JP2012207285A - Surface-treated copper foil and manufacturing method therefor, copper-clad laminated board using surface-treated copper foil and manufacturing method therefor, and printed wiring board - Google Patents

Surface-treated copper foil and manufacturing method therefor, copper-clad laminated board using surface-treated copper foil and manufacturing method therefor, and printed wiring board Download PDF

Info

Publication number
JP2012207285A
JP2012207285A JP2011074773A JP2011074773A JP2012207285A JP 2012207285 A JP2012207285 A JP 2012207285A JP 2011074773 A JP2011074773 A JP 2011074773A JP 2011074773 A JP2011074773 A JP 2011074773A JP 2012207285 A JP2012207285 A JP 2012207285A
Authority
JP
Japan
Prior art keywords
treatment layer
copper foil
treated copper
treated
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011074773A
Other languages
Japanese (ja)
Other versions
JP5794806B2 (en
Inventor
Hiromichi Kutsuna
宏途 沓名
Satoru Fujisawa
哲 藤沢
Isamu So
勇 曹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2011074773A priority Critical patent/JP5794806B2/en
Publication of JP2012207285A publication Critical patent/JP2012207285A/en
Application granted granted Critical
Publication of JP5794806B2 publication Critical patent/JP5794806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a surface-treated copper foil excellent in circuit forming properties of a fine pattern, transmitting properties in a high-frequency range, adhesiveness to a resin base, and chemical resistance.SOLUTION: The surface-treated copper foil has layers formed as follows: a first treatment layer of Ni or Ni-P with a deposition amount of 0.05-1.0 mg/dmis formed on the surface of at least one side of a base copper foil having a surface roughness Ra of ≤0.2 μm or a surface roughness Rz of ≤1.5 μm; a second treatment layer of Zn or Zn-V with a deposition amount of 0.01-0.10 mg/dmis formed on the first treatment layer; a chromate treatment layer with a contact angle θ (hydrophilicity) of 15°-35° is formed on the second treatment layer; a silane coupling treatment layer with a deposition amount of 0.002-0.02 mg/dmis formed on the chromate treatment layer. A method for manufacturing a copper-clad laminated board formed by laminating the surface-treated copper foil and a thermosetting resin board is executed as follows: the surface-treated copper foil and the thermosetting resin board are thermally laminated under the condition that an LMP value shown in a formula 1 is ≤10,660; and a functional group in the outermost silane coupling treatment layer is reacted with a functional group in the thermosetting resin, wherein a formula 1 is LMP=(T+273)*(20+log t), and 20 is a material constant of the copper, T is a temperature(°C), t is a time(hr), and log is a common logarithm.

Description

本発明は、特にフレキシブルプリント配線板等に用いる銅箔に関し、ファインパターンでの回路形成性や高周波域における伝送特性に優れ、かつ樹脂基材との密着性に優れる表面処理銅箔とその製造方法に関するものである。
また、本発明は前記表面処理銅箔を使用した銅張積層板とその製造方法、並びに該銅張積層板を用いたプリント配線板に関するものである。
The present invention relates to a copper foil particularly used for flexible printed wiring boards and the like, and is a surface-treated copper foil excellent in circuit formability in a fine pattern and transmission characteristics in a high frequency region, and excellent in adhesion to a resin base material, and a method for producing the same It is about.
The present invention also relates to a copper clad laminate using the surface-treated copper foil, a method for producing the same, and a printed wiring board using the copper clad laminate.

近年、電子機器の小型化、薄型化が進行しており、特に携帯電話に代表される携帯機器に用いられる各種電子部品は高度に集積化され、小型でかつ高密度のプリント配線板を内蔵するICやLSIなどが使用されている。
これに対応して、これらに使用される高密度実装用の多層プリント配線板やフレキシブルプリント配線板等(以下、単にプリント配線板ということがある)における回路配線パターンにも高密度化が要求され、回路配線の幅と間隔が微細な回路配線パターン、いわゆるファインパターンのプリント配線板が要求されている。
In recent years, electronic devices are becoming smaller and thinner, and various electronic components used in portable devices such as mobile phones are highly integrated, and include a small and high-density printed wiring board. IC and LSI are used.
Correspondingly, higher density is required for circuit wiring patterns in multilayer printed wiring boards, flexible printed wiring boards, and the like (hereinafter simply referred to as printed wiring boards) used for these. A circuit wiring pattern having a fine width and interval between circuit wirings, that is, a so-called fine pattern printed wiring board is required.

例えば、フレキシブルプリント配線板においては回路配線の幅と間隔とがそれぞれ50μm前後のものが要求されており、小型ICに使用されるプリント配線板においては回路配線の幅と間隔とがそれぞれ30μm前後という微細な回路配線を有するプリント配線板が要求されている。   For example, flexible printed wiring boards are required to have circuit wiring widths and intervals of around 50 μm, respectively, and printed wiring boards used for small ICs have circuit wiring widths and intervals of around 30 μm each. There is a demand for printed wiring boards having fine circuit wiring.

従来、プリント配線板に用いる銅箔は、樹脂基材に熱圧着する側の表面を粗化面とし、この粗化面で該樹脂基材に対するアンカー効果を発揮させ、該樹脂基材と銅箔との接合強度を高めてプリント配線板としての信頼性を確保している。(特許文献1)
しかしながら、電子機器の情報処理速度アップや無線通信への対応のため、電子部品には電気信号の高速伝送が求められており、高周波対応基板の適用も進行している。高周波対応基板では電気信号の高速伝送のために伝送損失の低減を図る必要があり、樹脂基材の低誘電率化に加えて導体である回路配線の伝送損失を低減することが要求されている。
Conventionally, a copper foil used for a printed wiring board has a roughened surface on the side to be thermocompression bonded to a resin base material, and this roughened surface exhibits an anchoring effect on the resin base material. The reliability as a printed wiring board is secured by increasing the bonding strength. (Patent Document 1)
However, in order to increase the information processing speed of electronic devices and to cope with wireless communication, electronic components are required to transmit electric signals at high speed, and application of high-frequency compatible substrates is also in progress. For high-frequency compatible substrates, it is necessary to reduce the transmission loss for high-speed transmission of electrical signals, and in addition to lowering the dielectric constant of the resin base material, it is required to reduce the transmission loss of circuit wiring as a conductor .

数GHzを超える高周波帯域においては、表皮効果により回路配線を流れる電流が銅箔表面に集中するため、高周波対応基板用の銅箔として従来の粗化処理を施した銅箔を用いた場合には、粗化処理部における伝送損失が大きくなり伝送特性が悪化する不具合があった。   In the high frequency band exceeding several GHz, the current flowing through the circuit wiring is concentrated on the surface of the copper foil due to the skin effect. Therefore, when the copper foil subjected to the conventional roughening treatment is used as the copper foil for the high frequency compatible substrate. There is a problem that the transmission loss in the roughening unit increases and the transmission characteristics deteriorate.

これらの問題を解消するため、ファインパターン対応や高周波対応のプリント配線板等に用いる銅箔として、粗化処理を施さずに平滑な銅箔を樹脂基材に張り付けて使用する方法がこれまで検討されてきた。(特許文献2、3、4)
しかしながら、これらの平滑な銅箔はファインパターンの回路形成性や高周波域における伝送特性には優れるものの、必ずしも、銅箔と樹脂基材との密着性を安定的に、かつ十分に高めることが困難であり、回路配線のエッチング工程あるいは回路配線の端部へのSnめっき工程において、銅箔と樹脂基材との界面で薬品の染み込みが発生することや、プリント配線板の製造工程および製品使用中の熱負荷により密着性が低下する等の課題を有している。特に、ファインパターン対応のプリント配線板では回路配線(銅箔)と樹脂基材との接合面積が極めて小さく構成されるため、薬品の染み込みや熱負荷後の密着性低下が発生すると樹脂基材から回路配線が剥離する危険性があり、樹脂基材との密着性が良好な銅箔が望まれている。
In order to solve these problems, a method of pasting a smooth copper foil on a resin substrate without roughening as a copper foil used for fine pattern and high frequency printed wiring boards has been studied so far. It has been. (Patent Documents 2, 3, and 4)
However, although these smooth copper foils are excellent in circuit formation of fine patterns and transmission characteristics in a high frequency range, it is not always possible to stably and sufficiently improve the adhesion between the copper foil and the resin base material. In the etching process of circuit wiring or Sn plating process on the edge of circuit wiring, chemical penetration may occur at the interface between the copper foil and the resin base material, and the printed wiring board manufacturing process and products are in use. There is a problem that the adhesiveness is lowered by the heat load. In particular, the printed wiring board that supports fine patterns has a very small bonding area between the circuit wiring (copper foil) and the resin base material. There is a risk that the circuit wiring is peeled off, and a copper foil having good adhesion to a resin base material is desired.

特開平05−029740号公報JP 05-029740 A 特開2003−023046号公報JP 2003-023046 A 特開2007−165674号公報JP 2007-165694 A 特開2008−007803号公報JP 2008-007803 A

本願の課題は、上記問題点を解消し、防錆効果に優れ、微細回路の形成性や高周波域における伝送特性に優れ、かつ樹脂基材との密着性に優れる表面処理銅箔を提供し、合わせて該表面処理銅箔を樹脂基材に張り付けた銅張積層板および前記銅張積層板を用いたプリント配線板を提供することにある。   The problem of the present application is to provide a surface-treated copper foil that solves the above-mentioned problems, is excellent in rust prevention effect, is excellent in fine circuit formability and transmission characteristics in a high-frequency region, and is excellent in adhesion to a resin base material. In addition, another object is to provide a copper-clad laminate in which the surface-treated copper foil is adhered to a resin substrate, and a printed wiring board using the copper-clad laminate.

本発明者等は鋭意検討した結果、必要により表面を平滑処理してRaが0.2μm以下、Rzが1.5μm以下とした銅箔を用いて、少なくともその片面表面に付着量が0.05〜1.0mg/dmのNi層またはNi−P合金層(一次処理層)、付着量が0.01〜0.10mg/dmのZn層またはZn−V合金層(二次処理層)を順次に設ける表面処理を施し、その上に、シランカップリング剤の水酸基の数とほぼ同じになるようにクロメート層の水酸基の数を制御した適切なクロメート処理層を施し、その上に適切なシランカップリング剤を塗布・乾燥させることで、防錆効果に優れ、微細回路の形成性や高周波域における伝送特性に優れ、かつ樹脂基材との密着性に優れる表面処理銅箔、またその銅箔を樹脂基材に張り付けた銅張積層板および前記銅張積層板を用いたプリント配線板を提供することに成功したものある。 As a result of intensive studies, the inventors of the present invention used a copper foil having a surface that was smoothed as necessary to obtain Ra of 0.2 μm or less and Rz of 1.5 μm or less. ~1.0mg / Ni layer dm 2 or Ni-P alloy layer (primary treatment layer), Zn layer or Zn-V alloy layer of the deposited amount 0.01~0.10Mg / dm 2 (secondary treatment layer) A suitable chromate treatment layer in which the number of hydroxyl groups in the chromate layer is controlled so as to be approximately the same as the number of hydroxyl groups in the silane coupling agent is applied to the surface treatment. By applying and drying a silane coupling agent, surface-treated copper foil with excellent rust prevention effect, fine circuit formability, high frequency transmission characteristics, and excellent adhesion to resin substrates, and its copper The foil was attached to the resin substrate Some have succeeded in providing a clad laminates and printed wiring board using the copper-clad laminate.

本発明の表面処理銅箔は、母材銅箔(未処理銅箔)の少なくとも片面表面に、付着量が0.05〜1.0mg/dmのNiまたNi−Pの一次処理層が設けられ、該一次処理層の上に付着量が0.01〜0.10mg/dmのZnまたはZn−Vの二次処理層が設けられ、該二次処理層の上にクロメート処理層が形成され、該クロメート処理層の上に付着量0.002〜0.02mg/dmのシランカップリング処理層が設けられている。 The surface-treated copper foil of the present invention is provided with a primary treatment layer of Ni or Ni-P having an adhesion amount of 0.05 to 1.0 mg / dm 2 on at least one surface of a base material copper foil (untreated copper foil). A secondary treatment layer of Zn or Zn-V having an adhesion amount of 0.01 to 0.10 mg / dm 2 is provided on the primary treatment layer, and a chromate treatment layer is formed on the secondary treatment layer. A silane coupling treatment layer having an adhesion amount of 0.002 to 0.02 mg / dm 2 is provided on the chromate treatment layer.

また、本発明の表面処理銅箔は、表面粗さRaが0.2μm以下、又はRzが1.5μm以下である母材銅箔(未処理銅箔)の少なくとも片面表面に、付着量が0.05〜1.0mg/dmのNiまたNi−Pの一次処理層が設けられ、該一次処理層の上に付着量が0.01〜0.10mg/dmのZnまたはZn−Vの二次処理層が設けられ、該二次処理層の上に接触角θ(親水性)が15°から35°を有するクロメート処理層が形成され、該クロメート処理層の上に付着量0.002〜0.02mg/dmのシランカップリング処理層が設けられている。 The surface-treated copper foil of the present invention has an adhesion amount of 0 on at least one surface of a base material copper foil (untreated copper foil) having a surface roughness Ra of 0.2 μm or less or Rz of 1.5 μm or less. A primary treatment layer of 0.05 to 1.0 mg / dm 2 of Ni or Ni—P is provided, and an adhesion amount of 0.01 to 0.10 mg / dm 2 of Zn or Zn—V is provided on the primary treatment layer. A secondary treatment layer is provided, a chromate treatment layer having a contact angle θ (hydrophilicity) of 15 ° to 35 ° is formed on the secondary treatment layer, and an adhesion amount of 0.002 is formed on the chromate treatment layer. A silane coupling treatment layer of ˜0.02 mg / dm 2 is provided.

本発明の表面処理銅箔の製造方法は、前記表面処理銅箔と熱硬化性樹脂基板とを積層する積層方法であって、前記表面処理銅箔と熱硬化性樹脂基板とを式1に示すLMP値が10660以下の条件で加熱積層し、前記表面処理銅箔の最表面シランカップリング処理層の官能基を、熱硬化性樹脂の官能基と反応させることを特徴とする。
式1:LMP=(T+273)*(20+Logt)
ここで、20は銅の材料定数、Tは温度(℃)、tは時間(hr)、Logは常用対数である。
The manufacturing method of the surface treatment copper foil of this invention is a lamination | stacking method which laminates | stacks the said surface treatment copper foil and a thermosetting resin board | substrate, Comprising: The said surface treatment copper foil and a thermosetting resin board | substrate are shown in Formula 1. It is characterized by laminating by heating under conditions where the LMP value is 10660 or less, and causing the functional group of the outermost surface silane coupling treatment layer of the surface-treated copper foil to react with the functional group of the thermosetting resin.
Formula 1: LMP = (T + 273) * (20 + Logt)
Here, 20 is a copper material constant, T is temperature (° C.), t is time (hr), and Log is a common logarithm.

前記熱硬化性樹脂基板を形成する熱硬化性樹脂が前記式1に示すLMP値が10660以下の条件で硬化反応する樹脂であることが好ましい。   It is preferable that the thermosetting resin forming the thermosetting resin substrate is a resin that undergoes a curing reaction under the condition that the LMP value shown in the formula 1 is 10660 or less.

本発明の前記表面処理銅箔はファインパターンの回路形成性や高周波域における伝送特性に優れ、かつ樹脂基材との密着性や耐薬品性(銅箔と樹脂基材との界面での薬品の染み込みを阻止)に優れる粗化処理銅箔を提供することができる。
更に、本発明の表面処理銅箔を用いた銅張積層板によれば、ファインパターンや高周波基板に適するだけでなく、樹脂基材と銅箔との密着性が良好で信頼性の高いプリント配線板を提供することができる。
The surface-treated copper foil of the present invention is excellent in fine pattern circuit formability and transmission characteristics in a high frequency range, and has adhesion and chemical resistance with a resin base material (chemicals at the interface between the copper foil and the resin base material). It is possible to provide a roughened copper foil that is excellent in preventing penetration.
Furthermore, according to the copper clad laminate using the surface-treated copper foil of the present invention, not only is it suitable for a fine pattern or a high-frequency substrate, but also a printed wiring with good adhesion between the resin base material and the copper foil. Board can be provided.

図1は本発明の接触角θを説明するための理論図である。FIG. 1 is a theoretical diagram for explaining the contact angle θ of the present invention.

本発明の母材銅箔としては電解銅箔が好ましく、その表面粗さは、Ra0.2μm以下、或はRz1.5μm以下のものである。製箔工程を経て得られた未処理銅箔の表面粗さが上記の粗さ範囲外の場合は、銅箔表面を平滑化加工、例えば、電解研磨、機械研磨などの手段を用いて、規定する表面粗さ範囲に収まる銅箔(以下母材銅箔又は未処理銅箔ということがある)とする。
また本発明の母材銅箔としてRaが0.2μm以下、或はRzが1.5μm以下の圧延銅箔を用いてもよい。
本発明において母材銅箔の表面粗度をRaで0.2μm以下、或はRzで1.5μm以下に規定するのは、高周波伝送特性を要求される使途やCOF(チップ・オン・フィルム)としての使途を満足する視認性を発現させるためである。
As the base material copper foil of the present invention, an electrolytic copper foil is preferable, and its surface roughness is Ra 0.2 μm or less, or Rz 1.5 μm or less. When the surface roughness of the untreated copper foil obtained through the foil-making process is outside the above-mentioned roughness range, the copper foil surface is smoothed, for example, using means such as electrolytic polishing and mechanical polishing. Copper foil that fits within the surface roughness range (hereinafter sometimes referred to as base material copper foil or untreated copper foil).
Moreover, you may use the rolled copper foil whose Ra is 0.2 micrometer or less, or Rz is 1.5 micrometer or less as a base material copper foil of this invention.
In the present invention, the surface roughness of the base copper foil is specified to be 0.2 μm or less in Ra, or 1.5 μm or less in Rz. The use is required for high-frequency transmission characteristics or COF (chip-on-film). This is for the purpose of expressing visibility satisfying the purpose of use.

本発明において、未処理銅箔(表面処理をしていない銅箔)表面に一次処理層としてNiまたはNi−P合金の被覆層を設ける。一次処理層はめっき層として設ける。一次処理層のNiについては0.05〜1.0mg/dm付着させる。Niの付着量を規定するのは耐熱性と回路直進性に影響があるためで、Ni付着量が0.05mg/dm未満では耐熱性の改善がそれほど期待できず、1.0mg/dmより多いとソフトエッチング性に悪影響を及ぼすことが懸念されるためである。
さらにソフトエッチングが要求される場合は、Ni−P合金を用いることが効果的である。
In the present invention, a Ni or Ni-P alloy coating layer is provided as a primary treatment layer on the surface of an untreated copper foil (a copper foil that has not been surface-treated). The primary treatment layer is provided as a plating layer. About Ni of a primary treatment layer, 0.05-1.0 mg / dm < 2 > is made to adhere. The amount of adhesion of Ni is specified because it has an influence on the heat resistance and the straightness of the circuit. If the amount of adhesion of Ni is less than 0.05 mg / dm 2 , improvement in heat resistance cannot be expected so much, and 1.0 mg / dm 2 This is because if the amount is larger, there is a concern that the soft etching property may be adversely affected.
Further, when soft etching is required, it is effective to use a Ni-P alloy.

また、本発明では、前記NiまたはNi−P合金を付着した一次処理層表面に、防錆効果に寄与するZnまたはZn−V合金を二次処理層として設ける。二次処理層のZn付着量は0.01〜0.10mg/dmとする。ZnまたはZn−V合金のZnとしての付着量を規定するのは、付着量が0.10mg/dm以上であると、エッチング性が悪く、0.01mg/dm以下であると耐酸性が悪く、ファインパターンのエッチングが期待できないためである。 Moreover, in this invention, Zn or Zn-V alloy which contributes to a rust prevention effect is provided as a secondary treatment layer on the primary treatment layer surface to which the Ni or Ni-P alloy is adhered. Zn deposition amount of the secondary treatment layer and 0.01~0.10mg / dm 2. The adhesion amount of Zn or Zn—V alloy as Zn is regulated by the fact that the adhesion amount is 0.10 mg / dm 2 or more, the etching property is poor, and the acid resistance is 0.01 mg / dm 2 or less. This is because the etching of fine patterns cannot be expected.

二次処理層としてはZnのみでも防錆効果は充分であるが、V(バナジウム)含有量が10%以下のZn−V合金を用いることでファインパターン加工性に影響することなく耐熱性と耐薬品性の相乗の効果が得られる。
V(バナジウム)含有量を10%以下とするのは、表面処理銅箔にファインパターン加工を施す際に用いる過酸化水素−硫酸系エッチング液にVが溶解し、エッチング液に溶解したVが該エッチング液と酸化還元反応して過酸化水素の劣化を早めるため、Vの含有量は10%以下とすることが好ましい。
また、一次処理層のNi付着量が0.2mg/dmまでなら、200℃〜350℃程度のプレス温度や加熱条件下で十分にZn成分と銅箔表面とで真鍮化し、Niが混在する真鍮(Cu/Ni/Zn)化が可能で、二次処理層を加熱して真鍮化することで、二次処理層の防錆効果は更に向上する。
As the secondary treatment layer, Zn alone has a sufficient rust prevention effect, but by using a Zn-V alloy having a V (vanadium) content of 10% or less, heat resistance and resistance without affecting the fine pattern workability. A synergistic effect of chemical properties can be obtained.
The V (vanadium) content is 10% or less because V is dissolved in a hydrogen peroxide-sulfuric acid-based etching solution used when fine pattern processing is performed on the surface-treated copper foil, and the V dissolved in the etching solution is In order to accelerate the deterioration of hydrogen peroxide by oxidation-reduction reaction with the etching solution, the V content is preferably 10% or less.
Moreover, if the Ni adhesion amount of the primary treatment layer is up to 0.2 mg / dm 2 , it is sufficiently brassed with the Zn component and the copper foil surface under a press temperature and heating conditions of about 200 ° C. to 350 ° C., and Ni is mixed. Brass (Cu / Ni / Zn) conversion is possible, and the rust prevention effect of a secondary treatment layer improves further by heating a secondary treatment layer and making it brass.

二次処理層の表面にさらにクロメート処理層(皮膜)を形成する。Zn又はZn−V合金からなる二次処理層とクロメート処理層は銅箔表面が酸化するのを防ぎ、銅箔と樹脂基材との初期密着性の向上及び高温高湿雰囲気に曝された後の密着力低下を防ぐ効果がある。
特にクロメート処理層の接触角θを小さくすることにより樹脂基材との密着性はより向上する。
A chromate treatment layer (film) is further formed on the surface of the secondary treatment layer. After the secondary treatment layer and the chromate treatment layer made of Zn or Zn-V alloy prevent the copper foil surface from being oxidized, the initial adhesion between the copper foil and the resin base material is improved, and after being exposed to a high temperature and high humidity atmosphere There is an effect of preventing a decrease in adhesion strength.
In particular, by reducing the contact angle θ of the chromate treatment layer, the adhesion with the resin base material is further improved.

クロメート処理層の接触角θにつき図1を参照して説明する。
接触角の測定は、一般的にθ/2法が用いられる。
θ/2法は、図1に示すように液滴が球の一部であることを前提として、重力の影響を無視できる液滴量で測定する。
θ/2法は、液滴の左右端点と頂点を結ぶ直線の、固体表面に対する角度をθ1とし、その2倍を接触角θとして求める。分度器のような目盛があれば直読で測定でき、また、パソコンによる解析でも簡単な計算により測定処理ができる。
The contact angle θ of the chromate treatment layer will be described with reference to FIG.
For the measurement of the contact angle, the θ / 2 method is generally used.
In the θ / 2 method, as shown in FIG. 1, measurement is performed with a droplet amount that can ignore the influence of gravity on the assumption that the droplet is a part of a sphere.
In the θ / 2 method, the angle of the straight line connecting the left and right end points and the vertex of the droplet with respect to the solid surface is θ1, and twice the contact angle θ is obtained. If there is a scale like a protractor, it can be measured by direct reading, and can also be measured by simple calculation even with analysis by a personal computer.

クロメート処理層の接触角θを小さくすることにより樹脂基材との密着性は向上する。接触角θ(親水性)は、二次処理層上に施すクロメート処理層を設ける時の電流密度を上げることによってその接触度θが低下することを実験的に突き止めた。
表1は銅箔表面に下地めっきとしてNi層、その上にZn層を設け、その表面に電流密度を種々かえてクロメート層を施し、図1に示す接触角θを求めた結果を示している。
表1に示す実験例1〜9から明らかなように、電流密度が高くなるに従ってCrの付着量も増加するが、接触角θも上昇している。
By reducing the contact angle θ of the chromate treatment layer, the adhesion with the resin base material is improved. The contact angle θ (hydrophilicity) was experimentally found to decrease the contact degree θ by increasing the current density when the chromate treatment layer is provided on the secondary treatment layer.
Table 1 shows the results of obtaining the contact angle θ shown in FIG. 1 by providing a Ni layer as a base plating on the copper foil surface, providing a Zn layer thereon, and applying a chromate layer on the surface with various current densities. .
As is apparent from Experimental Examples 1 to 9 shown in Table 1, as the current density increases, the amount of deposited Cr increases, but the contact angle θ also increases.

本発明表面処理銅箔はクロメート処理層の表面にシランカップリング剤を塗布、加熱乾燥してシランカップリング処理層を設ける。
シランカップリング剤は様々な種類のものが市販されているが、それぞれに特徴があり、接着させる樹脂基材に適したものを選択する必要がある。高周波対応樹脂基板には、アミノシラン系、またはメタクリル系が有効である。また、リジッド配線板やIC用のプリント配線板には主にエポキシ系のフェノール樹脂やエポキシ樹脂を用いることが有効である。
In the surface-treated copper foil of the present invention, a silane coupling agent is applied to the surface of the chromate treatment layer and dried by heating to provide a silane coupling treatment layer.
Various types of silane coupling agents are commercially available, but each has its characteristics, and it is necessary to select a silane coupling agent suitable for the resin base material to be bonded. Aminosilane-based or methacrylic-based materials are effective for high-frequency compatible resin substrates. In addition, it is effective to use mainly an epoxy phenol resin or an epoxy resin for a rigid wiring board or a printed wiring board for IC.

シランカップリング剤は、水と接すると加水分解し、生成したシラノール基が自己縮合により、前記クロメート層表面の水酸基と水素結合的に吸着し、その後の乾燥処理で負荷される熱(熱エネルギー)で、前記クロメート層上の表面上に存在する水酸基と、シラノール基とから脱水(縮合反応)反応がおこり、防錆効果が高まると考えられる。
即ち、クロメート層の表面に発生する水酸基の数をコントロールすることにより、シランカップリング剤と水素結合する水酸基の数とをあわせることにより、水素結合できない水酸基を少なくすることができる。これにより、乾燥工程を経て、余分の水酸基が少なくなり、結果として銅箔表面に酸化物の付着が少なくなり、銅箔表面の防錆効果が得られることになる。
The silane coupling agent hydrolyzes when it comes into contact with water, and the generated silanol groups are adsorbed by hydrogen bonding to the hydroxyl groups on the surface of the chromate layer by self-condensation, and the heat (thermal energy) applied in the subsequent drying treatment. Thus, it is considered that a dehydration (condensation reaction) reaction occurs from the hydroxyl group present on the surface of the chromate layer and the silanol group, and the rust prevention effect is enhanced.
That is, by controlling the number of hydroxyl groups generated on the surface of the chromate layer, the number of hydroxyl groups that cannot be hydrogen bonded can be reduced by combining the number of hydroxyl groups that are hydrogen bonded to the silane coupling agent. Thereby, through a drying process, an excess hydroxyl group decreases, as a result, adhesion of an oxide decreases on the copper foil surface, and the rust prevention effect on the copper foil surface is obtained.

シランカップリング剤を塗布、加熱乾燥する過程で加熱乾燥温度が低いとクロメート層の水酸基とシランカップリング剤のシラノール基との水酸基同士の水素結合の結合エネルギーが低く、シランカップリング処理の効果が得られない。一方、加熱し過ぎると結合したシランカップリング剤が熱によって分解し、そこが脆弱な界面となって樹脂基材との接着性に悪影響を及ぼすので好ましくない。乾燥温度と乾燥時間は、装置の構成や製造工程の処理速度(ワークタイム)にも依存するが、好適な範囲としては、乾燥温度が70〜200℃、乾燥時間が15〜35秒である。   If the heating and drying temperature is low during the process of applying and drying the silane coupling agent, the bond energy of the hydrogen bond between the hydroxyl group of the chromate layer and the silanol group of the silane coupling agent is low, and the effect of the silane coupling treatment is effective. I can't get it. On the other hand, if it is heated too much, the bonded silane coupling agent is decomposed by heat, which becomes a fragile interface and adversely affects the adhesion to the resin substrate, which is not preferable. Although the drying temperature and the drying time depend on the configuration of the apparatus and the processing speed (work time) of the manufacturing process, a preferable range is a drying temperature of 70 to 200 ° C. and a drying time of 15 to 35 seconds.

前記考察に基づき、クロメート処理層のCr付着量(接触角θ)とシランカップリング処理層のシランカップリング剤の付着量により銅箔表面の酸化度合い(防錆効果)と熱硬化樹脂とのピール強度につき検討した結果を表1に示す。
表1から明らかなように、耐熱後のピール強度はクロメート処理層の接触角θが15°〜35°でシランカップリング剤の付着量が0.002〜0.02mg/dmの実験例5が満足できる結果を示している。
なお、評価方法等については後述する。
Based on the above considerations, the degree of oxidation of the copper foil surface (rust prevention effect) and the peel of the thermosetting resin depending on the Cr adhesion amount (contact angle θ) of the chromate treatment layer and the silane coupling agent adhesion amount of the silane coupling treatment layer Table 1 shows the results of the study on strength.
As can be seen from Table 1, the peel strength after heat resistance is 5 in which the contact angle θ of the chromate treatment layer is 15 ° to 35 ° and the adhesion amount of the silane coupling agent is 0.002 to 0.02 mg / dm 2. Shows satisfactory results.
The evaluation method will be described later.

次に、表面処理を施した表面処理銅箔に樹脂基材を積層して銅張積層基板を作成した。
樹脂基材としては、種々の成分の高分子材料を用いることができる。しかし、本発明は、無機材料と有機材料をよりよく接着するため、無機材料であるクロメート処理層の親水性(接触角)を限定し、比較的低温で硬化する硬化系樹脂を選択する。このよう表面処理箔のクロメート処理層の接触角を限定し、比較的低温で硬化する硬化系樹脂を選択することで、銅箔の表面が平滑の状態であっても、高いピール強度で接合する銅張積層基板を作成することができる。
銅張積層基板を作成するには前述したように比較的低温で硬化する硬化系樹脂を選択する。比較的低温で硬化する硬化系樹脂としては260℃以下で1時間、或は式1で示すLMP値が10660以下の条件で熱硬化する熱硬化性樹脂を選択することが望ましい。
式1:LMP=(T+273)*(20+Logt)
ここで、20は銅の材料定数、Tは温度(℃)、tは時間(hr)、Logは常用対数である。
Next, the resin base material was laminated | stacked on the surface treatment copper foil which performed the surface treatment, and the copper clad laminated board was created.
As the resin base material, polymer materials of various components can be used. However, in the present invention, in order to better bond the inorganic material and the organic material, the hydrophilicity (contact angle) of the chromate treatment layer, which is an inorganic material, is limited, and a curable resin that is cured at a relatively low temperature is selected. By limiting the contact angle of the chromate treatment layer of the surface-treated foil and selecting a curable resin that cures at a relatively low temperature, even when the surface of the copper foil is in a smooth state, bonding is performed with high peel strength. A copper-clad laminate can be created.
In order to produce a copper-clad laminate, a curable resin that is cured at a relatively low temperature is selected as described above. As the curable resin that cures at a relatively low temperature, it is desirable to select a thermosetting resin that thermosets at 260 ° C. or less for 1 hour or under the condition that the LMP value represented by Formula 1 is 10660 or less.
Formula 1: LMP = (T + 273) * (20 + Logt)
Here, 20 is a copper material constant, T is temperature (° C.), t is time (hr), and Log is a common logarithm.

表面処理銅箔と積層する比較的低温で硬化する硬化系樹脂としては、例えば、近年開発された可溶性ポリイミド樹脂が、硬化温度200℃以下で銅箔と接着できるため、もっとも望ましい。その他、光硬化、湿気硬化、2液硬化系の樹脂または接着剤でも、熱処理の負荷は小さいことから、樹脂そのものの特性を満たすことができれば、本発明の主旨に沿うため、実施形態の一つである。   As a curable resin that is cured at a relatively low temperature and laminated with the surface-treated copper foil, for example, a recently developed soluble polyimide resin is most desirable because it can be bonded to the copper foil at a curing temperature of 200 ° C. or lower. In addition, even with a photo-curing, moisture-curing, or two-component curing resin or adhesive, the heat treatment load is small. Therefore, if the characteristics of the resin itself can be satisfied, the present invention is consistent with the gist of the present invention. It is.

また例えば、光学的異方性の溶融相を形成しうる高分子、熱可塑性のポリイミド、樹脂ポリエーテルエーテルケトン(PEEK)樹脂については、成形温度が350℃を超えるため、銅箔と直接積層することは望ましくないが、熱硬化系接着剤を介して表面処理銅箔と積層し銅張積層板とすることができる。また、比較的に成形温度の低いポリエチレンテレフタラート(PET)樹脂、ポリエチレンナフタレート(PEN)樹脂は、シランカップリング剤の官能基と反応する基が少ないことから、直接表面処理銅箔と直接積層することは困難であるが、比較的低温で硬化する硬化系樹脂を接着剤として表面処理銅箔と積層し銅張積層板とすることができる。
表面処理銅箔と樹脂基材とを張り合わせる(積層する)方法としては、キャスティング方式、また熱プレス方式、連続ロールラミネート方式、連続ベルトプレス方式などを用いることができ、接着剤等を介して熱圧着することもできる。
また、別の方法としては、溶剤に溶解して流動性を有する状態とした樹脂含有物を前記表面処理銅箔の表面に塗布した後に、熱処理により樹脂を硬化させる方法も適用できる。
Also, for example, polymer, thermoplastic polyimide, and resin polyether ether ketone (PEEK) resin that can form an optically anisotropic melt phase are directly laminated with copper foil because the molding temperature exceeds 350 ° C. Although it is not desirable, it can be laminated with a surface-treated copper foil via a thermosetting adhesive to form a copper-clad laminate. In addition, polyethylene terephthalate (PET) resin and polyethylene naphthalate (PEN) resin, which have relatively low molding temperatures, have few groups that react with the functional groups of the silane coupling agent. Although it is difficult to do, a copper-clad laminate can be obtained by laminating a surface-treated copper foil with a curable resin that cures at a relatively low temperature as an adhesive.
As a method of laminating (laminating) the surface-treated copper foil and the resin base material, a casting method, a heat press method, a continuous roll laminate method, a continuous belt press method, or the like can be used. Thermocompression bonding is also possible.
As another method, a method in which a resin-containing material dissolved in a solvent and having fluidity is applied to the surface of the surface-treated copper foil and then the resin is cured by heat treatment can be applied.

最近では、銅箔の表面を予めエポキシ樹脂やポリイミドのような接着用樹脂で被覆し、該接着用樹脂を半硬化状態(Bステージ)とした樹脂付き銅箔を回路形成用の銅箔として用い、その接着用樹脂側を樹脂基材に熱圧着して多層プリント配線板やフレキシブルプリント配線板を製造することも行われている。この方法は表面処理銅箔と樹脂基材との密着力を高めることができるため、本発明と組み合わせることにより密着性の良好な銅張積層板を製造することができ、より効果的である。   Recently, the surface of the copper foil is coated with an adhesive resin such as epoxy resin or polyimide in advance, and the resin-coated copper foil in which the adhesive resin is semi-cured (B stage) is used as a copper foil for circuit formation. A multilayer printed wiring board and a flexible printed wiring board are also manufactured by thermocompression bonding the resin side for adhesion to a resin base material. Since this method can enhance the adhesion between the surface-treated copper foil and the resin substrate, a copper-clad laminate with good adhesion can be produced by combining with the present invention, and is more effective.

以下に、本発明を実施例に基づいて更に詳しく説明するが、本発明はこれらに限定されるものではない。
本発明銅箔の表面処理工程を製箔工程から順に説明する。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
The surface treatment process of the copper foil of the present invention will be described in order from the foil making process.

実施例1〜4
(1)製箔工程
下記のめっき浴及びめっき条件で母材銅箔(未処理銅箔)を作成した。
(めっき浴及びめっき条件)
硫酸銅:銅濃度として50〜80g/L
硫酸濃度:30〜70g/L
塩素濃度:0.01〜30ppm
液温:35〜45℃
電流密度:20〜50A/dm
作成された銅箔のRaは0.2μm以下、Rzは1.5μm以下であった。
Examples 1-4
(1) Foil-making process A base material copper foil (untreated copper foil) was prepared under the following plating bath and plating conditions.
(Plating bath and plating conditions)
Copper sulfate: 50-80 g / L as copper concentration
Sulfuric acid concentration: 30-70 g / L
Chlorine concentration: 0.01-30ppm
Liquid temperature: 35-45 degreeC
Current density: 20 to 50 A / dm 2
Ra of the produced copper foil was 0.2 micrometer or less, and Rz was 1.5 micrometers or less.

(2)表面処理−1
下記のめっき浴及びめっき条件で一次処理層を施した。
(Niめっき)
硫酸ニッケル6水和物:240g/L
過硫酸アンモニウム:40g/L
ホウ酸:30g/L
液温:50℃
電流密度:0.5A/dm
(2) Surface treatment-1
The primary treatment layer was applied in the following plating bath and plating conditions.
(Ni plating)
Nickel sulfate hexahydrate: 240 g / L
Ammonium persulfate: 40 g / L
Boric acid: 30 g / L
Liquid temperature: 50 ° C
Current density: 0.5 A / dm 2

(Ni−Pめっき)
硫酸ニッケル6水和物:240g/L
過硫酸アンモニウム:40g/L
次亜リン酸ナトリウム:5g/L
ホウ酸:30g/L
液温:50℃
電流密度:0.5A/dm
表面処理―1で施したNi又はNi−P合金におけるNiの付着量は0.05〜1.0mg/dmの範囲である。
(Ni-P plating)
Nickel sulfate hexahydrate: 240 g / L
Ammonium persulfate: 40 g / L
Sodium hypophosphite: 5 g / L
Boric acid: 30 g / L
Liquid temperature: 50 ° C
Current density: 0.5 A / dm 2
The adhesion amount of Ni in the Ni or Ni—P alloy applied in the surface treatment-1 is in the range of 0.05 to 1.0 mg / dm 2 .

(3)表面処理−2
下記のめっき浴及びめっき条件で二次処理層を施した。
(Znめっき)
硫酸亜鉛7水和物:24g/L
水酸化ナトリウム:85g/L
液温:25℃
電流密度:0.4A/dm
(3) Surface treatment-2
The secondary treatment layer was applied with the following plating bath and plating conditions.
(Zn plating)
Zinc sulfate heptahydrate: 24 g / L
Sodium hydroxide: 85 g / L
Liquid temperature: 25 ° C
Current density: 0.4 A / dm 2

(Zn−Vめっき)
硫酸亜鉛7水和物:24g/L
水酸化ナトリウム:85g/L
メタバナジウム酸アンモニウム:5g/L
液温:25℃
電流密度:0.4A/dm
表面処理―2で施したZn又はZn−V合金におけるZnの付着量は0.01〜0.1mg/dmの範囲である。
(Zn-V plating)
Zinc sulfate heptahydrate: 24 g / L
Sodium hydroxide: 85 g / L
Ammonium metavanadate: 5 g / L
Liquid temperature: 25 ° C
Current density: 0.4 A / dm 2
Adhesion amount of Zn in the Zn or Zn-V alloy was subjected surface treatment -2 ranges 0.01 to 0.1 mg / dm 2.

(4)クロメート処理
金属めっき層処理後に、下記のめっき浴及びめっき条件でCrめっきを施した。
(Crめっき)
無水クロム酸:0.1g/L〜100g/L
液温:20〜50℃
電流密度: 1〜2A/dm
(4) Chromate treatment After the metal plating layer treatment, Cr plating was performed using the following plating bath and plating conditions.
(Cr plating)
Chromic anhydride: 0.1 g / L to 100 g / L
Liquid temperature: 20-50 degreeC
Current density: 1-2 A / dm 2

(5)シランカップリング処理
シラン種:3−アミノプロピルトリメトキシシラン
シラン濃度:0.1g/L〜10g/L
液温:20〜50℃
(5) Silane coupling treatment Silane species: 3-aminopropyltrimethoxysilane Silane concentration: 0.1 g / L to 10 g / L
Liquid temperature: 20-50 degreeC

比較例1
(Ni−Zn合金めっき)
なお、Niめっきを施した場合にはその上にZnめっきを施し、Ni−Znめっきを施した場合にはZnめっきは施さなかった。
硫酸ニッケル:ニッケル濃度として20g/L〜60g/L、
硫酸亜鉛:亜鉛濃度として0.05g/L〜50g/L、
液温:20〜60℃
pH:2〜7
電流密度:0.3〜10A/dm
Comparative Example 1
(Ni-Zn alloy plating)
When Ni plating was applied, Zn plating was applied thereon, and when Ni—Zn plating was applied, Zn plating was not applied.
Nickel sulfate: Nickel concentration of 20 g / L to 60 g / L,
Zinc sulfate: 0.05 g / L to 50 g / L as the zinc concentration,
Liquid temperature: 20-60 degreeC
pH: 2-7
Current density: 0.3 to 10 A / dm 2

比較例2
(Ni−Zn−P合金めっき)
硫酸ニッケル:ニッケル濃度として20g/L〜60g/L、
硫酸亜鉛:亜鉛濃度として0.05g/L〜50g/L、
過硫酸アンモニウム:20g/L〜40g/L
次亜リン酸ナトリウム:5g/L
ホウ酸:30g/L
液温:20℃〜60℃
電流密度:0.5A/dm〜8.5A/dm
Comparative Example 2
(Ni-Zn-P alloy plating)
Nickel sulfate: Nickel concentration of 20 g / L to 60 g / L,
Zinc sulfate: 0.05 g / L to 50 g / L as the zinc concentration,
Ammonium persulfate: 20 g / L to 40 g / L
Sodium hypophosphite: 5 g / L
Boric acid: 30 g / L
Liquid temperature: 20 to 60 ° C
Current density: 0.5 A / dm 2 to 8.5 A / dm 2

実施例5〜8
実施例1で作成した表面処理銅箔に、表3に示す各種樹脂基材を張り合わせ銅張積層基板を作成した。
Examples 5-8
Various resin base materials shown in Table 3 were bonded to the surface-treated copper foil prepared in Example 1 to prepare a copper-clad laminate.

比較例3、4
比較例1で作成した表面処理銅箔に、表3に示す樹脂基材を張り合わせ銅張積層基板を作成した。
Comparative Examples 3 and 4
The surface-treated copper foil created in Comparative Example 1 was laminated with a resin base material shown in Table 3 to produce a copper-clad laminate.

試験片の作成
上記実施例、比較例で作成した銅箔又は積層基板を、各種評価に適するサイズや形態に加工し試験片とした。
Preparation of test piece The copper foil or laminated substrate prepared in the above Examples and Comparative Examples was processed into sizes and forms suitable for various evaluations to obtain test pieces.

試験片の特性評価
試験片につき各種測定、評価を行い、その結果を表1〜3に示した。
(1)金属付着量の測定
蛍光X線分析装置((株)リガク製ZSXPrimus、分析径:35Φ)にて分析した。
Characteristic Evaluation of Test Pieces Various measurements and evaluations were performed on the test pieces, and the results are shown in Tables 1 to 3.
(1) Measurement of metal adhesion amount It analyzed with the fluorescent-X-ray-analysis apparatus (Rigaku Co., Ltd. product ZSX Primus, analysis diameter: 35 (PHI)).

(2)表面粗さの測定
接触式表面粗さ測定機((株)小坂研究所製SE1700)にて測定した。
(2) Measurement of surface roughness It measured with the contact-type surface roughness measuring machine (SE1700 by Kosaka Laboratory).

(3)初期ピール強度(初期の密着強度の測定)
表面処理銅箔と樹脂基材との密着強度を測定した。樹脂基材としては市販の熱硬化型ポリイミド系レジストを使用した。
硬化条件:260℃、1時間 (LMP値=10660)
密着強度は、テンシロンテスター(東洋精機製作所社製)を使用して、銅箔と樹脂基材とを接着後、試験片を1mm幅の回路配線にエッチング加工し、樹脂側を両面テープによりステンレス板に固定し、回路配線を90度方向に50mm/分の速度で剥離して求めた。初期密着性は0.8kN/m以上を合格(○)とし、それ以下を不合格(×)と判定した。
(3) Initial peel strength (measurement of initial adhesion strength)
The adhesion strength between the surface-treated copper foil and the resin base material was measured. A commercially available thermosetting polyimide resist was used as the resin substrate.
Curing conditions: 260 ° C., 1 hour (LMP value = 10660)
Adhesion strength is tensilon tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.), after bonding copper foil and resin base material, the test piece is etched into 1mm wide circuit wiring, and the resin side is a stainless steel plate with double-sided tape The circuit wiring was peeled off at a rate of 50 mm / min in the 90 degree direction. Initial adhesion determined that 0.8 kN / m or more was acceptable (◯) and less than that was unacceptable (x).

(4)耐熱性(熱処理後の密着強度の測定)
試験片について、150℃で168時間加熱処理した後の密着強度を測定した。
耐熱性は初期ピール強度の50%以上を合格(○)とし、それ以下を不合格(×)と判定した。
(4) Heat resistance (measurement of adhesion strength after heat treatment)
About the test piece, the adhesive strength after heat-processing at 150 degreeC for 168 hours was measured.
As for heat resistance, 50% or more of the initial peel strength was determined to be acceptable (◯), and less than that was determined to be unacceptable (x).

(5)耐薬品性
5−1.耐酸性30分(酸処理後の密着強度の測定)
耐薬品性評価は、基材との引き剥がし密着性の測定に用いるJIS−C−6481に規定される測定方法により引き剥がし強度を測定することで良否を判定した。先ず、表1に示したピール強度の測定と同様に1m/m幅にパターン作製された試験回路のピール強度(初期値)KN/mに対して、該試験回路を塩酸:水=1:2の塩酸希釈液に30分浸漬後に測定したピールの劣化値が、全くないものから10%未満を合格「○」、10%以上を不合格(×)と判定した。
5−2.耐酸性60分(薬液染み込み有無)
試験片について、水:塩酸=1:1の塩酸溶液に常温で1時間浸漬した後、銅箔と樹脂基材の界面に1μm以上の染み込みの有無を観察し、染み込みがないものを合格(○)とし、染み込みが見られたものを不合格(×)と判定した。
(5) Chemical resistance 5-1. Acid resistance 30 minutes (measurement of adhesion strength after acid treatment)
In the chemical resistance evaluation, pass / fail was determined by measuring the peel strength by a measurement method defined in JIS-C-6481, which is used for measurement of peel adhesion to a substrate. First, the peel strength (initial value) KN / m of the test circuit patterned to 1 m / m width in the same manner as the peel strength measurement shown in Table 1, the test circuit is hydrochloric acid: water = 1: 2. From those having no degradation value of peel measured after 30 minutes of immersion in a diluted hydrochloric acid solution, less than 10% was judged to be acceptable, and 10% or more was judged to be unacceptable (x).
5-2. Acid resistance 60 minutes (with or without chemicals)
About the test piece, after immersing in a hydrochloric acid solution of water: hydrochloric acid = 1: 1 at room temperature for 1 hour, the interface between the copper foil and the resin base material was observed for the presence of 1 μm or more so as to pass the sample without soaking (○ ), And those that were soaked were judged as rejected (x).

(6)回路形成性(回路配線端部の残銅の測定)
試験片を、1mm幅の回路配線にエッチング加工し、銅箔と樹脂基材の界面における残銅の幅を測定した。
回路形成性は3.0μm以下を合格(○)と判定した。
(6) Circuit formability (measurement of remaining copper at the end of circuit wiring)
The test piece was etched into 1 mm-wide circuit wiring, and the width of the remaining copper at the interface between the copper foil and the resin substrate was measured.
The circuit formability was determined to be 3.0 μm or less as acceptable (◯).

(7)伝送特性(高周波での伝送損失の測定)
伝送特性測定用試験片により高周波帯域における伝送損失を測定した。樹脂基体材としては、表3に示す要件での各種樹脂を用いて銅張積層体を作製し、伝送特性測定用の試験片に加工した。
伝送測定の評価には、1〜25GHz域の測定に適する公知のストリップライン共振器法(マイクロストリップ構造:誘電体厚さ50μm、導体長さ1.0mm、導体厚さ12μm、導体回路幅120μm、特性インピーダンス50Ωでカバーレイフィルムなしの状態でS21パラメーターを測定する方法)を用いて、周波数5GHzにおける伝送損失(dB/100mm)を測定した。
伝送特性は伝送損失25dB/100mm未満を合格(○)とし、それ以上を不合格(×)と判定した。
(7) Transmission characteristics (measurement of transmission loss at high frequency)
Transmission loss in the high frequency band was measured with a test piece for measuring transmission characteristics. As the resin base material, copper-clad laminates were prepared using various resins having the requirements shown in Table 3, and processed into test pieces for measuring transmission characteristics.
For the evaluation of transmission measurement, a known stripline resonator method (microstrip structure: dielectric thickness 50 μm, conductor length 1.0 mm, conductor thickness 12 μm, conductor circuit width 120 μm, suitable for measurement in the 1 to 25 GHz region, The transmission loss (dB / 100 mm) at a frequency of 5 GHz was measured using a method of measuring the S21 parameter with a characteristic impedance of 50Ω and no coverlay film.
Regarding the transmission characteristics, a transmission loss of less than 25 dB / 100 mm was determined to be acceptable (◯), and more than that was determined to be unacceptable (x).

(8)銅箔酸化試験
試験片を、大気中、250℃1時間で加熱し、銅箔の表面処理面を観察した。評価は試験片の25×25cm範囲内に、銅箔の酸化と見られる面積率が20%以下を合格(○)とし、それ以上を不合格(×)と判定した。
(8) Copper foil oxidation test The test piece was heated in air at 250 ° C for 1 hour, and the surface-treated surface of the copper foil was observed. In the evaluation, within the 25 × 25 cm range of the test piece, the area ratio seen as oxidation of the copper foil was determined to be 20% or less as acceptable (◯), and more than that was determined as unacceptable (×).

(9)接触角の測定
協和界面科学(株)製 DM−701を使用して図1に示す接触角θを測定した。
測定値は各試験片の表面で5箇所測定し、その平均値とした。
(9) Measurement of contact angle Contact angle (theta) shown in FIG. 1 was measured using DM-701 by Kyowa Interface Science.
The measured values were measured at five locations on the surface of each test piece, and the average value was taken.

Figure 2012207285
Figure 2012207285

Figure 2012207285
Figure 2012207285

Figure 2012207285
Figure 2012207285

上述したように、本発明の表面処理銅箔は樹脂基材(LMP10600以下で硬化する樹脂基材)との初期密着性、耐熱性、回路形成性、伝送特性を満足し、工業的に優れた表面処理銅箔である。
また、本発明の表面処理銅箔の製造方法によれば、樹脂基材との密着性に優れ、工業的に満足する優れた表面処理銅箔を製造することができる。
更に本発明の銅張積層板、プリント配線板によれば、樹脂基材と銅箔との接着強度が強く、回路形成にあたっては耐薬品性が優れた効果を有するものである。
As described above, the surface-treated copper foil of the present invention satisfies the initial adhesion with a resin base material (resin base material cured at LMP10600 or less), heat resistance, circuit formability, and transmission characteristics, and is industrially excellent. It is a surface-treated copper foil.
Moreover, according to the manufacturing method of the surface treatment copper foil of this invention, the outstanding surface treatment copper foil which is excellent in adhesiveness with a resin base material, and is satisfied industrially can be manufactured.
Furthermore, according to the copper clad laminate and the printed wiring board of the present invention, the adhesive strength between the resin base material and the copper foil is strong, and the chemical resistance is excellent in circuit formation.

一方、比較例1、2に示すように下地めっきにNi−Zn合金を使用するとピール強度が充分に得られず、また、樹脂基材としてシランカップリング剤の官能基と反応する基が少ない樹脂との間では比較例3に示すように充分なピール強度が得られず、また、硬化温度の高い樹脂基材との間では比較例4に示すようにピール強度が満足できないものとなった。   On the other hand, as shown in Comparative Examples 1 and 2, when a Ni—Zn alloy is used for the base plating, a sufficient peel strength cannot be obtained, and a resin that has few groups that react with the functional group of the silane coupling agent as a resin substrate. As shown in Comparative Example 3, a sufficient peel strength was not obtained, and a peel strength was not satisfactory as shown in Comparative Example 4 with a resin base material having a high curing temperature.

本発明の表面処理銅箔は母材銅箔(未処理銅箔)の少なくとも片面表面に、付着量が0.05〜1.0mg/dmのNiまたNi−P合金の一次処理層が設けられ、該一次処理層の上に付着量が0.01〜0.10mg/dmのZnまたはZn−V合金の二次処理層が設けられ、該二次処理層の上にクロメート処理層が形成され、該クロメート処理層の上に付着量0.002〜0.02mg/dmのシランカップリング処理層が施されているので、特に表3に示すように、ピール強度、回路成形性、耐酸性、伝送特性、耐薬品性に優れた表面処理銅箔を提供でき、該表面処理銅箔に比較的硬化温度の低い樹脂基材を張り合わせることで優れた銅張積層板を提供でき、該積層板を使用することでファインピッチのプリント配線板を提供することができる。 The surface-treated copper foil of the present invention is provided with a primary treatment layer of Ni or Ni-P alloy having an adhesion amount of 0.05 to 1.0 mg / dm 2 on at least one surface of a base material copper foil (untreated copper foil). A secondary treatment layer of Zn or Zn-V alloy having an adhesion amount of 0.01 to 0.10 mg / dm 2 is provided on the primary treatment layer, and a chromate treatment layer is provided on the secondary treatment layer. Since a silane coupling treatment layer having an adhesion amount of 0.002 to 0.02 mg / dm 2 is applied on the chromate treatment layer, as shown in Table 3, peel strength, circuit moldability, A surface-treated copper foil excellent in acid resistance, transmission characteristics, and chemical resistance can be provided, and an excellent copper-clad laminate can be provided by laminating a resin substrate having a relatively low curing temperature to the surface-treated copper foil. Providing fine-pitch printed wiring boards using this laminate Rukoto can.

Figure 2012207285
Figure 2012207285

Claims (7)

母材銅箔(未処理銅箔)の少なくとも片面表面に、付着量が0.05〜1.0mg/dmのNiまたNi−Pの一次処理層が設けられ、該一次処理層の上に付着量が0.01〜0.10mg/dmのZnまたはZn−Vの二次処理層が設けられ、該二次処理層の上にクロメート処理層が形成され、該クロメート処理層の上に付着量0.002〜0.02mg/dmのシランカップリング処理層が設けられている表面処理銅箔。 A primary treatment layer of Ni or Ni-P having an adhesion amount of 0.05 to 1.0 mg / dm 2 is provided on at least one surface of the base material copper foil (untreated copper foil), on the primary treatment layer. A secondary treatment layer of Zn or Zn-V having an adhesion amount of 0.01 to 0.10 mg / dm 2 is provided, a chromate treatment layer is formed on the secondary treatment layer, and the chromate treatment layer is formed on the chromate treatment layer. A surface-treated copper foil provided with a silane coupling treatment layer having an adhesion amount of 0.002 to 0.02 mg / dm 2 . 表面粗さRaが0.2μm以下、又はRzが1.5μm以下である母材銅箔(未処理銅箔)の少なくとも片面表面に、付着量が0.05〜1.0mg/dmのNiまたNi−Pの一次処理層が設けられ、該一次処理層の上に付着量が0.01〜0.10mg/dmのZnまたはZn−Vの二次処理層が設けられ、該二次処理層の上に接触角θ(親水性)が15°から35°を有するクロメート処理層が形成され、該クロメート処理層の上に付着量0.002〜0.02mg/dmのシランカップリング処理層が設けられている表面処理銅箔。 Ni having an adhesion amount of 0.05 to 1.0 mg / dm 2 on at least one surface of a base copper foil (untreated copper foil) having a surface roughness Ra of 0.2 μm or less or Rz of 1.5 μm or less. Further, a primary treatment layer of Ni—P is provided, and a secondary treatment layer of Zn or Zn—V having an adhesion amount of 0.01 to 0.10 mg / dm 2 is provided on the primary treatment layer. A chromate treatment layer having a contact angle θ (hydrophilicity) of 15 ° to 35 ° is formed on the treatment layer, and a silane coupling having an adhesion amount of 0.002 to 0.02 mg / dm 2 on the chromate treatment layer. A surface-treated copper foil provided with a treatment layer. 請求項1又は2に記載の二次処理層を形成するZn−V合金中のZn含有率が90%以上である表面処理銅箔。   The surface-treated copper foil whose Zn content rate in the Zn-V alloy which forms the secondary treatment layer of Claim 1 or 2 is 90% or more. 請求項1又は2に記載の表面処理銅箔と熱硬化性樹脂基板とを積層する銅張積層板の製造方法であって、
前記表面処理銅箔と熱硬化性樹脂基板とを式1に示すLMP値が10660以下の条件で加熱積層し、前記表面処理銅箔のシランカップリング処理層の官能基を、熱硬化性樹脂の官能基と反応させる銅張積層板の製造方法。
式1:LMP=(T+273)*(20+Logt)
ここで、20は銅の材料定数、Tは温度(℃)、tは時間(hr)、Logは常用対数である。
A method for producing a copper-clad laminate in which the surface-treated copper foil according to claim 1 or 2 and a thermosetting resin substrate are laminated,
The surface-treated copper foil and the thermosetting resin substrate are heated and laminated under the condition that the LMP value shown in Formula 1 is 10660 or less, and the functional group of the silane coupling treatment layer of the surface-treated copper foil is changed to that of the thermosetting resin. The manufacturing method of the copper clad laminated board made to react with a functional group.
Formula 1: LMP = (T + 273) * (20 + Logt)
Here, 20 is a copper material constant, T is temperature (° C.), t is time (hr), and Log is a common logarithm.
前記熱硬化性樹脂基板を形成する熱硬化性樹脂が式1に示すLMP値10660以下の条件で硬化反応する樹脂である請求項4に記載の銅張積層板の製造方法。
式1:LMP=(T+273)*(20+Logt)
ここで、20は銅の材料定数、Tは温度(℃)、tは時間(hr)、Logは常用対数である。
The method for producing a copper clad laminate according to claim 4, wherein the thermosetting resin forming the thermosetting resin substrate is a resin that undergoes a curing reaction under the condition of an LMP value of 10660 or less shown in Formula 1.
Formula 1: LMP = (T + 273) * (20 + Logt)
Here, 20 is a copper material constant, T is temperature (° C.), t is time (hr), and Log is a common logarithm.
請求項4又は5に記載の銅張積層板の製造方法で製造された銅張積層基板。   The copper clad laminated board manufactured with the manufacturing method of the copper clad laminated board of Claim 4 or 5. 請求項6に記載の銅張積層板を用いたプリント配線基板。   A printed wiring board using the copper clad laminate according to claim 6.
JP2011074773A 2011-03-30 2011-03-30 Surface-treated copper foil, copper-clad laminate using the surface-treated copper foil, and printed wiring board Active JP5794806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011074773A JP5794806B2 (en) 2011-03-30 2011-03-30 Surface-treated copper foil, copper-clad laminate using the surface-treated copper foil, and printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011074773A JP5794806B2 (en) 2011-03-30 2011-03-30 Surface-treated copper foil, copper-clad laminate using the surface-treated copper foil, and printed wiring board

Publications (2)

Publication Number Publication Date
JP2012207285A true JP2012207285A (en) 2012-10-25
JP5794806B2 JP5794806B2 (en) 2015-10-14

Family

ID=47187274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011074773A Active JP5794806B2 (en) 2011-03-30 2011-03-30 Surface-treated copper foil, copper-clad laminate using the surface-treated copper foil, and printed wiring board

Country Status (1)

Country Link
JP (1) JP5794806B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105421A (en) * 2013-11-29 2015-06-08 Jx日鉱日石金属株式会社 Surface treated copper foil, laminate, printed wiring board, printed circuit board, and electronic apparatus
CN111971420A (en) * 2018-04-27 2020-11-20 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086894A (en) * 1983-10-19 1985-05-16 古河サーキットフォイル株式会社 Copper foil for printed circuit and method of producing same
JPH03202480A (en) * 1989-12-29 1991-09-04 Nippon Steel Corp Production of plated steel sheet having corrosion-resisting chromium chelate film
JPH0466673A (en) * 1990-07-05 1992-03-03 Nippon Steel Corp Production of plated steel sheet with corrosion resistant chromium chelate film
JPH04274389A (en) * 1991-03-01 1992-09-30 Furukawa Saakitsuto Foil Kk Copper foil for printed circuit board
JPH0529740A (en) * 1991-07-18 1993-02-05 Furukawa Saakitsuto Foil Kk Electrolytic copper foil for printed circuit board
JP2002093747A (en) * 2000-09-19 2002-03-29 Sony Corp Method for forming conductor structure and the conductor structure, and method of manufacturing semiconductor device and semiconductor device
JP2004256910A (en) * 2003-02-04 2004-09-16 Furukawa Techno Research Kk Copper foil for high-frequency circuit, manufacturing method therefor, manufacturing facility therefor, and high-frequency circuit using the copper foil
JP2008013847A (en) * 2006-06-07 2008-01-24 Furukawa Circuit Foil Kk Surface treated electrodeposited copper foil, the production method and circuit board
WO2009154066A1 (en) * 2008-06-17 2009-12-23 日鉱金属株式会社 Copper foil for printed circuit board and copper clad laminate plate for printed circuit board
JP2010018885A (en) * 2008-06-12 2010-01-28 Furukawa Electric Co Ltd:The Electrolytic copper coating film, method of manufacture therefor, and copper electrolyte for manufacturing electrolytic copper coating film
JP2010234638A (en) * 2009-03-31 2010-10-21 Nippon Steel Chem Co Ltd Copper clad laminate, and method for manufacturing the same
JP2010258162A (en) * 2009-04-23 2010-11-11 Panasonic Electric Works Co Ltd Method of manufacturing flexible laminated board
JP2011038168A (en) * 2009-08-14 2011-02-24 Furukawa Electric Co Ltd:The Heat resistant copper foil having excellent high frequency transmission property, method for producing the same, circuit board, copper-clad laminated board, and method for producing the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086894A (en) * 1983-10-19 1985-05-16 古河サーキットフォイル株式会社 Copper foil for printed circuit and method of producing same
JPH03202480A (en) * 1989-12-29 1991-09-04 Nippon Steel Corp Production of plated steel sheet having corrosion-resisting chromium chelate film
JPH0466673A (en) * 1990-07-05 1992-03-03 Nippon Steel Corp Production of plated steel sheet with corrosion resistant chromium chelate film
JPH04274389A (en) * 1991-03-01 1992-09-30 Furukawa Saakitsuto Foil Kk Copper foil for printed circuit board
JPH0529740A (en) * 1991-07-18 1993-02-05 Furukawa Saakitsuto Foil Kk Electrolytic copper foil for printed circuit board
JP2002093747A (en) * 2000-09-19 2002-03-29 Sony Corp Method for forming conductor structure and the conductor structure, and method of manufacturing semiconductor device and semiconductor device
JP2004256910A (en) * 2003-02-04 2004-09-16 Furukawa Techno Research Kk Copper foil for high-frequency circuit, manufacturing method therefor, manufacturing facility therefor, and high-frequency circuit using the copper foil
JP2008013847A (en) * 2006-06-07 2008-01-24 Furukawa Circuit Foil Kk Surface treated electrodeposited copper foil, the production method and circuit board
JP2010018885A (en) * 2008-06-12 2010-01-28 Furukawa Electric Co Ltd:The Electrolytic copper coating film, method of manufacture therefor, and copper electrolyte for manufacturing electrolytic copper coating film
WO2009154066A1 (en) * 2008-06-17 2009-12-23 日鉱金属株式会社 Copper foil for printed circuit board and copper clad laminate plate for printed circuit board
JP2010234638A (en) * 2009-03-31 2010-10-21 Nippon Steel Chem Co Ltd Copper clad laminate, and method for manufacturing the same
JP2010258162A (en) * 2009-04-23 2010-11-11 Panasonic Electric Works Co Ltd Method of manufacturing flexible laminated board
JP2011038168A (en) * 2009-08-14 2011-02-24 Furukawa Electric Co Ltd:The Heat resistant copper foil having excellent high frequency transmission property, method for producing the same, circuit board, copper-clad laminated board, and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105421A (en) * 2013-11-29 2015-06-08 Jx日鉱日石金属株式会社 Surface treated copper foil, laminate, printed wiring board, printed circuit board, and electronic apparatus
CN111971420A (en) * 2018-04-27 2020-11-20 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board
CN111989425A (en) * 2018-04-27 2020-11-24 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board
CN111971420B (en) * 2018-04-27 2023-12-22 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board
CN111989425B (en) * 2018-04-27 2023-12-22 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board

Also Published As

Publication number Publication date
JP5794806B2 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5242710B2 (en) Roughening copper foil, copper clad laminate and printed wiring board
JP5764700B2 (en) Copper-clad laminate for high-frequency substrates and surface-treated copper foil
JP4927963B2 (en) Surface-treated copper foil, method for producing the same, and copper-clad laminate
JP6342078B2 (en) Roughening copper foil, copper clad laminate and printed wiring board
KR102138676B1 (en) Surface-treated copper foil and its manufacturing method, copper-clad laminate for printed wiring board, and printed wiring board
JP5971934B2 (en) Copper-clad laminate for high-frequency substrate and surface-treated copper foil used therefor
JP2013155415A (en) Surface-treated copper foil for high frequency transmission, laminated plate for high frequency transmission, and printed wiring board for high frequency transmission
JP6261037B2 (en) Copper foil for high frequency circuit, copper clad laminate and printed wiring board
WO2013168646A1 (en) Surface-treated copper foil and laminate using same, copper foil, printed wiring board, electronic device, and process for producing printed wiring board
JP5514897B2 (en) Laminate for flexible wiring
KR20170104648A (en) Coreless buildup support substrate and printed wiring board manufactured using said coreless buildup support substrate
JP2009149928A (en) Copper foil for printed circuit
JPWO2013176133A1 (en) Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for producing printed wiring board
JP5794806B2 (en) Surface-treated copper foil, copper-clad laminate using the surface-treated copper foil, and printed wiring board
JP2014133936A (en) Surface-treated copper film, laminate sheet, printed wiring board and printed circuit board
KR102385971B1 (en) Copper-clad laminate and printed wiring board
JP7177956B2 (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
JP2019019414A (en) Surface-treated copper foil, laminate and printed wiring board
JP2015001016A (en) Copper foil, copper-clad laminated sheet, and printed wiring board
JP2007042945A (en) Method of preventing deterioration of liquid crystal polymer in circuit substrate and circuit substrate
JP6827083B2 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
JP5073801B2 (en) Method for producing copper-clad laminate
KR20230161954A (en) Roughened copper foil, copper clad laminate and printed wiring board
JP2005327972A (en) Thin-film multilayer wiring board
KR20230141859A (en) Roughened copper foil, copper clad laminate and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150811

R151 Written notification of patent or utility model registration

Ref document number: 5794806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350