JP2012214840A - Method for manufacturing metal foil with electric resistance layer - Google Patents

Method for manufacturing metal foil with electric resistance layer Download PDF

Info

Publication number
JP2012214840A
JP2012214840A JP2011080614A JP2011080614A JP2012214840A JP 2012214840 A JP2012214840 A JP 2012214840A JP 2011080614 A JP2011080614 A JP 2011080614A JP 2011080614 A JP2011080614 A JP 2011080614A JP 2012214840 A JP2012214840 A JP 2012214840A
Authority
JP
Japan
Prior art keywords
resistance layer
metal foil
electric resistance
oxygen
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011080614A
Other languages
Japanese (ja)
Inventor
Toshio Kurosawa
俊雄 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011080614A priority Critical patent/JP2012214840A/en
Publication of JP2012214840A publication Critical patent/JP2012214840A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing metal foil with an electric resistance layer, in which a sheet resistance value is high and the influence of variation is low in the resistance value caused by manufacturing processing upon production of a resistive element.SOLUTION: The method for manufacturing the metal foil with the electric resistance layer includes a step of forming the electric resistance layer by vapor growth method while applying oxygen as an atmosphere gas, on the metal foil having a surface where the average roughness of ten points measured by an optical method is adjusted to 4.0 to 6.0 μm, using a sputtering target containing nickel, chromium, and silicon.

Description

本発明は電気抵抗層付き金属箔の製造方法に関し、例えば、回路基板の表面又は内部に搭載可能な抵抗素子として利用可能な電気抵抗層付き金属箔の製造方法に関する。   The present invention relates to a method for manufacturing a metal foil with an electric resistance layer, for example, a method for manufacturing a metal foil with an electric resistance layer that can be used as a resistance element that can be mounted on the surface or inside of a circuit board.

最近、配線材料である銅箔上に更に電気抵抗材料からなる薄膜(電気抵抗層)を形成する技術が提案されている(例えば特許文献1、2参照)。電子回路基板には電気抵抗素子が不可欠であるが、抵抗層を備えた銅箔を使用すれば銅箔上に形成された電気抵抗層をエッチングすることで抵抗素子が形成できる。抵抗の基板内蔵化により、従来のようにチップ抵抗素子を半田接合法を用いて基板上に表面実装する手法しかなかった場合に比べて、限られた基板の表面積を有効に利用することが可能となる。電気抵抗層としては、従来、例えばNiCr等の金属材料の抵抗体を使用することで、10ohm/sq〜250ohm/sq程度のシート抵抗値を得ていた。   Recently, a technique for forming a thin film (electric resistance layer) made of an electric resistance material on a copper foil as a wiring material has been proposed (see, for example, Patent Documents 1 and 2). An electrical resistance element is indispensable for an electronic circuit board, but if a copper foil provided with a resistance layer is used, the resistance element can be formed by etching the electrical resistance layer formed on the copper foil. By incorporating resistors into the board, it is possible to effectively use the limited surface area of the board compared to the conventional method of mounting the chip resistor element on the board using the solder bonding method. It becomes. Conventionally, as the electric resistance layer, a sheet resistance value of about 10 ohm / sq to about 250 ohm / sq has been obtained by using a resistor made of a metal material such as NiCr.

しかしながら近年は、NiCr等の従来の金属材料で実現可能なシート抵抗値よりも、より高い抵抗値が要求されている。更に、NiCr等の従来の金属材料を用いると、抵抗素子を形成する際のエッチング液やエッチング選択性の影響、或いは、抵抗素子を形成した後の半田リフロー等の高温処理を行うことにより、強度の低下や最終的に得られる抵抗素子のシート抵抗値が所望の値から大きくずれる場合があり、十分な信頼性が得られない場合がある。   However, in recent years, higher resistance values are required than sheet resistance values that can be realized with conventional metal materials such as NiCr. In addition, when a conventional metal material such as NiCr is used, the strength of the resist can be increased by performing high-temperature treatment such as the influence of an etching solution or etching selectivity when forming the resistance element, or solder reflow after the resistance element is formed. Or the sheet resistance value of the finally obtained resistance element may be greatly deviated from a desired value, and sufficient reliability may not be obtained.

特許第3311338号公報Japanese Patent No. 331338 特許第3452557号公報Japanese Patent No. 3425557

上記課題を鑑み、本発明は、高いシート抵抗値を実現でき、抵抗素子作製時の製造工程による抵抗値の変動の影響が小さい電気抵抗層付き金属箔の製造方法を提供する。   In view of the above problems, the present invention provides a method for producing a metal foil with an electric resistance layer that can realize a high sheet resistance value and is less affected by a variation in resistance value due to a production process during the production of a resistance element.

上記課題を解決するために、本発明者が鋭意検討した結果、適切な金属箔上に、電気抵抗層として従来のNiCr等の金属合金層よりも固有値抵抗値が高い適切な材料をスパッタリングターゲットとして使用し、且つ電気抵抗層の製造時に雰囲気ガスとして酸素を付与することが有効であるとの知見を得た。   In order to solve the above-mentioned problems, the present inventors diligently studied, and as a sputtering target, an appropriate material having an eigenvalue resistance higher than that of a conventional metal alloy layer such as NiCr as an electric resistance layer on an appropriate metal foil. It was found that it is effective to use oxygen as an atmospheric gas during the production of the electric resistance layer.

かかる知見を基礎として完成した本発明は一側面において、光学的方法で測定した十点平均粗さが4.0〜6.0μmに調整した表面を有する金属箔上に、ニッケル、クロム、シリコンを含むスパッタリングターゲットを用いて、雰囲気気体として酸素を付与しながら気相成長法により電気抵抗層を形成させる工程を含む電気抵抗層付き金属箔の製造方法である。   In one aspect, the present invention completed on the basis of such knowledge, on a metal foil having a surface with a ten-point average roughness measured by an optical method adjusted to 4.0 to 6.0 μm, nickel, chromium, and silicon are provided. The manufacturing method of the metal foil with an electrical resistance layer including the process of forming an electrical resistance layer by a vapor phase growth method, providing oxygen as atmospheric gas using the sputtering target containing.

本発明の電気抵抗層付き金属箔の製造方法は一実施態様において、電気抵抗層を形成させる工程が、電気抵抗層中の酸素濃度が20〜60at%となるように、雰囲気気体の酸素付与量を制御することを含む。   In one embodiment of the method for producing a metal foil with an electric resistance layer of the present invention, the amount of oxygen applied to the atmospheric gas is such that the step of forming the electric resistance layer has an oxygen concentration of 20 to 60 at% in the electric resistance layer. Including controlling.

本発明の電気抵抗層付き金属箔の製造方法は別の一実施態様において、スパッタリングターゲットが、NiCrSi合金又はNiCrSiO合金を含む。   In another embodiment of the method for producing a metal foil with an electric resistance layer of the present invention, the sputtering target contains a NiCrSi alloy or a NiCrSiO alloy.

本発明の電気抵抗層付き金属箔の製造方法は更に別の一実施態様において、Niが2〜10at%、CrとSiの構成比率(Cr/(Cr+Si)×100[%])においてCrが73〜79at%、Oが10〜60at%含むスパッタリングターゲットを用いる。   In still another embodiment of the method for producing a metal foil with an electric resistance layer of the present invention, Ni is 2 to 10 at%, and Cr and Si are in a composition ratio (Cr / (Cr + Si) × 100 [%]) of 73. A sputtering target containing ˜79 at% and O of 10 to 60 at% is used.

本発明の電気抵抗層付き金属箔の製造方法は更に別の一実施態様において、雰囲気気体として酸素を0〜19vol%(0は含まない)付与することを含む。   In still another embodiment, the method for producing a metal foil with an electric resistance layer according to the present invention includes adding 0 to 19 vol% (not including 0) of oxygen as an atmospheric gas.

本発明の電気抵抗層付き金属箔の製造方法は更に別の一実施態様において、金属箔が電解銅箔又は圧延銅箔である。   In another embodiment of the method for producing a metal foil with an electric resistance layer of the present invention, the metal foil is an electrolytic copper foil or a rolled copper foil.

本発明によれば、高いシート抵抗値を実現でき、抵抗素子作製時の製造工程による抵抗値の変動の影響が小さい電気抵抗層付き金属箔の製造方法が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, a high sheet resistance value can be implement | achieved and the manufacturing method of the metal foil with an electrical resistance layer with a small influence of the fluctuation | variation of resistance value by the manufacturing process at the time of resistance element preparation can be provided.

本発明の実施の形態に係る電気抵抗層付き金属箔の製造方法は、光学的方法で測定した十点平均粗さRzを4.0〜6.0μmに調整した金属箔上に、ニッケル、クロム、シリコンを含むスパッタリングターゲットを用いて、雰囲気気体として酸素を付与しながら気相成長法により電気抵抗層を形成させる工程を含む。   The manufacturing method of the metal foil with an electric resistance layer according to the embodiment of the present invention includes nickel, chromium on a metal foil whose ten-point average roughness Rz measured by an optical method is adjusted to 4.0 to 6.0 μm. And a step of forming an electric resistance layer by a vapor phase growth method while applying oxygen as an atmospheric gas using a sputtering target containing silicon.

金属箔としては、例えば電解銅箔又は圧延銅箔を用いることができる。本実施形態の「銅箔」とは、銅箔の他に銅合金箔も含まれるものとする。なお、金属箔として電解銅箔を用いる場合は一般的な電解装置を用いて製造することが出来る。金属箔の厚みにも特に制限はないが、例えば箔厚が5〜70μm、特に箔厚が5〜35μmの金属箔が使用できる。   As the metal foil, for example, an electrolytic copper foil or a rolled copper foil can be used. The “copper foil” in this embodiment includes a copper alloy foil in addition to the copper foil. In addition, when using electrolytic copper foil as metal foil, it can manufacture using a general electrolytic device. Although there is no restriction | limiting in particular also in the thickness of metal foil, For example, foil thickness is 5-70 micrometers, Especially metal foil with foil thickness of 5-35 micrometers can be used.

金属箔は、少なくとも一方の表面が、光学的方法で測定した十点平均粗さRzが4.0〜6.0μmとなるように、粗化メッキ等の表面処理により調整される。これにより、金属箔上に積層される電気抵抗層と基材との接着強度を保った状態で、電気抵抗層のシート抵抗値のばらつきを小さくことができる。電解銅箔の光沢面又は圧延銅箔を表面処理する場合には、光学的方法で測定した十点平均粗さRzが4.0〜6.0μmとなるように、節こぶ状の粒子を付着させるような粗化処理を行うことが好ましい。ここで、「光学的方法で測定した十点平均粗さRzが4.0〜6.0μm」の処理表面とは、0.2μm×0.2μm以下の分解能を持ち、光干渉式による光学的表面形状測定装置で測定した場合に得られる十点平均粗さRzの値を有する表面を意味する。   At least one surface of the metal foil is adjusted by surface treatment such as roughening plating so that the ten-point average roughness Rz measured by an optical method is 4.0 to 6.0 μm. Thereby, the dispersion | variation in the sheet resistance value of an electrical resistance layer can be made small in the state which maintained the adhesive strength of the electrical resistance layer laminated | stacked on metal foil, and a base material. When surface treatment is performed on the glossy surface of rolled copper foil or rolled copper foil, knot-like particles are adhered so that the ten-point average roughness Rz measured by an optical method is 4.0 to 6.0 μm. It is preferable to perform such roughening treatment. Here, the treated surface having a “10-point average roughness Rz measured by an optical method of 4.0 to 6.0 μm” has a resolution of 0.2 μm × 0.2 μm or less, and is an optical surface by an optical interference method. It means a surface having a value of ten-point average roughness Rz obtained when measured with a surface shape measuring device.

即ち、光干渉的表面形状測定装置により得られた粗さ曲線から、その平均線の方向に基準長さだけを抜き取り、この抜取り部分の平均線から縦倍率の方向に測定した最も高い山頂から5番目までの山頂の標高の絶対値の平均値と、最も低い谷底から5番目までの谷底の標高の絶対値の平均値との和を求め、この値をマイクロメートル(μm)で表した値で規定した場合の値を十点平均粗さRzとして定義するものである。   That is, from the roughness curve obtained by the optical interference surface shape measuring device, only the reference length is extracted in the direction of the average line, and 5 from the highest peak measured in the direction of the vertical magnification from the average line of the extracted portion. Calculate the sum of the absolute value of the altitude at the top of the summit up to the average of the absolute values of the altitude at the bottom of the bottom from the lowest valley to the fifth, and express this value in micrometers (μm). The defined value is defined as the ten-point average roughness Rz.

この測定方法を採用することにより、金属箔表面の表面粗さと抵抗層の抵抗値の相関関係をより具体的に把握することができる。言い換えれば、この測定方法によれば、平均粗さRzを所定の範囲内で大きくするにつれて一次関数的に抵抗層の抵抗値も上昇する傾向を評価できるため、製造者が、目標とする電気抵抗値に合わせて抵抗層の平均粗さRzを制御することにより、所望の電気抵抗値を有する抵抗層をより安定的に製造できる。   By adopting this measurement method, the correlation between the surface roughness of the metal foil surface and the resistance value of the resistance layer can be more specifically grasped. In other words, according to this measurement method, it is possible to evaluate the tendency that the resistance value of the resistance layer also increases linearly as the average roughness Rz is increased within a predetermined range. By controlling the average roughness Rz of the resistance layer according to the value, a resistance layer having a desired electric resistance value can be manufactured more stably.

光干渉的表面形状測定機器としては、非接触3次元表面形状粗さ測定システム、品番NT1100(WYKOオプティカルプロファイラ(分解能0.2μm×0.2μm以下:Veeco社製))を用いることができる。システムの測定方式は、垂直走査型干渉方式(Vertical Scan Interferometry/VSI方式)であり、視野範囲は120μm×90μm、測定スキャン濃度が7.2μm/secである。干渉方式は、ミラウ干渉方式(対物レンズ50倍、内部レンズ1倍)である。   As the optical interference surface shape measuring instrument, a non-contact three-dimensional surface shape measuring system, product number NT1100 (WYKO optical profiler (resolution 0.2 μm × 0.2 μm or less: manufactured by Veeco)) can be used. The measurement method of the system is a vertical scanning interferometry (VSI method), the visual field range is 120 μm × 90 μm, and the measurement scan density is 7.2 μm / sec. The interference method is a Mirau interference method (objective lens 50 times, internal lens 1 time).

金属箔の表面処理を行った後は、表面処理後の金属箔の表面上に、気相反応法により電気抵抗層が形成される。気相反応法としては、スパッタリング装置等を用いた物理気相反応法が好適に用いられる。スパッタリング装置を用いる場合、スパッタリング装置の真空チャンバ内には、金属箔とスパッタリングターゲットが載置される。   After the surface treatment of the metal foil, an electric resistance layer is formed on the surface of the metal foil after the surface treatment by a gas phase reaction method. As the gas phase reaction method, a physical gas phase reaction method using a sputtering apparatus or the like is preferably used. In the case of using a sputtering apparatus, a metal foil and a sputtering target are placed in a vacuum chamber of the sputtering apparatus.

スパッタリングターゲットの材料としては、電気抵抗層を形成した場合にNiCr合金よりも高い固有値抵抗値を示す金属材料を用いることが好ましく、例えば、ニッケル(Ni)、クロム(Cr)、シリコン(Si)を含むスパッタリングターゲットを用いることができる。Ni、Cr、Siを含むスパッタリングターゲット材料としては、以下に制限されないが、例えばNiCrSi合金、NiCrSiO合金などが利用可能である。Ni、Cr、Siを含むスパッタリングターゲット材料を使用することで、NiCr合金、或いはNiSiO合金等をスパッタリングターゲット材料とした場合に比べて、得られる電気抵抗層の高抵抗化及びシート抵抗値のバラツキの低減が図れるとともに、電気抵抗層の強度を向上させることができる。   As the material of the sputtering target, it is preferable to use a metal material that exhibits a higher specific resistance value than the NiCr alloy when the electric resistance layer is formed. For example, nickel (Ni), chromium (Cr), or silicon (Si) is used. Including sputtering targets can be used. The sputtering target material containing Ni, Cr, and Si is not limited to the following. For example, a NiCrSi alloy, a NiCrSiO alloy, or the like can be used. By using a sputtering target material containing Ni, Cr, Si, compared to the case where NiCr alloy, NiSiO alloy or the like is used as the sputtering target material, the resistance of the obtained electric resistance layer is increased and the sheet resistance value varies. Reduction can be achieved and the strength of the electric resistance layer can be improved.

なお、スパッタリングターゲット中にNiを含有させると、Niを含まない酸化物系電気抵抗層(Cr−Si−O)に比べ、機械的強度、特に曲げ性を向上させる効果がある。Ni含有量が少なすぎると機械的強度が低下する場合がある。このため、酸化物系電気抵抗層形成時には、得られる電気抵抗層中のNi濃度が適量(例えば1〜14atm%)含まれるように、製造条件及びスパッタリングターゲット材料の組成を調整するのが好ましい。電気抵抗層中に適量のNiを含むことで、半田リフローなどの抵抗素子作成時の製造工程により回路基板に高温を付加した場合でも、高温付加前の抵抗値と比べてシート抵抗値の変動の小さい抵抗素子を作製することができる。また、スパッタリングターゲット中にNi、Crに加えてSiを含有させることで、Siを含まないNiCr合金をスパッタリングターゲットとして用いた場合に比べてシート抵抗値を向上させることができる。   Note that when Ni is contained in the sputtering target, there is an effect of improving mechanical strength, particularly bendability, as compared with an oxide-based electrical resistance layer (Cr—Si—O) not containing Ni. If the Ni content is too small, the mechanical strength may decrease. For this reason, it is preferable to adjust the manufacturing conditions and the composition of the sputtering target material so that an appropriate amount (for example, 1 to 14 atm%) of the Ni concentration in the obtained electrical resistance layer is included when forming the oxide electrical resistance layer. By including an appropriate amount of Ni in the electrical resistance layer, even when a high temperature is applied to the circuit board by a manufacturing process when creating a resistance element such as solder reflow, the sheet resistance value fluctuates compared to the resistance value before the high temperature application. A small resistance element can be manufactured. Further, by adding Si in addition to Ni and Cr in the sputtering target, the sheet resistance value can be improved as compared with the case where a NiCr alloy not containing Si is used as the sputtering target.

また、本実施形態では、電気抵抗層形成時に酸素供給量を調節することにより、電気抵抗層中の酸素濃度を好適な範囲に調整でき、電気抵抗層の固有抵抗値を制御することが可能である。よって、スパッタリングターゲット材料の具体的組成に特に制限はなく、金属ターゲットであっても、酸化物ターゲットであってもよく、種々のスパッタリングターゲット材料を用いることができる。本発明によれば、スパッタリングターゲット材料を変更することなく、所望の固有抵抗値を有する電気抵抗層を形成することができるため、生産効率を向上できる。   In this embodiment, by adjusting the oxygen supply amount when forming the electrical resistance layer, the oxygen concentration in the electrical resistance layer can be adjusted to a suitable range, and the specific resistance value of the electrical resistance layer can be controlled. is there. Therefore, the specific composition of the sputtering target material is not particularly limited, and may be a metal target or an oxide target, and various sputtering target materials can be used. According to the present invention, since an electric resistance layer having a desired specific resistance value can be formed without changing the sputtering target material, the production efficiency can be improved.

以下に制限されるものではないが、例えば、スパッタリングターゲット材料としてNiCrSiO合金を使用する場合は、Niが2〜10at%(atomic %)、CrとSiの構成比率(Cr/(Cr+Si)×100[%])においてCrが73〜79at%、Oが10〜60at%含み、より好ましくはNiが2〜5at%、CrとSiの構成比率(Cr/(Cr+Si)×100[%])においてCrが76at%、Oが10〜60at%含む材料が好適に用いられる。   Although not limited to the following, for example, when a NiCrSiO alloy is used as the sputtering target material, Ni is 2 to 10 at% (atomic%), and the composition ratio of Cr and Si (Cr / (Cr + Si) × 100 [ %]), Cr is 73 to 79 at%, O is 10 to 60 at%, more preferably Ni is 2 to 5 at%, and Cr is contained in the constituent ratio of Cr and Si (Cr / (Cr + Si) × 100 [%]). A material containing 76 at% and 10 to 60 at% of O is preferably used.

真空チャンバ内には、雰囲気気体として不活性ガスと反応性ガスが供給される。不活性ガスとしてはアルゴン(Ar)、窒素(N2)等が好適である。反応性ガスとしては、酸素ガスが用いられる。 In the vacuum chamber, an inert gas and a reactive gas are supplied as atmospheric gases. As the inert gas, argon (Ar), nitrogen (N 2 ) and the like are suitable. Oxygen gas is used as the reactive gas.

酸素ガスは、最終的に得られる電気抵抗層中の酸素濃度が20〜60at%となるように、酸素付与量を制御することが好ましい。「電気抵抗層中の酸素濃度」とは、X線光電子分光法等により、電気抵抗層中の表面を数分程度アルゴンスパッタした後、極表面(深さ数nm程度)の酸素濃度を測定した場合の酸素濃度を意味する。電気抵抗層中の酸素濃度が20at%より小さい場合には、電気抵抗層のシート抵抗値が有意に向上しない場合がある。一方、電気抵抗層中の酸素濃度が60at%より大きい場合には、電気抵抗層が透明なガラス状になり所望の特性が得られない場合がある。   It is preferable that the oxygen application amount of the oxygen gas is controlled so that the oxygen concentration in the finally obtained electric resistance layer is 20 to 60 at%. “Oxygen concentration in the electrical resistance layer” means that the surface of the electrical resistance layer was argon sputtered for several minutes by X-ray photoelectron spectroscopy or the like, and then the oxygen concentration at the extreme surface (a depth of several nm) was measured. Means the oxygen concentration in the case. When the oxygen concentration in the electrical resistance layer is less than 20 at%, the sheet resistance value of the electrical resistance layer may not be significantly improved. On the other hand, when the oxygen concentration in the electrical resistance layer is higher than 60 at%, the electrical resistance layer may be a transparent glass, and desired characteristics may not be obtained.

以下の例に制限されないが、例えば、スパッタリングターゲットとして、Niが4at%、Crが60at%、SiOが36at%のNiCrSiO合金を用いて電気抵抗層を蒸着させる場合は、真空チャンバ内に0〜19vol%(0は含まない)、好ましくは2〜17vol%程度のガス中酸素比率で酸素を付与することで電気抵抗層中の酸素濃度を20〜60at%に制御できる。   Although not limited to the following examples, for example, when an electric resistance layer is deposited using a NiCrSiO alloy of 4 at% Ni, 60 at% Cr, and 36 at% SiO as a sputtering target, 0 to 19 vol. The oxygen concentration in the electric resistance layer can be controlled to 20 to 60 at% by applying oxygen at a gas oxygen ratio of about 1% (not including 0), preferably about 2 to 17 vol%.

スパッタリングの際に導入する酸素濃度に変動があると、電気抵抗層中のシート抵抗値のバラツキが大きくなる場合がある。そのため、スパッタリング時の真空チャンバ内への酸素付与量は厳密に管理することが好ましい。例えば、電気抵抗層のシート抵抗値のバラツキを±5%以内とするためには、真空チャンバ内の酸素濃度の変位を0.5%以内、より好ましくは0.3%以内となるように管理することが好ましい。濃度管理は、例えば、マスフローコントローラー等を用いることで、±0.1%程度に管理することができる。   If the oxygen concentration introduced during sputtering varies, the sheet resistance value in the electric resistance layer may vary widely. Therefore, it is preferable to strictly manage the amount of oxygen applied to the vacuum chamber during sputtering. For example, in order to keep the variation of the sheet resistance value of the electric resistance layer within ± 5%, the displacement of the oxygen concentration in the vacuum chamber is controlled to be within 0.5%, more preferably within 0.3%. It is preferable to do. Concentration management can be managed to about ± 0.1% by using, for example, a mass flow controller.

本発明の実施の形態に係る電気抵抗層付き金属箔を回路基板内に組み込む際は、例えば、回路基板上に電気抵抗層付き金属箔の電気抵抗層側を接触させ、熱圧着等により回路基板と電気抵抗層付き金属箔とを接合する。次いで、金属箔上にフォトレジスト膜をスピン塗布し、フォトリソグラフィ技術を用いてパターニングする。次いで、反応性イオンエッチング(RIE)等でパターニングされたフォトレジスト膜をエッチングマスクとして金属箔及び電気抵抗層の一部を除去し、フォトレジスト膜を除去する。回路基板上に残る金属箔上に更にフォトレジスト膜をスピン塗布し、フォトリソグラフィ技術を用いて抵抗素子の長さ、表面積に準じた形状にパターニングする。パターニングされたフォトレジスト膜をエッチングマスクとして金属箔を除去し、フォトレジスト膜を除去することによって、回路基板上に抵抗素子を形成する。その後公知の多層配線技術により抵抗素子上に絶縁層及び配線層を形成すれば、回路基板内に抵抗素子が埋設できる。   When incorporating the metal foil with an electric resistance layer according to the embodiment of the present invention into the circuit board, for example, the circuit board is brought into contact with the electric resistance layer side of the metal foil with the electric resistance layer on the circuit board by thermocompression bonding or the like. And a metal foil with an electric resistance layer are joined. Next, a photoresist film is spin-coated on the metal foil, and is patterned using a photolithography technique. Next, using the photoresist film patterned by reactive ion etching (RIE) or the like as a mask, the metal foil and a part of the electric resistance layer are removed, and the photoresist film is removed. A photoresist film is further spin-coated on the metal foil remaining on the circuit board, and is patterned into a shape corresponding to the length and surface area of the resistance element using a photolithography technique. The metal foil is removed using the patterned photoresist film as an etching mask, and the photoresist film is removed, thereby forming a resistance element on the circuit board. Thereafter, if an insulating layer and a wiring layer are formed on the resistance element by a known multilayer wiring technique, the resistance element can be embedded in the circuit board.

(その他の実施の形態)
上記のように本発明の実施の形態を記載したが、この開示の一部をなす論述及び図面は本発明を限定するものではなく、この開示から当業者にはさまざまな代替実施の形態及び運用技術が明らかとなろう。例えば、金属箔と電気抵抗層との密着性をより高めるために、金属箔上に例えば特願2009−503343号に開示されるような任意の合金層(銅−亜鉛合金層と安定化層)を形成させても構わない。このように、本発明はここでは明示していない様々な態様を含むことは勿論であり、実施段階においてはその要旨を逸脱しない範囲において変形して具体化され得る。
(Other embodiments)
Although the embodiments of the present invention have been described above, the descriptions and drawings that form part of this disclosure are not intended to limit the present invention, and various alternative embodiments and operations will be apparent to those skilled in the art from this disclosure. The technology will be clear. For example, in order to further improve the adhesion between the metal foil and the electric resistance layer, any alloy layer (copper-zinc alloy layer and stabilization layer) disclosed in Japanese Patent Application No. 2009-503343 is formed on the metal foil. May be formed. As described above, the present invention naturally includes various modes that are not explicitly described herein, and can be embodied by being modified without departing from the scope of the invention when it is practiced.

以下に本発明の実施例を示すが、以下の実施例に本発明が限定されることを意図するものではない。   Examples of the present invention are shown below, but the present invention is not intended to be limited to the following examples.

−酸化物抵抗体(NiCrSiO合金)と金属抵抗体(NiCr合金)の評価−
以下の実施例及び比較例に示す各サンプルは、電気抵抗層スパッタのために、CHA社製Vaccume WEB Chamber(14inch幅)を使用して作製した。
-Evaluation of oxide resistors (NiCrSiO alloy) and metal resistors (NiCr alloy)-
Each sample shown in the following Examples and Comparative Examples was prepared using a Vacuum Web Chamber (14 inch width) manufactured by CHA for electrical resistance layer sputtering.

厚さ18μmの電解銅箔を用意した。金属箔の表面(粗面)の光学的方法で測定した十点平均粗さRzは、5.1μmであった。上述のスパッタ装置を用いて、ラインスピード0.18m/min、スパッタ電力2.8kWに調整し、実施例1及び比較例1については、4質量at%ニッケル(Ni)と60at%クロム(Cr)と18at%シリコン(Si)と18at%酸素(O)とよりなるスパッタリングターゲットを用い、比較例2〜3については、78質量at%ニッケル(Ni)と22at%クロム(Cr)よりなるスパッタリングターゲットを用いてスパッタリングを行い、銅箔上に電気抵抗層を形成した。この際、雰囲気ガスとしてアルゴンガス(Ar)を使用し、実施例1および比較例3については反応ガスとして酸素(O2)を表1に示す条件で真空チャンバ内に導入し、チャンバ内圧が5×10-3Toll前後となるよう(総供給ガス量(Ar+O2)でおよそ75sccm)に調整した。実施例1及び比較例1〜3の電気抵抗層上に、エポキシ樹脂をガラスクロスに含浸させたエポキシ基材(プリプレグ:パナソニック電工製R−1661)を熱圧着により接合させ、表面の銅箔層のみをアルカリエッチングにて溶解除去し、表面に露出した電気抵抗層のシート抵抗値を四探針法により測定した。また、酸素を付与しなかった比較例1および比較例2に対して、酸素を付与した実施例1および比較例3の、シート抵抗値の増加率を、(酸素付与有り抵抗値)/(酸素付与無し抵抗値)x100[%]としてそれぞれ算出した。結果を表1に示す。 An electrolytic copper foil having a thickness of 18 μm was prepared. The ten-point average roughness Rz measured by an optical method on the surface (rough surface) of the metal foil was 5.1 μm. Using the above-described sputtering apparatus, the line speed was adjusted to 0.18 m / min and the sputtering power was 2.8 kW. For Example 1 and Comparative Example 1, 4 mass at% nickel (Ni) and 60 at% chromium (Cr). For Comparative Examples 2 to 3, a sputtering target made of 78 mass at% nickel (Ni) and 22 at% chromium (Cr) was used, and a sputtering target made of 18 at% silicon (Si) and 18 at% oxygen (O) was used. Sputtering was used to form an electric resistance layer on the copper foil. At this time, argon gas (Ar) is used as the atmospheric gas, and in Example 1 and Comparative Example 3, oxygen (O 2 ) is introduced as a reaction gas into the vacuum chamber under the conditions shown in Table 1, and the chamber internal pressure is 5 It was adjusted to approximately 10-3 Toll (approximately 75 sccm in terms of total supply gas amount (Ar + O 2 )). An epoxy base material (prepreg: R-1661 manufactured by Panasonic Electric Works) impregnated with glass cloth with an epoxy resin was joined to the electric resistance layers of Example 1 and Comparative Examples 1 to 3 by thermocompression bonding, and a copper foil layer on the surface The sheet resistance value of the electrical resistance layer exposed on the surface was measured by a four-probe method. Moreover, the increase rate of the sheet resistance value of Example 1 and Comparative Example 3 to which oxygen was applied is compared with Comparative Example 1 and Comparative Example 2 to which oxygen was not applied, (resistance value with oxygen application) / (oxygen) (Resistance value without application) x100 [%]. The results are shown in Table 1.

Figure 2012214840
Figure 2012214840

表1に示すように、NiCrSiOターゲットを用いて酸素を付与した実施例1ではおよそ6000Ω/sqと高抵抗の電気抵抗層を形成することができた。一方でNiCrターゲットを用いた比較例2〜3では、およそ30Ω/sqと、シート抵抗値の低い電気抵抗層しか得られなかった。また、同じ15.3vol%の酸素を付与したスパッタ条件下でも、NiCrSiOターゲットを用いた実施例1では、酸素を付与しない場合の9倍以上のシート抵抗値を示したのに対し、NiCrターゲットを用いた比較例3では、シート抵抗値はおよそ2割程度しか上昇しなかった。   As shown in Table 1, in Example 1 in which oxygen was applied using a NiCrSiO target, an electric resistance layer having a high resistance of about 6000 Ω / sq could be formed. On the other hand, in Comparative Examples 2 to 3 using a NiCr target, only an electric resistance layer having a low sheet resistance value of about 30Ω / sq was obtained. Further, even in the sputtering conditions in which the same 15.3 vol% oxygen was applied, in Example 1 using the NiCrSiO target, the sheet resistance value was 9 times or more that when oxygen was not applied, whereas the NiCr target was In Comparative Example 3 used, the sheet resistance value increased only by about 20%.

−半田フロー前後の電気抵抗層の抵抗値変動の影響−
実施例1の電解銅箔と同様の方法で形成した厚さ18μm、十点平均粗さRzが5.1μmの電解銅箔に対して、at%比でNi/Cr/SiO=4/60/36からなるスパッタリングターゲットを用いて、表2に示すラインスピード及びスパッタ電力でスパッタリングを行った。この際、雰囲気ガスとしてアルゴンガスを使用し、反応ガスとして酸素を表2に示す条件で真空チャンバ内に導入し、チャンバ内圧が5×10-3Toll前後となるよう(総供給ガス供給量が75sccm)に調整して電気抵抗層を作製し、実施例2、3、比較例4とした。次いで、実施例2、3、比較例4を用いてエポキシ樹脂基板と積層し、片面基板を作製し、その後エッチングにより抵抗素子を作製し、得られた抵抗素子の半田リフロー前後の電気抵抗値を測定した。結果を表2に示す。
−Effect of resistance value fluctuation of electrical resistance layer before and after solder flow−
With respect to the electrolytic copper foil having a thickness of 18 μm and a ten-point average roughness Rz of 5.1 μm formed by the same method as the electrolytic copper foil of Example 1, Ni / Cr / SiO = 4/60 / Sputtering was performed at a line speed and sputtering power shown in Table 2 using a sputtering target consisting of 36. At this time, argon gas is used as the atmosphere gas, and oxygen is introduced as a reaction gas into the vacuum chamber under the conditions shown in Table 2, so that the chamber internal pressure becomes around 5 × 10 −3 Toll (total supply gas supply amount is The electric resistance layer was prepared by adjusting to 75 sccm), and Examples 2, 3 and Comparative Example 4 were obtained. Next, using Examples 2, 3 and Comparative Example 4 and laminating with an epoxy resin substrate, a single-sided substrate was produced, and then a resistance element was produced by etching, and the electrical resistance value before and after solder reflow of the obtained resistance element was obtained. It was measured. The results are shown in Table 2.

Figure 2012214840
Figure 2012214840

表2に示すように、スパッタ時にO2を付与した実施例2、3の電気抵抗層はいずれも、スパッタ時にO2を付与しない比較例4に比べて、半田フロー前後の抵抗値の変化率が小さくなった。 As shown in Table 2, both the electric resistance layer of Example 2 was applied to O 2 during sputtering, as compared with Comparative Example 4 that does not impart O 2 in sputtering, the change rate of the resistance values before and after the solder flow Became smaller.

Claims (6)

光学的方法で測定した十点平均粗さが4.0〜6.0μmに調整した表面を有する金属箔上に、ニッケル、クロム、シリコンを含むスパッタリングターゲットを用いて、雰囲気気体として酸素を付与しながら気相成長法により電気抵抗層を形成させる工程を含む電気抵抗層付き金属箔の製造方法。   Using a sputtering target containing nickel, chromium and silicon on a metal foil having a surface whose ten-point average roughness measured by an optical method is adjusted to 4.0 to 6.0 μm, oxygen is given as an atmospheric gas. A method for producing a metal foil with an electric resistance layer, including a step of forming an electric resistance layer by a vapor phase growth method. 前記電気抵抗層を形成させる工程が、前記電気抵抗層中の酸素濃度が20〜60at%となるように、雰囲気気体の酸素付与量を制御することを含む請求項1に記載の電気抵抗層付き金属箔の製造方法。   The step of forming the electric resistance layer includes controlling the oxygen application amount of the atmospheric gas so that the oxygen concentration in the electric resistance layer is 20 to 60 at%. Manufacturing method of metal foil. 前記スパッタリングターゲットが、NiCrSi合金又はNiCrSiO合金を含む請求項1又は2に記載の電気抵抗層付き金属箔の製造方法。   The manufacturing method of the metal foil with an electrical resistance layer of Claim 1 or 2 with which the said sputtering target contains a NiCrSi alloy or a NiCrSiO alloy. Niが2〜10at%、CrとSiの構成比率(Cr/(Cr+Si)×100[%])においてCrが73〜79at%、Oが10〜60at%含むスパッタリングターゲットを用いる請求項1又2に記載の電気抵抗層付き金属箔の製造方法。   The sputtering target according to claim 1 or 2, wherein Ni is 2 to 10 at%, Cr is composed of 73 to 79 at% and O is 10 to 60 at% in the composition ratio of Cr and Si (Cr / (Cr + Si) × 100 [%]). The manufacturing method of metal foil with an electrical-resistance layer of description. 雰囲気気体として酸素を0〜19vol%(0は含まない)付与することを含む請求項4に記載の電気抵抗層付き金属箔の製造方法。   The manufacturing method of the metal foil with an electrical resistance layer of Claim 4 including providing oxygen 0-19 vol% (0 is not included) as atmospheric gas. 前記金属箔が電解銅箔又は圧延銅箔である請求項1〜5のいずれか1項に記載の電気抵抗層付き金属箔の製造方法。   The method for producing a metal foil with an electric resistance layer according to any one of claims 1 to 5, wherein the metal foil is an electrolytic copper foil or a rolled copper foil.
JP2011080614A 2011-03-31 2011-03-31 Method for manufacturing metal foil with electric resistance layer Withdrawn JP2012214840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011080614A JP2012214840A (en) 2011-03-31 2011-03-31 Method for manufacturing metal foil with electric resistance layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011080614A JP2012214840A (en) 2011-03-31 2011-03-31 Method for manufacturing metal foil with electric resistance layer

Publications (1)

Publication Number Publication Date
JP2012214840A true JP2012214840A (en) 2012-11-08

Family

ID=47267878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011080614A Withdrawn JP2012214840A (en) 2011-03-31 2011-03-31 Method for manufacturing metal foil with electric resistance layer

Country Status (1)

Country Link
JP (1) JP2012214840A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5346408B2 (en) * 2011-03-28 2013-11-20 Jx日鉱日石金属株式会社 Metal foil provided with electric resistance film and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5346408B2 (en) * 2011-03-28 2013-11-20 Jx日鉱日石金属株式会社 Metal foil provided with electric resistance film and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP4466925B2 (en) Barrier film for flexible copper substrate and sputtering target for barrier film formation
JP2007207812A (en) Copper foil for printed wiring board and printed wiring board using the same
TWI524822B (en) A metal foil having a resistive layer and a method for manufacturing the same
KR20200025801A (en) Flexible copper clad laminate and method for manufacturing the same
CN110072333B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
KR101363771B1 (en) Two-layer flexible substrate and process for producing same
KR100965329B1 (en) Electric conductor having resistance layer for printed circuit board, fabrication method and printed circuit board thereof
KR20170078759A (en) Cu ALLOY FILM AND Cu MULTILAYER FILM
JP2012214840A (en) Method for manufacturing metal foil with electric resistance layer
CN107636209B (en) Conductive substrate
TWI655570B (en) Conductive substrate, laminated conductive substrate, method for producing conductive substrate, and method for producing laminated conductive substrate
JP2017185690A (en) Conductive substrate and manufacturing method of conductive substrate
JP2012212761A (en) Metal foil with electrical resistance film and manufacturing method therefor
JP6531699B2 (en) Conductive substrate
WO2012133567A1 (en) Method for manufacturing metal foil provided with electrical resistance layer
JP2007158182A (en) Laminate for flexible printed wiring board
WO2016132847A1 (en) Cu ALLOY FILM AND Cu MULTILAYER FILM
KR20110045953A (en) Flexible cupper laminated film for a flexible circuit board and manufacturing method the same
JP7071915B2 (en) Conductive substrate
JP5346408B2 (en) Metal foil provided with electric resistance film and method for manufacturing the same
JP4798894B2 (en) Copper alloy foil for laminates
JP2010530612A (en) Flexible printed circuit board material and method for producing flexible printed circuit board material
KR20060122593A (en) Flexible metal clad laminate without adhesion and method of manufacturing flexible metal clad laminate without adhesion
JP2013028128A (en) Metal foil with electrical resistance layer, and method for manufacturing the same
TW202231465A (en) Strain sensor and laminate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603