it is determined in step 112 that the shape of the part specified by the production job is a rectangle, the shape of the part (rectangle) sucked by the suction nozzle is changed to the shape of the part specified by the production job ( The process proceeds to step 114, and the absolute value of the difference between the calculated value of the aspect ratio (0 °) at the rotation angle 0 ° calculated in step 106 and the standard data is set to the difference (0 °). In the next step 115, the absolute value of the difference between the calculated value of the aspect ratio (90 °) at the rotation angle 90 ° calculated in step 107 and the standard data is obtained as a difference (90 °).

差(0°)=|縦横比(0°)の算出値−標準データ|
差(90°)=|縦横比(90°)の算出値−標準データ|
Difference (0 °) = | Calculated aspect ratio (0 °)-Standard data |
Difference (90 °) = | Calculated aspect ratio (90 °)-Standard data |

この後、ステップ116に進み、差(0°)が差(90°)より小さいか否かで、縦横比(0°)の算出値が縦横比(90°)の算出値より標準データに近いか否かを判定し、差(0°)が差(90°)より小さいと判定された場合、すなわち、縦横比(0°)の算出値が縦横比(90°)の算出値より標準データに近いと判定されれば、ステップ117に進み、差(0°)が画像認識の許容誤差より小さいか否かを判定する。その結果、差(0°)が画像認識の許容誤差以上と判定されれば、生産ジョブで指定された部品とは縦横比が異なる部品が吸着ノズルに吸着されていると判断して、ステップ113に進み、エラー処理を実行する。   Thereafter, the process proceeds to step 116, where the calculated value of the aspect ratio (0 °) is closer to the standard data than the calculated value of the aspect ratio (90 °) depending on whether or not the difference (0 °) is smaller than the difference (90 °). If the difference (0 °) is determined to be smaller than the difference (90 °), that is, the calculated value of the aspect ratio (0 °) is the standard data than the calculated value of the aspect ratio (90 °). If it is determined that the difference is close to, the process proceeds to step 117, where it is determined whether or not the difference (0 °) is smaller than the allowable error of image recognition. As a result, if the difference (0 °) is determined to be greater than or equal to the image recognition tolerance, it is determined that a part having an aspect ratio different from that specified in the production job is sucked by the suction nozzle, and step 113 is performed. Proceed to Execute error handling.

一方、上記ステップ117で、差(0°)が画像認識の許容誤差より小さいと判定されれば、生産ジョブで指定された縦横比の部品が吸着ノズルに吸着されていると判断して、ステップ118に進み、差が小さい方の縦横比(0°)の算出値に対応する2方向、つまり0°と180°の2方向を候補とする。この後、ステップ119に進み、部品の画像のうちの0°と180°の2方向の候補に対応する部分をそれぞれ画像処理して特徴点21を認識できた方向によって該部品の方向を特定する。   On the other hand, if it is determined in step 117 that the difference (0 °) is smaller than the image recognition tolerance, it is determined that the part having the aspect ratio specified in the production job is sucked to the suction nozzle, and the step Proceeding to 118, two directions corresponding to the calculated value of the aspect ratio (0 °) with the smaller difference, that is, two directions of 0 ° and 180 ° are set as candidates. Thereafter, the process proceeds to step 119, where the part corresponding to the two candidate directions of 0 ° and 180 ° in the image of the component is subjected to image processing, and the direction of the component is specified by the direction in which the feature point 21 can be recognized. .

また、前述したステップ116で、差(90°)が差(0°)より小さいと判定された場合、すなわち、縦横比(90°)の算出値が縦横比(0°)の算出値より標準データに近いと判定されれば、ステップ120に進み、差(90°)が画像認識の許容誤差より小さいか否かを判定する。その結果、差(90°)が画像認識の許容誤差以上と判定されれば、生産ジョブで指定された部品とは縦横比が異なる部品が吸着ノズルに吸着されていると判断して、ステップ113に進み、エラー処理を実行する。   Further, when it is determined in the above-described step 116 that the difference (90 °) is smaller than the difference (0 °), that is, the calculated value of the aspect ratio (90 °) is more standard than the calculated value of the aspect ratio (0 °). If it is determined that the data is close to the data, the process proceeds to step 120, where it is determined whether or not the difference (90 °) is smaller than an allowable error of image recognition. As a result, if the difference (90 °) is determined to be greater than or equal to the image recognition tolerance, it is determined that a part having an aspect ratio different from that specified in the production job is sucked to the suction nozzle, and step 113 is performed. Proceed to Execute error handling.

一方、上記ステップ120で、差(90°)が画像認識の許容誤差より小さいと判定されれば、生産ジョブで指定された縦横比の部品が吸着ノズルに吸着されていると判断して、ステップ121に進み、差が小さい方の縦横比(90°)の算出値に対応する2方向、つまり90°と270°の2方向を候補とする。この後、ステップ122に進み、部品の画像のうちの90°と270°の2方向の候補に対応する部分をそれぞれ画像処理して特徴点21を認識できた方向によって該部品の方向を特定する。   On the other hand, if it is determined in step 120 that the difference (90 °) is smaller than the image recognition tolerance, it is determined that the part having the aspect ratio specified in the production job is sucked by the suction nozzle. Proceeding to 121, two directions corresponding to the calculated value of the aspect ratio (90 °) with the smaller difference, that is, two directions of 90 ° and 270 ° are set as candidates. Thereafter, the process proceeds to step 122, where the parts corresponding to the 90 ° and 270 ° candidates in the two directions of the part are subjected to image processing, and the direction of the part is specified by the direction in which the feature point 21 can be recognized. .

尚、上記ステップ108〜110、112、114〜118、120、121の処理が特許請求の範囲でいう方向候補選択手段としての役割を果たし、上記ステップ119、122の処理が特許請求の範囲でいう方向特定手段としての役割を果たす。   The processing in steps 108 to 110, 112, 114 to 118, 120, and 121 serves as direction candidate selection means in the claims, and the processing in steps 119 and 122 in the claims. It serves as a direction identification means.

以上説明した本実施例1では、予め、方向判定の対象となる部品の縦横比の標準データを記憶装置14に記憶しておき、生産中に部品を吸着ノズルに吸着したときに、その部品全体をその下方から部品認識用カメラ12の視野内に収めて撮像し、その撮像画像から該部品の外縁を認識して、部品の画像を90°異なる方向から見た2つの縦横比を算出し、これら2つの縦横比の算出値を記憶装置14に記憶された縦横比の標準データと比較して、差が小さい方の縦横比の算出値に対応する2方向の候補を選択し、該部品の画像のうちの選択した2方向の候補に対応する部分をそれぞれ画像処理して特徴点21を認識できた方向によって該部品の方向を特定するようにしたので、画像処理する領域を半減でき、部品の方向判定に要する処理時間を短縮できて、生産性を向上できる。しかも、認識した部品の縦横比が生産ジョブで指定された部品の縦横比に近い方を選択して2方向判定処理を行うようにしているため、部品の背景に左右される可能性が低くなり、ロバスト性に優れている。   In the first embodiment described above, the standard data of the aspect ratio of the part whose direction is to be determined is stored in the storage device 14 in advance, and when the part is sucked to the suction nozzle during production, the entire part is stored. Is captured within the field of view of the component recognition camera 12 from below, the outer edge of the component is recognized from the captured image, and two aspect ratios of the component image viewed from 90 ° different directions are calculated, The calculated values of the two aspect ratios are compared with the standard data of the aspect ratio stored in the storage device 14, the candidate in the two directions corresponding to the calculated value of the aspect ratio with the smaller difference is selected, and the component Since the part corresponding to the selected two-direction candidates in the image is image-processed and the direction of the part is specified by the direction in which the feature point 21 can be recognized, the area to be image-processed can be halved. Processing time required to determine the direction And it can be shortened, the productivity can be improved. In addition, since the aspect ratio of the recognized part is selected so that the aspect ratio of the part specified in the production job is closer to the two-way determination process, the possibility of being influenced by the background of the part is reduced. Excellent in robustness.

上記実施例1では、部品の画像を90°異なる方向から見た2つの縦横比を算出し、これら2つの縦横比の算出値を記憶装置14に記憶された縦横比の標準データと比較して、差が小さい方の縦横比の算出値に対応する2方向の候補を選択するようにしたが、図5及び図6に示す本発明の実施例2では、予め、記憶装置14に、方向判定の対象となる部品を90°異なる方向から見た2つの縦横比の標準データを記憶しておき、認識した部品の縦横比の算出値を記憶装置14に記憶された2つの縦横比の標準データと比較して、差が小さい方の縦横比の標準データに対応した2方向の候補を選択するようにしている。   In the first embodiment, the two aspect ratios of the part image viewed from 90 ° different directions are calculated, and the calculated values of the two aspect ratios are compared with the standard data of the aspect ratio stored in the storage device 14. In the second embodiment of the present invention shown in FIGS. 5 and 6, the direction determination is made in advance in the storage device 14 in the second embodiment corresponding to the calculated value of the aspect ratio with the smaller difference. Two aspect ratio standard data obtained by viewing the target component from 90 ° different directions are stored, and the calculated aspect ratio value of the recognized component is stored in the storage device 14 as two aspect ratio standard data. As compared with the above, candidates in two directions corresponding to standard data having a smaller aspect ratio are selected.

本実施例2で実行する図5及び図6の部品方向判定プログラムは、前記実施例1で実行する図3及び図4の部品方向判定プログラムのステップ107の処理を省略し、ステップ114、115の処理をステップ114a、115aの処理に変更しただけであり、他の各ステップの処理は同じである。   5 and 6 executed in the second embodiment omits the processing in step 107 of the component direction determination program in FIGS. 3 and 4 executed in the first embodiment, and performs steps 114 and 115. Only the processing is changed to the processing of steps 114a and 115a, and the processing of the other steps is the same.

図5及び図6の部品方向判定プログラムでは、ステップ106で、回転角0°と仮定した縦横比(0°)を算出するだけであり、回転角90°と仮定した縦横比(90°)は算出しない。   In the part orientation determination program shown in FIGS. 5 and 6, in step 106, the aspect ratio (0 °) assumed to be a rotation angle of 0 ° is only calculated, and the aspect ratio (90 °) assumed to be a rotation angle of 90 ° is Do not calculate.

また、ステップ114aでは、回転角0°での縦横比(0°)の算出値と回転角0°での縦横比の標準データ(0°)との差の絶対値を差(0°)として求めると共に、次のステップ115aで、回転角0°での縦横比(0°)の算出値と回転角90°での縦横比の標準データ(90°)との差の絶対値を差(90°)として求める。   In step 114a, the absolute value of the difference between the calculated value of the aspect ratio (0 °) at the rotation angle of 0 ° and the standard data (0 °) of the aspect ratio at the rotation angle of 0 ° is set as the difference (0 °). In the next step 115a, the absolute value of the difference between the calculated value of the aspect ratio (0 °) at the rotation angle of 0 ° and the standard data (90 °) of the aspect ratio at the rotation angle of 90 ° is calculated as a difference (90 As °).

差(0°)=|縦横比(0°)の算出値−標準データ(0°)|
差(90°)=|縦横比(0°)の算出値−標準データ(90°)|
Difference (0 °) = | Calculated aspect ratio (0 °)-Standard data (0 °) |
Difference (90 °) = | calculated value of aspect ratio (0 °) −standard data (90 °) |

この後、ステップ116に進み、差(0°)が差(90°)より小さいか否かで、縦横比(0°)の算出値が標準データ(90°)より標準データ(0°)に近いか否かを判定し、差(0°)が差(90°)より小さいと判定された場合、すなわち、縦横比(0°)の算出値が標準データ(90°)より標準データ(0°)に近いと判定されれば、ステップ117に進み、差(0°)が画像認識の許容誤差より小さいか否かを判定する。その結果、差(0°)が画像認識の許容誤差以上と判定されれば、生産ジョブで指定された部品とは縦横比が異なる部品が吸着ノズルに吸着されていると判断して、ステップ113に進み、エラー処理を実行する。   Thereafter, the process proceeds to step 116, where the calculated value of the aspect ratio (0 °) is changed from the standard data (90 °) to the standard data (0 °) depending on whether or not the difference (0 °) is smaller than the difference (90 °). If the difference (0 °) is determined to be smaller than the difference (90 °), that is, the calculated aspect ratio (0 °) is greater than the standard data (90 °) than the standard data (0 If it is determined that the difference is close to (°), the process proceeds to step 117, where it is determined whether or not the difference (0 °) is smaller than an allowable error of image recognition. As a result, if the difference (0 °) is determined to be greater than or equal to the image recognition tolerance, it is determined that a part having an aspect ratio different from that specified in the production job is sucked by the suction nozzle, and step 113 is performed. Proceed to Execute error handling.

一方、上記ステップ117で、差(0°)が画像認識の許容誤差より小さいと判定されれば、生産ジョブで指定された縦横比の部品が吸着ノズルに吸着されていると判断して、ステップ118に進み、差が小さい方の縦横比の標準データ(0°)に対応する2方向、つまり、0°と180°の2方向を候補とする。この後、ステップ119に進み、部品の画像のうちの0°と180°の2方向の候補に対応する部分をそれぞれ画像処理して特徴点21を認識できた方向によって該部品の方向を特定する。   On the other hand, if it is determined in step 117 that the difference (0 °) is smaller than the image recognition tolerance, it is determined that the part having the aspect ratio specified in the production job is sucked to the suction nozzle, and the step Proceeding to 118, two directions corresponding to the standard data (0 °) of the aspect ratio with the smaller difference, that is, two directions of 0 ° and 180 ° are set as candidates. Thereafter, the process proceeds to step 119, where the part corresponding to the two candidate directions of 0 ° and 180 ° in the image of the component is subjected to image processing, and the direction of the component is specified by the direction in which the feature point 21 can be recognized. .

また、前述したステップ116で、差(90°)が差(0°)より小さいと判定された場合、すなわち、縦横比(0°)の算出値が標準データ(0°)より標準データ(90°)に近いと判定されれば、ステップ120に進み、差(90°)が画像認識の許容誤差より小さいか否かを判定する。その結果、差(90°)が画像認識の許容誤差以上と判定されれば、生産ジョブで指定された部品とは縦横比が異なる部品が吸着ノズルに吸着されていると判断して、ステップ113に進み、エラー処理を実行する。   If it is determined in step 116 that the difference (90 °) is smaller than the difference (0 °), that is, the calculated aspect ratio (0 °) is greater than the standard data (0 °) than the standard data (90 °). If it is determined that the difference (90 °) is close to (°), the process proceeds to step 120, where it is determined whether or not the difference (90 °) is smaller than an allowable error of image recognition. As a result, if the difference (90 °) is determined to be greater than or equal to the image recognition tolerance, it is determined that a part having an aspect ratio different from that specified in the production job is sucked to the suction nozzle, and step 113 is performed. Proceed to Execute error handling.

一方、上記ステップ120で、差(90°)が画像認識の許容誤差より小さいと判定されれば、生産ジョブで指定された縦横比の部品が吸着ノズルに吸着されていると判断して、ステップ121に進み、差が小さい方の縦横比の標準データ(90°)に対応する2方向、つまり90°と270°の2方向を候補とする。この後、ステップ122に進み、部品の画像のうちの90°と270°の2方向の候補に対応する部分をそれぞれ画像処理して特徴点21を認識できた方向によって該部品の方向を特定する。その他の事項は、前記実施例1と同じである。   On the other hand, if it is determined in step 120 that the difference (90 °) is smaller than the image recognition tolerance, it is determined that the part having the aspect ratio specified in the production job is sucked by the suction nozzle. Proceeding to 121, two directions corresponding to the standard data (90 °) of the aspect ratio with the smaller difference, that is, two directions of 90 ° and 270 ° are set as candidates. Thereafter, the process proceeds to step 122, where the parts corresponding to the 90 ° and 270 ° candidates in the two directions of the part are subjected to image processing, and the direction of the part is specified by the direction in which the feature point 21 can be recognized. . Other matters are the same as those in the first embodiment.

以上説明した本実施例2においても、前記実施例1と同様の効果を得ることができる。 尚、上記実施例1,2では、吸着ノズルに吸着した部品全体をその下方から部品認識用カメラ12の視野内に収めて撮像して部品の方向を判定するようにしたが、バルクフィーダ等から供給される部品全体をその上方から基板認識用カメラ13等のカメラの視野内に収めて撮像して部品の方向を判定するようにしても良い。   Also in the second embodiment described above, the same effect as in the first embodiment can be obtained. In the first and second embodiments, the entire component sucked by the suction nozzle is captured from below in the field of view of the component recognition camera 12, and the direction of the component is determined. The whole component to be supplied may be stored in the field of view of the camera such as the board recognition camera 13 from above and imaged to determine the direction of the component.

その他、本発明は、部品実装機に限定されず、四角形状の部品の方向を判定する機能を備えた各種の装置に適用して実施できる等、要旨を逸脱しない範囲内で種々変更して実施できることは言うまでもない。   In addition, the present invention is not limited to the component mounting machine, and can be implemented by applying various modifications within a range not departing from the gist, such as being applicable to various apparatuses having a function of determining the direction of a rectangular component. Needless to say, you can.

11…制御装置(縦横比算出手段,方向候補選択手段,方向特定手段)、12…部品認識用カメラ、13…基板認識用カメラ、14…記憶装置(記憶手段)、20…バルクフィーダ、21…部品の方向を示す特徴点   DESCRIPTION OF SYMBOLS 11 ... Control apparatus (Aspect ratio calculation means, Direction candidate selection means, Direction specification means), 12 ... Component recognition camera, 13 ... Board recognition camera, 14 ... Storage device (storage means), 20 ... Bulk feeder, 21 ... Feature points that indicate the direction of the part

Claims (6)

方向を示す特徴点を有する四角形状の部品全体をカメラの視野内に収めて撮像して、その撮像画像を処理して該部品の方向を判定する部品方向判定装置において、
予め前記部品の縦横比の標準データを記憶した記憶手段と、
前記カメラで撮像した前記部品の画像に基づいて該部品の外縁を認識して該部品の縦横比を算出する縦横比算出手段と、
前記縦横比算出手段で求めた前記部品の縦横比の算出値を前記記憶手段に記憶された前記縦横比の標準データと比較して該部品の方向として可能性のある2方向の候補を選択する方向候補選択手段と、
前記部品の画像のうちの前記方向候補選択手段で選択した2方向の候補に対応する部分をそれぞれ画像処理して前記特徴点を認識できた方向によって該部品の方向を特定する方向特定手段と
を備えていることを特徴とする部品方向判定装置。
In a component direction determination device that captures and captures an entire rectangular component having a feature point indicating a direction within the field of view of the camera, and processes the captured image to determine the direction of the component.
Storage means for storing standard data of the aspect ratio of the parts in advance;
An aspect ratio calculating means for recognizing an outer edge of the component based on an image of the component imaged by the camera and calculating an aspect ratio of the component;
The calculated value of the aspect ratio of the part obtained by the aspect ratio calculating means is compared with the standard data of the aspect ratio stored in the storage means to select two possible candidates for the direction of the part. Direction candidate selection means;
Direction specifying means for specifying the direction of the component according to the direction in which the part corresponding to the candidate for the two directions selected by the direction candidate selecting means in the part image is image-processed and the feature points can be recognized. A component direction determining device comprising:
前記方向候補選択手段は、前記縦横比算出手段で求めた前記部品の縦横比の算出値に基づいて該部品が正方形であると判定した場合は4方向の候補を選択し、
前記方向特定手段は、前記部品の画像のうちの前記4方向の候補に対応する部分をそれぞれ画像処理して前記特徴点を認識できた方向によって該部品の方向を特定することを特徴とする請求項1に記載の部品方向判定装置。
The direction candidate selecting means selects candidates in four directions when it is determined that the part is square based on the calculated value of the aspect ratio of the part obtained by the aspect ratio calculating means,
The direction specifying unit specifies the direction of the component based on the direction in which the feature points can be recognized by performing image processing on each of the parts corresponding to the candidates for the four directions in the image of the component. Item direction determining apparatus according to Item 1.
前記縦横比算出手段は、前記部品の画像を90°異なる方向から見た2つの縦横比を算出し、
前記方向候補選択手段は、前記縦横比算出手段で求めた前記2つの縦横比の算出値を前記記憶手段に記憶された前記縦横比の標準データと比較して、差が小さい方の縦横比の算出値に対応した2方向の候補を選択することを特徴とする請求項1又は2に記載の部品方向判定装置。
The aspect ratio calculating means calculates two aspect ratios when the image of the part is viewed from a direction different by 90 °,
The direction candidate selection means compares the calculated values of the two aspect ratios obtained by the aspect ratio calculation means with the standard data of the aspect ratio stored in the storage means, and has the aspect ratio with the smaller difference. The component direction determination apparatus according to claim 1, wherein candidates for two directions corresponding to the calculated value are selected.
前記記憶手段には、前記部品を90°異なる方向から見た2つの縦横比の標準データが記憶され、
前記方向候補選択手段は、前記縦横比算出手段で求めた前記部品の縦横比の算出値を前記記憶手段に記憶された前記2つの縦横比の標準データと比較して、差が小さい方の縦横比の標準データに対応した2方向の候補を選択することを特徴とする請求項1又は2に記載の部品方向判定装置。
The storage means stores standard data of two aspect ratios when the component is viewed from a direction different by 90 °,
The direction candidate selection means compares the calculated aspect ratio value of the component obtained by the aspect ratio calculation means with the standard data of the two aspect ratios stored in the storage means, and the aspect ratio with the smaller difference is compared. The component direction determination apparatus according to claim 1 or 2, wherein candidates for two directions corresponding to the ratio standard data are selected.
前記部品は、供給する部品の方向が一定方向とはならないフィーダにより部品実装機に供給され、
前記カメラは、前記部品実装機の吸着ノズルに吸着された前記部品を下方から撮像し、 前記部品実装機は、前記方向特定手段で特定した前記部品の方向が回路基板上の実装方向と異なる場合に前記吸着ノズルを回動させて前記部品の方向を前記実装方向と一致させることを特徴とする請求項1乃至4のいずれかに記載の部品方向判定装置。
The component is supplied to the component mounting machine by a feeder in which the direction of the component to be supplied is not a fixed direction
The camera picks up an image of the component sucked by the suction nozzle of the component mounting machine from below, and the component mounting machine has a case where the direction of the component specified by the direction specifying unit is different from the mounting direction on the circuit board. 5. The component direction determination device according to claim 1, wherein the suction nozzle is rotated to make the direction of the component coincide with the mounting direction. 6.
方向を示す特徴点を有する四角形状の部品全体をカメラの視野内に収めて撮像して、その撮像画像を処理して該部品の方向を判定する部品方向判定方法において、
予め前記部品の縦横比の標準データを記憶手段に記憶しておき、
前記カメラで撮像した前記部品の画像に基づいて該部品の外縁を認識して該部品の縦横比を算出し、その縦横比の算出値を前記記憶手段に記憶された前記縦横比の標準データと比較して該部品の方向として可能性のある2方向の候補を選択し、前記部品の画像のうちの前記方向候補選択手段で選択した2方向の候補に対応する部分をそれぞれ画像処理して前記特徴点を認識できた方向によって該部品の方向を特定することを特徴とする部品方向判定方法。
In the component direction determination method in which the entire rectangular part having a feature point indicating the direction is captured and captured within the field of view of the camera, and the captured image is processed to determine the direction of the part.
The standard data of the aspect ratio of the parts is stored in the storage means in advance,
Based on the image of the component imaged by the camera, the outer edge of the component is recognized to calculate the aspect ratio of the component, and the calculated value of the aspect ratio is stored as standard data of the aspect ratio stored in the storage means. The candidate of the two directions which are possible as the direction of the part is selected by comparison, and the part corresponding to the candidate of the two directions selected by the direction candidate selecting unit in the part image is subjected to image processing, respectively. A component direction determination method, wherein the direction of the component is specified by a direction in which a feature point can be recognized.
JP2011085330A 2011-04-07 2011-04-07 Component direction determination apparatus and component direction determination method Active JP5627530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011085330A JP5627530B2 (en) 2011-04-07 2011-04-07 Component direction determination apparatus and component direction determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011085330A JP5627530B2 (en) 2011-04-07 2011-04-07 Component direction determination apparatus and component direction determination method

Publications (2)

Publication Number Publication Date
JP2012222102A true JP2012222102A (en) 2012-11-12
JP5627530B2 JP5627530B2 (en) 2014-11-19

Family

ID=47273308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011085330A Active JP5627530B2 (en) 2011-04-07 2011-04-07 Component direction determination apparatus and component direction determination method

Country Status (1)

Country Link
JP (1) JP5627530B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7197292B2 (en) 2018-07-04 2022-12-27 Juki株式会社 Electronic component mounting apparatus and electronic component mounting method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261048A (en) * 1986-05-07 1987-11-13 Omron Tateisi Electronics Co Printed circuit board inspecting device
JPS63246603A (en) * 1987-03-31 1988-10-13 Agency Of Ind Science & Technol Method for measuring posture angle of polygonal part
JPH09294000A (en) * 1996-04-25 1997-11-11 Sony Corp Electronic parts mounted device and method
JPH09326596A (en) * 1996-02-28 1997-12-16 Daewoo Electron Co Ltd Recognition of printed circuit substrate reference mark for origin determination in chip mounter
JPH10256793A (en) * 1997-03-10 1998-09-25 Matsushita Electric Ind Co Ltd Electronic component mounting method and apparatus
JP2001024390A (en) * 1999-07-09 2001-01-26 Matsushita Electric Ind Co Ltd Electronic component supply equipment and method and electronic component mounting machine
JP2007299965A (en) * 2006-05-01 2007-11-15 Matsushita Electric Ind Co Ltd Electronic-component mounting apparatus, and surface light-emitting device
JP2008021946A (en) * 2006-07-14 2008-01-31 Yamaha Motor Co Ltd Packaging machine
JP2010210511A (en) * 2009-03-11 2010-09-24 Honda Motor Co Ltd Recognition device of three-dimensional positions and attitudes of objects, and method for the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261048A (en) * 1986-05-07 1987-11-13 Omron Tateisi Electronics Co Printed circuit board inspecting device
JPS63246603A (en) * 1987-03-31 1988-10-13 Agency Of Ind Science & Technol Method for measuring posture angle of polygonal part
JPH09326596A (en) * 1996-02-28 1997-12-16 Daewoo Electron Co Ltd Recognition of printed circuit substrate reference mark for origin determination in chip mounter
JPH09294000A (en) * 1996-04-25 1997-11-11 Sony Corp Electronic parts mounted device and method
JPH10256793A (en) * 1997-03-10 1998-09-25 Matsushita Electric Ind Co Ltd Electronic component mounting method and apparatus
JP2001024390A (en) * 1999-07-09 2001-01-26 Matsushita Electric Ind Co Ltd Electronic component supply equipment and method and electronic component mounting machine
JP2007299965A (en) * 2006-05-01 2007-11-15 Matsushita Electric Ind Co Ltd Electronic-component mounting apparatus, and surface light-emitting device
JP2008021946A (en) * 2006-07-14 2008-01-31 Yamaha Motor Co Ltd Packaging machine
JP2010210511A (en) * 2009-03-11 2010-09-24 Honda Motor Co Ltd Recognition device of three-dimensional positions and attitudes of objects, and method for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7197292B2 (en) 2018-07-04 2022-12-27 Juki株式会社 Electronic component mounting apparatus and electronic component mounting method

Also Published As

Publication number Publication date
JP5627530B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP6725686B2 (en) Production control system for component mounting line
JP5318334B2 (en) Method and apparatus for detecting position of object
JP2013132736A (en) Work management device and work management system
US10609851B2 (en) Mounter
JP4787694B2 (en) Mounting machine
JP2013243273A (en) Component suction operation monitoring device and component presence detection device
JP5095378B2 (en) Component mounting method and apparatus
JP7094282B2 (en) Anti-board work equipment
JP5627530B2 (en) Component direction determination apparatus and component direction determination method
JP5304739B2 (en) Component mounting method
WO2016194078A1 (en) Information processing apparatus, calibration method, and calibration processing program
JP2008211009A (en) Method of preparing component library data
JP4707607B2 (en) Image acquisition method for component recognition data creation and component mounter
CN107535090B (en) Device and method for generating component orientation determination data
KR101664413B1 (en) Method for detecting mount error of SMT machine
JP7117507B2 (en) Component mounting method and component mounting device
US10879096B2 (en) Die component supply device
JP6277044B2 (en) Substrate processing apparatus and mounting machine
JP5022598B2 (en) Bonding apparatus and semiconductor device manufacturing method
JP6418739B2 (en) Evaluation device, surface mounter, evaluation method
JP2002216130A (en) Image recognizing method, image recognizing device and parts mounting device
JP2019054027A (en) Position specification method and position specification device and component mounting device
JP2013084050A (en) Flat panel display substrate manufacturing apparatus and image processing method for flat panel display substrate manufacturing apparatus
JP6924712B2 (en) Parts mounting equipment and parts inspection method
JP2006234793A (en) Part position detecting method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140930

R150 Certificate of patent or registration of utility model

Ref document number: 5627530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250