JP2012214362A - Lithium titanate particulate powder and production method for the same, negative electrode active material particulate powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery - Google Patents

Lithium titanate particulate powder and production method for the same, negative electrode active material particulate powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2012214362A
JP2012214362A JP2012044147A JP2012044147A JP2012214362A JP 2012214362 A JP2012214362 A JP 2012214362A JP 2012044147 A JP2012044147 A JP 2012044147A JP 2012044147 A JP2012044147 A JP 2012044147A JP 2012214362 A JP2012214362 A JP 2012214362A
Authority
JP
Japan
Prior art keywords
particle powder
lithium titanate
tio
active material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012044147A
Other languages
Japanese (ja)
Other versions
JP5708939B2 (en
Inventor
Koji Mori
幸治 森
Kazumichi Koga
一路 古賀
Akihisa Kajiyama
亮尚 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2012044147A priority Critical patent/JP5708939B2/en
Publication of JP2012214362A publication Critical patent/JP2012214362A/en
Application granted granted Critical
Publication of JP5708939B2 publication Critical patent/JP5708939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide lithium titanate particle powder in which battery characteristics with balance can be obtained among initial electric discharge capacity, an output characteristic (high electric discharge capacity maintenance rate), and gas generation control, when using the powder as active material for a non-aqueous electrolyte secondary battery.SOLUTION: In the impurities phase of TiOand LiTiOcontained in LiTiO, the lithium titanate particle powder is controlled of the BET specific surface area in the specific range, while making a specific quantity of LiTiOpresent therein. The lithium titanate particle powder concerned can be obtained by firing at least a mixture of LiTiOand TiOat 650°C or higher and lower than 800°C.

Description

本発明は、非水電解質二次電池用負極活物質として、優れた初期放電容量を示し、かつ出力特性(高率放電容量維持率)が高いチタン酸リチウム粒子粉末とその製造方法、並びに該負極活物質を使用した非水電解質二次電池を提供する。   The present invention relates to a lithium titanate particle powder having excellent initial discharge capacity and high output characteristics (high rate discharge capacity retention rate) as a negative electrode active material for a nonaqueous electrolyte secondary battery, a method for producing the same, and the negative electrode A nonaqueous electrolyte secondary battery using an active material is provided.

近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。このような状況下において、充放電電圧が高く、充放電容量も大きいという長所を有するリチウムイオン二次電池が注目されている。   In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. Under such circumstances, a lithium ion secondary battery having advantages such as a high charge / discharge voltage and a large charge / discharge capacity has attracted attention.

このリチウムイオン二次電池において、近年、負極活物質にチタン酸リチウムを使用することが知られている。   In this lithium ion secondary battery, in recent years, it is known to use lithium titanate as a negative electrode active material.

チタン酸リチウム:LiTi12は、充放電によるリチウムイオン挿入・脱離反応における結晶構造変化が非常に小さいため、構造安定性が高く、信頼性の高い負極活物質として知られている。 Lithium titanate: Li 4 Ti 5 O 12 is known as a highly reliable negative electrode active material with high structural stability because the crystal structure change in the lithium ion insertion / extraction reaction due to charge / discharge is very small. .

従来から、チタン酸リチウム(LiTi12)を得るための製造法としては、リチウム塩とチタン酸化物をLi/Ti比がほぼ0.80となるように乾式または湿式混合した混合粉末(これらは、単なるリチウム塩とチタン酸化物の混合物である)を加熱焼成してLiTi12を得る、いわゆる固相反応法(乾式法)が知られている(特許文献1、2)。 Conventionally, as a manufacturing method for obtaining lithium titanate (Li 4 Ti 5 O 12 ), a mixed powder in which a lithium salt and a titanium oxide are dry or wet mixed so that a Li / Ti ratio is approximately 0.80. There is known a so-called solid phase reaction method (dry method) in which Li 4 Ti 5 O 12 is obtained by heating and firing (these are simply a mixture of a lithium salt and a titanium oxide) (Patent Documents 1 and 2). ).

一方、チタンとリチウムの混合物を水熱処理して、その後加熱焼成してLiTi12を得る、液相反応+固相反応法(湿式法)が知られている(特許文献3、4)。 On the other hand, a liquid phase reaction + solid phase reaction method (wet method) is known in which a mixture of titanium and lithium is hydrothermally treated and then heated and fired to obtain Li 4 Ti 5 O 12 (Patent Documents 3 and 4). ).

また、特許文献5では、チタン酸リチウムのXRDにおいて、TiO及びLiTiOのピーク強度比がともに、LiTi12とのピーク強度比に対して7以下、好ましくは3以下、更に好ましくは1以下としており、これらの不純物相が少ないほどリチウムイオンの拡散速度が向上し、イオン伝導性および大電流特性(高率放電容量維持率)が向上することが開示されている。 In Patent Document 5, in the XRD of lithium titanate, the peak intensity ratios of TiO 2 and Li 2 TiO 3 are both 7 or less, preferably 3 or less, relative to the peak intensity ratio with Li 4 Ti 5 O 12 . More preferably, it is set to 1 or less, and it is disclosed that the smaller the impurity phase, the higher the lithium ion diffusion rate, and the better the ion conductivity and large current characteristics (high rate discharge capacity retention rate).

特開2001−192208号公報JP 2001-192208 A 特開2001−213622号公報JP 2001-213622 A 特開平9−309727号公報JP-A-9-309727 特開2010−228980号公報JP 2010-228980 A 特開2006−318797号公報JP 2006-318797 A

これまでの報告では、最終組成物であるLiTi12の純度をより高めることを目標としており、この純度を高めるほど、電池特性が向上することが知られている。 Previous reports have aimed to further increase the purity of the final composition Li 4 Ti 5 O 12 , and it is known that the higher the purity, the better the battery characteristics.

しかしながら、特許文献5のように、可及的に不純物相を低減して純度の高いLiTi12からなるチタン酸リチウム粒子粉末としても、初期放電容量が高く、出力特性(高率での放電容量の維持率)にも優れ、しかも、ガス発生が抑制できる負極活物質は未だ得られていない。 However, as in Patent Document 5, the lithium titanate particle powder made of Li 4 Ti 5 O 12 having a high purity by reducing the impurity phase as much as possible has a high initial discharge capacity and high output characteristics (at a high rate). The negative electrode active material that has an excellent discharge capacity maintenance rate and can suppress gas generation has not yet been obtained.

本発明者らは、目的物であるLiTi12に含まれるTiOとLiTiOの存在量に着目し、鋭意、検討を行った結果、従来の知見、即ち、LiTi12の純度をより高めるよりも、LiTiOを特定の範囲で存在させ、且つBET法による比表面積を特定の範囲に調整することによって、初期放電容量、出力特性(高率放電容量維持率)及びガス発生抑制がともに優れた電池特性が得られることを見出して本発明に至った。 The inventors of the present invention focused on the abundance of TiO 2 and Li 2 TiO 3 contained in the target product Li 4 Ti 5 O 12, and as a result of earnest and examination, as a result of the conventional knowledge, that is, Li 4 Ti Rather than increasing the purity of 5 O 12 , Li 2 TiO 3 is present in a specific range, and the specific surface area by the BET method is adjusted to a specific range, whereby the initial discharge capacity and output characteristics (high-rate discharge capacity) The present inventors have found that battery characteristics excellent in both the maintenance ratio and gas generation suppression can be obtained.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

すなわち、本発明は、スピネル構造を有するチタン酸リチウム粒子粉末において、XRDにてFd−3mで指数付けしたとき、リートベルト解析によるTiO2量が1.5%以下で、LiTiO量が1%以上6%以下の範囲で、LiTi12量が94%以上99%以下で、且つ、BET法による比表面積が7〜15m/gの範囲であることを特徴とするチタン酸リチウム粒子粉末である。(本発明1) That is, according to the present invention, when lithium titanate particles having a spinel structure are indexed with Fd-3m by XRD, the amount of TiO 2 by Rietveld analysis is 1.5% or less, and the amount of Li 2 TiO 3 is 1 % Titanic acid characterized in that the amount of Li 4 Ti 5 O 12 is in the range of 94% to 99% and the specific surface area by the BET method is in the range of 7 to 15 m 2 / g. Lithium particle powder. (Invention 1)

また、本発明は、Li/Ti比(モル比)が0.805〜0.83である本発明1記載のチタン酸リチウム粒子粉末である。(本発明2)   Moreover, this invention is a lithium titanate particle powder of this invention 1 whose Li / Ti ratio (molar ratio) is 0.805-0.83. (Invention 2)

また、本発明は、少なくともLiTiOとTiOとの混合物を650℃以上800℃未満で焼成すること特徴とする本発明1又は2に記載のチタン酸リチウム粒子粉末の製造方法である(本発明3)。 Further, the present invention is at least Li 2 TiO 3 and the present invention 1 or 2 method for producing a lithium titanate particles as described in the mixture, characterized by baking below 800 ° C. 650 ° C. or more and TiO 2 ( Invention 3).

また、本発明は、本発明1又は2に記載のチタン酸リチウム粒子粉末からなる負極活物質粒子粉末である(本発明4)。   Moreover, this invention is negative electrode active material particle powder which consists of lithium titanate particle powder as described in this invention 1 or 2 (this invention 4).

また、本発明は、該負極活物質を使用し、対極をリチウム金属としたセルで、リチウムが放出される方向を充電としたときに、初期放電容量が165mAh/g以上で、且つ初期放電容量測定におけるC−レートが0.1Cのとき、10Cと0.1Cの割合にあたる出力特性(高率放電容量維持率)が80%以上である本発明4記載の非水電解質二次電池用負極活物質粒子粉末である(本発明5)   The present invention also provides a cell in which the negative electrode active material is used and the counter electrode is made of lithium metal, and the initial discharge capacity is 165 mAh / g or more when the direction in which lithium is released is charged. When the C-rate in the measurement is 0.1 C, the output characteristics (high rate discharge capacity maintenance ratio) corresponding to the ratio of 10 C and 0.1 C are 80% or more, and the negative electrode active for a non-aqueous electrolyte secondary battery according to the present invention 4 Substance particle powder (Invention 5)

また、本発明は、本発明4又は5に記載の負極活物質粒子粉末を使用した非水電解質二次電池である(本発明6)   Further, the present invention is a non-aqueous electrolyte secondary battery using the negative electrode active material particle powder according to the present invention 4 or 5 (Invention 6).

本発明に係るチタン酸リチウム粒子粉末は、負極活物質粒子粉末として非水電解質二次電池に用いた場合に、優れた初期放電容量及び高出力特性を示し、且つ、ガス発生が抑制されたバランスの良い電池特性が得られるので非水電解質二次電池用の活物質粒子粉末として好適である。   The lithium titanate particle powder according to the present invention has an excellent initial discharge capacity and high output characteristics when used as a negative electrode active material particle powder in a non-aqueous electrolyte secondary battery, and a balance in which gas generation is suppressed. Therefore, it is suitable as an active material particle powder for a non-aqueous electrolyte secondary battery.

実施例1で得られたチタン酸リチウム粒子粉末のXRDパターンである。2 is an XRD pattern of lithium titanate particle powder obtained in Example 1. FIG. 実施例6で得られたチタン酸リチウム粒子粉末のXRDパターンである。It is an XRD pattern of the lithium titanate particle powder obtained in Example 6. 比較例2で得られたチタン酸リチウム粒子粉末のXRDパターンである。It is an XRD pattern of the lithium titanate particle powder obtained in Comparative Example 2. 実施例2で得られたチタン酸リチウム粒子粉末の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of lithium titanate particle powder obtained in Example 2. FIG.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

本発明に係るチタン酸リチウム粒子粉末は、少なくともスピネル構造であり、一般化学式でLiTi12と記載できる化合物であり、且つ、少なくともLiTiOを含有している。 The lithium titanate particle powder according to the present invention has at least a spinel structure, is a compound that can be expressed as Li 4 Ti 5 O 12 in a general chemical formula, and contains at least Li 2 TiO 3 .

本発明に係るチタン酸リチウム粒子粉末におけるLiTiOの存在状態は、本発明で特定する範囲の量であれば、粒子表面に被覆された状態やアイランド状に存在していてもよく、また、粒内ではどのような形状で存在していてもよい。 The presence state of Li 2 TiO 3 in the lithium titanate particle powder according to the present invention may be in a state of being coated on the particle surface or in an island shape as long as it is in an amount specified by the present invention, Any shape may be present in the grains.

本発明に係るチタン酸リチウム粒子粉末は、XRDで10〜90度(2θ/θ)間の回折がFd−3mで指数付けできる。XRDパターンからリートベルト解析を行うことで、残留したTiO量とLiTiO量を定量することができる。本発明において、TiOの存在量は1.5%以下であり、LiTiOの存在量は1.0〜6.0%の範囲である。TiOの存在量が1.5%を超えると、出力特性(高率放電容量維持率)が悪くなる。LiTiOの存在量が1.0%未満の場合、このチタン酸リチウム粒子粉末を負極活物質粒子粉末として用いて作製した二次電池の初期放電容量、出力特性(高率放電容量維持率)は良好であるが、後述の比較例に示すとおり、ガス発生が多くなる。LiTiOの存在量が6.0%を超えると、このチタン酸リチウム粒子粉末を負極活物質粒子粉末として用いて作製した二次電池の初期放電容量が低くなり、165mAh/g以上の高容量を満たすことができなくなる。好ましくはTiOの存在量は1.0%以下であり、LiTiOの存在量は1.5〜5.0%であって、より好ましくはTiOの存在量は0.5%以下であり、LiTiOの存在量は2.0〜4.0%である。 In the lithium titanate particle powder according to the present invention, diffraction between 10 and 90 degrees (2θ / θ) can be indexed with Fd-3m in XRD. By performing Rietveld analysis from the XRD pattern, the amount of residual TiO 2 and the amount of Li 2 TiO 3 can be quantified. In the present invention, the abundance of TiO 2 is 1.5% or less, and the abundance of Li 2 TiO 3 is in the range of 1.0 to 6.0%. When the abundance of TiO 2 exceeds 1.5%, the output characteristics (high rate discharge capacity maintenance rate) are deteriorated. When the abundance of Li 2 TiO 3 is less than 1.0%, the initial discharge capacity and output characteristics (high rate discharge capacity retention rate) of a secondary battery produced using this lithium titanate particle powder as the negative electrode active material particle powder ) Is good, but gas generation increases as shown in a comparative example described later. When the abundance of Li 2 TiO 3 exceeds 6.0%, the initial discharge capacity of a secondary battery produced using this lithium titanate particle powder as the negative electrode active material particle powder becomes low, and a high value of 165 mAh / g or more is obtained. The capacity cannot be filled. Preferably, the abundance of TiO 2 is 1.0% or less, the abundance of Li 2 TiO 3 is 1.5 to 5.0%, more preferably the abundance of TiO 2 is 0.5% or less. And the abundance of Li 2 TiO 3 is 2.0-4.0%.

本発明では、チタン酸リチウム粒子粉末のリートベルト解析により、LiTiOが存在することが重要である。このLiTiOが特定範囲内で粒子内もしくは粒子表層に存在することで、主に3つの効果をもたらされていると考えられる。 In the present invention, it is important that Li 2 TiO 3 exists by Rietveld analysis of lithium titanate particle powder. The presence of Li 2 TiO 3 in the particles or in the particle surface layer within a specific range is considered to produce mainly three effects.

1点目は、LiTiOがチタン酸リチウム粒子内若しくは表層に存在することで、高速充放電における格子の歪みが小さくなると考えられる。そのため、本発明で述べている出力特性(高率放電容量維持率)が良好となったと考えられる。 The first point is considered that the lattice distortion in high-speed charge / discharge is reduced by the presence of Li 2 TiO 3 in the lithium titanate particles or in the surface layer. Therefore, it is considered that the output characteristics (high rate discharge capacity maintenance rate) described in the present invention are good.

2点目は、本発明によるチタン酸リチウム粒子内若しくは表層にLiTiOが存在することで、一種の欠陥(点欠陥、面欠陥等)が発生すると考えられ、その為に、LiTi12全体の価数バランスがずれるポイントが発生し、純粋なチタン酸リチウム粒子粉末に対し本発明によるチタン酸リチウム粒子粉末は導電性が高まると考えられ、このため、出力特性(高率放電容量維持率)が向上すると考えられる。 Second, it is considered that Li 2 TiO 3 is present in the lithium titanate particles or on the surface layer according to the present invention, so that a kind of defects (point defects, surface defects, etc.) are generated. For this reason, Li 4 Ti The point where the valence balance of 5 O 12 as a whole is shifted is generated, and the lithium titanate particle powder according to the present invention is considered to have higher conductivity than the pure lithium titanate particle powder. It is considered that the capacity maintenance ratio is improved.

3点目は、LiTiOがチタン酸リチウム粒子内若しくは表層に存在することで、チタン酸リチウムが満充電によりLiTi12となったときに、粒子全体ではなくLiTiOの存在ポイントが残り、その結果ガス発生が小さくなることが考えられる。 The third point is that Li 2 TiO 3 is present in the lithium titanate particles or in the surface layer, and when the lithium titanate becomes Li 7 Ti 5 O 12 by full charge, not the entire particles but Li 2 TiO 3. It is considered that the existence point of the gas remains, and as a result, gas generation becomes small.

本発明に係るチタン酸リチウム粒子粉末の一次粒径は、0.1〜0.4μmが好ましい。本発明にて一次粒径は出力特性に大きく影響を及ぼすことが分かった。本発明の範囲より小さいときは結晶構造が安定しておらず、初期充電特性が悪化する。大きいときは必要とされる出力特性(高率放電容量維持特性)が得られない。より好ましい範囲は0.1〜0.3μmである。   The primary particle size of the lithium titanate particle powder according to the present invention is preferably 0.1 to 0.4 μm. In the present invention, it has been found that the primary particle size greatly affects the output characteristics. When it is smaller than the range of the present invention, the crystal structure is not stable, and the initial charge characteristics are deteriorated. If it is large, the required output characteristics (high rate discharge capacity maintaining characteristics) cannot be obtained. A more preferable range is 0.1 to 0.3 μm.

本発明に係るチタン酸リチウム粒子粉末のBET法による比表面積は7〜15m/gの範囲である。比表面積がこの範囲より小さいと、出力特性(高率放電容量維持率)が悪化してしまい、この範囲より大きいとガス発生により電池の膨れが顕著になる。好ましい比表面積は8〜13m/gである。 The specific surface area by the BET method of the lithium titanate particle powder according to the present invention is in the range of 7 to 15 m 2 / g. When the specific surface area is smaller than this range, the output characteristics (high rate discharge capacity retention rate) are deteriorated. When the specific surface area is larger than this range, swelling of the battery becomes remarkable due to gas generation. A preferable specific surface area is 8 to 13 m 2 / g.

次に、本発明に係るチタン酸リチウム粒子粉末の製造方法について述べる。   Next, the manufacturing method of the lithium titanate particle powder concerning this invention is described.

即ち、本発明に係るチタン酸リチウム粒子粉末は、少なくともLiTiOとTiOとの混合物を用いて、650℃以上800℃未満で焼成することで得られる。 That is, the lithium titanate particle powder according to the present invention can be obtained by firing at 650 ° C. or more and less than 800 ° C. using at least a mixture of Li 2 TiO 3 and TiO 2 .

本発明に係るチタン酸リチウム粒子粉末の製造に用いるLiTiOは、JCPDSにおける指数付けでLiTiOの特定ができれば、その結晶構造に構造欠陥があったり、酸素欠損/酸素過剰があってもかまわない。 Li 2 TiO 3 to be used in the preparation of lithium titanate particles according to the present invention, if a particular Li 2 TiO 3 is in indexing in the JCPDS, or have structural defects in the crystal structure, there is an oxygen deficiency / oxygen excess It doesn't matter.

本発明に用いるLiTiOは、リチウム化合物と、酸化チタンなどのチタン化合物とを湿式反応又は固相法により反応させて得ることができる。 Li 2 TiO 3 used in the present invention can be obtained by reacting a lithium compound and a titanium compound such as titanium oxide by a wet reaction or a solid phase method.

本発明において用いることができるLi化合物は、特に限定されることなく各種のリチウム塩を用いることができるが、湿式法では、水酸化リチウム、乾式法では炭酸リチウムが特に好ましい。   The Li compound that can be used in the present invention is not particularly limited, and various lithium salts can be used. In the wet method, lithium hydroxide is particularly preferable, and in the dry method, lithium carbonate is particularly preferable.

本発明において用いることができるTiOは、アナターゼ型とルチル型と、その混相があるが、アナターゼ型が好ましい。
また、混合反応を行う場合は、反応性を向上させるために微粒子を用いると有利である。
TiO 2 that can be used in the present invention has an anatase type, a rutile type, and a mixed phase thereof, and an anatase type is preferable.
In the case of performing a mixing reaction, it is advantageous to use fine particles in order to improve the reactivity.

また、LiTiOとTiOとの状態は、均一に混ざり合っている状態であれば、乾式での混合であったり、湿式でコートされている状態であったり、混合相のような状態になっていてもよい。 Moreover, if the state of Li 2 TiO 3 and TiO 2 is a uniformly mixed state, it may be a dry-type mixing, a wet-coated state, or a mixed phase state It may be.

この混合物は、湿式法では、温度、時間を制御することで調整できる。また、予め、LiTiOを生成させて、TiOと混合することでも調整できるが、焼成温度を高くする必要があるため、Li/Ti比、BETの制御に配慮する必要がある。 This mixture can be adjusted by controlling temperature and time in the wet method. Further, in advance, by generating a Li 2 TiO 3, can also be adjusted by mixing with TiO 2, it is necessary to increase the sintering temperature, Li / Ti ratio, it is necessary to consider the control of the BET.

なお、LiTiOとTiOとの混合物は、その製造条件において特に制限されるものではなく、酸化チタンと水酸化リチウムをLi/Ti比のモル比で1.0を超え1.5未満に調整した反応懸濁液を80℃以上100℃未満の温度範囲で加熱し、5時間以上15時間未満攪拌・熟成した後、反応懸濁液をろ過し乾燥することでも得ることができる。 In addition, the mixture of Li 2 TiO 3 and TiO 2 is not particularly limited in the production conditions, and titanium oxide and lithium hydroxide are in a molar ratio of Li / Ti ratio exceeding 1.0 and less than 1.5. It can also be obtained by heating the reaction suspension adjusted to 80 ° C. to less than 100 ° C., stirring and aging for 5 hours to less than 15 hours, and then filtering and drying the reaction suspension.

本発明に係るチタン酸リチウム粒子粉末の製造に用いるLiTiOとTiOは、焼成後のLi/Ti比で0.805〜0.83となるように調整することが好ましい。前記範囲に調整するためには、LiTiOとTiOとの混合比を調整したり、リチウム化合物を追加したりすることによって行うことができる。Li/Tiを0.80より大きくする理由は、焼成後にLiTiOを残留させることにある。上記範囲より大きすぎると、初期放電容量が低下し、LiTiO残留物が更に多い場合には、得られたチタン酸リチウム粒子粉末の残留アルカリが多くなり、塗料のゲル化が起こる。 Li 2 TiO 3 and TiO 2 used in the production of the lithium titanate particles according to the present invention is preferably adjusted to be 0.805 to 0.83 in Li / Ti ratio after firing. To adjust the range, it can be carried out to adjust the mixing ratio of the Li 2 TiO 3 and TiO 2, by and add lithium compound. The reason why Li / Ti is made larger than 0.80 is that Li 2 TiO 3 remains after firing. When the amount is larger than the above range, the initial discharge capacity is reduced, and when the Li 2 TiO 3 residue is further increased, the residual alkali of the obtained lithium titanate particle powder increases, and the coating gels.

調製したLiTiOとTiOとの混合物を650℃以上800℃未満で焼成する。焼成温度が650℃未満であるとTiOが多量に残留してしまう。焼成温度が高すぎると、粒成長のためBETが小さくなりすぎてしまい、結果として出力特性(高率放電容量維持率)が損なわれてしまう。焼成温度は好ましくは680〜780℃である。 The prepared mixture of Li 2 TiO 3 and TiO 2 is fired at 650 ° C. or higher and lower than 800 ° C. If the firing temperature is less than 650 ° C., a large amount of TiO 2 remains. If the firing temperature is too high, the BET becomes too small due to grain growth, and as a result, the output characteristics (high rate discharge capacity retention rate) are impaired. The firing temperature is preferably 680 to 780 ° C.

焼成における雰囲気は、酸化性雰囲気であっても還元雰囲気であってもよい。得られたチタン酸リチウム粒子粉末は、公知な技術の範囲において本発明において酸素欠損若しくは酸素過剰があってもよい。   The atmosphere in firing may be an oxidizing atmosphere or a reducing atmosphere. The obtained lithium titanate particle powder may have oxygen deficiency or oxygen excess in the present invention within the scope of known techniques.

焼成して得られたチタン酸リチウム粒子粉末は、粉砕することで粒度分布を整えることもできる。その粒度分布の形状は、シャープでもブロードでも、バイモーダルでもよい。   The lithium titanate particle powder obtained by firing can be pulverized to adjust the particle size distribution. The shape of the particle size distribution may be sharp, broad, or bimodal.

本発明に係るチタン酸リチウム粒子粉末は、非水電解質二次電池用負極活物質粒子粉末として用いることができる。   The lithium titanate particle powder according to the present invention can be used as a negative electrode active material particle powder for a non-aqueous electrolyte secondary battery.

次に、本発明に係る負極活物質粒子粉末を含有する負極、並びに非水電解質二次電池について述べる。   Next, the negative electrode containing the negative electrode active material particle powder and the nonaqueous electrolyte secondary battery according to the present invention will be described.

本発明に係る負極活物質粒子粉末を含有する負極を製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、黒鉛等が好ましく、結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。   When manufacturing the negative electrode containing the negative electrode active material particle powder according to the present invention, a conductive agent and a binder are added and mixed according to a conventional method. As the conductive agent, acetylene black, carbon black, graphite and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.

本発明に係る負極用活物質粒子粉末を含有する負極を用いて製造される二次電池は、正極、負極及び電解質から構成される。   The secondary battery manufactured using the negative electrode containing the active material particle powder for negative electrodes which concerns on this invention is comprised from a positive electrode, a negative electrode, and electrolyte.

正極活物質としては、一般的な非水二次電池用の正極材であるコバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム等を用いることができる。   As the positive electrode active material, lithium cobaltate, lithium manganate, lithium nickelate, etc., which are common positive electrode materials for non-aqueous secondary batteries, can be used.

また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。   In addition to the combination of ethylene carbonate and diethyl carbonate, an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.

さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。   Further, as the electrolyte, in addition to lithium hexafluorophosphate, at least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.

本発明に係る負極用活物質粒子粉末を含有する電極を用いて製造した非水電解質二次電池は、後述する評価法で1.0V以上の容量が165mAh/g以上であり、10C/0.1Cの比をとった出力特性(高率放電容量維持率)は80%以上である。   The non-aqueous electrolyte secondary battery manufactured using the electrode containing the negative electrode active material particle powder according to the present invention has a capacity of 1.0 V or more is 165 mAh / g or more and 10 C / 0.00. The output characteristic (high rate discharge capacity retention rate) taking the ratio of 1C is 80% or more.

負極用活物質粒子であるチタン酸リチウムに特定量が残留したLiTiOは、二次電池による負荷試験で、格子の膨張収縮に対する緩衝効果があると考えられる。また、粒子中のLiTiOの存在は、結晶構造の歪み(点欠陥、面欠陥など)を引き起こすと考えられる故に、粉体の電子伝導性やイオン伝導性が向上すると考えられる。その結果、本発明に係る負極活物質粒子粉末は高い出力特性(高率放電容量維持率)を有することができると考えられる。 Li 2 TiO 3 having a specific amount remaining in lithium titanate, which is the negative electrode active material particle, is considered to have a buffering effect on the expansion and contraction of the lattice in a load test using a secondary battery. In addition, the presence of Li 2 TiO 3 in the particles is thought to cause distortion of the crystal structure (point defects, surface defects, etc.), so that it is considered that the electronic conductivity and ionic conductivity of the powder are improved. As a result, it is considered that the negative electrode active material particle powder according to the present invention can have high output characteristics (high rate discharge capacity retention rate).

なお、本発明に係るチタン酸リチウム粒子粉末は、正極活物質として用いることも可能である。   In addition, the lithium titanate particle powder according to the present invention can be used as a positive electrode active material.

本発明に係るチタン酸リチウム粒子粉末を正極活物質として用いる場合、非水電解質二次電池は、前記の電極、対極および電解質からなり、対極(負極)には金属リチウム、リチウム合金等、あるいはグラファイト、コークスなどの炭素系材料が用いられる。   When the lithium titanate particle powder according to the present invention is used as a positive electrode active material, the non-aqueous electrolyte secondary battery is composed of the above electrode, counter electrode and electrolyte, and the counter electrode (negative electrode) is metallic lithium, lithium alloy, or graphite. Carbonaceous materials such as coke are used.

<作用>
本発明において最も重要な点は、本発明に係る特定量のLiTiOが存在するチタン酸リチウム粒子粉末を用いることで、二次電池として優れた初期放電容量と高い出力特性(高率放電容量維持率)を示し、かつガス発生が抑制された非水電解質二次電池を得ることができるという点である。
<Action>
The most important point in the present invention is that by using the lithium titanate particle powder in which a specific amount of Li 2 TiO 3 is present according to the present invention, excellent initial discharge capacity and high output characteristics (high rate discharge) as a secondary battery. (Capacity maintenance ratio) and a non-aqueous electrolyte secondary battery in which gas generation is suppressed can be obtained.

従来は、前述した特許文献5のように、X線回折によるピーク強度比を基準として、不純物相を低減して純度の高いLiTi12からなるチタン酸リチウム粒子粉末を得ることが行われてきた。しかしながら、単に、高純度にすることだけでは、初期放電容量が高く、出力特性(高率での放電容量の維持率)にも優れ、しかも、ガス発生が抑制できるという特性を十分に満たせるものではなかった。 Conventionally, as in Patent Document 5 described above, lithium titanate particle powder composed of Li 4 Ti 5 O 12 having a high purity is obtained by reducing the impurity phase with reference to the peak intensity ratio by X-ray diffraction. I have been. However, simply by making it high purity, the initial discharge capacity is high, the output characteristics (maintenance rate of the discharge capacity at a high rate) are excellent, and the characteristics that gas generation can be suppressed can be sufficiently satisfied. There wasn't.

本発明者らは、X線回折のピーク強度比による定量よりも、より正確に定量できるリートベルト解析によって不純物相を定量するとともに、ごく微量のLiTiOが存在させ、しかも、BET比表面積を制御することによって、高い電池特性を示す負極活物質を得ることが可能となった。
The present inventors have quantified the impurity phase by Rietveld analysis that can be quantified more accurately than quantification by the peak intensity ratio of X-ray diffraction, and a very small amount of Li 2 TiO 3 is present, and the BET specific surface area. By controlling the above, it has become possible to obtain a negative electrode active material exhibiting high battery characteristics.

本発明の代表的な実施の形態は、次の通りである。   A typical embodiment of the present invention is as follows.

平均一次粒子径は、エネルギー分散型X線分析装置付き走査電子顕微鏡SEM−EDX[(株)日立ハイテクノロジーズ製]を用いて観察し、そのSEM像から平均値を読み取った。   The average primary particle diameter was observed using a scanning electron microscope SEM-EDX with an energy dispersive X-ray analyzer [manufactured by Hitachi High-Technologies Corporation], and the average value was read from the SEM image.

BET比表面積は試料を窒素ガス下で120℃、45分間乾燥脱気した後、マックソーブHM Model−1208 マウンテック(株)製を用いて測定した。   The BET specific surface area was measured by drying and deaerating the sample under nitrogen gas at 120 ° C. for 45 minutes, and then using a Macsorb HM Model-1208 manufactured by Mountec Co., Ltd.

組成や不純物量は調整液を作製し、ICP測定には、iCAP6500 サーモフィッシャーサイエンティフィック(株)製を用いて各元素を定量して決定した。   The composition and the amount of impurities were prepared by preparing adjustment liquids, and ICP measurements were determined by quantifying each element using iCAP6500 manufactured by Thermo Fisher Scientific Co., Ltd.

試料のX線回折は、株式会社リガク製 RAD−IIAを用いて測定した。また、TiO量とLiTiO量の定量には、X線回折のデータを用いてリートベルト解析を行うことで算出した。リートベルト解析には、RIETAN2000を使用した。 The X-ray diffraction of the sample was measured using RAD-IIA manufactured by Rigaku Corporation. The amount of TiO 2 and the amount of Li 2 TiO 3 were quantified by performing Rietveld analysis using X-ray diffraction data. Rietan2000 was used for Rietveld analysis.

本発明に係る負極活物質粒子粉末については、2032型コインセルを用いて電池評価を行った。   About the negative electrode active material particle powder which concerns on this invention, battery evaluation was performed using the 2032 type | mold coin cell.

電池評価に係るコインセルについては、本発明による負極用活物質粒子粉末であるチタン酸リチウムを正極として用い、活物質量を90重量%、導電材としてアセチレンブラックを2.5重量%、グラファイトを2.5重量%、バインダーとしてN−メチルピロリドンに溶解したポリフッ化ビニリデン5重量%とを混合した後、Al金属箔に塗布し120℃にて乾燥した。このシートを16mmΦに打ち抜いた後、3.0t/cmで圧着した物を正極に用いた。対極は16mmΦに打ち抜いた厚さが500μmの金属リチウムとし、電解液は1mol/LのLiPFを溶解したECとDMCを体積比で1:2で混合した溶液を用いて2032型コインセルを作製した。 For coin cells related to battery evaluation, lithium titanate, which is an active material particle powder for a negative electrode according to the present invention, is used as a positive electrode, the amount of active material is 90% by weight, acetylene black is 2.5% by weight as a conductive material, and graphite is 2%. Then, 5% by weight and 5% by weight of polyvinylidene fluoride dissolved in N-methylpyrrolidone as a binder were mixed, applied to an Al metal foil, and dried at 120 ° C. The sheet was punched out to 16 mmΦ, and then pressure-bonded at 3.0 t / cm 2 was used for the positive electrode. The counter electrode was made of metallic lithium having a thickness of 500 μm punched to 16 mmΦ, and the electrolyte was a 2032 type coin cell using a solution in which EC and DMC in which 1 mol / L LiPF 6 was dissolved were mixed at a volume ratio of 1: 2. .

充放電特性は、恒温槽で25℃とした環境下で、充電をLiが放出される方向(電池として電圧が上がる方向)としたときに、放電は1.0Vまで0.1Cの電流密度にて行った(CC−CC操作)後、充電を3.0Vまで0.1Cの電流密度にて行った(CC−CC操作)。本操作の1回目の放電容量を測定した。   The charge / discharge characteristics are as follows. When charging is performed in the direction in which Li is released (in the direction in which the voltage increases as a battery) in an environment of 25 ° C. in a thermostatic chamber, the discharge is performed at a current density of 0.1 C up to 1.0 V. (CC-CC operation), charging was performed at a current density of 0.1 C up to 3.0 V (CC-CC operation). The first discharge capacity of this operation was measured.

出力特性(高率放電容量維持率)は、恒温槽で25℃とした環境下で放電は1.0Vまで0.1Cの電流密度にて行った(CC−CC操作)後、充電を3.0Vまで0.1Cの電流密度にて行った(CC−CC操作)。このときの放電容量をaとする。次に、放電は1.0Vまで10Cの電流密度にて行った(CC−CC操作)後、充電を3.0Vまで0.1Cの電流密度にて行った(CC−CC操作)。このときの放電容量をbとするとき、出力特性を(b/a×100(%))とした。   The output characteristics (high rate discharge capacity maintenance rate) are as follows. Discharge was performed at a current density of 0.1 C up to 1.0 V (CC-CC operation) in an environment set to 25 ° C. in a thermostatic chamber, and then charged 3. It was performed at a current density of 0.1 C up to 0 V (CC-CC operation). Let the discharge capacity at this time be a. Next, after discharging was performed at a current density of 10 C up to 1.0 V (CC-CC operation), charging was performed at a current density of 0.1 C up to 3.0 V (CC-CC operation). When the discharge capacity at this time is b, the output characteristic is (b / a × 100 (%)).

ガス発生量の評価は、以下のとおりの方法でラミネートセルを作製して評価した。   The gas generation amount was evaluated by producing a laminate cell by the following method.

本発明による負極用活物質粒子粉末であるチタン酸リチウムを90重量%、導電材としてアセチレンブラックを2.5重量%、グラファイトを2.5重量%、バインダーとしてN−メチルピロリドンに溶解したポリフッ化ビニリデン5重量%とを混合した後、Al金属箔に塗布し120℃にて乾燥した。このシートを40mm×100mm角に切り取った後、3.0t/cmで圧密し、負極に用いた。 90% by weight of lithium titanate, which is an active material particle powder for negative electrodes according to the present invention, 2.5% by weight of acetylene black as a conductive material, 2.5% by weight of graphite, and polyfluoride dissolved in N-methylpyrrolidone as a binder After mixing with 5% by weight of vinylidene, it was applied to an Al metal foil and dried at 120 ° C. This sheet was cut into a 40 mm × 100 mm square, and then consolidated at 3.0 t / cm 2 to be used as a negative electrode.

対極にはLiMnを92重量%、導電材としてアセチレンブラックを2.5重量%、グラファイトを2.5重量%、バインダーとしてN−メチルピロリドンに溶解したポリフッ化ビニリデン3重量%とを混合した後、Al金属箔に塗布し120℃にて乾燥し、このシートを40mm×100mm角に切り取った後、3.0t/cmで圧密したものを用いた。 The counter electrode was mixed with 92% by weight of LiMn 2 O 4 , 2.5% by weight of acetylene black as a conductive material, 2.5% by weight of graphite, and 3% by weight of polyvinylidene fluoride dissolved in N-methylpyrrolidone as a binder. After that, it was applied to an Al metal foil and dried at 120 ° C., and this sheet was cut into a 40 mm × 100 mm square and then consolidated at 3.0 t / cm 2 .

これらの電極を2セット対向するように組み合わせてラミネートセルを作成した。   A laminate cell was prepared by combining two sets of these electrodes so as to face each other.

上記ラミネートセルにおいて、まず室温で初期の充放電を行った後、2.7Vまで充電を行い、この電圧でのラミネートセルの容積を測定した。次に、測定後のセルを85℃環境下で24時間保存した後、再度、ラミネートセルの容積を測定し、高温保存前後の容積変化からガス発生量を評価した。   In the laminate cell, first, initial charge / discharge was performed at room temperature, and then charged to 2.7 V, and the volume of the laminate cell at this voltage was measured. Next, after storing the cell after measurement for 24 hours in an environment of 85 ° C., the volume of the laminate cell was measured again, and the amount of gas generated was evaluated from the volume change before and after high-temperature storage.

実施例1
<チタン酸リチウム粒子粉末の製造>
比表面積10m/g、一次粒子径180nmの酸化チタンと水酸化リチウムをLi/Ti比のモル比で1.4に調整した反応懸濁液を85℃に加温し、12時間攪拌する。その後、反応懸濁液をろ過し120℃で乾燥した。得られた乾燥粉末のX線回折を行ったところ少なくともLiTiOとTiOとの混合物であった。
該乾燥粉末をアルミナるつぼに入れ、マッフル炉で、温度760℃で4時間、空気雰囲気中で焼成を行い、チタン酸リチウム粒子粉末を得た。
Example 1
<Manufacture of lithium titanate particle powder>
A reaction suspension prepared by adjusting titanium oxide and lithium hydroxide having a specific surface area of 10 m 2 / g and a primary particle diameter of 180 nm to a Li / Ti molar ratio of 1.4 is heated to 85 ° C. and stirred for 12 hours. Thereafter, the reaction suspension was filtered and dried at 120 ° C. When the obtained dry powder was subjected to X-ray diffraction, it was at least a mixture of Li 2 TiO 3 and TiO 2 .
The dried powder was put in an alumina crucible and baked in a muffle furnace at a temperature of 760 ° C. for 4 hours in an air atmosphere to obtain lithium titanate particle powder.

実施例2〜5、比較例1〜5
酸化チタンの種類、Li/Tiモル比、反応温度、反応時間、焼成温度を変えた以外は、実施例1と同様に処理して、チタン酸リチウム粒子粉末を得た。
Examples 2-5, Comparative Examples 1-5
Except having changed the kind of titanium oxide, Li / Ti molar ratio, reaction temperature, reaction time, and calcination temperature, it processed similarly to Example 1 and obtained lithium titanate particle powder.

実施例6
比表面積10m/g、一次粒子径180nmの酸化チタンと水酸化リチウムをLi/Ti比のモル比で2.5に調整した反応懸濁液をオートクレーブに仕込み、175℃に加温し、8時間攪拌する。その後、反応懸濁液をろ過し120℃で乾燥した。
得られた乾燥粉末のX線回折を行ったところ、LiTiO単相であった。
Example 6
A reaction suspension prepared by adjusting titanium oxide and lithium hydroxide having a specific surface area of 10 m 2 / g and a primary particle diameter of 180 nm to a molar ratio of Li / Ti of 2.5 was charged in an autoclave and heated to 175 ° C., 8 Stir for hours. Thereafter, the reaction suspension was filtered and dried at 120 ° C.
When the obtained dry powder was subjected to X-ray diffraction, it was a Li 2 TiO 3 single phase.

このLiTiO粉末と比表面積344m/g、一次粒子径5nmの酸化チタンをLi/Ti比のモル比で0.84に調整・混合し、該混合粉末をアルミナるつぼに入れ、マッフル炉で、温度780℃で4時間、空気雰囲気中で焼成を行い、チタン酸リチウム粒子粉末を得た。 This Li 2 TiO 3 powder and titanium oxide having a specific surface area of 344 m 2 / g and a primary particle diameter of 5 nm were adjusted and mixed to a molar ratio of Li / Ti ratio of 0.84, and the mixed powder was put into an alumina crucible, and a muffle furnace Then, baking was performed in an air atmosphere at a temperature of 780 ° C. for 4 hours to obtain lithium titanate particle powder.

比較例6
比表面積10m/g、一次粒子径180nmの酸化チタンと炭酸リチウムをLi/Ti比のモル比で0.90に調整・混合し、該混合粉末をアルミナるつぼに入れ、マッフル炉で、温度850℃で4時間、空気雰囲気中で焼成を行い、チタン酸リチウム粒子粉末を得た。
Comparative Example 6
Titanium oxide having a specific surface area of 10 m 2 / g and a primary particle size of 180 nm and lithium carbonate were adjusted and mixed at a molar ratio of Li / Ti ratio of 0.90, and the mixed powder was put in an alumina crucible and heated at a temperature of 850 in a muffle furnace. Firing was performed in an air atmosphere at 4 ° C. for 4 hours to obtain lithium titanate particle powder.

比較例7
比表面積299m/g、一次粒子径5nmの酸化チタンと水酸化リチウムをLi/Ti比のモル比で0.9に調整した懸濁液を常温で、2時間攪拌する。その後、混合懸濁液を120℃で蒸発乾固した。該乾燥粉末をアルミナるつぼに入れ、マッフル炉で、温度650℃で4時間、次いで、800℃で4時間、空気雰囲気中で焼成を行い、チタン酸リチウム粒子粉末を得た。
Comparative Example 7
A suspension of titanium oxide having a specific surface area of 299 m 2 / g and a primary particle diameter of 5 nm and lithium hydroxide adjusted to 0.9 in terms of a molar ratio of Li / Ti ratio is stirred at room temperature for 2 hours. Thereafter, the mixed suspension was evaporated to dryness at 120 ° C. The dried powder was placed in an alumina crucible and baked in a muffle furnace at a temperature of 650 ° C. for 4 hours and then at 800 ° C. for 4 hours in an air atmosphere to obtain lithium titanate particle powder.

実施例及び比較例で得られたチタン酸リチウムの特性と条件を表1、表2に示す。   Tables 1 and 2 show the characteristics and conditions of the lithium titanates obtained in the examples and comparative examples.

実施例に示すとおり、本発明に係るチタン酸リチウム粒子粉末は、初期放電容量が165mAh/g以上、出力特性(高率での放電容量維持率)が80%以上と、ともに高く、しかもガス発生が4.0cc/g未満と抑制されているので、非水電解質二次電池用の活物質として好適である。   As shown in the examples, the lithium titanate particles according to the present invention have high initial discharge capacity of 165 mAh / g or more, output characteristics (discharge capacity maintenance rate at a high rate) of 80% or more, and gas generation. Is suppressed to less than 4.0 cc / g, it is suitable as an active material for a non-aqueous electrolyte secondary battery.

なお、前記実施例においては、本発明に係るチタン酸リチウム粒子粉末を正極活物質として用いた例を示しているが、本発明に係るチタン酸リチウム粒子粉末を負極活物質として用いた場合にも、非水電解質二次電池の活物質として、優れた特性を発揮できるものである。
In addition, in the said Example, although the example which used the lithium titanate particle powder which concerns on this invention as a positive electrode active material is shown, also when the lithium titanate particle powder which concerns on this invention is used as a negative electrode active material, As an active material of a nonaqueous electrolyte secondary battery, it can exhibit excellent characteristics.

Claims (6)

スピネル構造を有するチタン酸リチウム粒子粉末において、XRDにてFd−3mで指数付けしたとき、リートベルト解析によるTiO2量が1.5%以下で、LiTiO量が1%以上6%以下の範囲で、LiTi12量が94%以上99%以下で、且つ、BET法による比表面積が7〜15m/gの範囲であることを特徴とするチタン酸リチウム粒子粉末。 In the lithium titanate particles having a spinel structure, when indexed with Fd-3m in XRD, Ried weight TiO2 by the belt analysis 1.5% or less, Li 2 TiO 3 amount less than 6% 1% Lithium titanate particle powder, wherein the amount of Li 4 Ti 5 O 12 is in the range of 94% to 99% and the specific surface area by the BET method is in the range of 7 to 15 m 2 / g. Li/Ti比(モル比)が0.805〜0.83である請求項1記載のチタン酸リチウム粒子粉末。 The lithium titanate particle powder according to claim 1, wherein the Li / Ti ratio (molar ratio) is 0.805 to 0.83. 少なくともLiTiOとTiOとの混合物を650℃以上800℃未満で焼成すること特徴とする請求項1又は2に記載のチタン酸リチウム粒子粉末の製造方法。 The method for producing lithium titanate particle powder according to claim 1 or 2, wherein a mixture of at least Li 2 TiO 3 and TiO 2 is fired at 650 ° C or higher and lower than 800 ° C. 請求項1又は2に記載のチタン酸リチウム粒子粉末からなる負極活物質粒子粉末。 A negative electrode active material particle powder comprising the lithium titanate particle powder according to claim 1. 請求項4記載の負極活物質粒子粉末を使用し、対極をリチウム金属としたセルにおいて、リチウムが放出される方向を充電としたときに、初期放電容量が165mAh/g以上で、且つ初期放電容量測定におけるC−レートが0.1Cのとき、10Cと0.1Cの割合にあたる出力特性が80%以上である請求項4記載の非水電解質二次電池用負極活物質粒子粉末。 In the cell using the negative electrode active material particle powder according to claim 4 and having a counter electrode made of lithium metal, the initial discharge capacity is 165 mAh / g or more when the direction in which lithium is released is charged. The negative electrode active material particle powder for a non-aqueous electrolyte secondary battery according to claim 4, wherein when the C-rate in the measurement is 0.1C, the output characteristic corresponding to the ratio of 10C to 0.1C is 80% or more. 請求項4又は5に記載の負極活物質粒子粉末を使用した非水電解質二次電池。 A nonaqueous electrolyte secondary battery using the negative electrode active material particle powder according to claim 4.
JP2012044147A 2011-03-31 2012-02-29 Lithium titanate particle powder and method for producing the same, negative electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Active JP5708939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012044147A JP5708939B2 (en) 2011-03-31 2012-02-29 Lithium titanate particle powder and method for producing the same, negative electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011080027 2011-03-31
JP2011080027 2011-03-31
JP2012044147A JP5708939B2 (en) 2011-03-31 2012-02-29 Lithium titanate particle powder and method for producing the same, negative electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2012214362A true JP2012214362A (en) 2012-11-08
JP5708939B2 JP5708939B2 (en) 2015-04-30

Family

ID=47267580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012044147A Active JP5708939B2 (en) 2011-03-31 2012-02-29 Lithium titanate particle powder and method for producing the same, negative electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5708939B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224493A (en) * 2011-04-18 2012-11-15 Toyota Motor Corp Method for producing nanoparticles of lithium titanate using hydrothermal chemical reaction
CN103055839A (en) * 2013-01-19 2013-04-24 桂林理工大学 Composite oxide photocatalyst (Li2TiO3) with lithium halite structure and preparation method thereof
WO2013129423A1 (en) * 2012-02-29 2013-09-06 戸田工業株式会社 Lithium titanate particulate powder, negative electrode active material particulate powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2015140964A1 (en) * 2014-03-19 2015-09-24 株式会社 東芝 Battery electrode material, nonaqueous electrolyte battery, and battery pack

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213622A (en) * 2000-01-26 2001-08-07 Toho Titanium Co Ltd Process of producing lithium titanate, lithium ion battery and electrode thereof
JP2002270175A (en) * 2001-03-09 2002-09-20 Asahi Glass Co Ltd Secondary power source
JP2006318797A (en) * 2005-05-13 2006-11-24 Toshiba Corp Nonaqueous electrolyte battery and lithium-titanium compound oxide
JP2009081049A (en) * 2007-09-26 2009-04-16 Toshiba Corp Nonaqueous electrolyte battery and packed battery
WO2009146904A1 (en) * 2008-06-03 2009-12-10 Süd-Chemie AG Process for producing lithium titanium spinel and use thereof
WO2010052950A1 (en) * 2008-11-04 2010-05-14 国立大学法人岩手大学 Nonstoichiometric titanium compound, carbon composite of the same, method for producing the compound, negative electrode active material for lithium ion secondary battery containing the compound, and lithium ion secondary battery using the negative electrode active material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213622A (en) * 2000-01-26 2001-08-07 Toho Titanium Co Ltd Process of producing lithium titanate, lithium ion battery and electrode thereof
JP2002270175A (en) * 2001-03-09 2002-09-20 Asahi Glass Co Ltd Secondary power source
JP2006318797A (en) * 2005-05-13 2006-11-24 Toshiba Corp Nonaqueous electrolyte battery and lithium-titanium compound oxide
JP2009081049A (en) * 2007-09-26 2009-04-16 Toshiba Corp Nonaqueous electrolyte battery and packed battery
WO2009146904A1 (en) * 2008-06-03 2009-12-10 Süd-Chemie AG Process for producing lithium titanium spinel and use thereof
WO2010052950A1 (en) * 2008-11-04 2010-05-14 国立大学法人岩手大学 Nonstoichiometric titanium compound, carbon composite of the same, method for producing the compound, negative electrode active material for lithium ion secondary battery containing the compound, and lithium ion secondary battery using the negative electrode active material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224493A (en) * 2011-04-18 2012-11-15 Toyota Motor Corp Method for producing nanoparticles of lithium titanate using hydrothermal chemical reaction
WO2013129423A1 (en) * 2012-02-29 2013-09-06 戸田工業株式会社 Lithium titanate particulate powder, negative electrode active material particulate powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN103055839A (en) * 2013-01-19 2013-04-24 桂林理工大学 Composite oxide photocatalyst (Li2TiO3) with lithium halite structure and preparation method thereof
WO2015140964A1 (en) * 2014-03-19 2015-09-24 株式会社 東芝 Battery electrode material, nonaqueous electrolyte battery, and battery pack
JPWO2015140964A1 (en) * 2014-03-19 2017-04-06 株式会社東芝 Battery electrode materials, non-aqueous electrolyte batteries, battery packs and vehicles
US10096823B2 (en) 2014-03-19 2018-10-09 Kabushiki Kaisha Toshiba Electrode material, nonaqueous electrolyte battery, battery pack, and vehicle

Also Published As

Publication number Publication date
JP5708939B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP6380608B2 (en) Method for producing lithium composite compound particle powder, method for using lithium composite compound particle powder in non-aqueous electrolyte secondary battery
US9847526B2 (en) Lithium titanate particles and process for producing the lithium titanate particles, Mg-containing lithium titanate particles and process for producing the Mg-containing lithium titanate particles, negative electrode active substance particles for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP6089433B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5903956B2 (en) Lithium composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2019506703A (en) Lithium nickelate positive electrode active material powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5482977B2 (en) Non-aqueous electrolyte secondary battery lithium cobalt oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
JP5737513B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2018014322A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery
WO2019168160A1 (en) Li-ni composite oxide particle powder and nonaqueous electrolyte secondary battery
JP2012216548A (en) Active material powder for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5810752B2 (en) Lithium titanate particle powder, negative electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5708939B2 (en) Lithium titanate particle powder and method for producing the same, negative electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP2018067524A (en) Method for reducing amount of lithium remaining in positive electrode active material particles
KR102090572B1 (en) Lithium-titanium composite oxide comprising primary particle doped by aluminum
JP5830842B2 (en) Method for producing lithium titanate particle powder and non-aqueous electrolyte secondary battery
JP2008123815A (en) Cathode active material, its manufacturing method, and nonaqueous electrolyte secondary battery
WO2013129423A1 (en) Lithium titanate particulate powder, negative electrode active material particulate powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4305613B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6257222B2 (en) Ramsdelite type lithium titanate, lithium ion secondary battery and lithium ion capacitor using this ramsdelite type lithium titanate
JP7308586B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
CN117293308A (en) Positive electrode material, preparation method thereof and battery
JP2012051754A (en) Mg-CONTAINING LITHIUM TITANATE PARTICLE POWDER, METHOD OF MANUFACTURING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150217

R150 Certificate of patent or registration of utility model

Ref document number: 5708939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250