JP2012220381A - Measuring device for optical anisotropy parameter, measurement method and program for measurement - Google Patents

Measuring device for optical anisotropy parameter, measurement method and program for measurement Download PDF

Info

Publication number
JP2012220381A
JP2012220381A JP2011087655A JP2011087655A JP2012220381A JP 2012220381 A JP2012220381 A JP 2012220381A JP 2011087655 A JP2011087655 A JP 2011087655A JP 2011087655 A JP2011087655 A JP 2011087655A JP 2012220381 A JP2012220381 A JP 2012220381A
Authority
JP
Japan
Prior art keywords
reflected light
wave plate
sample
optical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011087655A
Other languages
Japanese (ja)
Other versions
JP5806837B2 (en
JP2012220381A5 (en
Inventor
Daisuke Tanooka
大 輔 田ノ岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moritex Corp
Original Assignee
Moritex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moritex Corp filed Critical Moritex Corp
Priority to JP2011087655A priority Critical patent/JP5806837B2/en
Priority to PCT/JP2012/059314 priority patent/WO2012141061A2/en
Priority to KR1020137025210A priority patent/KR101594982B1/en
Priority to CN201280017649.3A priority patent/CN103477206B/en
Priority to TW101112439A priority patent/TWI545309B/en
Publication of JP2012220381A publication Critical patent/JP2012220381A/en
Publication of JP2012220381A5 publication Critical patent/JP2012220381A5/ja
Application granted granted Critical
Publication of JP5806837B2 publication Critical patent/JP5806837B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring device that can be reduced in size as a whole by employing a system of perpendicularly irradiating a sample with incident light and that can measure the direction of an optical axis and the degree of anisotropy in an extremely short time.SOLUTION: The measuring device includes a measurement optical system 4 for irradiating a sample 3 with incident light in a perpendicular direction from a laser 6 and guiding the reflected light reflected in a perpendicular direction to a light-receiving element 9 via a half mirror 7, in which a polarizer P is disposed between the laser 6 and the half mirror 7 and an analyzer A is disposed between the half mirror 7 and the light-receiving element 9. Further, a half-wave plate 12 and a quarter-wave plate 13 are disposed between the half mirror 7 and the sample 3. The half-wave plate rotates linearly polarized light generated by the polarizer P; and the quarter-wave plate is driven to synchronously rotate in such a manner that the direction of a slow axis is rotated from an initial position, which is shifted by ±δ (where δ≠nπ/4 and n is an integer) from the slow axis of the half-wave plate 12, to a position giving twice the rotation angle with respect to the half-wave plate 12.

Description

本発明は、光学異方性を有する試料の光学軸の方位及び異方性の大きさを測定する高額異方性パラメータ測定装置、測定方法及び測定用プログラムに関し、特に、液晶配向膜の検査等に用いて好適である。   The present invention relates to an expensive anisotropy parameter measuring apparatus, a measuring method, and a measurement program for measuring the orientation of an optical axis and the magnitude of anisotropy of a sample having optical anisotropy. It is suitable for use.

液晶ディスプレイは、表面に透明電極及び配向膜を積層した裏側ガラス基板と、表面にカラーフィルタ、透明電極及び配向膜を積層形成した表側ガラス基板が、スペーサを介して配向膜同士を向かい合わせ、その配向膜の隙間に液晶を封入した状態で封止されると共に、その表裏両側に偏光フィルタが積層された構造と成っている。   The liquid crystal display has a back glass substrate with a transparent electrode and alignment film laminated on the surface, and a front glass substrate with a color filter, transparent electrode and alignment film laminated on the surface, with the alignment films facing each other through a spacer, The liquid crystal is sealed in the gap between the alignment films, and a polarizing filter is laminated on both the front and back sides.

ここで、液晶ディスプレイが正常に動作するためには液晶分子が均一に同一方向に配列されている必要があり、配向膜が液晶分子の方向性を決定する。
この配向膜が液晶分子を整列させることができるのは、分子配向を有しているからであり、配向膜がその全面にわたって均一な分子配向を有していれば液晶ディスプレイに欠陥を生じにくく、分子配向の不均一な部分が存在すれば液晶分子の方向が乱れるため液晶ディスプレイが不良品となる。
すなわち、配向膜の品質はそのまま液晶ディスプレイの品質に影響し、配向膜に欠陥があれば液晶分子の方向性が乱れるため、液晶ディスプレイにも欠陥を生ずることになる。
Here, in order for the liquid crystal display to operate normally, the liquid crystal molecules must be uniformly arranged in the same direction, and the alignment film determines the directionality of the liquid crystal molecules.
This alignment film can align the liquid crystal molecules because it has molecular alignment. If the alignment film has a uniform molecular alignment over its entire surface, it is difficult to cause defects in the liquid crystal display. If there is an uneven part of the molecular orientation, the direction of the liquid crystal molecules will be disturbed, resulting in a defective liquid crystal display.
That is, the quality of the alignment film directly affects the quality of the liquid crystal display, and if there is a defect in the alignment film, the directionality of the liquid crystal molecules is disturbed, resulting in a defect in the liquid crystal display.

したがって、液晶ディスプレイを組み立てる際に、予め配向膜の欠陥の有無を検査して品質の安定した配向膜のみを使用するようにすれば、液晶ディスプレイの歩留りが向上し、生産効率が向上する。
そのため、配向膜の分子配向による光学異方性の光学軸の方向や異方性の大きさを簡便に測定したいと言う要請があり、本出願人は、分子配向による光学異方性を高速に測定する方法を提案した(特許文献1参照)。
Therefore, when assembling the liquid crystal display, if the alignment film is inspected for defects in advance and only the alignment film having a stable quality is used, the yield of the liquid crystal display is improved and the production efficiency is improved.
For this reason, there is a demand to easily measure the direction of the optical axis of the optical anisotropy due to the molecular orientation of the alignment film and the magnitude of the anisotropy. A measurement method was proposed (see Patent Document 1).

この方法は、液晶配向膜等の試料に対して入射光を斜めに照射し、その反射光の偏光状態を検出するもので、光学系あるいは試料ステージを回転して得られた反射光強度に基づいて、その測定点における光学軸の方向、異方性の大きさを測定しようとするものであり、異方性に対する感度が高く、測定時間も短いというメリットがある。   This method irradiates a sample such as a liquid crystal alignment film obliquely with incident light and detects the polarization state of the reflected light, and is based on the reflected light intensity obtained by rotating the optical system or the sample stage. Thus, it is intended to measure the direction of the optical axis and the magnitude of anisotropy at the measurement point, and has the advantages of high sensitivity to anisotropy and a short measurement time.

しかしながら、斜め方向から所定の入射角で光を照射する光学系では、反射光が入射角と同じ反射角で反射されるので、入射光及び反射光の光路を測定中心に対して両側に確保しなければならず、そのため測定装置が大型化するという問題があった。
しかも、光学系を回転させる場合には、その回転半径に応じた稼動域となる円形空間も確保しなければならないため、さらに、大型の設置空間が必要となる。
特に、液晶ディスプレイのマザーガラスの大きさは中小型液晶ディスプレイ用のものでも1辺2m程度、大型液晶ディスプレイ用のものでは1辺3mを超えるため、マザーガラスの状態で限定された時間内に測定を行うためには、複数の測定装置を一次元又はマトリクス状に配置する必要があるため、測定装置を小型化したいという要請がある。
However, in an optical system that irradiates light at a predetermined incident angle from an oblique direction, the reflected light is reflected at the same reflection angle as the incident angle, so the optical paths of the incident light and the reflected light are secured on both sides with respect to the measurement center. Therefore, there is a problem that the measuring apparatus is increased in size.
In addition, when the optical system is rotated, a circular space serving as an operation area corresponding to the rotation radius must be secured, and thus a large installation space is required.
In particular, the size of the mother glass of the liquid crystal display is about 2m per side even for small and medium-sized liquid crystal displays, and over 3m per side for large liquid crystal displays. In order to perform the measurement, it is necessary to arrange a plurality of measuring devices in a one-dimensional or matrix form, and there is a demand for miniaturizing the measuring devices.

このため、試料の測定面に対して垂直に光を照射して光学異方性パラメータを測定することができれば、装置の小型化が可能となり、そのような測定装置も提案されている(特許文献2参照)。
図11はこの測定装置31を示す説明図で、光源となるレーザ32からハーフミラー33で反射された入射光を試料34に対し垂直方向に照射すると共に、試料34から垂直方向に反射された反射光を前記ハーフミラー33を透過させて受光素子35に導く光路が形成されており、入射光を斜めに照射しなくて良いので、装置31の小型化が可能である。
For this reason, if the optical anisotropy parameter can be measured by irradiating light perpendicular to the measurement surface of the sample, the apparatus can be miniaturized, and such a measuring apparatus has also been proposed (Patent Literature). 2).
FIG. 11 is an explanatory view showing the measuring device 31, and incident light reflected by the half mirror 33 from the laser 32 serving as a light source is irradiated to the sample 34 in the vertical direction and reflected from the sample 34 in the vertical direction. An optical path for guiding light to the light receiving element 35 through the half mirror 33 is formed, and it is not necessary to irradiate incident light obliquely, so that the apparatus 31 can be downsized.

この測定装置31では、レーザ32とハーフミラー33の間に固定偏光子Pが配されると共に、ハーフミラー33と受光素子35との間に検光子Aが回転可能に配され、ハーフミラー33と試料34との間には、偏光子Pにより生成された直線偏光を回転させる1/2波長板36が回動可能に設けられている。   In this measuring device 31, a fixed polarizer P is disposed between the laser 32 and the half mirror 33, and an analyzer A is rotatably disposed between the half mirror 33 and the light receiving element 35. Between the sample 34, a half-wave plate 36 that rotates linearly polarized light generated by the polarizer P is rotatably provided.

この場合、1/2波長板36を180°回転させれば、試料34に照射される直線偏光の入射方位が360°回転するので、1/2波長板を例えば5°ずつ停止させながら、検光子Aを360°回転すれば、試料に照射される直線偏光の入射方位を10°ずつ変化させたときの反射光の偏光状態を検出することができる。
そして、例えば、検光子Aを10°回転するごとに反射光強度測定すれば、検光子Aの回転角θと反射光強度Rの関係に36のデータが得られ、このデータに基づいてフーリエ解析を行うことにより、このときの直線偏光の入射方位φに対するひとつの位相差データを得ることができる。
In this case, if the half-wave plate 36 is rotated 180 °, the incident direction of the linearly polarized light irradiated to the sample 34 is rotated 360 °. If the photon A is rotated 360 °, it is possible to detect the polarization state of the reflected light when the incident direction of the linearly polarized light applied to the sample is changed by 10 °.
For example, if the reflected light intensity is measured every time the analyzer A is rotated by 10 °, 36 data are obtained in the relationship between the rotation angle θ of the analyzer A and the reflected light intensity R, and Fourier analysis is performed based on this data. By performing the above, one phase difference data for the incident direction φ of the linearly polarized light at this time can be obtained.

しかしながら、直線偏光の入射方位0〜360°に対する位相差データを得るためには、1/2波長板36を例えば5°ずつ停止させながら0〜180°までの36点について測定を行う必要があり、そのひとつの角度に対して検光子Aを360°回転させて10°ごとに36のデータをとらなければならないので、検光子Aを36回転させて合計で36×36=1296点のデータを取る必要があり、測定に時間がかかるだけでなく、その後の計算処理にも時間がかかり、実ラインに組み込めるようなものではない。
1/2波長板36を10°ずつ停止させ、検光子Aの10°ごとにデータを取れば、データ数は18×18=324と1/4に減少するが、検光子Aは結局18回転させなければならないので、測定時間は1/2程度にしかならず、しかも、データ数が減った分、測定精度が低下するという問題がある。
However, in order to obtain phase difference data with respect to the incident direction 0 to 360 ° of linearly polarized light, it is necessary to measure 36 points from 0 to 180 ° while stopping the half-wave plate 36 by 5 °, for example. Since the analyzer A has to be rotated 360 ° with respect to that one angle and 36 data must be taken every 10 °, the analyzer A is rotated 36 times to obtain a total of 36 × 36 = 1296 points of data. Not only does it take a long time to measure, but it also takes time for the subsequent calculation processing, and it cannot be incorporated into an actual line.
If the half-wave plate 36 is stopped by 10 ° and data is taken every 10 ° of the analyzer A, the number of data is reduced to ¼, 18 × 18 = 324, but the analyzer A eventually turns 18 rotations. Therefore, there is a problem that the measurement time is only about ½, and the measurement accuracy is reduced by the reduction in the number of data.

特開2008−76324号公報JP 2008-76324 A 特開平11−304645号公報JP-A-11-304645

そこで本発明は、入射光を試料に対して垂直に照射させることにより装置全体の小型化を図ると同時に、きわめて短時間で光学軸の向き及び異方性の大きさを測定できるようにすることを技術的課題としている。   Accordingly, the present invention aims to reduce the size of the entire apparatus by irradiating incident light perpendicularly to the sample, and at the same time, to measure the direction of the optical axis and the magnitude of anisotropy in a very short time. Is a technical issue.

この課題を解決するために、本発明は、試料の測定エリアに対して照射した入射光とその反射光の偏光状態の変化に基づいて当該試料の光学軸の方向と光学異方性の大きさを測定する光学異方性パラメータ測定装置において、
光源となるレーザからハーフミラーを介して前記測定エリアに対し垂直方向に入射光を照射すると共に、当該測定エリアから垂直方向に反射された反射光を前記ハーフミラーを介して受光素子に導く測定光学系と、受光素子により検出された反射光強度に基づいて光学異方性パラメータを算出する演算処理装置を備え、
前記測定光学系は、前記レーザと前記ハーフミラーの間に偏光子が配されると共に、ハーフミラーと受光素子との間に検光子が配され、ハーフミラーと試料との間には、前記偏光子により生成される直線偏光を回転させるために回転駆動される1/2波長板と、遅相軸の向きを前記1/2波長板の遅相軸に対して±δ(δ≠nπ/4,nは整数)ずらした初期位置から当該1/2波長板に対して回転角度が2倍となるように同期的に回転駆動される1/4波長板が配され、
前記演算処理装置は、1/4波長板を初期位置+δから1/2波長板と同期的に回転させたときに検出される反射光強度R(+δ)と、1/4波長板を初期位置−δから1/2波長板と同期的に回転させたときに検出される反射光強度R(−δ)との差分ΔRを算出し、前記直線偏光の回転角と前記差分ΔRの関係に基づき試料の光学軸の方向及び光学異方性の大きさを決定することを特徴としている。
In order to solve this problem, the present invention relates to the direction of the optical axis of the sample and the magnitude of the optical anisotropy based on the change in the polarization state of the incident light irradiated on the measurement area of the sample and the reflected light. In an optical anisotropy parameter measuring apparatus for measuring
Measurement optics that irradiates the measurement area with incident light from a laser as a light source through a half mirror in the vertical direction and guides reflected light reflected from the measurement area in the vertical direction to the light receiving element through the half mirror And an arithmetic processing unit that calculates an optical anisotropy parameter based on the reflected light intensity detected by the system and the light receiving element,
In the measurement optical system, a polarizer is disposed between the laser and the half mirror, an analyzer is disposed between the half mirror and the light receiving element, and the polarization is interposed between the half mirror and the sample. A half-wave plate that is rotated to rotate the linearly polarized light generated by the optical element, and the direction of the slow axis is ± δ (δ ≠ nπ / 4) with respect to the slow axis of the half-wave plate. , N is an integer) a quarter wavelength plate that is rotationally driven synchronously so that the rotation angle is doubled with respect to the half wavelength plate from the shifted initial position,
The arithmetic processing unit is configured to detect the reflected light intensity R (+ δ) detected when the quarter-wave plate is rotated synchronously with the half-wave plate from the initial position + δ, and the quarter-wave plate to the initial position. A difference ΔR from the reflected light intensity R (−δ) detected when the rotation is synchronized with the half-wave plate from −δ is calculated, and based on the relationship between the rotation angle of the linearly polarized light and the difference ΔR. It is characterized in that the direction of the optical axis of the sample and the magnitude of optical anisotropy are determined.

本発明に係る光学異方性測定装置は、光源となるレーザからハーフミラーを介して前記測定エリアに対し垂直方向に入射光を照射すると共に、当該測定エリアから垂直方向に反射された反射光を前記ハーフミラーを介して受光素子に導く測定光学系を備えている。
したがって、試料に対して垂直方向に入射光が照射されることとなり、斜めから入射光を照射する場合に比して、装置を小型化することができるだけでなく、光学系を回転させる必要がないので、そのスペースを確保する必要もない。
The optical anisotropy measurement apparatus according to the present invention irradiates incident light in a vertical direction to the measurement area from a laser serving as a light source via a half mirror, and reflects reflected light reflected in the vertical direction from the measurement area. A measurement optical system that leads to the light receiving element via the half mirror is provided.
Therefore, the incident light is irradiated in the vertical direction with respect to the sample, and not only the apparatus can be downsized but also the optical system does not need to be rotated as compared with the case where the incident light is irradiated obliquely. Therefore, it is not necessary to secure that space.

レーザから照射された光は偏光子で直線偏光となり、1/2波長板でその直線偏光の偏光軸が回転され、遅相軸が±δずれて配された1/4波長板により楕円偏光に変換されて、試料に対して垂直方向に照射される。
その反射光に含まれる偏光成分のうち、偏光状態が変化していない偏光成分は、再び1/4波長板を通る際に直線偏光に戻され、1/2波長板を通過した時点で偏光子により生成された直線偏光と偏光軸が等しい直線編光に戻されるので、偏光子に対して直交ニコルの関係にある検光子でカットされるのに対し、偏光状態が変化した偏光成分は、元の直線偏光と異なる偏光状態になるので、検光子を透過して受光素子に達することとなり、光強度の変化として検出することができる。
光学異方性を有する試料表面からの反射光は、偏光成分が変化するため、その異方性に応じて光強度変化が検出されることとなる。
The light emitted from the laser becomes linearly polarized light by a polarizer, the polarization axis of the linearly polarized light is rotated by a half-wave plate, and becomes elliptically polarized light by a quarter-wave plate arranged with a slow axis shifted by ± δ. It is converted and irradiated in a direction perpendicular to the sample.
Among the polarized light components included in the reflected light, the polarized light component whose polarization state has not changed is returned to linearly polarized light when passing through the quarter-wave plate again, and when passing through the half-wave plate, the polarizer Since the linearly polarized light generated by the linear polarization is returned to the same linearly shaped light, the polarization component whose polarization state has been changed is cut by the analyzer having a crossed Nicols relationship with the polarizer. Therefore, the light passes through the analyzer and reaches the light receiving element, and can be detected as a change in light intensity.
Since the polarization component of the reflected light from the sample surface having optical anisotropy changes, the light intensity change is detected according to the anisotropy.

実際の測定に際しては、1/4波長板を初期位置+δから1/2波長板と同期的に回転させたときに検出される反射光強度R(+δ)と、1/4波長板を初期位置−δから1/2波長板と同期的に回転させたときに検出される反射光強度R(−δ)とを測定する。
すなわち、ひとつの測定点について、1/4波長板の初期位置を+δとしたときと、−δとしたときの2回について、1/2波長板を180°回転すると同時に、1/4波長板を360°回転させるだけで測定が完了する。
In actual measurement, the reflected light intensity R (+ δ) detected when the quarter-wave plate is rotated synchronously with the half-wave plate from the initial position + δ, and the quarter-wave plate is set to the initial position. The reflected light intensity R (−δ) detected when rotating in synchronization with the half-wave plate from −δ is measured.
That is, for one measurement point, when the initial position of the quarter wavelength plate is + δ and when it is set to −δ, the half wavelength plate is rotated by 180 ° and at the same time, the quarter wavelength plate The measurement is completed only by rotating 360 °.

次いで、反射光強度の差分ΔR=R(+δ)−R(−δ)を算出する。
すなわち、対称関係にある二つの楕円偏光の反射光に含まれる偏光状態の差分をとることにより、試料の光学異方性に起因する偏光状態の変化のみを抽出することができる。
そして、直線偏光の回転角と差分ΔRの関係に基づき、試料の光学軸の方向及び光学異方性の大きさを決定することができる。
Next, the difference ΔR = R (+ δ) −R (−δ) of the reflected light intensity is calculated.
That is, by taking the difference between the polarization states included in the reflected light of two elliptically polarized lights having a symmetric relationship, it is possible to extract only the change in the polarization state caused by the optical anisotropy of the sample.
Based on the relationship between the rotation angle of the linearly polarized light and the difference ΔR, the direction of the optical axis of the sample and the magnitude of the optical anisotropy can be determined.

例えば、直線偏光の回転角をX軸とし、差分をY軸とするグラフを書けば、回転角が試料の光学軸の方向では差分ΔRが0となるので、その回転角を読めば試料の光学軸の方向がわかる。
また、異方性が大きさは、差分ΔRの高さ方向の振幅に反映されるので、差分の極大値又は極小値の大きさに基づいて光学異方性の大きさを判断することができ、これら光学異方性パラメータを極めて簡単に且つ短時間で測定することができる。
For example, if a graph with the rotation angle of linearly polarized light as the X axis and the difference as the Y axis is written, the difference ΔR is 0 in the direction of the optical axis of the sample. Know the direction of the axis.
Also, since the magnitude of the anisotropy is reflected in the amplitude in the height direction of the difference ΔR, it is possible to determine the magnitude of the optical anisotropy based on the magnitude of the maximum or minimum value of the difference. These optical anisotropy parameters can be measured very easily and in a short time.

なお、このとき差分は、180°を1周期とするサインカーブに近似した変化を呈し、90°ごとに0の値をとる。これは、試料の光学軸の方向を0°としたときに、0°と180°で反射光強度が等しく、90°と270°で反射光強度が等しくなるからである。
したがって、このデータのみからは光学軸の方向を特定できないことになる。
しかし、例えば、液晶配向膜の製品試験は、複数の測定点における配向方位(光学軸の方向)の分布状態や、配向処理の方向からのずれを確認するものであり、配向処理によりおよその配向方向は既知であって、そのずれは大きくても20°程度であるので、光学軸の方向を90°間違うことはない。
At this time, the difference exhibits a change approximating a sine curve with one cycle of 180 °, and takes a value of 0 every 90 °. This is because when the direction of the optical axis of the sample is 0 °, the reflected light intensity is equal at 0 ° and 180 °, and the reflected light intensity is equal at 90 ° and 270 °.
Therefore, the direction of the optical axis cannot be specified only from this data.
However, for example, the product test of the liquid crystal alignment film is to confirm the distribution state of the orientation direction (the direction of the optical axis) at a plurality of measurement points and the deviation from the direction of the alignment process. Since the direction is known and the deviation is about 20 ° at most, the direction of the optical axis is not mistaken by 90 °.

本発明に係る光学異方性パラメータ測定装置の一例を示す説明図。Explanatory drawing which shows an example of the optical anisotropy parameter measuring apparatus which concerns on this invention. その処理手順を示す説明図。Explanatory drawing which shows the processing procedure. 本発明方法による測定結果を示すグラフ。The graph which shows the measurement result by this invention method. 光学軸の方向の分布を示すグラフ。The graph which shows distribution of the direction of an optical axis. 異方性の大きさの分布を示すグラフ。The graph which shows distribution of an anisotropic magnitude | size. 本発明に係る他の方法による測定結果を示すグラフ。The graph which shows the measurement result by the other method which concerns on this invention. 本発明に係る他の方法による測定結果を示すグラフ。The graph which shows the measurement result by the other method which concerns on this invention. 本発明に係る他の方法による測定結果を示すグラフ。The graph which shows the measurement result by the other method which concerns on this invention. 本発明に係る他の光学異方性パラメータ測定装置を示す説明図。Explanatory drawing which shows the other optical anisotropy parameter measuring apparatus which concerns on this invention. 本発明に係るさらに他の光学異方性パラメータ測定装置を示す説明図。Explanatory drawing which shows the further another optical anisotropy parameter measuring apparatus which concerns on this invention. 従来装置を示す説明図。Explanatory drawing which shows a conventional apparatus.

本発明は、入射光を試料に対して垂直に照射させることにより装置全体の小型化を図ると同時に、きわめて短時間で光学軸の向き及び異方性の大きさを測定できるようにするという目的を達成するために、光源となるレーザからハーフミラーを介して前記測定エリアに対し垂直方向に入射光を照射すると共に、当該測定エリアから垂直方向に反射された反射光を前記ハーフミラーを介して受光素子に導く測定光学系と、受光素子により検出された反射光強度に基づいて光学異方性パラメータを算出する演算処理装置を備えている。
測定光学系は、レーザとハーフミラーの間に偏光子が配されると共に、ハーフミラーと受光素子との間に検光子が配され、ハーフミラーと試料との間には、偏光子により生成される直線偏光を回転させるために回転駆動される1/2波長板と、遅相軸の向きを前記1/2波長板の遅相軸に対して±δ(δ≠nπ/4,nは整数)ずらした初期位置から当該1/2波長板に対して回転角度が2倍となるように同期的に回転駆動される1/4波長板が配されている。
演算処理装置は、1/4波長板を初期位置+δから1/2波長板と同期的に回転させたときに検出される反射光強度R(+δ)と、1/4波長板を初期位置−δから1/2波長板と同期的に回転させたときに検出される反射光強度R(−δ)との差分ΔRを算出し、前記直線偏光の回転角と前記差分ΔRの関係に基づき試料の光学軸の方向及び光学異方性の大きさを決定する。
An object of the present invention is to reduce the size of the entire apparatus by irradiating incident light perpendicularly to a sample, and at the same time, to measure the direction of an optical axis and the magnitude of anisotropy in a very short time. In order to achieve the above, incident light is irradiated in the vertical direction to the measurement area from the laser serving as the light source via the half mirror, and the reflected light reflected in the vertical direction from the measurement area is passed through the half mirror. A measurement optical system that leads to the light receiving element and an arithmetic processing unit that calculates an optical anisotropy parameter based on the reflected light intensity detected by the light receiving element are provided.
In the measurement optical system, a polarizer is arranged between the laser and the half mirror, an analyzer is arranged between the half mirror and the light receiving element, and the polarizer is generated between the half mirror and the sample. A half-wave plate rotated to rotate the linearly polarized light and the direction of the slow axis with respect to the slow axis of the half-wave plate ± δ (δ ≠ nπ / 4, where n is an integer) ) A quarter-wave plate that is rotationally driven synchronously so that the rotation angle is doubled with respect to the half-wave plate from the shifted initial position is disposed.
The arithmetic processing unit converts the reflected light intensity R (+ δ) detected when the quarter-wave plate is rotated synchronously with the half-wave plate from the initial position + δ, and the quarter-wave plate at the initial position −. A difference ΔR from the reflected light intensity R (−δ) detected when rotating synchronously with the half-wave plate from δ is calculated, and the sample is based on the relationship between the rotation angle of the linearly polarized light and the difference ΔR. The direction of the optical axis and the magnitude of the optical anisotropy are determined.

図1に示す本例の光学異方性パラメータ測定装置1は、ステージ2に置かれた試料3上の測定点(点状の測定エリア)Sの光学異方性パラメータを検出するものである。
この光学異方性パラメータ測定装置1は、測定点Sに対して照射した入射光とその反射光の偏光状態の変化に基づいてその測定点Sにおける光学軸の方向と光学異方性の大きさを測定するためのもので、その偏光解析を行う測定光学系4とコンピュータなどの演算処理装置5を備えている。
The optical anisotropy parameter measuring apparatus 1 of the present example shown in FIG. 1 detects an optical anisotropy parameter at a measurement point (dotted measurement area) S on a sample 3 placed on a stage 2.
This optical anisotropy parameter measuring apparatus 1 is based on the change of the polarization state of incident light irradiated on the measurement point S and the reflected light, and the direction of the optical axis and the magnitude of optical anisotropy at the measurement point S. A measurement optical system 4 for performing polarization analysis and an arithmetic processing unit 5 such as a computer.

測定光学系4には、光源となるレーザ6からハーフミラー7を介して測定エリアSに対し垂直方向に入射光を照射する入射光路Lと、測定エリアSから垂直方向に反射された反射光をハーフミラー7を介して分岐させ、さらにハーフミラー8で分岐させて受光素子9に導く反射光路Lと、ハーフミラー8を透過した光を二次元光位置検出素子10に導くあおり検出光路Lが形成されている。 The measurement optical system 4 includes an incident optical path L 1 that irradiates incident light in a direction perpendicular to the measurement area S from the laser 6 serving as a light source via the half mirror 7, and reflected light that is reflected in the vertical direction from the measurement area S. the is branched through a half mirror 7, further a reflection light path L 2 guided to the light receiving element 9 is branched by the half mirror 8, the tilt detection light path L for guiding the light transmitted through the half mirror 8 on the two-dimensional optical position detecting element 10 3 is formed.

入射光路Lには、レーザ6とハーフミラー7の間に、その照射光を拡大して平行光束にするビームエキスパンダ11と偏光子Pが配され、ハーフミラー7とステージ2との間に、偏光子Pにより生成された直線偏光を回転させるためにモータMで回転駆動される1/2波長板12と、遅相軸の向きを前記1/2波長板12の遅相軸に対して±δ(δ≠nπ/4,nは整数)ずらした初期位置から当該1/2波長板12に対して回転角度が2倍となるようにモータMで同期的に回転駆動される1/4波長板13が配されている。 In the incident optical path L 1 , a beam expander 11 and a polarizer P are arranged between the laser 6 and the half mirror 7 to expand the irradiation light into a parallel light beam, and between the half mirror 7 and the stage 2. The half-wave plate 12 rotated by the motor M 1 to rotate the linearly polarized light generated by the polarizer P, and the direction of the slow axis with respect to the slow axis of the half-wave plate 12 1 from the initial position shifted by ± δ (δ ≠ nπ / 4, where n is an integer) synchronously driven by the motor M 2 so that the rotation angle is doubled with respect to the half-wave plate 12. A / 4 wavelength plate 13 is arranged.

なお、1/4波長板13とステージ2の間には、入射光を集光させる対物側集光レンズ14を備えると共に、入射光を平行光のまま透過させる透孔15が形成されたレボルバ16が、モータMにより回動可能に、且つ、対物側集光レンズ14により入射光が試料3の表面上に焦点を結ぶようにモータMにより上下動可能に配されている。 A revolver 16 is provided between the quarter-wave plate 13 and the stage 2 and includes an objective-side condensing lens 14 that condenses incident light and a through-hole 15 that transmits the incident light as parallel light. However, it is arranged so that it can be rotated by the motor M 3 and can be moved up and down by the motor M 4 so that the incident light is focused on the surface of the sample 3 by the objective side condenser lens 14.

本例では、レーザ6は波長532nm、光強度10mWの半導体レーザが使用され、拡大率10倍のビームエキスパンダ11で直径5mmの平行光束に拡大され、消光比10−6のグラントムソンプリズムを用いた偏光子Pを透過し、対物側集光レンズ(オリンパス製:倍率50倍)を透過して、試料に照射される。
このとき、試料への照射スポット系は約1ミクロンとなる。
In this example, the laser 6 is a semiconductor laser having a wavelength of 532 nm and a light intensity of 10 mW, and is expanded to a parallel light beam having a diameter of 5 mm by a beam expander 11 having a magnification of 10 times, and a Glan-Thompson prism having an extinction ratio of 10 −6 is used. The sample P is transmitted through the polarizer P, transmitted through the objective-side condenser lens (manufactured by Olympus: magnification 50 times), and irradiated on the sample.
At this time, the irradiation spot system to the sample is about 1 micron.

反射光路Lには、ハーフミラー7及び8間に検光子Aが配され、ハーフミラー8と受光素子9との間には、反射光を焦点位置に収束させた後、拡散させながら受光素子9に導く検出側集光レンズ17が設けられると共に、その焦点位置にはピンホール18が設けられており、これにより、対物側集光レンズ14の焦点位置以外から反射されたノイズ光(例えば試料の裏面反射光)を除去できるようになっている。
本例では、焦点距離25mmの検出側集光レンズ17を用い、孔径20μmのピンホール18を透過させ、光電子増倍管でなる受光素子9で反射光の光強度を検出する。
The reflected light path L 2, the analyzer A is arranged between the half mirror 7 and 8, between the half mirror 8 and the light receiving element 9, after converging the reflected light at the focal point, the light receiving element while diffusing 9 is provided with a detection-side condensing lens 17 leading to a focal point, and a pinhole 18 is provided at the focal position thereof, so that noise light reflected from other than the focal position of the objective-side condensing lens 14 (for example, a sample) Can be removed.
In this example, the detection-side condensing lens 17 having a focal length of 25 mm is used, the pin hole 18 having a hole diameter of 20 μm is transmitted, and the light intensity of the reflected light is detected by the light receiving element 9 formed of a photomultiplier tube.

なお、ステージ2は、入射光の光軸Zに対して直交するX軸及びY軸方向に移動可能なXテーブル19x、Yテーブル19yと、試料2のあおり調整するためθx及びθy方向に傾動可能なθxテーブル20x及びθyテーブル20yを備え、各テーブルがモータM〜Mにより駆動されるようになっている。 The stage 2 can be tilted in the θx and θy directions to adjust the tilt of the sample 2 and the X table 19x and the Y table 19y that can move in the X axis and Y axis directions orthogonal to the optical axis Z of the incident light. such θx with table 20x and θy table 20y, each table is driven by a motor M 5 ~M 8.

また、本例では、偏光子Pの偏光軸がX軸方向と平行に向けられ、1/2波長板12の遅相軸が初期位置において偏光軸一致する方向に向けられ、1/4波長板13の遅相軸は1/2波長板12の遅相軸に対して±δ(δ≠nπ/4,nは整数)ずらした位置が初期位置として設定され、検光子Aの偏光軸がY軸と平行に向けられることとなる。
すなわち、初期状態で、偏光子Pの偏光軸及び1/2波長板12の遅相軸がX軸方向に向けられ、1/4波長板13の遅相軸がX軸に対して+δあるいは−δに向けられる。
In this example, the polarization axis of the polarizer P is oriented parallel to the X-axis direction, the slow axis of the half-wave plate 12 is oriented in the direction that coincides with the polarization axis at the initial position, and the quarter-wave plate The position where the slow axis of 13 is shifted by ± δ (δ ≠ nπ / 4, where n is an integer) with respect to the slow axis of the half-wave plate 12 is set as an initial position, and the polarization axis of the analyzer A is Y It will be oriented parallel to the axis.
That is, in the initial state, the polarization axis of the polarizer P and the slow axis of the half-wave plate 12 are directed in the X-axis direction, and the slow axis of the quarter-wave plate 13 is + δ or − with respect to the X axis. directed to δ.

ここで、偏光子P及び検光子Aを固定したまま、1/2波長板12を0〜180°まで回転させると、1/4波長板13に入射される直線偏光がX軸方向を0°としてZ軸の周りに0〜360°まで回転することになる。
このとき、直線偏光の回転角は、その偏光軸の回転角で定義され、1/2波長板12の回転角度をφとすると、1/2波長板12を透過して1/4波長板13に入射される直線偏光の偏光軸の回転角は2φで表される。
また、1/4波長板13は初期位置±δから1/2波長板12の2倍の回転角度となるように回転されるのでその回転角は2φ±δで表され、入射される直線偏光の偏光軸に対し遅相軸が常に±δ(δ≠nπ/4,nは整数)ずれているので、1/4波長板13を透過した光は楕円偏光となる。
これによって、楕円偏光は、その楕円率を一定に維持したまま、楕円の長軸に相当する方位角を360°回転させて試料に照射されることとなる。
Here, when the half-wave plate 12 is rotated from 0 to 180 ° while the polarizer P and the analyzer A are fixed, the linearly polarized light incident on the quarter-wave plate 13 has an X-axis direction of 0 °. As a result, it rotates around 0 to 360 ° around the Z axis.
At this time, the rotation angle of the linearly polarized light is defined by the rotation angle of the polarization axis. When the rotation angle of the half-wave plate 12 is φ, the half-wave plate 12 is transmitted through the quarter-wave plate 13. The rotation angle of the polarization axis of the linearly polarized light incident on is expressed by 2φ.
Further, since the ¼ wavelength plate 13 is rotated from the initial position ± δ so as to have a rotation angle twice that of the ½ wavelength plate 12, the rotation angle is expressed by 2φ ± δ, and the incident linearly polarized light Since the slow axis is always shifted by ± δ (δ ≠ nπ / 4, where n is an integer), the light transmitted through the quarter-wave plate 13 becomes elliptically polarized light.
Thus, the elliptically polarized light is irradiated onto the sample by rotating the azimuth corresponding to the major axis of the ellipse by 360 ° while maintaining the ellipticity constant.

なお、1/4波長板13とレボルバ16の間には、光軸上に進退可能な観察用ハーフミラー21が配され、その反射光軸上に試料3を観察する照明付き撮像カメラ22が配されている。
また、この測定光学系4は、直径約100mmのハウジング(図示せず)に収めることができ、従来の光学系は、稼動範囲も含めて直径600mmを必要としていたので、面積比にして約36分の1に小型化することができた。
An observation half mirror 21 that can advance and retreat on the optical axis is disposed between the quarter-wave plate 13 and the revolver 16, and an illuminated imaging camera 22 that observes the sample 3 is disposed on the reflected optical axis. Has been.
Further, the measurement optical system 4 can be accommodated in a housing (not shown) having a diameter of about 100 mm, and the conventional optical system requires a diameter of 600 mm including the operating range. The size could be reduced by a factor of one.

演算処理装置5は、その入力ポートに受光素子9、二次元光位置検出素子10、撮像カメラ22が接続されると共に、出力ポートに各モータM〜Mが接続されており、所定のプログラムに従い、試料3のあおり調整、測定点SのXY面内の位置決め、測定点SのZ軸方向位置の測定、1/2波長板12及び1/4波長板13の初期位置設定と駆動、受光素子9により測定された反射光強度データの記憶、光学異方性パラメータの算出などを行う。 Processor 5, the light receiving element 9 to the input port, two-dimensional optical position detecting element 10, the imaging camera 22 is connected, it is connected to each of the motors M 1 ~M 8 to the output port, a predetermined program The tilt adjustment of the sample 3, the positioning of the measurement point S in the XY plane, the measurement of the position of the measurement point S in the Z-axis direction, the initial position setting and driving of the half-wave plate 12 and the quarter-wave plate 13, light reception The reflected light intensity data measured by the element 9 is stored, and the optical anisotropy parameter is calculated.

図2は演算処理装置5による一連の処理手順を示すフローチャートである。
光学異方性を測定しようとする試料をステージ2にセットして、メインスイッチをオンすると、演算処理装置5、レーザ6、受光素子9、各モータM〜Mなどに電源が供給されて、以下の処理が実行開始される。
FIG. 2 is a flowchart showing a series of processing procedures by the arithmetic processing unit 5.
Set the sample to be measured optically anisotropic in the stage 2, when turning on the main switch, the processing unit 5, the laser 6, the light receiving element 9, the power is supplied to such motors M 1 ~M 8 The following processing is started.

まず、ステップSTP1で測定点SのXY座標が入力されると、ステップSTP2でモータM、Mが駆動されて、XYテーブル19x、19yにより測定点Sを入射光軸Zに一致させる。 First, when the XY coordinates of the measurement point S are input in step STP1, the motors M 5 and M 6 are driven in step STP2, and the measurement point S is made to coincide with the incident optical axis Z by the XY tables 19x and 19y.

[あおり調整手段]
次いで、ステップSTP3でモータMによりレボルバ16を回転させて透孔15を入射光軸Zに進出させ、ステップSTP4で二次元光位置検出素子10により試料3からの反射光の光軸があおり検出光路Lの光軸と一致するか否かを判断し、一致しない場合は、ステップSTP5でモータM、Mを駆動してθx、θyテーブル20x、20yにより試料3のあおりを調整してステップSTP4に戻り、あおりがない場合はステップSTP6に移行する。
[Tilt adjustment means]
Then, by rotating the revolver 16 by the motor M 3 at step STP3 is advanced through hole 15 to the incident optical axis Z, the reflected light of the optical axis tilt detection from the sample 3 by the two-dimensional light position detecting element 10 in step STP4 determines whether or not to coincide with the optical axis of the optical path L 3, if they do not match, [theta] x drives the motor M 7, M 8 at step STP5, [theta] y table 20x, by adjusting the tilt of the sample 3 by 20y Returning to step STP4, if there is no tilt, the process proceeds to step STP6.

[対物側集光レンズ焦点位置調整手段]
ステップSTP6ではモータMによりレボルバ16を回転させて対物側集光レンズ14を入射光軸Zに進出させ、ステップSTP7で集光レンズ14を入射光軸Z方向に走査し、ステップSTP8で受光素子9の受光強度が最大となる位置に集光レンズ14の位置を固定し、そのときのZ座標を記憶して、ステップSTP9に移行する。
[Object-side condenser lens focus position adjustment means]
The motor M 3 step STP6 rotates the revolver 16 is advanced the objective side condenser lens 14 to the incident light axis Z and the condenser lens 14 to scan the incident direction of the optical axis Z at step STP7, the light receiving element in the step STP8 The position of the condenser lens 14 is fixed at a position where the light receiving intensity 9 is maximized, the Z coordinate at that time is stored, and the process proceeds to step STP9.

[測定点検出手段]
ステップSTP9では、観察用ハーフミラー21を光軸Z上に進出させ、ステップSTP10で撮像カメラ22の画像解析を行って入射光軸Zが測定点Sに一致するか否かを判断し、一致していなければステップSTP11でXYテーブル19x、19yを微調整してステップSTP10に戻り、照射されていればステップSTP12でそのXYZ座標を記憶して、観察用ハーフミラー21を退避させ、ステップSTP13に移行する。
[Measurement point detection means]
In step STP9, the observation half mirror 21 is advanced on the optical axis Z, and in step STP10, the image analysis of the imaging camera 22 is performed to determine whether or not the incident optical axis Z matches the measurement point S. If not, finely adjust the XY tables 19x and 19y in step STP11 and return to step STP10. If irradiated, store the XYZ coordinates in step STP12, retract the observation half mirror 21, and proceed to step STP13. To do.

[反射光強度測定手段]
ステップSTP13ではモータMにより1/2波長板12の遅相軸をX軸と平行にし、モータMにより1/4波長板13の遅相軸をX軸に対して+δに向けて初期位置を設定する。
その後、ステップSTP14で、モータM、Mにより1/2波長板12の回転角度φに対して1/4波長板13の回転角度が2倍となるように同期的に駆動し、ステップSTP15では1/2波長板12が所定角度回転するごとに受光素子9で反射光強度を測定し、1/2波長板12を透過した直線偏光の回転角、すなわち1/2波長板12の回転角の2倍の角度と対応させて反射光強度R(+δ)を記憶する。
そして、ステップSTP16で1/2波長板12が180°回転した時点で測定を中断する。
[Reflected light intensity measuring means]
The step STP13 the motor M 1 and the slow axis of the half-wave plate 12 parallel to the X axis, the initial position toward the + [delta] with respect to the X-axis slow axis of the quarter wave plate 13 by the motor M 2 Set.
Then, at step STP 14, the motor M 1, M 2 by the rotation angle of the quarter-wave plate 13 is synchronously driven so as to be twice the angle of rotation φ of the half-wave plate 12, the step STP15 Then, every time the half-wave plate 12 rotates by a predetermined angle, the reflected light intensity is measured by the light receiving element 9, and the rotation angle of the linearly polarized light transmitted through the half-wave plate 12, that is, the rotation angle of the half-wave plate 12. The reflected light intensity R (+ δ) is stored in correspondence with an angle twice as large as.
Then, the measurement is interrupted when the half-wave plate 12 is rotated by 180 ° in step STP16.

次いで、ステップSTP17でモータMにより1/2波長板12の遅相軸をX軸と平行にし、モータMにより1/4波長板13の遅相軸をX軸に対して−δに向けて初期位置を設定し直す。
その後、ステップSTP18で、モータM、Mにより1/2波長板12の回転角度φに対して1/4波長板13の回転角度が2倍となるように同期的に駆動し、ステップSTP19では1/2波長板12が180°回転するまで所定角度回転するごとに受光素子9で反射光強度を測定し、1/2波長板12を透過した直線偏光の回転角、すなわち1/2波長板12の回転角の2倍の角度と対応させて反射光強度R(−δ)を記憶する。
Then, the slow axis of the half-wave plate 12 is parallel to the X-axis by the motor M 1 in step STP17, the motor M 2 toward the -δ slow axis of the quarter wave plate 13 with respect to the X axis To reset the initial position.
Then, at step STP18, the motor M 1, M 2 by the rotation angle of the quarter-wave plate 13 is synchronously driven so as to be twice the angle of rotation φ of the half-wave plate 12, the step STP19 Then, every time the half-wave plate 12 is rotated by a predetermined angle until the half-wave plate 12 is rotated by 180 °, the reflected light intensity is measured by the light receiving element 9, and the rotation angle of the linearly polarized light transmitted through the half-wave plate 12, that is, the half wavelength The reflected light intensity R (−δ) is stored in correspondence with an angle twice the rotation angle of the plate 12.

[差分算出手段]
次いで、ステップSTP20に移行して、測定された反射光強度R(+δ)及びR(−δ)に基づき、これらの差分ΔR=R(+δ)−R(−δ)を算出する。
[Difference calculation means]
Next, the process proceeds to step STP20, and the difference ΔR = R (+ δ) −R (−δ) is calculated based on the measured reflected light intensities R (+ δ) and R (−δ).

なお、光学系4に起因するノイズを除去するため、必要に応じて、試料3を0°方向に向けてステージ2にセットした場合と、試料3を90°方向に向けてステージ2にセットした場合と、光学異方性のないガラスなどの等方性材料をステージ2にセットした場合についてステップSTP13〜20の処理を行うことも有効である。   In addition, in order to remove noise caused by the optical system 4, when the sample 3 is set on the stage 2 with the direction of 0 ° directed as necessary, the sample 3 is set on the stage 2 with the direction of 90 ° directed. It is also effective to perform the processing of steps STP13 to STP20 for the case and the case where an isotropic material such as glass having no optical anisotropy is set on the stage 2.

この場合のそれぞれの反射光強度Rを以下のように表す。
(+δ):試料3を0°に向け、1/4波長板13の初期位置を+δとした場合
(−δ):試料3を0°に向け、1/4波長板13の初期位置を−δとした場合
90(+δ):試料3を90°に向け、1/4波長板13の初期位置を+δとした場合
90(−δ):試料3を90°に向け、1/4波長板13の初期位置を−δとした場合
(+δ):等方性材料をセットし、1/4波長板13の初期位置を+δとした場合
(−δ):等方性材料をセットし、1/4波長板13の初期位置を−δとした場合
Each reflected light intensity R in this case is expressed as follows.
R 0 (+ δ): When the sample 3 is directed to 0 ° and the initial position of the quarter-wave plate 13 is + δ R 0 (−δ): The sample 3 is directed to 0 ° and the quarter-wave plate 13 When the initial position is −δ R 90 (+ δ): Sample 3 is directed to 90 °, and when the initial position of the quarter-wave plate 13 is + δ R 90 (−δ): Sample 3 is directed to 90 ° When the initial position of the quarter-wave plate 13 is −δ, R E (+ δ): When an isotropic material is set and the initial position of the quarter-wave plate 13 is + δ, R E (−δ) : When an isotropic material is set and the initial position of the quarter-wave plate 13 is -δ

差分ΔRは、上述の他、下記式で算出しても良い
ΔR=[R(+δ)−R(−δ)]−[R(+δ)−R(−δ)]
ΔR=[R(+δ)−R(−δ)]−[R90(+δ)−R90(−δ)]
ΔR=ΔR−ΔR90
ΔR=[R(+δ)−R(−δ)]−[R(+δ)−R(−δ)]
ΔR90=[R90(+δ)−R90(−δ)]−[R(+δ)−R(−δ)]
In addition to the above, the difference ΔR may be calculated by the following equation: ΔR = [R 0 (+ δ) −R 0 (−δ)] − [R E (+ δ) −R E (−δ)]
ΔR = [R 0 (+ δ) −R 0 (−δ)] − [R 90 (+ δ) −R 90 (−δ)]
ΔR = ΔR 0 −ΔR 90
ΔR 0 = [R 0 (+ δ) −R 0 (−δ)] − [R E (+ δ) −R E (−δ)]
ΔR 90 = [R 90 (+ δ) −R 90 (−δ)] − [R E (+ δ) −R E (−δ)]

[異方性分析手段]
ステップSTP21では、直線偏光の回転角2φに対する差分ΔRをグラフ上にプロットし、ステップSTP22でフィッティング処理を行って、2φ−ΔR線図のグラフを描く。
ステップSTP23でΔR=0となる角度を読み取り、このうちのひとつが試料3の測定点Sにおける光学軸の方向である。
また、測定点S内の光学軸の方向が揃っていれば、異方性が大きいと言うことができ、ΔRの高さ方向の振幅により評価することができる。したがって、ステップSTP24では、ΔRの極大値と極小値の差、0から極大値までの高さなど、ΔRの高さ方向の振幅を反映した値を算出することにより、異方性の大きさが評価される。
[Anisotropy analysis means]
In step STP21, the difference ΔR with respect to the rotation angle 2φ of linearly polarized light is plotted on the graph, and the fitting process is performed in step STP22 to draw a graph of 2φ-ΔR diagram.
In step STP23, an angle at which ΔR = 0 is read, and one of them is the direction of the optical axis at the measurement point S of the sample 3.
Further, if the directions of the optical axes in the measurement point S are aligned, it can be said that the anisotropy is large, and the evaluation can be made by the amplitude in the height direction of ΔR. Therefore, in step STP24, by calculating values reflecting the amplitude in the height direction of ΔR, such as the difference between the maximum value and the minimum value of ΔR, the height from 0 to the maximum value, the magnitude of anisotropy is obtained. Be evaluated.

以上が本発明の一構成例であって、次に本発明方法について説明する。
例えば、試料3として、配向処理を施した液晶配向膜を塗布したLCD用TFT基板(1画素あたり30ミクロン)をその配向処理の方向をX軸と平行にしてステージ2にセットし、対物レンズ用自動回転レボルバを回転し、対物レンズを光路から外した状態で光位置検出素子の信号を基にあおり調整を行う。
The above is one configuration example of the present invention. Next, the method of the present invention will be described.
For example, as a sample 3, an LCD TFT substrate (30 microns per pixel) coated with an alignment liquid crystal alignment film is set on the stage 2 with the direction of the alignment process parallel to the X axis, and used for an objective lens. The automatic rotation revolver is rotated, and adjustment is performed based on the signal of the optical position detection element with the objective lens removed from the optical path.

あおり調整の後、対物側集光レンズ14を入射光軸Zに挿入し、集光レンズ14をZ方向に走査する。受光素子9での強度が最大となる位置に集光レンズ14の位置を固定し、そのときのZ座標を記憶すれば、測定点SのZ方向位置を測定することができる。
次いで、撮像カメラ22の画像により、入射光がTFT基板の画素内に照射されるようXYテーブル19x、19yを調整したのち、反射光強度を測定する。
After tilt adjustment, the objective-side condenser lens 14 is inserted into the incident optical axis Z, and the condenser lens 14 is scanned in the Z direction. If the position of the condenser lens 14 is fixed at a position where the intensity at the light receiving element 9 is maximized and the Z coordinate at that time is stored, the position in the Z direction of the measurement point S can be measured.
Next, after adjusting the XY tables 19x and 19y according to the image of the imaging camera 22 so that incident light is irradiated into the pixels of the TFT substrate, the reflected light intensity is measured.

まず、1/2波長板12について遅相軸がX軸と平行になるように初期位置を設定し、1/4波長板13について遅相軸がX軸に対して+δ(+2°)ずれた初期位置に設定する。
次いで、1/2波長板12及び1/4波長板13を、1/2波長板12に対して1/4波長板の回転角度が2倍となるように、それぞれ回転速度20rpm及び40rpmで回転させ、1/2波長板12が0〜180°まで5°回転するたびに、受光素子9により反射光強度R(+δ)を読み取っていく。
First, the initial position of the half-wave plate 12 is set so that the slow axis is parallel to the X axis, and the slow axis of the quarter wavelength plate 13 is shifted by + δ (+ 2 °) from the X axis. Set to the initial position.
Next, the half-wave plate 12 and the quarter-wave plate 13 are rotated at rotation speeds of 20 rpm and 40 rpm, respectively, so that the rotation angle of the quarter-wave plate is doubled with respect to the half-wave plate 12. Each time the half-wave plate 12 rotates 5 ° from 0 ° to 180 °, the reflected light intensity R (+ δ) is read by the light receiving element 9.

このとき、レーザ6から照射された光は入射光路Lに沿って進行し、偏光子Pで偏光軸がX軸方向と平行な直線偏光となり、1/2波長板12でその直線偏光の偏光軸が回転され、遅相軸が+2°ずれて配された1/4波長板13により楕円偏光に変換されて、対物側集光レンズ14により直径1ミクロンのスポットに絞られて試料3に対して垂直方向に照射される。 At this time, the light emitted from the laser 6 travels along the incident optical path L 1 , becomes linearly polarized light with the polarizer P having a polarization axis parallel to the X-axis direction, and is polarized by the half-wave plate 12 with the linearly polarized light. The axis is rotated and converted into elliptically polarized light by a quarter-wave plate 13 arranged with a slow axis shifted by + 2 °, and is narrowed down to a spot with a diameter of 1 micron by the objective side condensing lens 14 to the sample 3. Irradiate vertically.

そして、試料3の測定点Sから拡散される反射光は反射光路Lに沿って進行し、対物側集光レンズ14で平行化され、再び1/4波長板13及び1/2波長板12を透過して直線偏光に変換され、ハーフミラー7で反射され、検光子Aを透過した後、ハーフミラー8で反射され、検出側集光レンズ17の焦点位置に置かれた孔径20μmのピンホール18により、対物側集光レンズ14の焦点位置以外から反射されたノイズ光(例えば試料の裏面反射光)が除去されて、測定点Sから反射された反射光のみが受光素子9に達する。 Then, the reflected light diffused from the measurement point S of the sample 3 travels along the reflected light path L 2 , is collimated by the objective side condensing lens 14, and is again the quarter wavelength plate 13 and the half wavelength plate 12. Is converted to linearly polarized light, reflected by the half mirror 7, transmitted through the analyzer A, reflected by the half mirror 8, and placed at the focal position of the detection-side condenser lens 17. 18, noise light reflected from other than the focal position of the objective-side condenser lens 14 (for example, back-surface reflected light of the sample) is removed, and only the reflected light reflected from the measurement point S reaches the light receiving element 9.

このとき反射光に含まれる偏光成分のうち、偏光状態が変化していない偏光成分は、再び1/4波長板13を通る際に直線偏光に戻され、1/2波長板12を通過した時点で偏光軸がX軸と平行な直線編光に戻されるので、偏光軸がY軸と平行な検光子Aでカットされるのに対し、偏光状態が変化した偏光成分は、元の直線偏光と異なる偏光状態になるので、検光子Aを透過して受光素子9に達することとなり、光強度の変化として検出することができる。   At this time, of the polarization components included in the reflected light, the polarization component whose polarization state has not changed is returned to linearly polarized light when passing through the quarter-wave plate 13 again, and passes through the half-wave plate 12. Thus, the polarization axis is returned to the linearly knitted light parallel to the X axis, so that the polarization component whose polarization state has been changed is the original linearly polarized light, while the polarization axis is cut by the analyzer A parallel to the Y axis. Since the polarization states are different, the light passes through the analyzer A and reaches the light receiving element 9, and can be detected as a change in light intensity.

次いで、1/2波長板12について遅相軸がX軸と平行になるように初期位置を設定し、1/4波長板13について遅相軸がX軸に対して−δ(−2°)ずれた初期位置に設定した後、同様に受光素子9により反射光強度R(−δ)を測定する。   Next, the initial position of the half-wave plate 12 is set so that the slow axis is parallel to the X axis, and the slow axis of the quarter wavelength plate 13 is −δ (−2 °) with respect to the X axis. After setting the shifted initial position, the reflected light intensity R (−δ) is measured by the light receiving element 9 in the same manner.

そして、これらの反射光強度R(+δ)、R(−δ)の差分ΔRを次式にて算出する。
ΔR=R(+δ)−R(−δ)
図3(a)〜(c)はこのときの測定結果を示すグラフであり、以下グラフはいずれも横軸が1/2波長板12により回転される直線偏光の回転角2φ、縦軸は、図3(a)が反射光強度R(+δ)であり、図3(b)が反射光強度R(−δ)であり、図3(c)が差分ΔRである。
Then, a difference ΔR between these reflected light intensities R (+ δ) and R (−δ) is calculated by the following equation.
ΔR = R (+ δ) −R (−δ)
FIGS. 3A to 3C are graphs showing the measurement results at this time. In the following graphs, the horizontal axis is a rotation angle 2φ of linearly polarized light rotated by the half-wave plate 12, and the vertical axis is 3A shows the reflected light intensity R (+ δ), FIG. 3B shows the reflected light intensity R (−δ), and FIG. 3C shows the difference ΔR.

そして、図3(c)のデータにフィッティング処理を行い、ΔR=0となる偏光軸の角度2φを読み取ると、10°、100°190°280°であった。
ステージ2に置いた試料3の配向処理方向はX軸と平行(0°)であるから、0°に最も近い10°(190°)がこの測定点Sの光学軸の方向(配向方向)であることがわかる。
A fitting process was performed on the data shown in FIG. 3C, and when the angle 2φ of the polarization axis where ΔR = 0 was read, they were 10 °, 100 °, 190 °, and 280 °.
Since the orientation processing direction of the sample 3 placed on the stage 2 is parallel to the X axis (0 °), 10 ° (190 °) closest to 0 ° is the direction of the optical axis (orientation direction) of the measurement point S. I know that there is.

異方性の大きさHは、例えば、次式で求めることができる。
H=ΔRmax−ΔRmin
このとき、予め測定された良品について、異方性の大きさHを測定しておき、これとの比H/Hに基づいて、例えば0.9以上であれば異方性の大きさが適正であると判断すればよい。
The anisotropy magnitude H can be obtained by the following equation, for example.
H = ΔRmax−ΔRmin
At this time, with respect to the non-defective product measured in advance, the anisotropy magnitude H 0 is measured. Based on the ratio H / H 0 with respect to this, the anisotropy magnitude is, for example, 0.9 or more. May be determined to be appropriate.

図4は、試料3の表面上にマトリクス上に設定した多数の測定点について光学軸の方向を測定した結果を示すグラフ、図5は異方性の大きさについてその分布状態を示すグラフである。   FIG. 4 is a graph showing the result of measuring the direction of the optical axis at a large number of measurement points set on the surface of the sample 3, and FIG. 5 is a graph showing the distribution of the anisotropy. .

なお、測定光学系4に起因するノイズが大きい場合は、これを除去するため、必要に応じて、試料3を0°方向に向けてステージ2にセットした場合と、試料3を90°方向に向けてステージ2にセットした場合と、光学異方性のないガラスなどの光学等方性材料をステージ2にセットした場合について反射光強度を測定し、以下のように差分を算出すれば、より高精度に光学異方性パラメータを測定することができる。   In addition, when the noise resulting from the measurement optical system 4 is large, in order to remove this, the case where the sample 3 is set on the stage 2 with the 0 ° direction oriented and the sample 3 in the 90 ° direction are removed as necessary. If the reflected light intensity is measured for the case where it is set on the stage 2 and the case where an optically isotropic material such as glass having no optical anisotropy is set on the stage 2 and the difference is calculated as follows, The optical anisotropy parameter can be measured with high accuracy.

図6は、配向処理方向をX軸と平行(0°方向)に向けてステージ2にセットした試料3からの反射光強度R(+δ)、R(−δ)と、ステージ2に光学等方性材料であるガラスをセットしたときの反射光強度R(+δ)、R(−δ)に基づいて、差分ΔRを次式にて算出したときの測定結果である。
ΔR=[R(+δ)−R(−δ)]−[R(+δ)−R(−δ)]
FIG. 6 shows reflected light intensities R 0 (+ δ) and R 0 (−δ) from the sample 3 set on the stage 2 with the alignment treatment direction parallel to the X axis (0 ° direction) and optical on the stage 2. It is a measurement result when the difference ΔR is calculated by the following equation based on the reflected light intensity R E (+ δ), R E (−δ) when glass which is an isotropic material is set.
ΔR = [R 0 (+ δ) −R 0 (−δ)] − [R E (+ δ) −R E (−δ)]

図6(a)は反射光強度R(+δ)、図6(b)は反射光強度R(−δ)、図6(c)はその差[R(+δ)−R(−δ)]、図6(d)は反射光強度R(+δ)、図6(e)は反射光強度R(−δ)、図6(f)その差[R(+δ)−R(−δ)]、図6(g)は差分ΔRである。
そして、図6(g)のデータにフィッティング処理を行い、ΔR=0となる偏光軸の角度2φを読み取ると、12°、102°192°282°であった。
ステージ2に置いた試料3の配向処理方向はX軸と平行(0°)であるから、0°に最も近い12°(192°)がこの測定点Sの光学軸の方向(配向方向)であることがわかる。
6A shows the reflected light intensity R 0 (+ δ), FIG. 6B shows the reflected light intensity R 0 (−δ), and FIG. 6C shows the difference [R 0 (+ δ) −R 0 (− δ)], FIG. 6D shows the reflected light intensity R E (+ δ), FIG. 6E shows the reflected light intensity R E (−δ), and FIG. 6F shows the difference [R E (+ δ) −R. E (−δ)], FIG. 6G shows the difference ΔR.
Then, fitting processing was performed on the data of FIG. 6G, and when the angle 2φ of the polarization axis where ΔR = 0 was read, they were 12 °, 102 °, 192 °, and 282 °.
Since the orientation processing direction of the sample 3 placed on the stage 2 is parallel to the X axis (0 °), 12 ° (192 °) closest to 0 ° is the direction of the optical axis (orientation direction) of the measurement point S. I know that there is.

図7は、配向処理方向をX軸と平行(0°方向)に向けてステージ2にセットした試料3からの反射光強度R(+δ)、R(−δ)と、配向処理方向をX軸と平行(90°方向)に向けてステージ2にセットした試料3からの反射光強度R90(+δ)、R90(−δ)と、に基づいて、差分ΔRを次式にて算出したときの測定結果である。
ΔR=[R(+δ)−R(−δ)]−[R90(+δ)−R90(−δ)]
これによれば、光学系固有の異方性が除去され、さらに異方性の大きさが2倍となるため、より精度の高い測定を行うことができる。
FIG. 7 shows the reflected light intensities R 0 (+ δ) and R 0 (−δ) from the sample 3 set on the stage 2 with the alignment treatment direction parallel to the X axis (0 ° direction) and the alignment treatment direction. Based on the reflected light intensities R 90 (+ δ) and R 90 (−δ) from the sample 3 set on the stage 2 parallel to the X axis (90 ° direction), the difference ΔR is calculated by the following equation: It is a measurement result when doing.
ΔR = [R 0 (+ δ) −R 0 (−δ)] − [R 90 (+ δ) −R 90 (−δ)]
According to this, since the anisotropy inherent to the optical system is removed and the anisotropy is doubled, more accurate measurement can be performed.

反射光強度R(+δ)及びR(−δ)については、図6(a)及び(b)のデータを用いた。
図7(a)は反射光強度R90(+δ)、図7(b)は反射光強度R90(−δ)、図7(c)はその差[R90(+δ)−R90(−δ)]を示し、図7(d)が差分ΔRである。
そして、図7(d)のデータにフィッティング処理を行い、ΔR=0となる偏光軸の角度2φを読み取ると、15°、105°195°285°であった。
ステージ2に置いた試料3の配向処理方向はX軸と平行(0°)であるから、0°に最も近い15°(195°)がこの測定点Sの光学軸の方向(配向方向)であることがわかる。
For the reflected light intensities R 0 (+ δ) and R 0 (−δ), the data in FIGS. 6A and 6B were used.
7A shows the reflected light intensity R 90 (+ δ), FIG. 7B shows the reflected light intensity R 90 (−δ), and FIG. 7C shows the difference [R 90 (+ δ) −R 90 (− δ)], and FIG. 7D shows the difference ΔR.
Then, when the fitting process was performed on the data of FIG. 7D and the angle 2φ of the polarization axis where ΔR = 0 was read, it was 15 °, 105 ° 195 ° 285 °.
Since the orientation processing direction of the sample 3 placed on the stage 2 is parallel to the X axis (0 °), 15 ° (195 °) closest to 0 ° is the direction of the optical axis (orientation direction) of the measurement point S. I know that there is.

ここで、中間データ[R(+δ)−R(−δ)]及び[R90(+δ)−R90(−δ)]を利用する必要があり、それぞれについて予め光学系4に起因するノイズを除去しておく必要があれば、差分ΔR及びΔR90を次式で求めておき、
ΔR=[R(+δ)−R(−δ)]−[R(+δ)−R(−δ)]
ΔR90=[R90(+δ)−R90(−δ)]−[R(+δ)−R(−δ)]
これらのデータに基づき、差分ΔRを次式で求めればよい。
ΔR=ΔR−ΔR90
Here, it is necessary to use intermediate data [R 0 (+ δ) −R 0 (−δ)] and [R 90 (+ δ) −R 90 (−δ)], and each of them is caused by the optical system 4 in advance. If it is necessary to remove the noise, the differences ΔR 0 and ΔR 90 are obtained by the following equation,
ΔR 0 = [R 0 (+ δ) −R 0 (−δ)] − [R E (+ δ) −R E (−δ)]
ΔR 90 = [R 90 (+ δ) −R 90 (−δ)] − [R E (+ δ) −R E (−δ)]
Based on these data, the difference ΔR may be obtained by the following equation.
ΔR = ΔR 0 −ΔR 90

反射光強度R(+δ)、R(−δ)、R(+δ)、R(−δ)は図6(a)(b)(d)(e)のデータを用い、反射光強度R90(+δ)、R90(−δ)は図7(a)(b)のデータを用いた。
図8(a)が差分ΔR、図8(b)が差分ΔR90であり、その差分ΔR=ΔR−ΔR90は図7(d)の結果と同じであった。
The reflected light intensities R 0 (+ δ), R 0 (−δ), R E (+ δ), and R E (−δ) are obtained by using the data of FIGS. 6 (a), (b), (d), and (e). For the intensities R 90 (+ δ) and R 90 (−δ), the data shown in FIGS. 7A and 7B were used.
FIG. 8A shows the difference ΔR 0 , FIG. 8B shows the difference ΔR 90 , and the difference ΔR = ΔR 0 −ΔR 90 is the same as the result of FIG. 7D.

図9は本発明に係る他の光学異方性パラメータ測定装置を示す説明図である。
本例の光学異方性パラメータ測定装置25は、ある程度の広さをもった測定エリアS(例えば直径10mm)全体について光学異方性の評価を行うことができる。なお、図1と重複する部分は同一符号を付して詳細説明を省略する。
FIG. 9 is an explanatory view showing another optical anisotropy parameter measuring apparatus according to the present invention.
The optical anisotropy parameter measuring device 25 of this example can evaluate the optical anisotropy of the entire measurement area S 2 (for example, a diameter of 10 mm) having a certain size. In addition, the same code | symbol is attached | subjected to the part which overlaps with FIG. 1, and detailed description is abbreviate | omitted.

本例では、測定光学系4のレーザ6とハーフミラー7との間に介装されたビームエキスパンダ11により、入射光が測定エリアSに応じた大きさの光束径(例えば直径10mm)を有する平行光束となるようにその倍率が設定されている。
また、図1の対物側集光レンズ14、検出側集光レンズ17、ピンホール18は設けられていない。
In this example, the beam expander 11 interposed between the laser 6 and the half mirror 7 of the measuring optical system 4, the size of the beam diameter of incident light corresponding to the measurement area S 2 (e.g., diameter 10 mm) The magnification is set so as to obtain a parallel light beam.
Further, the objective side condenser lens 14, the detection side condenser lens 17, and the pinhole 18 in FIG. 1 are not provided.

これによれば、ビームエキスパンダ11で直径10mmの平行光束となった入射光は、偏光子P、1/2波長板12、1/4波長板13を透過して楕円偏光となって試料3の測定エリアS全体に照射される。
その反射光は、直径10mmの平行光束のまま1/4波長板13、1/2波長板12を透過し、反射光路Lに沿って検光子Aを透過して、受光素子9に達し、その光強度が測定される。
このとき、測定エリアS内の光学軸の方向はその平均的な方向が検出され、光学軸の方向が揃っていれば異方性の大きさを示す値Hが大きく、光学軸の方向にばらつきがあれば異方性の大きさを示す値Hが小さくなる。
According to this, the incident light that has become a parallel light beam having a diameter of 10 mm by the beam expander 11 passes through the polarizer P, the half-wave plate 12 and the quarter-wave plate 13 and becomes elliptically polarized light. It is of the irradiation to the entire measurement area S 2.
The reflected light passes through the quarter-wave plate 13 and the half-wave plate 12 as a parallel light beam having a diameter of 10 mm, passes through the analyzer A along the reflected light path L 2 , and reaches the light receiving element 9. The light intensity is measured.
At this time, the direction of the optical axis of the measurement area S 2 thereof average direction is detected, if the uniform direction of the optical axis larger value H indicating the size of the anisotropy in the direction of the optical axis If there is variation, the value H indicating the magnitude of anisotropy decreases.

図10は本発明に係るさらに他の光学異方性パラメータ測定装置を示す説明図であって、図1と重複する部分は同一符号を付して詳細説明を省略する。
本例の光学異方性パラメータ測定装置26は、測定エリアSが波長板12、13の直径より大きく設定されている場合(例えば直径1m程度)でも、その測定エリアS全体について一回の測定で光学異方性の評価を行うことができる。
FIG. 10 is an explanatory view showing still another optical anisotropy parameter measuring apparatus according to the present invention. Portions which are the same as those in FIG.
Optical anisotropy parameter measurement device 26 of this example, the measurement area S 3 If (for example, about a diameter 1m) is set larger than the diameter of the wave plates 12 and 13 but, once the entire measuring area S 3 Optical anisotropy can be evaluated by measurement.

本例では、測定光学系4のレーザ6とハーフミラー7との間に、その照射光を所定の光束径(例えば5mm)の平行光束とするビームエキスパンダ11が介装され、1/4波長板13と試料3を置くステージ2の間に、入射光を測定エリアSに応じた大きさの光束径を有する平行光束に拡径するビームエキスパンダ27が介装されている。
また、図1の対物側集光レンズ14、検出側集光レンズ17、ピンホール18は設けられていない。
In this example, a beam expander 11 is disposed between the laser 6 of the measurement optical system 4 and the half mirror 7 so that the irradiation light is a parallel light beam having a predetermined light beam diameter (for example, 5 mm). during stage 2 to put the plate 13 and the sample 3, the beam expander 27 whose diameter increases in the parallel beam with a size of a light flux diameter in accordance with incident light to the measurement area S 3 is interposed.
Further, the objective side condenser lens 14, the detection side condenser lens 17, and the pinhole 18 in FIG. 1 are not provided.

これによれば、最初のビームエキスパンダ11で5mmの平行光束となった入射光は、偏光子P、1/2波長板12、1/4波長板13を透過して楕円偏光となり、ビームエキスパンダ27で直径1mの平行光束に拡径されて、試料3の測定エリアS全体に照射される。
その反射光は、直径1mの平行光束となって、ビームエキスパンダ27に逆方向に進行し、直径5mmの平行光束となって1/4波長板13、1/2波長板12を透過し、反射光路Lに沿って検光子Aを透過して、受光素子9に達し、その光強度が測定される。
このとき、測定エリアS内の光学軸の方向はその平均的な方向が検出され、光学軸の方向が揃っていれば異方性の大きさを示す値Hが大きく、ばらつきがあれば異方性の大きさを示す値Hが小さくなる点は前述の実施例と同様である。
According to this, the incident light that has become a 5 mm parallel light beam by the first beam expander 11 passes through the polarizer P, the half-wave plate 12 and the quarter-wave plate 13 to become elliptically polarized light, and the beam expander. The panda 27 expands the beam into a parallel light beam having a diameter of 1 m and irradiates the entire measurement area S 2 of the sample 3.
The reflected light becomes a parallel light beam having a diameter of 1 m, travels in the reverse direction to the beam expander 27, becomes a parallel light beam having a diameter of 5 mm, and passes through the quarter-wave plate 13 and the half-wave plate 12. transmitted through the analyzer a along the reflected light path L 2, reaches the light receiving element 9, the light intensity is measured.
At this time, the direction of the optical axis of the measurement area S 2 thereof average direction is detected, if the uniform direction of the optical axis larger value H indicating the size of the anisotropy, if there is variation in different The point where the value H indicating the magnitude of the directivity is small is the same as in the previous embodiment.

本発明は、光学異方性を有する製品、特に、液晶配向膜の品質検査などに適用することができる。   The present invention can be applied to products having optical anisotropy, in particular, quality inspection of liquid crystal alignment films.

1 光学異方性パラメータ測定装置
2 ステージ
3 試料
S 測定点(測定エリア)
4 測定光学系
5 演算処理装置
6 レーザ
7 ハーフミラー
9 受光素子
P 偏光子
A 検光子
10 二次元光位置検出素子
12 1/2波長板
13 1/4波長板
14 対物側集光レンズ
17 検出側集光レンズ
18 ピンホール
1 Optical Anisotropy Parameter Measurement Device 2 Stage 3 Sample S Measurement Point (Measurement Area)
4 Measurement optical system 5 Arithmetic processing device 6 Laser 7 Half mirror 9 Light receiving element P Polarizer A Analyzer 10 Two-dimensional light position detecting element 12 1/2 wavelength plate 13 1/4 wavelength plate 14 Objective side condensing lens 17 Detection side Condenser lens 18 pinhole

Claims (12)

試料の測定エリアに対して照射した入射光とその反射光の偏光状態の変化に基づいて当該試料の光学軸の方向と光学異方性の大きさを測定する光学異方性パラメータ測定装置において、
光源となるレーザからハーフミラーを介して前記測定エリアに対し垂直方向に入射光を照射すると共に、当該測定エリアから垂直方向に反射された反射光を前記ハーフミラーを介して受光素子に導く測定光学系と、受光素子により検出された反射光強度に基づいて光学異方性パラメータを算出する演算処理装置を備え、
前記測定光学系は、前記レーザと前記ハーフミラーの間に偏光子が配されると共に、ハーフミラーと受光素子との間に検光子が配され、ハーフミラーと試料との間には、前記偏光子により生成される直線偏光を回転させるために回転駆動される1/2波長板と、遅相軸の向きを前記1/2波長板の遅相軸に対して±δ(δ≠nπ/4,nは整数)ずらした初期位置から当該1/2波長板に対して回転角度が2倍となるように同期的に回転駆動される1/4波長板が配され、
前記演算処理装置は、1/4波長板を初期位置+δから1/2波長板と同期的に回転させたときに検出される反射光強度R(+δ)と、1/4波長板を初期位置−δから1/2波長板と同期的に回転させたときに検出される反射光強度R(−δ)との差分ΔRを算出し、前記直線偏光の回転角と前記差分ΔRの関係に基づき試料の光学軸の方向及び光学異方性の大きさを決定することを特徴とする光学異方性パラメータ測定装置。
In an optical anisotropy parameter measuring apparatus that measures the direction of the optical axis of the sample and the magnitude of optical anisotropy based on the change in the polarization state of incident light and its reflected light irradiated to the measurement area of the sample,
Measurement optics that irradiates the measurement area with incident light from a laser as a light source through a half mirror in the vertical direction and guides reflected light reflected from the measurement area in the vertical direction to the light receiving element through the half mirror And an arithmetic processing unit that calculates an optical anisotropy parameter based on the reflected light intensity detected by the system and the light receiving element,
In the measurement optical system, a polarizer is disposed between the laser and the half mirror, an analyzer is disposed between the half mirror and the light receiving element, and the polarization is interposed between the half mirror and the sample. A half-wave plate that is rotated to rotate the linearly polarized light generated by the optical element, and the direction of the slow axis is ± δ (δ ≠ nπ / 4) with respect to the slow axis of the half-wave plate. , N is an integer) a quarter wavelength plate that is rotationally driven synchronously so that the rotation angle is doubled with respect to the half wavelength plate from the shifted initial position,
The arithmetic processing unit is configured to detect the reflected light intensity R (+ δ) detected when the quarter-wave plate is rotated synchronously with the half-wave plate from the initial position + δ, and the quarter-wave plate to the initial position. A difference ΔR from the reflected light intensity R (−δ) detected when the rotation is synchronized with the half-wave plate from −δ is calculated, and based on the relationship between the rotation angle of the linearly polarized light and the difference ΔR. An optical anisotropy parameter measuring apparatus for determining a direction of an optical axis of a sample and a magnitude of optical anisotropy.
前記測定光学系の前記レーザとハーフミラーとの間に、前記入射光を測定エリアに応じた大きさの光束径を有する平行光束とするビームエキスパンダが介装された請求項1記載の光学異方性パラメータ測定装置。   The optical apparatus according to claim 1, wherein a beam expander is disposed between the laser and the half mirror of the measurement optical system to convert the incident light into a parallel light beam having a light beam diameter of a size corresponding to a measurement area. Isotropic parameter measuring device. 前記測定光学系の前記レーザとハーフミラーとの間に、その照射光を所定の光束径を有する平行光束とするビームエキスパンダが介装され、
前記1/4波長板と前記試料の間に、当該試料の表面上に焦点を結ぶように前記入射光を集光させる対物側集光レンズがその光軸方向に相対移動可能に設けられ、
前記検光子と受光素子との間には、前記反射光を焦点位置に収束させた後、拡散しながら受光素子に導く検出側集光レンズが設けられると共に、その焦点位置にはピンホールが設けられた請求項1記載の光学異方性パラメータ測定装置。
Between the laser and the half mirror of the measurement optical system, a beam expander that interposes the irradiation light into a parallel light beam having a predetermined light beam diameter is interposed,
An objective-side condensing lens that condenses the incident light so as to focus on the surface of the sample is provided between the quarter-wave plate and the sample so as to be relatively movable in the optical axis direction;
Between the analyzer and the light receiving element, there is provided a detection-side condensing lens that converges the reflected light to the focal position and then diffuses it to the light receiving element, and a pinhole is provided at the focal position. The optical anisotropy parameter measuring apparatus according to claim 1.
前記測定エリアが前記各波長板の直径より大きく設定されている場合に、
前記測定光学系の前記レーザとハーフミラーとの間に、その照射光を所定の光束径を有する平行光束とするビームエキスパンダが介装され、
前記1/4波長板と前記試料の間に、前記入射光を測定エリアに応じた大きさの光束径を有する平行光束に拡径するビームエキスパンダが介装された請求項1記載の光学異方性パラメータ測定装置。
When the measurement area is set larger than the diameter of each wave plate,
Between the laser and the half mirror of the measurement optical system, a beam expander that interposes the irradiation light into a parallel light beam having a predetermined light beam diameter is interposed,
The optical difference according to claim 1, wherein a beam expander for expanding the incident light into a parallel light beam having a light beam diameter corresponding to a measurement area is interposed between the quarter-wave plate and the sample. Isotropic parameter measuring device.
試料の測定エリアに対して照射した入射光とその反射光の偏光状態の変化に基づいて当該試料の光学軸の方向と光学異方性の大きさを測定する光学異方性パラメータ測定方法において、
光源となるレーザからハーフミラーを介して前記測定エリアに対し垂直方向に入射光を照射すると共に、当該測定エリアから垂直方向に反射された反射光を前記ハーフミラーを介して受光素子に導く測定光学系を備え、
当該測定光学系は、前記レーザと前記ハーフミラーの間に偏光子が配されると共に、ハーフミラーと受光素子との間に検光子が配され、ハーフミラーと試料との間には、前記偏光子により生成される直線偏光を回転させるために回転駆動される1/2波長板と、遅相軸の向きを前記1/2波長板の遅相軸に対して±δ(δ≠nπ/2,nは整数)ずらした初期位置から当該1/2波長板に対して回転角度が2倍となるように同期的に回転駆動される1/4波長板が配されて成り、
前記1/4波長板を初期位置+δから1/2波長板と同期的に回転させながら反射光強度R(+δ)を測定し、前記1/4波長板を初期位置−δから1/2波長板と同期的に回転させながら反射光強度R(−δ)を測定する反射光強度測定工程と、
検出された反射光強度R(+δ)及びR(−δ)に基づき、差分ΔRを、
ΔR=R(+δ)−R(−δ)
により算出する差分算出工程と、
前記直線偏光の回転角と前記差分ΔRの関係に基づき光学軸の方向及び光学異方性の大きさを決定する異方性分析工程と、
を備えたことを特徴とする光学異方性パラメータ測定方法。
In the optical anisotropy parameter measurement method for measuring the direction of the optical axis of the sample and the magnitude of the optical anisotropy based on the change in the polarization state of the incident light and the reflected light irradiated to the measurement area of the sample,
Measurement optics that irradiates the measurement area with incident light from a laser as a light source through a half mirror in the vertical direction and guides reflected light reflected from the measurement area in the vertical direction to the light receiving element through the half mirror Equipped with a system,
In the measurement optical system, a polarizer is disposed between the laser and the half mirror, an analyzer is disposed between the half mirror and the light receiving element, and the polarization is interposed between the half mirror and the sample. A half-wave plate rotated to rotate the linearly polarized light generated by the optical element, and the direction of the slow axis with respect to the slow axis of the half-wave plate ± δ (δ ≠ nπ / 2) , N are integers), and a quarter wavelength plate that is rotationally driven synchronously so that the rotation angle is doubled with respect to the half wavelength plate from the shifted initial position,
The reflected light intensity R (+ δ) is measured while the quarter-wave plate is rotated synchronously with the half-wave plate from the initial position + δ, and the quarter-wave plate is measured from the initial position −δ to ½ wavelength. A reflected light intensity measurement step of measuring the reflected light intensity R (−δ) while rotating synchronously with the plate;
Based on the detected reflected light intensities R (+ δ) and R (−δ), the difference ΔR is
ΔR = R (+ δ) −R (−δ)
A difference calculation step calculated by:
An anisotropy analysis step for determining the direction of the optical axis and the magnitude of optical anisotropy based on the relationship between the rotation angle of the linearly polarized light and the difference ΔR;
An optical anisotropy parameter measuring method comprising:
試料の測定エリアに対して照射した入射光とその反射光の偏光状態の変化に基づいて当該試料の光学軸の方向と光学異方性の大きさを測定する光学異方性パラメータ測定方法において、
光源となるレーザからハーフミラーを介して前記測定エリアに対し垂直方向に入射光を照射すると共に、当該測定エリアから垂直方向に反射された反射光を前記ハーフミラーを介して受光素子に導く測定光学系を備え、
当該測定光学系は、前記レーザと前記ハーフミラーの間に偏光子が配されると共に、ハーフミラーと受光素子との間に検光子が配され、ハーフミラーと試料との間には、前記偏光子により生成される直線偏光を回転させるために回転駆動される1/2波長板と、遅相軸の向きを前記1/2波長板の遅相軸に対して±δ(δ≠nπ/4:nは整数)ずらした初期位置から当該1/2波長板に対して回転角度が2倍となるように同期的に回転駆動される1/4波長板が配されて成り、
前記試料をセットし、前記1/4波長板を初期位置+δから1/2波長板と同期的に回転させながら反射光強度R(+δ)を測定し、前記1/4波長板を初期位置−δから1/2波長板と同期的に回転させながら反射光強度R(−δ)を測定する反射光強度測定工程と、
前記試料に替えて光学異方性のない参照板をセットして、前記反射光強度測定工程同様に参照反射光強度R(+δ)及びR(−δ)を測定する参照反射光強度測定工程と、
前記反射光強度R(+δ)及びR(−δ)と、前記参照反射光強度R(+δ)及びR(−δ)に基づき、差分ΔRを
ΔR=[R(+δ)−R(−δ)]−[R(+δ)−R(−δ)]
により算出する差分算出工程と、
前記直線偏光の回転角と前記差分ΔRの関係に基づき光学軸の方向及び光学異方性の大きさを決定する異方性分析工程と、
を備えたことを特徴とする光学異方性パラメータ測定方法。
In the optical anisotropy parameter measurement method for measuring the direction of the optical axis of the sample and the magnitude of the optical anisotropy based on the change in the polarization state of the incident light and the reflected light irradiated to the measurement area of the sample,
Measurement optics that irradiates the measurement area with incident light from a laser as a light source through a half mirror in the vertical direction and guides reflected light reflected from the measurement area in the vertical direction to the light receiving element through the half mirror Equipped with a system,
In the measurement optical system, a polarizer is disposed between the laser and the half mirror, an analyzer is disposed between the half mirror and the light receiving element, and the polarization is interposed between the half mirror and the sample. A half-wave plate that is rotated to rotate the linearly polarized light generated by the optical element, and the direction of the slow axis is ± δ (δ ≠ nπ / 4) with respect to the slow axis of the half-wave plate. : N is an integer) and a quarter wavelength plate that is rotationally driven synchronously so that the rotation angle is doubled with respect to the half wavelength plate from the shifted initial position.
The sample was set, and the reflected light intensity R (+ δ) was measured while rotating the quarter-wave plate synchronously with the half-wave plate from the initial position + δ, and the quarter-wave plate was moved to the initial position− a reflected light intensity measurement step of measuring the reflected light intensity R (−δ) while rotating synchronously with a half-wave plate from δ;
A reference reflected light intensity measurement is performed in which a reference plate having no optical anisotropy is set in place of the sample and the reference reflected light intensity R E (+ δ) and R E (−δ) are measured in the same manner as the reflected light intensity measuring step. Process,
Based on the reflected light intensities R (+ δ) and R (−δ) and the reference reflected light intensities R E (+ δ) and R E (−δ), the difference ΔR is expressed as ΔR = [R 0 (+ δ) −R 0. (−δ)] − [R E (+ δ) −R E (−δ)]
A difference calculation step calculated by:
An anisotropy analysis step for determining the direction of the optical axis and the magnitude of optical anisotropy based on the relationship between the rotation angle of the linearly polarized light and the difference ΔR;
An optical anisotropy parameter measuring method comprising:
試料の測定エリアに対して照射した入射光とその反射光の偏光状態の変化に基づいて当該試料の光学軸の方向と光学異方性の大きさを測定する光学異方性パラメータ測定方法において、
光源となるレーザからハーフミラーを介して前記測定エリアに対し垂直方向に入射光を照射すると共に、当該測定エリアから垂直方向に反射された反射光を前記ハーフミラーを介して受光素子に導く測定光学系を備え、
当該測定光学系は、前記レーザと前記ハーフミラーの間に偏光子が配されると共に、ハーフミラーと受光素子との間に検光子が配され、ハーフミラーと試料との間には、前記偏光子により生成される直線偏光を回転させるために回転駆動される1/2波長板と、遅相軸の向きを前記1/2波長板の遅相軸に対して±δ(δ≠nπ/4,nは整数)ずらした初期位置から当該1/2波長板に対して回転角度が2倍となるように同期的に回転駆動される1/4波長板が配されて成り、
前記試料を任意の方向にセットした状態で、前記1/4波長板を初期位置+δから1/2波長板と同期的に回転させながら反射光強度R(+δ)を測定し、前記1/4波長板を初期位置−δから1/2波長板と同期的に回転させながら反射光強度R(−δ)を測定する第一反射光強度測定工程と、
前記試料を入射光の光軸を中心に90°回転させた状態で、前記第一反射光強度測定工程同様に反射光強度R90(+δ)及びR90(−δ)を測定する第二反射光強度測定工程と、
前記第一反射光強度測定工程で測定された反射光強度R(+δ)及びR(−δ)と第二反射光強度測定工程で測定された反射光強度R90(+δ)及びR90(−δ)に基づき、差分ΔRを
ΔR=[R(+δ)−R(−δ)]−[R90(+δ)−R90(−δ)]
により算出する第一差分算出工程と、
前記直線偏光の回転角と前記再差分ΔRの関係に基づき光学軸の方向及び光学異方性の大きさを決定する異方性分析工程と、
を備えたことを特徴とする光学異方性パラメータ測定方法。
In the optical anisotropy parameter measurement method for measuring the direction of the optical axis of the sample and the magnitude of the optical anisotropy based on the change in the polarization state of the incident light and the reflected light irradiated to the measurement area of the sample,
Measurement optics that irradiates the measurement area with incident light from a laser as a light source through a half mirror in the vertical direction and guides reflected light reflected from the measurement area in the vertical direction to the light receiving element through the half mirror Equipped with a system,
In the measurement optical system, a polarizer is disposed between the laser and the half mirror, an analyzer is disposed between the half mirror and the light receiving element, and the polarization is interposed between the half mirror and the sample. A half-wave plate that is rotated to rotate the linearly polarized light generated by the optical element, and the direction of the slow axis is ± δ (δ ≠ nπ / 4) with respect to the slow axis of the half-wave plate. , N are integers), and a quarter wavelength plate that is rotationally driven synchronously so that the rotation angle is doubled with respect to the half wavelength plate from the shifted initial position,
With the sample set in an arbitrary direction, the reflected light intensity R 0 (+ δ) is measured while rotating the ¼ wavelength plate synchronously with the ½ wavelength plate from the initial position + δ, and the 1 / A first reflected light intensity measurement step of measuring the reflected light intensity R 0 (−δ) while rotating the four-wavelength plate synchronously with the half-wave plate from the initial position −δ;
Second reflection for measuring reflected light intensities R 90 (+ δ) and R 90 (−δ) in the same manner as the first reflected light intensity measuring step with the sample rotated 90 ° about the optical axis of incident light. A light intensity measurement step;
Reflected light intensities R 0 (+ δ) and R 0 (−δ) measured in the first reflected light intensity measuring step and reflected light intensities R 90 (+ δ) and R 90 measured in the second reflected light intensity measuring step. Based on (−δ), the difference ΔR is expressed as ΔR = [R 0 (+ δ) −R 0 (−δ)] − [R 90 (+ δ) −R 90 (−δ)].
A first difference calculation step calculated by:
An anisotropy analysis step for determining the direction of the optical axis and the magnitude of optical anisotropy based on the relationship between the rotation angle of the linearly polarized light and the re-difference ΔR;
An optical anisotropy parameter measuring method comprising:
試料の測定エリアに対して照射した入射光とその反射光の偏光状態の変化に基づいて当該試料の光学軸の方向と光学異方性の大きさを測定する光学異方性パラメータ測定方法において、
光源となるレーザからハーフミラーを介して前記測定エリアに対し垂直方向に入射光を照射すると共に、当該測定エリアから垂直方向に反射された反射光を前記ハーフミラーを介して受光素子に導く測定光学系を備え、
当該測定光学系は、前記レーザと前記ハーフミラーの間に偏光子が配されると共に、ハーフミラーと受光素子との間に検光子が配され、ハーフミラーと試料との間には、前記偏光子により生成される直線偏光を回転させるために回転駆動される1/2波長板と、遅相軸の向きを前記1/2波長板の遅相軸に対して±δ(δ≠nπ/4,nは整数)ずらした初期位置から当該1/2波長板に対して回転角度が2倍となるように同期的に回転駆動される1/4波長板が配されて成り、
前記試料を任意の方向にセットした状態で、前記1/4波長板を初期位置+δから1/2波長板と同期的に回転させながら反射光強度R(+δ)を測定し、前記1/4波長板を初期位置−δから1/2波長板と同期的に回転させながら反射光強度R(−δ)を測定する第一反射光強度測定工程と、
前記試料を入射光の光軸を中心に90°回転させた状態で、前記第一反射光強度測定工程同様に反射光強度R90(+δ)及びR90(−δ)を測定する第二反射光強度測定工程と、
前記試料に替えて光学異方性のない参照板をセットして、前記第一反射光強度測定工程同様に参照反射光強度R(+δ)及びR(−δ)を測定する参照反射光強度測定工程と、
前記第一反射光強度測定工程で測定された反射光強度R(+δ)及びR(−δ)と、参照反射光強度R(+δ)及びR(−δ)に基づき、差分ΔR
ΔR=[R(+δ)−R(−δ)]−[R(+δ)−R(−δ)]
により算出する第一差分算出工程と、
前記第二反射光強度測定工程で測定された反射光強度R90(+δ)及びR90(−δ)と参照反射光強度R(+δ)及びR(−δ)に基づき、差分ΔR90
ΔR90=[R90(+δ)−R90(−δ)]−[R(+δ)−R(−δ)]
により算出する第二差分算出工程と、
前記各差分ΔR及びΔR90に基づき、差分ΔRを、
ΔR=ΔR−ΔR90
により算出する第三差分算出工程と、
前記直線偏光の回転角と前記差分ΔRの関係に基づき光学軸の方向及び光学異方性の大きさを決定する異方性分析工程と、
を備えたことを特徴とする光学異方性パラメータ測定方法。
In the optical anisotropy parameter measurement method for measuring the direction of the optical axis of the sample and the magnitude of the optical anisotropy based on the change in the polarization state of the incident light and the reflected light irradiated to the measurement area of the sample,
Measurement optics that irradiates the measurement area with incident light from a laser as a light source through a half mirror in the vertical direction and guides reflected light reflected from the measurement area in the vertical direction to the light receiving element through the half mirror Equipped with a system,
In the measurement optical system, a polarizer is disposed between the laser and the half mirror, an analyzer is disposed between the half mirror and the light receiving element, and the polarization is interposed between the half mirror and the sample. A half-wave plate that is rotated to rotate the linearly polarized light generated by the optical element, and the direction of the slow axis is ± δ (δ ≠ nπ / 4) with respect to the slow axis of the half-wave plate. , N are integers), and a quarter wavelength plate that is rotationally driven synchronously so that the rotation angle is doubled with respect to the half wavelength plate from the shifted initial position,
With the sample set in an arbitrary direction, the reflected light intensity R 0 (+ δ) is measured while rotating the ¼ wavelength plate synchronously with the ½ wavelength plate from the initial position + δ, and the 1 / A first reflected light intensity measurement step of measuring the reflected light intensity R 0 (−δ) while rotating the four-wavelength plate synchronously with the half-wave plate from the initial position −δ;
Second reflection for measuring reflected light intensities R 90 (+ δ) and R 90 (−δ) in the same manner as the first reflected light intensity measuring step with the sample rotated 90 ° about the optical axis of incident light. A light intensity measurement step;
A reference reflected light that sets a reference plate having no optical anisotropy instead of the sample and measures the reference reflected light intensity R E (+ δ) and R E (−δ) as in the first reflected light intensity measuring step. Strength measurement process;
Based on the reflected light intensities R 0 (+ δ) and R 0 (−δ) measured in the first reflected light intensity measuring step and the reference reflected light intensities R E (+ δ) and R E (−δ), the difference ΔR 0 ΔR 0 = [R 0 (+ δ) −R 0 (−δ)] − [R E (+ δ) −R E (−δ)]
A first difference calculation step calculated by:
Based on the reflected light intensities R 90 (+ δ) and R 90 (−δ) and the reference reflected light intensities R E (+ δ) and R E (−δ) measured in the second reflected light intensity measuring step, the difference ΔR 90 ΔR 90 = [R 90 (+ δ) −R 90 (−δ)] − [R E (+ δ) −R E (−δ)]
A second difference calculation step calculated by:
Based on each difference ΔR 0 and ΔR 90 , the difference ΔR is
ΔR = ΔR 0 −ΔR 90
A third difference calculation step calculated by:
An anisotropy analysis step for determining the direction of the optical axis and the magnitude of optical anisotropy based on the relationship between the rotation angle of the linearly polarized light and the difference ΔR;
An optical anisotropy parameter measuring method comprising:
光源となるレーザからハーフミラーを介して試料の測定エリアに対し垂直方向に入射光を照射すると共に、当該測定エリアから垂直方向に反射された反射光を前記ハーフミラーを介して受光素子に導く光路が形成され、
前記レーザと前記ハーフミラーの間に偏光子が配されると共に、ハーフミラーと受光素子との間に検光子が配され、ハーフミラーと試料との間には、前記偏光子により生成される直線偏光を回転させるために回転駆動される1/2波長板と、遅相軸の向きを前記1/2波長板の遅相軸に対して±δ(δ≠nπ/4,nは整数)ずらした初期位置から当該1/2波長板に対して回転角度が2倍となるように同期的に回転駆動される1/4波長板が配されて成る測定光学系をコンピュータにより操作して、前記受光素子により検出された反射光の強度に基づいて当該試料の光学軸の方向と光学異方性の大きさを測定するための光学異方性パラメータ測定用プログラムにおいて、
前記1/4波長板を初期位置+δに設定し、1/2波長板と同期的に回転駆動させながら、前記受光素子で反射光強度R(+δ)を測定し、前記直線偏光の回転角と関連付けて予め設定された記憶領域に記憶し、
前記1/4波長板を初期位置−δに設定し、1/2波長板と同期的に回転駆動させながら、前記受光素子で反射光強度R(−δ)を測定し、前記直線偏光の回転角と関連付けて予め設定された記憶領域に記憶する反射光強度測定手段と、
記憶された反射光強度R(+δ)及びR(−δ)に基づき、差分ΔRを、
ΔR=R(+δ)−R(−δ)
により算出する差分算出手段と、
前記直線偏光の回転角と前記差分ΔRの関係に基づき光学軸の方向及び光学異方性の大きさを決定する異方性分析手段と、
を備えたことを特徴とする光学異方性パラメータ測定用プログラム。
An optical path that irradiates incident light in the vertical direction to the measurement area of the sample from the laser serving as the light source via the half mirror and guides the reflected light reflected in the vertical direction from the measurement area to the light receiving element via the half mirror Formed,
A polarizer is disposed between the laser and the half mirror, an analyzer is disposed between the half mirror and the light receiving element, and a straight line generated by the polarizer is disposed between the half mirror and the sample. The direction of the slow axis of the half-wave plate rotated to rotate the polarized light and the slow axis of the half-wave plate are shifted by ± δ (δ ≠ nπ / 4, where n is an integer). A measuring optical system comprising a quarter-wave plate that is rotationally driven synchronously so that the rotation angle is doubled with respect to the half-wave plate from the initial position is operated by a computer, In an optical anisotropy parameter measurement program for measuring the direction of the optical axis of the sample and the magnitude of optical anisotropy based on the intensity of reflected light detected by the light receiving element,
The quarter-wave plate is set to the initial position + δ, and the reflected light intensity R (+ δ) is measured with the light-receiving element while being driven to rotate synchronously with the half-wave plate, and the rotation angle of the linearly polarized light and Store it in a storage area set in advance,
The quarter-wave plate is set to the initial position −δ, and the reflected light intensity R (−δ) is measured by the light-receiving element while being driven to rotate synchronously with the half-wave plate, and the linearly polarized light is rotated. Reflected light intensity measuring means for storing in a storage area set in advance in association with a corner;
Based on the stored reflected light intensity R (+ δ) and R (−δ), the difference ΔR is
ΔR = R (+ δ) −R (−δ)
A difference calculating means for calculating by
Anisotropy analysis means for determining the direction of the optical axis and the magnitude of optical anisotropy based on the relationship between the rotation angle of the linearly polarized light and the difference ΔR;
An optical anisotropy parameter measurement program characterized by comprising:
光源となるレーザからハーフミラーを介して試料の測定エリアに対し垂直方向に入射光を照射すると共に、当該測定エリアから垂直方向に反射された反射光を前記ハーフミラーを介して受光素子に導く光路が形成され、
前記レーザと前記ハーフミラーの間に偏光子が配されると共に、ハーフミラーと受光素子との間に検光子が配され、ハーフミラーと試料との間には、前記偏光子により生成される直線偏光を回転させるために回転駆動される1/2波長板と、遅相軸の向きを前記1/2波長板の遅相軸に対して±δ(δ≠nπ/4,nは整数)ずらした初期位置から当該1/2波長板に対して回転角度が2倍となるように同期的に回転駆動される1/4波長板が配されて成る測定光学系をコンピュータにより操作して、前記受光素子により検出された反射光の強度に基づいて当該試料の光学軸の方向と光学異方性の大きさを測定するための光学異方性パラメータ測定用プログラムにおいて、
前記1/4波長板を初期位置+δに設定し、1/2波長板と同期的に回転駆動させながら、前記受光素子で反射光強度R(+δ)を測定し、前記直線偏光の回転角と関連付けて予め設定された記憶領域に記憶し、
前記1/4波長板を初期位置−δに設定し、1/2波長板と同期的に回転駆動させながら、前記受光素子で反射光強度R(−δ)を測定し、前記直線偏光の回転角と関連付けて予め設定された記憶領域に記憶する反射光強度測定手段と、
光学異方性のない参照板について、前記反射光強度測定手段と同様に参照反射光強度R(+δ)及びR(−δ)を測定する参照反射光強度測定手段と、
前記反射光強度R(+δ)及びR(−δ)と、前記参照反射光強度R(+δ)及びR(−δ)に基づき、差分ΔRを
ΔR=[R(+δ)−R(−δ)]−[R(+δ)−R(−δ)]
により算出する差分算出手段と、
前記直線偏光の回転角と前記差分ΔRの関係に基づき光学軸の方向及び光学異方性の大きさを決定する異方性分析手段と、
を備えたことを特徴とする光学異方性パラメータ測定用プログラム。
An optical path that irradiates incident light in the vertical direction to the measurement area of the sample from the laser serving as the light source via the half mirror and guides the reflected light reflected in the vertical direction from the measurement area to the light receiving element via the half mirror Formed,
A polarizer is disposed between the laser and the half mirror, an analyzer is disposed between the half mirror and the light receiving element, and a straight line generated by the polarizer is disposed between the half mirror and the sample. The direction of the slow axis of the half-wave plate rotated to rotate the polarized light and the slow axis of the half-wave plate are shifted by ± δ (δ ≠ nπ / 4, where n is an integer). A measuring optical system comprising a quarter-wave plate that is rotationally driven synchronously so that the rotation angle is doubled with respect to the half-wave plate from the initial position is operated by a computer, In an optical anisotropy parameter measurement program for measuring the direction of the optical axis of the sample and the magnitude of optical anisotropy based on the intensity of reflected light detected by the light receiving element,
The quarter-wave plate is set to the initial position + δ, and the reflected light intensity R (+ δ) is measured with the light-receiving element while being driven to rotate synchronously with the half-wave plate, and the rotation angle of the linearly polarized light and Store it in a storage area set in advance,
The quarter-wave plate is set to the initial position −δ, and the reflected light intensity R (−δ) is measured by the light-receiving element while being driven to rotate synchronously with the half-wave plate, and the linearly polarized light is rotated. Reflected light intensity measuring means for storing in a storage area set in advance in association with a corner;
For a reference plate having no optical anisotropy, reference reflected light intensity measuring means for measuring reference reflected light intensity R E (+ δ) and R E (−δ) in the same manner as the reflected light intensity measuring means,
Based on the reflected light intensities R (+ δ) and R (−δ) and the reference reflected light intensities R E (+ δ) and R E (−δ), the difference ΔR is expressed as ΔR = [R 0 (+ δ) −R 0. (−δ)] − [R E (+ δ) −R E (−δ)]
A difference calculating means for calculating by
Anisotropy analysis means for determining the direction of the optical axis and the magnitude of optical anisotropy based on the relationship between the rotation angle of the linearly polarized light and the difference ΔR;
An optical anisotropy parameter measurement program characterized by comprising:
光源となるレーザからハーフミラーを介して試料の測定エリアに対し垂直方向に入射光を照射すると共に、当該測定エリアから垂直方向に反射された反射光を前記ハーフミラーを介して受光素子に導く光路が形成され、
前記レーザと前記ハーフミラーの間に偏光子が配されると共に、ハーフミラーと受光素子との間に検光子が配され、ハーフミラーと試料との間には、前記偏光子により生成される直線偏光を回転させるために回転駆動される1/2波長板と、遅相軸の向きを前記1/2波長板の遅相軸に対して±δ(δ≠nπ/4,nは整数)ずらした初期位置から当該1/2波長板に対して回転角度が2倍となるように同期的に回転駆動される1/4波長板が配されて成る測定光学系をコンピュータにより操作して、前記受光素子により検出された反射光の強度に基づいて当該試料の光学軸の方向と光学異方性の大きさを測定するための光学異方性パラメータ測定用プログラムにおいて、
任意の方向にセットされた前記試料について、前記1/4波長板を初期位置+δから1/2波長板と同期的に回転させながら反射光強度R(+δ)を測定し、前記1/4波長板を初期位置−δから1/2波長板と同期的に回転させながら反射光強度R(−δ)を測定し、各反射光強度を前記直線偏光の回転角と関連付けて予め設定された記憶領域に記憶する第一反射光強度測定手段と、
前記試料を入射光の光軸を中心に90°回転させた状態で、前記第一反射光強度測定手段と同様に反射光強度R90(+δ)及びR90(−δ)を測定し、各反射光強度を前記直線偏光の回転角と関連付けて予め設定された記憶領域に記憶する第二反射光強度測定手段と、
前記第一反射光強度測定手段で測定された反射光強度R(+δ)及びR(−δ)と第二反射光強度測定手段で測定された反射光強度R90(+δ)及びR90(−δ)に基づき、差分ΔRを
ΔR=[R(+δ)−R(−δ)]−[R90(+δ)−R90(−δ)]
により算出する差分算出手段と、
前記直線偏光の回転角と前記差分ΔRの関係に基づき光学軸の方向及び光学異方性の大きさを決定する異方性分析手段と、
を備えたことを特徴とする光学異方性パラメータ測定プログラム。
An optical path that irradiates incident light in the vertical direction to the measurement area of the sample from the laser serving as the light source via the half mirror and guides the reflected light reflected in the vertical direction from the measurement area to the light receiving element via the half mirror Formed,
A polarizer is disposed between the laser and the half mirror, an analyzer is disposed between the half mirror and the light receiving element, and a straight line generated by the polarizer is disposed between the half mirror and the sample. The direction of the slow axis of the half-wave plate rotated to rotate the polarized light and the slow axis of the half-wave plate are shifted by ± δ (δ ≠ nπ / 4, where n is an integer). A measuring optical system comprising a quarter-wave plate that is rotationally driven synchronously so that the rotation angle is doubled with respect to the half-wave plate from the initial position is operated by a computer, In an optical anisotropy parameter measurement program for measuring the direction of the optical axis of the sample and the magnitude of optical anisotropy based on the intensity of reflected light detected by the light receiving element,
For the sample set in an arbitrary direction, the reflected light intensity R 0 (+ δ) is measured while the ¼ wavelength plate is rotated synchronously with the ½ wavelength plate from the initial position + δ, and the ¼ wavelength is measured. The reflected light intensity R 0 (−δ) is measured while rotating the wave plate synchronously with the half-wave plate from the initial position −δ, and each reflected light intensity is set in advance in association with the rotation angle of the linearly polarized light. First reflected light intensity measuring means for storing in the storage area;
In a state where the sample is rotated 90 ° around the optical axis of the incident light, the reflected light intensities R 90 (+ δ) and R 90 (−δ) are measured in the same manner as the first reflected light intensity measuring means, Second reflected light intensity measuring means for storing the reflected light intensity in a storage area set in advance in association with the rotation angle of the linearly polarized light;
The reflected light intensities R 0 (+ δ) and R 0 (−δ) measured by the first reflected light intensity measuring means and the reflected light intensities R 90 (+ δ) and R 90 measured by the second reflected light intensity measuring means. Based on (−δ), the difference ΔR is expressed as ΔR = [R 0 (+ δ) −R 0 (−δ)] − [R 90 (+ δ) −R 90 (−δ)].
A difference calculating means for calculating by
Anisotropy analysis means for determining the direction of the optical axis and the magnitude of optical anisotropy based on the relationship between the rotation angle of the linearly polarized light and the difference ΔR;
An optical anisotropy parameter measurement program comprising:
光源となるレーザからハーフミラーを介して試料の測定エリアに対し垂直方向に入射光を照射すると共に、当該測定エリアから垂直方向に反射された反射光を前記ハーフミラーを介して受光素子に導く光路が形成され、
前記レーザと前記ハーフミラーの間に偏光子が配されると共に、ハーフミラーと受光素子との間に検光子が配され、ハーフミラーと試料との間には、前記偏光子により生成される直線偏光を回転させるために回転駆動される1/2波長板と、遅相軸の向きを前記1/2波長板の遅相軸に対して±δ(δ≠nπ/4,nは整数)ずらした初期位置から当該1/2波長板に対して回転角度が2倍となるように同期的に回転駆動される1/4波長板が配されて成る測定光学系をコンピュータにより操作して、前記受光素子により検出された反射光の強度に基づいて当該試料の光学軸の方向と光学異方性の大きさを測定するための光学異方性パラメータ測定用プログラムにおいて、
任意の方向にセットされた前記試料について、前記1/4波長板を初期位置+δから1/2波長板と同期的に回転させながら反射光強度R(+δ)を測定し、前記1/4波長板を初期位置−δから1/2波長板と同期的に回転させながら反射光強度R(−δ)を測定し、各反射光強度を前記直線偏光の回転角と関連付けて予め設定された記憶領域に記憶する第一反射光強度測定手段と、
前記試料を入射光の光軸を中心に90°回転させた状態で、前記第一反射光強度測定手段と同様に反射光強度R90(+δ)及びR90(−δ)を測定し、各反射光強度を前記直線偏光の回転角と関連付けて予め設定された記憶領域に記憶する第二反射光強度測定手段と、
前記試料に替えてセットされた光学異方性のない参照板について、前記第一反射光強度測定手段同様に参照反射光強度R(+δ)及びR(−δ)を測定し、各反射光強度を前記直線偏光の回転角と関連付けて予め設定された記憶領域に記憶する第二反射光強度測定手段と、
前記第一反射光強度測定手段で測定された反射光強度R(+δ)及びR(−δ)と、参照反射光強度R(+δ)及びR(−δ)に基づき、差分ΔR
ΔR=[R(+δ)−R(−δ)]−[R(+δ)−R(−δ)]
により算出する第一差分算出手段と、
前記第二反射光強度測定手段で測定された反射光強度R90(+δ)及びR90(−δ)と参照反射光強度R(+δ)及びR(−δ)に基づき、差分ΔR90
ΔR90=[R90(+δ)−R90(−δ)]−[R(+δ)−R(−δ)]
により算出する第二差分算出手段と、
前記各差分ΔR及びΔR90に基づき、差分ΔRを、
ΔR=ΔR−ΔR90
により算出する第三差分算出手段と、
前記直線偏光の回転角と前記差分ΔRの関係に基づき光学軸の方向及び光学異方性の大きさを決定する異方性分析手段と、
を備えたことを特徴とする光学異方性パラメータ測定プログラム。

An optical path that irradiates incident light in the vertical direction to the measurement area of the sample from the laser serving as the light source via the half mirror and guides the reflected light reflected in the vertical direction from the measurement area to the light receiving element via the half mirror Formed,
A polarizer is disposed between the laser and the half mirror, an analyzer is disposed between the half mirror and the light receiving element, and a straight line generated by the polarizer is disposed between the half mirror and the sample. The direction of the slow axis of the half-wave plate rotated to rotate the polarized light and the slow axis of the half-wave plate are shifted by ± δ (δ ≠ nπ / 4, where n is an integer). A measuring optical system comprising a quarter-wave plate that is rotationally driven synchronously so that the rotation angle is doubled with respect to the half-wave plate from the initial position is operated by a computer, In an optical anisotropy parameter measurement program for measuring the direction of the optical axis of the sample and the magnitude of optical anisotropy based on the intensity of reflected light detected by the light receiving element,
For the sample set in an arbitrary direction, the reflected light intensity R 0 (+ δ) is measured while the ¼ wavelength plate is rotated synchronously with the ½ wavelength plate from the initial position + δ, and the ¼ wavelength is measured. The reflected light intensity R 0 (−δ) is measured while rotating the wave plate synchronously with the half-wave plate from the initial position −δ, and each reflected light intensity is set in advance in association with the rotation angle of the linearly polarized light. First reflected light intensity measuring means for storing in the storage area;
In a state where the sample is rotated 90 ° around the optical axis of the incident light, the reflected light intensities R 90 (+ δ) and R 90 (−δ) are measured in the same manner as the first reflected light intensity measuring means, Second reflected light intensity measuring means for storing the reflected light intensity in a storage area set in advance in association with the rotation angle of the linearly polarized light;
For the reference plate having no optical anisotropy set in place of the sample, the reference reflected light intensities R E (+ δ) and R E (−δ) are measured in the same manner as the first reflected light intensity measuring means, and each reflection is measured. Second reflected light intensity measuring means for storing light intensity in a storage area set in advance in association with the rotation angle of the linearly polarized light;
Based on the reflected light intensities R 0 (+ δ) and R 0 (−δ) measured by the first reflected light intensity measuring means and the reference reflected light intensities R E (+ δ) and R E (−δ), the difference ΔR 0 ΔR 0 = [R 0 (+ δ) −R 0 (−δ)] − [R E (+ δ) −R E (−δ)]
First difference calculating means for calculating by:
Based on the reflected light intensities R 90 (+ δ) and R 90 (−δ) and the reference reflected light intensities R E (+ δ) and R E (−δ) measured by the second reflected light intensity measuring means, the difference ΔR 90 ΔR 90 = [R 90 (+ δ) −R 90 (−δ)] − [R E (+ δ) −R E (−δ)]
Second difference calculating means for calculating by:
Based on each difference ΔR 0 and ΔR 90 , the difference ΔR is
ΔR = ΔR 0 −ΔR 90
A third difference calculating means for calculating by:
Anisotropy analysis means for determining the direction of the optical axis and the magnitude of optical anisotropy based on the relationship between the rotation angle of the linearly polarized light and the difference ΔR;
An optical anisotropy parameter measurement program comprising:

JP2011087655A 2011-04-11 2011-04-11 Optical anisotropy parameter measuring device, measuring method and measuring program Expired - Fee Related JP5806837B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011087655A JP5806837B2 (en) 2011-04-11 2011-04-11 Optical anisotropy parameter measuring device, measuring method and measuring program
PCT/JP2012/059314 WO2012141061A2 (en) 2011-04-11 2012-04-05 Optical anisotropic parameter measurement device, measurement method and measurement program
KR1020137025210A KR101594982B1 (en) 2011-04-11 2012-04-05 Optical anisotropic parameter measurement device, measurement method and measurement program
CN201280017649.3A CN103477206B (en) 2011-04-11 2012-04-05 Optical anisotropy's parameter measuring apparatus, measuring method and measurement system
TW101112439A TWI545309B (en) 2011-04-11 2012-04-09 Apparatus, method and program for measuring optical anisotropy parameters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011087655A JP5806837B2 (en) 2011-04-11 2011-04-11 Optical anisotropy parameter measuring device, measuring method and measuring program

Publications (3)

Publication Number Publication Date
JP2012220381A true JP2012220381A (en) 2012-11-12
JP2012220381A5 JP2012220381A5 (en) 2014-05-08
JP5806837B2 JP5806837B2 (en) 2015-11-10

Family

ID=47009779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011087655A Expired - Fee Related JP5806837B2 (en) 2011-04-11 2011-04-11 Optical anisotropy parameter measuring device, measuring method and measuring program

Country Status (5)

Country Link
JP (1) JP5806837B2 (en)
KR (1) KR101594982B1 (en)
CN (1) CN103477206B (en)
TW (1) TWI545309B (en)
WO (1) WO2012141061A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104280211A (en) * 2013-07-05 2015-01-14 肖特茉丽特株式会社 Optical anisotropic parameter measurement device, measurement method and measurement program
WO2018207488A1 (en) * 2017-05-09 2018-11-15 ソニー株式会社 Optical constant measurement device and optical constant measurement method
CN109141828A (en) * 2018-07-19 2019-01-04 中国科学院上海光学精密机械研究所 Liquid crystal device phase modulating properties measuring device and measurement method
JP2021139873A (en) * 2020-03-03 2021-09-16 株式会社コエムエスCo−Ms Co., Ltd. Monitoring device and method of semiconductor substrate protection film peeling

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143650A (en) * 2014-01-31 2015-08-06 セイコーエプソン株式会社 Optical rotation measuring method and optical rotation measuring device
TWI542864B (en) * 2014-12-30 2016-07-21 財團法人工業技術研究院 A system for measuring anisotropy, a method for measuring anisotropy and a calibration method thereof
KR101675694B1 (en) 2015-09-11 2016-11-23 성균관대학교산학협력단 Block replacement method of ssd based on block popularity
JP6940413B2 (en) * 2015-12-03 2021-09-29 浜松ホトニクス株式会社 Inspection equipment and inspection method
KR101704936B1 (en) 2015-12-07 2017-02-09 성균관대학교산학협력단 Block replacement method based on recency, and thereof hybrid strorage system
CN105675541B (en) * 2016-01-13 2018-10-26 中国科学院苏州生物医学工程技术研究所 One kind having axial high-resolution reflective confocal system
KR102366788B1 (en) 2017-05-23 2022-02-23 하마마츠 포토닉스 가부시키가이샤 Orientation characteristic measurement method, orientation characteristic measurement program, and orientation characteristic measurement apparatus
EP3633351B1 (en) * 2017-05-23 2023-03-29 Hamamatsu Photonics K.K. Orientation characteristic measurement method, orientation characteristic measurement program, and orientation characteristic measurement device
KR102486442B1 (en) * 2019-06-07 2023-01-09 주식회사 엘지화학 Device for testing liquid crystal stain of polarizing plate and method for testing liquid crystal stain of polarizing plate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304645A (en) * 1998-04-24 1999-11-05 Nec Corp Anisotropic thin film evaluation method and device
JP2001083042A (en) * 1999-09-13 2001-03-30 Nec Corp Apparatus and method for measurement of optical anisotropy as well as recording medium with recorded measuring method
JP2001165809A (en) * 1999-12-03 2001-06-22 Nec Corp Method and apparatus for evaluating liquid crystal display element
JP2004294293A (en) * 2003-03-27 2004-10-21 Neoark Corp Method for collectively observing and measuring optical characteristics of plurality of different samples
JP2006226995A (en) * 2005-01-24 2006-08-31 Moritex Corp Optical anisotropic parameter measuring method and measuring device
JP2008076324A (en) * 2006-09-25 2008-04-03 Moritex Corp Optical anisotropy parameter measuring apparatus
JP2010060352A (en) * 2008-09-02 2010-03-18 Moritex Corp Method and device for measuring optical anisotropy parameter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3610837B2 (en) * 1998-09-18 2005-01-19 株式会社日立製作所 Sample surface observation method and apparatus, defect inspection method and apparatus
KR101280335B1 (en) * 2005-01-24 2013-07-01 가부시키가이샤 모리텍스 Method and apparatus for measuring optical aeolotropic parameter
CN100507478C (en) * 2007-06-01 2009-07-01 清华大学 Device and method for trace to the source for measuring any wave plate retardation
CN101963495A (en) * 2009-07-24 2011-02-02 瀚宇彩晶股份有限公司 Device and method for measuring physical parameters of aeolotropic substance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304645A (en) * 1998-04-24 1999-11-05 Nec Corp Anisotropic thin film evaluation method and device
JP2001083042A (en) * 1999-09-13 2001-03-30 Nec Corp Apparatus and method for measurement of optical anisotropy as well as recording medium with recorded measuring method
JP2001165809A (en) * 1999-12-03 2001-06-22 Nec Corp Method and apparatus for evaluating liquid crystal display element
JP2004294293A (en) * 2003-03-27 2004-10-21 Neoark Corp Method for collectively observing and measuring optical characteristics of plurality of different samples
JP2006226995A (en) * 2005-01-24 2006-08-31 Moritex Corp Optical anisotropic parameter measuring method and measuring device
JP2008076324A (en) * 2006-09-25 2008-04-03 Moritex Corp Optical anisotropy parameter measuring apparatus
JP2010060352A (en) * 2008-09-02 2010-03-18 Moritex Corp Method and device for measuring optical anisotropy parameter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012050857; 安田哲二: '反射率差分光法:測定装置と結晶成長その場測定への応用' 固体物理 第34巻、第2号, 19990215, 第99-109頁, 株式会社アグネ技術センター *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104280211A (en) * 2013-07-05 2015-01-14 肖特茉丽特株式会社 Optical anisotropic parameter measurement device, measurement method and measurement program
WO2018207488A1 (en) * 2017-05-09 2018-11-15 ソニー株式会社 Optical constant measurement device and optical constant measurement method
CN109141828A (en) * 2018-07-19 2019-01-04 中国科学院上海光学精密机械研究所 Liquid crystal device phase modulating properties measuring device and measurement method
JP2021139873A (en) * 2020-03-03 2021-09-16 株式会社コエムエスCo−Ms Co., Ltd. Monitoring device and method of semiconductor substrate protection film peeling

Also Published As

Publication number Publication date
TWI545309B (en) 2016-08-11
WO2012141061A3 (en) 2012-12-06
JP5806837B2 (en) 2015-11-10
TW201250228A (en) 2012-12-16
CN103477206A (en) 2013-12-25
CN103477206B (en) 2015-11-25
KR20140011346A (en) 2014-01-28
KR101594982B1 (en) 2016-02-17
WO2012141061A2 (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP5806837B2 (en) Optical anisotropy parameter measuring device, measuring method and measuring program
JP4921090B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
US8009292B2 (en) Single polarizer focused-beam ellipsometer
TWI384213B (en) Method and device for measuring optical anisotropy parameter
TWI591322B (en) Birefringence measurement apparatus, birefringence measurement method, film inspection apparatus, and film inspection method
CN110687051B (en) Detection equipment and method
CN110702614B (en) Ellipsometer device and detection method thereof
KR20140024811A (en) Pattern inspecting device
US8547557B2 (en) Apparatus for determining a height map of a surface through both interferometric and non-interferometric measurements
JP2006226995A (en) Optical anisotropic parameter measuring method and measuring device
JPH11173946A (en) Optical characteristic measuring apparatus
CN219694503U (en) Device for measuring radial misalignment distance of light beams in double-beam optical trap
JP2011127993A (en) Apparatus and method for lens inspection
JP4728830B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
TWI542864B (en) A system for measuring anisotropy, a method for measuring anisotropy and a calibration method thereof
TWI482958B (en) Detecting apparatus and detecting method
JP2001083042A (en) Apparatus and method for measurement of optical anisotropy as well as recording medium with recorded measuring method
KR102045442B1 (en) Ellipsometer
TW202349067A (en) Multi-directional inspection system for mura detection and the method thereof
CN116519711A (en) Inspection method
CN117705727A (en) Anisotropic second harmonic detection device
JP2005283552A (en) Birefringence measurement device and birefringence measurement method
CN116420101A (en) Inspection method
CN114441454A (en) Polarization resolution second harmonic testing device and method
TW200839224A (en) Polarizer inspection device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150907

R150 Certificate of patent or registration of utility model

Ref document number: 5806837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees