JPWO2013176133A1 - Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for producing printed wiring board - Google Patents

Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for producing printed wiring board Download PDF

Info

Publication number
JPWO2013176133A1
JPWO2013176133A1 JP2014516806A JP2014516806A JPWO2013176133A1 JP WO2013176133 A1 JPWO2013176133 A1 JP WO2013176133A1 JP 2014516806 A JP2014516806 A JP 2014516806A JP 2014516806 A JP2014516806 A JP 2014516806A JP WO2013176133 A1 JPWO2013176133 A1 JP WO2013176133A1
Authority
JP
Japan
Prior art keywords
copper foil
printed wiring
wiring board
treated copper
mark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014516806A
Other languages
Japanese (ja)
Other versions
JP5855244B2 (en
Inventor
新井 英太
英太 新井
敦史 三木
敦史 三木
康修 新井
康修 新井
嘉一郎 中室
嘉一郎 中室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2014516806A priority Critical patent/JP5855244B2/en
Publication of JPWO2013176133A1 publication Critical patent/JPWO2013176133A1/en
Application granted granted Critical
Publication of JP5855244B2 publication Critical patent/JP5855244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Metal Rolling (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

樹脂と良好に接着し、且つ、銅箔をエッチングで除去した後の樹脂の透明性に優れた表面処理銅箔及びそれを用いた積層板を提供する。表面処理銅箔は、粗化処理表面側から厚さ50μmのポリイミド(銅箔に張り合わせ前の下記ΔB(PI)が20以上33以下)基板の両面に貼り合わせた後、エッチングで両面の銅箔を除去し、露出したポリイミド基板の下に敷いたライン状のマークを印刷した印刷物を、前記ポリイミド基板越しにCCDカメラで撮影した画像について、観察されたライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定した、観察地点−明度グラフにおいて、マークの端部からマークが描かれていない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔBが20以上、ΔB/ΔB(PI)が0.7以上、Btを基準に0.4ΔB〜0.6ΔBの深さ範囲における明度曲線の傾きが65?以上87?以下となる。Provided are a surface-treated copper foil that adheres well to a resin and is excellent in the transparency of a resin after the copper foil is removed by etching, and a laminate using the same. The surface-treated copper foil is a 50 μm thick polyimide from the surface of the roughened surface (the following ΔB (PI) is 20 or more and 33 or less before being bonded to the copper foil). In a direction perpendicular to the direction in which the observed line-shaped mark extends in an image taken with a CCD camera over the polyimide substrate, which is a printed product printed with a line-shaped mark laid under the exposed polyimide substrate The difference ΔB between the top average value Bt and the bottom average value Bb of the lightness curve generated from the end of the mark to the portion where no mark is drawn in the observation point-lightness graph in which the lightness at each observation point is measured along 20 or more, ΔB / ΔB (PI) is 0.7 or more, and the slope of the lightness curve in the depth range of 0.4ΔB to 0.6ΔB with reference to Bt is 65 to 87.

Description

本発明は、表面処理銅箔及びそれを用いた積層板、プリント配線板、電子機器及びプリント配線板を製造する方法に関し、特に、銅箔をエッチングした後の残部の樹脂の透明性が要求される分野に好適な表面処理銅箔及びそれを用いた積層板、プリント配線板、電子機器及びプリント配線板を製造する方法に関する。   The present invention relates to a surface-treated copper foil and a method for producing a laminate, a printed wiring board, an electronic device and a printed wiring board using the surface-treated copper foil, and in particular, the transparency of the remaining resin after etching the copper foil is required. In particular, the present invention relates to a surface-treated copper foil suitable for various fields, a laminated board using the copper foil, a printed wiring board, an electronic device, and a method for producing a printed wiring board.

スマートフォンやタブレットPCといった小型電子機器には、配線の容易性や軽量性からフレキシブルプリント配線板(以下、FPC)が採用されている。近年、これら電子機器の高機能化により信号伝送速度の高速化が進み、FPCにおいてもインピーダンス整合が重要な要素となっている。信号容量の増加に対するインピーダンス整合の方策として、FPCのベースとなる樹脂絶縁層(例えば、ポリイミド)の厚層化が進んでいる。一方、FPCは液晶基材への接合やICチップの搭載などの加工が施されるが、この際の位置合わせは銅箔と樹脂絶縁層との積層板における銅箔をエッチングした後に残る樹脂絶縁層を透過して視認される位置決めパターンを介して行われるため、樹脂絶縁層の視認性が重要となる。   In a small electronic device such as a smartphone or a tablet PC, a flexible printed wiring board (hereinafter referred to as FPC) is adopted because of easy wiring and light weight. In recent years, with the enhancement of functions of these electronic devices, the signal transmission speed has been increased, and impedance matching has become an important factor in FPC. As a measure for impedance matching with respect to an increase in signal capacity, a resin insulation layer (for example, polyimide) serving as a base of an FPC has been increased in thickness. On the other hand, processing such as bonding to a liquid crystal substrate and mounting of an IC chip is performed on the FPC, but the alignment at this time is the resin insulation remaining after etching the copper foil in the laminate of the copper foil and the resin insulating layer The visibility of the resin insulation layer is important because it is performed through a positioning pattern that is visible through the layer.

また、銅箔と樹脂絶縁層との積層板である銅張積層板は、表面に粗化めっきが施された圧延銅箔を使用しても製造できる。この圧延銅箔は、通常タフピッチ銅(酸素含有量100〜500重量ppm)又は無酸素銅(酸素含有量10重量ppm以下)を素材として使用し、これらのインゴットを熱間圧延した後、所定の厚さまで冷間圧延と焼鈍とを繰り返して製造される。   Moreover, the copper clad laminated board which is a laminated board of copper foil and a resin insulating layer can also be manufactured even if it uses the rolled copper foil by which roughening plating was given to the surface. This rolled copper foil usually uses tough pitch copper (oxygen content of 100 to 500 ppm by weight) or oxygen-free copper (oxygen content of 10 ppm by weight or less) as a raw material, and after hot rolling these ingots, It is manufactured by repeating cold rolling and annealing to a thickness.

このような技術として、例えば、特許文献1には、ポリイミドフィルムと低粗度銅箔とが積層されてなり、銅箔エッチング後のフィルムの波長600nmでの光透過率が40%以上、曇価(HAZE)が30%以下であって、接着強度が500N/m以上である銅張積層板に係る発明が開示されている。
また、特許文献2には、電解銅箔による導体層を積層された絶縁層を有し、当該導体層をエッチングして回路形成した際のエッチング領域における絶縁層の光透過性が50%以上であるチップオンフレキ(COF)用フレキシブルプリント配線板において、前記電解銅箔は、絶縁層に接着される接着面にニッケル−亜鉛合金による防錆処理層を備え、該接着面の表面粗度(Rz)は0.05〜1.5μmであるとともに入射角60°における鏡面光沢度が250以上であることを特徴とするCOF用フレキシブルプリント配線板に係る発明が開示されている。
また、特許文献3には、印刷回路用銅箔の処理方法において、銅箔の表面に銅−コバルト−ニッケル合金めっきによる粗化処理後、コバルト−ニッケル合金めっき層を形成し、更に亜鉛−ニッケル合金めっき層を形成することを特徴とする印刷回路用銅箔の処理方法に係る発明が開示されている。
As such a technique, for example, in Patent Document 1, a polyimide film and a low-roughness copper foil are laminated, and a light transmittance at a wavelength of 600 nm of the film after copper foil etching is 40% or more, a haze value. An invention relating to a copper clad laminate having (HAZE) of 30% or less and an adhesive strength of 500 N / m or more is disclosed.
Further, Patent Document 2 has an insulating layer in which a conductive layer made of electrolytic copper foil is laminated, and the light transmittance of the insulating layer in the etching region when the circuit is formed by etching the conductive layer is 50% or more. In a flexible printed wiring board for chip-on-flex (COF), the electrolytic copper foil has a rust-proofing layer made of a nickel-zinc alloy on an adhesive surface bonded to an insulating layer, and the surface roughness (Rz) of the adhesive surface ) Is 0.05 to 1.5 μm, and the specular gloss at an incident angle of 60 ° is 250 or more, and an invention relating to a flexible printed wiring board for COF is disclosed.
Moreover, in patent document 3, in the processing method of the copper foil for printed circuits, after the roughening process by copper-cobalt-nickel alloy plating on the surface of copper foil, a cobalt-nickel alloy plating layer is formed, and also zinc-nickel An invention relating to a method for treating a copper foil for printed circuit, characterized by forming an alloy plating layer is disclosed.

特開2004−98659号公報JP 2004-98659 A WO2003/096776WO2003 / 096776 特許第2849059号公報Japanese Patent No. 2849059

特許文献1において、黒化処理又はめっき処理後の有機処理剤により接着性が改良処理されて得られる低粗度銅箔は、銅張積層板に屈曲性が要求される用途では、疲労によって断線することがあり、樹脂透視性に劣る場合がある。
また、特許文献2では、粗化処理がなされておらず、COF用フレキシブルプリント配線板以外の用途においては銅箔と樹脂との密着強度が低く不十分である。
さらに、特許文献3に記載の処理方法では、銅箔へのCu−Co−Niによる微細処理は可能であったが、当該銅箔を樹脂と接着させてエッチングで除去した後の樹脂について、優れた透明性を実現できていない。
本発明は、樹脂と良好に接着し、且つ、銅箔をエッチングで除去した後の樹脂の透明性に優れた表面処理銅箔及びそれを用いた積層板を提供する。
In Patent Document 1, a low-roughness copper foil obtained by improving adhesion with an organic treatment agent after blackening treatment or plating treatment is broken due to fatigue in applications where flexibility is required for a copper-clad laminate. May be inferior in resin transparency.
Moreover, in patent document 2, the roughening process is not made and the adhesive strength of copper foil and resin is low and inadequate in uses other than the flexible printed wiring board for COF.
Furthermore, in the processing method described in Patent Document 3, Cu-Co-Ni fine processing on the copper foil was possible, but the resin after bonding the copper foil with the resin and removing it by etching was excellent. Transparency is not realized.
The present invention provides a surface-treated copper foil that adheres well to a resin and is excellent in the transparency of a resin after the copper foil is removed by etching, and a laminate using the same.

本発明者らは鋭意研究を重ねた結果、銅箔を貼り合わせて除去したポリイミド基板に対し、マークを付した印刷物を下に置き、当該印刷物をポリイミド基板越しにCCDカメラで撮影した当該マーク部分の画像から得られる観察地点−明度グラフにおいて描かれるマーク端部付近の明度曲線の傾きに着目し、当該明度曲線の傾きを制御することが、銅箔をエッチング除去した後の樹脂透明性に影響を及ぼすことを見出した。   As a result of intensive studies, the inventors have placed a printed matter with a mark on the polyimide substrate from which the copper foil has been bonded and removed, and the mark portion taken by the CCD camera through the polyimide substrate. Paying attention to the slope of the brightness curve near the mark edge drawn in the observation point-brightness graph obtained from the image of the image, controlling the slope of the brightness curve affects the resin transparency after the copper foil is etched away Found to affect.

以上の知見を基礎として完成された本発明は一側面において、少なくとも一方の表面に粗化処理により粗化粒子が形成された表面処理銅箔であって、前記銅箔を、粗化処理表面側から厚さ50μmのポリイミド(銅箔に張り合わせ前のポリイミドについての下記ΔB(PI)が20以上33以下であるポリイミド)基板の両面に貼り合わせた後、エッチングで前記両面の銅箔を除去し、ライン状のマークを印刷した印刷物を、露出した前記ポリイミド基板の下に敷いて、前記印刷物を前記ポリイミド基板越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記ライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点−明度グラフにおいて、前記マークの端部から前記マークが描かれていない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が20以上であり、ΔB/ΔB(PI)からなる比率が0.7以上であり、Btを基準に0.4ΔB〜0.6ΔBの深さ範囲における前記明度曲線の傾き(角度)k1が65°以上87°以下となる表面処理銅箔である。   The present invention completed on the basis of the above knowledge is, in one aspect, a surface-treated copper foil in which roughened particles are formed on at least one surface by a roughening treatment, and the copper foil is roughened on the surface side of the roughened surface. To 50 μm thick polyimide (polyimide having the following ΔB (PI) of 20 to 33 for the polyimide before being laminated to the copper foil) after bonding to both sides of the substrate, the copper foil on both sides is removed by etching, When the printed matter on which a line-shaped mark is printed is laid under the exposed polyimide substrate and the printed matter is photographed with a CCD camera through the polyimide substrate, the line observed for the image obtained by the photographing is observed. In the observation point-brightness graph produced by measuring the brightness at each observation point along the direction perpendicular to the direction in which the mark is extended, the edge of the mark The difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the part to the part where the mark is not drawn is 20 or more, and the ratio is ΔB / ΔB (PI) Is a surface-treated copper foil in which the slope (angle) k1 of the lightness curve in the depth range of 0.4 ΔB to 0.6 ΔB with respect to Bt is 65 ° or more and 87 ° or less.

本発明は別の一側面において、本発明の表面処理銅箔と樹脂基板とを積層して構成した積層板である。   In another aspect, the present invention is a laminated plate configured by laminating the surface-treated copper foil of the present invention and a resin substrate.

本発明は更に別の一側面において、本発明の表面処理銅箔を用いたプリント配線板である。   In yet another aspect, the present invention is a printed wiring board using the surface-treated copper foil of the present invention.

本発明は更に別の一側面において、本発明のプリント配線板を用いた電子機器である。   In still another aspect, the present invention is an electronic device using the printed wiring board of the present invention.

本発明は更に別の一側面において、本発明のプリント配線板を2つ以上接続して、プリント配線板が2つ以上接続したプリント配線板を製造する方法である。   In yet another aspect, the present invention is a method of manufacturing a printed wiring board in which two or more printed wiring boards are connected by connecting two or more printed wiring boards of the present invention.

本発明は更に別の一側面において、本発明のプリント配線板を少なくとも1つと、もう一つの本発明のプリント配線板又は本発明のプリント配線板に該当しないプリント配線板とを接続する工程を含む、プリント配線板が2つ以上接続したプリント配線板を製造する方法である。   In yet another aspect, the present invention includes a step of connecting at least one printed wiring board of the present invention and another printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention. This is a method of manufacturing a printed wiring board in which two or more printed wiring boards are connected.

本発明は更に別の一側面において、本発明のプリント配線板が少なくとも1つ接続したプリント配線板を1つ以上用いた電子機器である。   In still another aspect, the present invention is an electronic apparatus using one or more printed wiring boards to which at least one printed wiring board of the present invention is connected.

本発明は更に別の一側面において、本発明のプリント配線板と、部品とを接続する工程を少なくとも含む、プリント配線板を製造する方法である。   In still another aspect, the present invention is a method for manufacturing a printed wiring board, comprising at least a step of connecting the printed wiring board of the present invention and a component.

本発明は更に別の一側面において、本発明のプリント配線板を少なくとも1つと、もう一つの本発明のプリント配線板又は本発明のプリント配線板に該当しないプリント配線板とを接続する工程、および、本発明のプリント配線板又は本発明のプリント配線板が2つ以上接続したプリント配線板と、部品とを接続する工程を少なくとも含む、プリント配線板が2つ以上接続したプリント配線板を製造する方法である。   In yet another aspect of the present invention, the step of connecting at least one printed wiring board of the present invention to another printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention, and And manufacturing a printed wiring board having two or more printed wiring boards connected, comprising at least a step of connecting the printed wiring board of the present invention or two or more of the printed wiring boards of the present invention and a component. Is the method.

本発明によれば、樹脂と良好に接着し、且つ、銅箔をエッチングで除去した後の樹脂の透明性に優れた表面処理銅箔及びそれを用いた積層板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the surface-treated copper foil excellent in transparency of resin after adhere | attaching resin favorably and removing copper foil by an etching, and a laminated board using the same can be provided.

Bt及びBbを定義する模式図である。It is a schematic diagram which defines Bt and Bb. k1及びk2を定義する模式図である。It is a schematic diagram which defines k1 and k2. 明度曲線の傾き評価の際の、撮影装置の構成及び明度曲線の傾きの測定方法を表す模式図である。It is a schematic diagram showing the structure of an imaging device and the measuring method of the inclination of a lightness curve in the case of evaluation of the lightness curve inclination. Rz評価の際の、(a)比較例1の銅箔表面のSEM観察写真である。It is a SEM observation photograph of the copper foil surface of (a) comparative example 1 in the case of Rz evaluation. Rz評価の際の、(b)比較例2の銅箔表面のSEM観察写真である。It is a SEM observation photograph of the copper foil surface of (b) comparative example 2 in the case of Rz evaluation. Rz評価の際の、(c)比較例3の銅箔表面のSEM観察写真である。It is a SEM observation photograph on the surface of copper foil of (c) comparative example 3 in the case of Rz evaluation. Rz評価の際の、(d)比較例4の銅箔表面のSEM観察写真である。It is a SEM observation photograph on the surface of copper foil of (d) comparative example 4 in the case of Rz evaluation. Rz評価の際の、(e)実施例1の銅箔表面のSEM観察写真である。(E) It is a SEM observation photograph of the copper foil surface of Example 1 in the case of Rz evaluation. Rz評価の際の、(f)実施例2の銅箔表面のSEM観察写真である。(F) It is a SEM observation photograph of the copper foil surface of Example 2 in the case of Rz evaluation.

〔表面処理銅箔の形態及び製造方法〕
本発明において使用する銅箔は、樹脂基板と接着させて積層体を作製し、エッチングにより除去することで使用される銅箔に有用である。
本発明において使用する銅箔は、電解銅箔或いは圧延銅箔いずれでも良い。通常、銅箔の、樹脂基板と接着する面、即ち粗化面には積層後の銅箔の引き剥し強さを向上させることを目的として、脱脂後の銅箔の表面にふしこぶ状の電着を行う粗化処理が施される。電解銅箔は製造時点で凹凸を有しているが、粗化処理により電解銅箔の凸部を増強して凹凸を一層大きくする。本発明においては、この粗化処理は銅−コバルト−ニッケル合金めっきや銅−ニッケル−りん合金めっき等により行うことができる。粗化前の前処理として通常の銅めっき等が行われることがあり、粗化後の仕上げ処理として電着物の脱落を防止するために通常の銅めっき等が行なわれることもある。圧延銅箔と電解銅箔とでは処理の内容を幾分異にすることもある。本発明においては、こうした前処理及び仕上げ処理をも含め、銅箔粗化と関連する公知の処理を必要に応じて含め、総称して粗化処理と云うものとする。
なお、本願発明に係る圧延銅箔にはAg、Sn、In、Ti、Zn、Zr、Fe、P、Ni、Si、Te、Cr、Nb、V、B等の元素を一種以上含む銅合金箔も含まれる。上記元素の濃度が高くなる(例えば合計で10質量%以上)と、導電率が低下する場合がある。圧延銅箔の導電率は、好ましくは50%IACS以上、より好ましくは60%IACS以上、更に好ましくは80%IACS以上である。
[Form and manufacturing method of surface-treated copper foil]
The copper foil used in the present invention is useful for a copper foil used by making a laminate by bonding to a resin substrate and removing it by etching.
The copper foil used in the present invention may be either an electrolytic copper foil or a rolled copper foil. Usually, the surface of the copper foil that adheres to the resin substrate, that is, the roughened surface, has a fist-like electric surface on the surface of the copper foil after degreasing in order to improve the peel strength of the copper foil after lamination. A roughening process is carried out to wear. Although the electrolytic copper foil has irregularities at the time of manufacture, the irregularities are further increased by enhancing the convex portions of the electrolytic copper foil by roughening treatment. In the present invention, this roughening treatment can be performed by copper-cobalt-nickel alloy plating, copper-nickel-phosphorus alloy plating, or the like. Ordinary copper plating or the like may be performed as a pretreatment before roughening, and ordinary copper plating or the like may be performed as a finishing treatment after roughening in order to prevent electrodeposits from dropping off. The content of treatment may be somewhat different between the rolled copper foil and the electrolytic copper foil. In the present invention, including such pretreatment and finishing treatment, known treatments related to copper foil roughening are included as necessary, and are collectively referred to as roughening treatment.
The rolled copper foil according to the present invention includes a copper alloy foil containing one or more elements such as Ag, Sn, In, Ti, Zn, Zr, Fe, P, Ni, Si, Te, Cr, Nb, V, and B. Is also included. When the concentration of the above elements increases (for example, 10% by mass or more in total), the conductivity may decrease. The conductivity of the rolled copper foil is preferably 50% IACS or more, more preferably 60% IACS or more, and still more preferably 80% IACS or more.

粗化処理としての銅−コバルト−ニッケル合金めっきは、電解めっきにより、付着量が15〜40mg/dm2の銅−100〜3000μg/dm2のコバルト−100〜1500μg/dm2のニッケルであるような3元系合金層を形成するように実施することができる。Co付着量が100μg/dm2未満では、耐熱性が悪化し、エッチング性が悪くなることがある。Co付着量が3000μg/dm2 を超えると、磁性の影響を考慮せねばならない場合には好ましくなく、エッチングシミが生じ、また、耐酸性及び耐薬品性の悪化がすることがある。Ni付着量が100μg/dm2未満であると、耐熱性が悪くなることがある。他方、Ni付着量が1500μg/dm2を超えると、エッチング残が多くなることがある。好ましいCo付着量は1000〜2500μg/dm2であり、好ましいニッケル付着量は500〜1200μg/dm2である。ここで、エッチングシミとは、塩化銅でエッチングした場合、Coが溶解せずに残ってしまうことを意味しそしてエッチング残とは塩化アンモニウムでアルカリエッチングした場合、Niが溶解せずに残ってしまうことを意味するものである。Copper as roughening treatment - cobalt - nickel alloy plating, by electrolytic plating, coating weight is to be the 15~40mg / dm 2 of copper -100~3000μg / dm 2 of cobalt -100~1500μg / dm 2 of nickel It can be carried out so as to form a ternary alloy layer. If the amount of deposited Co is less than 100 μg / dm 2 , the heat resistance may deteriorate and the etching property may deteriorate. When the amount of Co deposition exceeds 3000 μg / dm 2 , it is not preferable when the influence of magnetism must be taken into account, etching spots may occur, and acid resistance and chemical resistance may deteriorate. If the Ni adhesion amount is less than 100 μg / dm 2 , the heat resistance may deteriorate. On the other hand, when the Ni adhesion amount exceeds 1500 μg / dm 2 , the etching residue may increase. A preferable Co adhesion amount is 1000 to 2500 μg / dm 2 , and a preferable nickel adhesion amount is 500 to 1200 μg / dm 2 . Here, the etching stain means that Co remains without being dissolved when etched with copper chloride, and the etching residue means that Ni remains without being dissolved when alkaline etching is performed with ammonium chloride. It means that.

このような3元系銅−コバルト−ニッケル合金めっきを形成するための一般的浴及びめっき条件の一例は次の通りである:
めっき浴組成:Cu10〜20g/L、Co1〜10g/L、Ni1〜10g/L
pH:1〜4
温度:30〜50℃
電流密度Dk:20〜30A/dm2
めっき時間:1〜5秒
なお、本発明の一実施形態に係る表面処理銅箔は、従来よりもめっき時間を短くし、電流密度を高くした条件下で粗化処理が行われる。従来よりもめっき時間を短くし、電流密度を高くした条件下で粗化処理が行われることにより、従来よりもより微細な粗化粒子が銅箔表面に形成される。
An example of a general bath and plating conditions for forming such a ternary copper-cobalt-nickel alloy plating is as follows:
Plating bath composition: Cu 10-20 g / L, Co 1-10 g / L, Ni 1-10 g / L
pH: 1-4
Temperature: 30-50 ° C
Current density D k : 20 to 30 A / dm 2
Plating time: 1 to 5 seconds Note that the surface-treated copper foil according to one embodiment of the present invention is subjected to a roughening treatment under conditions where the plating time is shorter than before and the current density is increased. By performing the roughening treatment under a condition in which the plating time is shortened and the current density is increased as compared with the conventional case, finer roughened particles are formed on the surface of the copper foil.

粗化処理後、粗化面上に付着量が200〜3000μg/dm2のコバルト−100〜700μg/dm2のニッケルのコバルト−ニッケル合金めっき層を形成することができる。この処理は広い意味で一種の防錆処理とみることができる。このコバルト−ニッケル合金めっき層は、銅箔と基板の接着強度を実質的に低下させない程度に行う必要がある。コバルト付着量が200μg/dm2未満では、耐熱剥離強度が低下し、耐酸化性及び耐薬品性が悪化することがある。また、もう一つの理由として、コバルト量が少ないと処理表面が赤っぽくなってしまうので好ましくない。コバルト付着量が3000μg/dm2を超えると、磁性の影響を考慮せねばならない場合には好ましくなく、エッチングシミが生じる場合があり、また、耐酸性及び耐薬品性の悪化することがある。好ましいコバルト付着量は500〜2500μg/dm2である。一方、ニッケル付着量が100μg/dm2 未満では耐熱剥離強度が低下し耐酸化性及び耐薬品性が悪化することがある。ニッケルが1300μg/dm2を超えると、アルカリエッチング性が悪くなる。好ましいニッケル付着量は200〜1200μg/dm2である。After the roughening treatment, a cobalt-nickel alloy plating layer of nickel having an adhesion amount of 200 to 3000 μg / dm 2 and cobalt-100 to 700 μg / dm 2 can be formed on the roughened surface. This treatment can be regarded as a kind of rust prevention treatment in a broad sense. This cobalt-nickel alloy plating layer needs to be performed to such an extent that the adhesive strength between the copper foil and the substrate is not substantially reduced. If the amount of cobalt adhesion is less than 200 μg / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated. As another reason, if the amount of cobalt is small, the treated surface becomes reddish, which is not preferable. When the amount of cobalt deposition exceeds 3000 μg / dm 2 , it is not preferable when the influence of magnetism must be taken into account, and etching spots may occur, and acid resistance and chemical resistance may deteriorate. A preferable cobalt adhesion amount is 500 to 2500 μg / dm 2 . On the other hand, when the nickel adhesion amount is less than 100 μg / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated. When nickel exceeds 1300 microgram / dm < 2 >, alkali etching property will worsen. A preferable nickel adhesion amount is 200 to 1200 μg / dm 2 .

また、コバルト−ニッケル合金めっきの条件の一例は次の通りである:
めっき浴組成:Co1〜20g/L、Ni1〜20g/L
pH:1.5〜3.5
温度:30〜80℃
電流密度Dk:1.0〜20.0A/dm2
めっき時間:0.5〜4秒
An example of the conditions for cobalt-nickel alloy plating is as follows:
Plating bath composition: Co 1-20 g / L, Ni 1-20 g / L
pH: 1.5-3.5
Temperature: 30-80 ° C
Current density D k : 1.0 to 20.0 A / dm 2
Plating time: 0.5-4 seconds

本発明に従えば、コバルト−ニッケル合金めっき上に更に付着量の30〜250μg/dm2の亜鉛めっき層が形成される。亜鉛付着量が30μg/dm2未満では耐熱劣化率改善効果が無くなることがある。他方、亜鉛付着量が250μg/dm2を超えると耐塩酸劣化率が極端に悪くなることがある。好ましくは、亜鉛付着量は30〜240μg/dm2であり、より好ましくは80〜220μg/dm2である。According to the present invention, a zinc plating layer having an adhesion amount of 30 to 250 μg / dm 2 is further formed on the cobalt-nickel alloy plating. If the zinc adhesion amount is less than 30 μg / dm 2 , the heat deterioration rate improving effect may be lost. On the other hand, when the zinc adhesion amount exceeds 250 μg / dm 2 , the hydrochloric acid deterioration rate may be extremely deteriorated. Preferably, the zinc adhesion amount is 30 to 240 μg / dm 2 , more preferably 80 to 220 μg / dm 2 .

上記亜鉛めっきの条件の一例は次の通りである:
めっき浴組成:Zn100〜300g/L
pH:3〜4
温度:50〜60℃
電流密度Dk:0.1〜0.5A/dm2
めっき時間:1〜3秒
An example of the galvanizing conditions is as follows:
Plating bath composition: Zn 100 to 300 g / L
pH: 3-4
Temperature: 50-60 ° C
Current density D k : 0.1 to 0.5 A / dm 2
Plating time: 1-3 seconds

なお、亜鉛めっき層の代わりに亜鉛−ニッケル合金めっき等の亜鉛合金めっき層を形成してもよく、さらに最表面にはクロメート処理やシランカップリング剤の塗布等によって防錆層を形成してもよい。   A zinc alloy plating layer such as zinc-nickel alloy plating may be formed instead of the zinc plating layer, and a rust prevention layer may be formed on the outermost surface by chromate treatment or application of a silane coupling agent. Good.

〔表面粗さRz〕
本発明の表面処理銅箔は、銅箔表面に粗化処理により粗化粒子が形成され、且つ、粗化処理表面のTDの平均粗さRzが0.20〜0.80μmであるのが好ましい。このような構成により、ピール強度が高くなって樹脂と良好に接着し、且つ、銅箔をエッチングで除去した後の樹脂の透明性が高くなる。この結果、当該樹脂を透過して視認される位置決めパターンを介して行うICチップ搭載時の位置合わせ等がより容易となる。TDの平均粗さRzが0.20μm未満であると、超平滑表面を作製するための製造コストの懸念を生じる。一方、TDの平均粗さRzが0.80μm超であると、銅箔をエッチングで除去した後の樹脂表面の凹凸が大きくなるおそれがあり、その結果樹脂の透明性が不良となる問題が生じるおそれがある。粗化処理表面のTDの平均粗さRzは、0.30〜0.70μmがより好ましく、0.35〜0.60μmが更により好ましく、0.35〜0.55μmが更により好ましく、0.35〜0.50μmが更により好ましい。
なお、Rzを小さくすることが必要な用途に本発明の表面処理銅箔が用いられる場合には、本発明の表面処理銅箔の粗化処理表面のTDの平均粗さRzは、0.20〜0.70μmが好ましく、0.25〜0.60μmがより好ましく、0.30〜0.60μmが更により好ましく、0.30〜0.55μmが更により好ましく、0.30〜0.50μmが更により好ましい。
[Surface roughness Rz]
In the surface-treated copper foil of the present invention, it is preferable that roughened particles are formed on the surface of the copper foil by a roughening treatment, and that the average roughness Rz of TD on the roughened surface is 0.20 to 0.80 μm. . With such a configuration, the peel strength is increased and the resin is satisfactorily bonded to the resin, and the transparency of the resin after the copper foil is removed by etching is increased. As a result, alignment and the like when mounting an IC chip through a positioning pattern that is visible through the resin can be made easier. When the average roughness Rz of TD is less than 0.20 μm, there is a concern about manufacturing costs for producing an ultra-smooth surface. On the other hand, if the average roughness Rz of TD is more than 0.80 μm, the unevenness of the resin surface after the copper foil is removed by etching may increase, resulting in a problem that the transparency of the resin becomes poor. There is a fear. The average TD roughness Rz of the roughened surface is more preferably 0.30 to 0.70 μm, still more preferably 0.35 to 0.60 μm, still more preferably 0.35 to 0.55 μm, and Even more preferred is 35 to 0.50 μm.
In addition, when the surface-treated copper foil of this invention is used for the use which needs to make Rz small, the average roughness Rz of TD of the roughening surface of the surface-treated copper foil of this invention is 0.20. To 0.70 μm is preferable, 0.25 to 0.60 μm is more preferable, 0.30 to 0.60 μm is still more preferable, 0.30 to 0.55 μm is still more preferable, and 0.30 to 0.50 μm is more preferable. Even more preferred.

〔光沢度〕
表面処理銅箔の粗化面の圧延方向(MD)の入射角60度での光沢度は、上述の樹脂の透明性に大いに影響を及ぼす。すなわち、粗化面の光沢度が大きい銅箔ほど、上述の樹脂の透明性が良好となる。このため、本発明の表面処理銅箔は、粗化面の光沢度が76〜350%であるのが好ましく、80〜350%であるのが好ましく、90〜300%であるのがより好ましく、90〜250%であるのが更により好ましく、100〜250%であるのが更により好ましい。
[Glossiness]
The glossiness at an incident angle of 60 degrees in the rolling direction (MD) of the roughened surface of the surface-treated copper foil greatly affects the transparency of the resin. That is, the greater the glossiness of the roughened surface, the better the transparency of the resin described above. For this reason, the surface-treated copper foil of the present invention preferably has a roughened surface having a glossiness of 76 to 350%, preferably 80 to 350%, more preferably 90 to 300%, It is still more preferable that it is 90 to 250%, and it is still more preferable that it is 100 to 250%.

ここで、本発明の視認性の効果をさらに向上させるために、表面処理前の銅箔の処理側の表面のTDの粗さ(Rz)及び光沢度を制御してもよい。具体的には、表面処理前の銅箔のTDの表面粗さ(Rz)が好ましくは0.30〜0.80μm、より好ましくは0.30〜0.50μmであり、圧延方向(MD)の入射角60度での光沢度が好ましくは350〜800%、より好ましくは500〜800%であって、更に従来の粗化処理よりも電流密度を高くし、粗化処理時間を短縮すれば、表面処理を行った後の、表面処理銅箔の圧延方向(MD)の入射角60度での光沢度が90〜350%となる。このような銅箔としては、圧延油の油膜当量を調整して圧延を行う(高光沢圧延)、或いは、ケミカルエッチングのような化学研磨やリン酸溶液中の電解研磨により作製することができる。このように、処理前の銅箔のTDの表面粗さ(Rz)と光沢度とを上記範囲にすることで、処理後の銅箔の表面粗さ(Rz)及び表面積を制御しやすくすることができる。
なお、表面処理後の銅箔の表面粗さ(Rz)をより小さく(例えばRz=0.20μm)したい場合には、表面処理前の銅箔の処理側表面のTDの粗さ(Rz)を0.18〜0.80μm、好ましくは0.25〜0.50μmとし、圧延方向(MD)の入射角60度での光沢度が350〜800%、好ましくは500〜800%であって、更に従来の粗化処理よりも電流密度を高くし、粗化処理時間を短縮する。
また、粗化処理前の銅箔は、MDの60度光沢度が500〜800%であるのが好ましく、501〜800%であるのがより好ましく、510〜750%であるのが更により好ましい。粗化処理前の銅箔のMDの60度光沢度が500%未満であると500%以上の場合よりも上述の樹脂の透明性が不良となるおそれがあり、800%を超えると、製造することが難しくなるという問題が生じるおそれがある。
なお、高光沢圧延は以下の式で規定される油膜当量を13000以上24000以下とすることで行うことが出来る。なお、表面処理後の銅箔の表面粗さ(Rz)をより小さく(例えばRz=0.20μm)したい場合には、高光沢圧延を以下の式で規定される油膜当量を12000以上24000以下とすることで行う。
油膜当量={(圧延油粘度[cSt])×(通板速度[mpm]+ロール周速度[mpm])}/{(ロールの噛み込み角[rad])×(材料の降伏応力[kg/mm2])}
圧延油粘度[cSt]は40℃での動粘度である。
油膜当量を12000以上24000以下とするためには、低粘度の圧延油を用いたり、通板速度を遅くしたりする等、公知の方法を用いればよい。
化学研磨は硫酸−過酸化水素−水系またはアンモニア−過酸化水素−水系等のエッチング液で、通常よりも濃度を低くして、長時間かけて行う。
Here, in order to further improve the visibility effect of the present invention, the TD roughness (Rz) and glossiness of the surface of the copper foil before the surface treatment on the treatment side may be controlled. Specifically, the surface roughness (Rz) of TD of the copper foil before the surface treatment is preferably 0.30 to 0.80 μm, more preferably 0.30 to 0.50 μm, and the rolling direction (MD) The glossiness at an incident angle of 60 degrees is preferably 350 to 800%, more preferably 500 to 800%, and if the current density is made higher than the conventional roughening treatment and the roughening treatment time is shortened, The glossiness at an incident angle of 60 degrees in the rolling direction (MD) of the surface-treated copper foil after the surface treatment is 90 to 350%. Such a copper foil can be produced by adjusting the oil film equivalent of rolling oil (high gloss rolling), or by chemical polishing such as chemical etching or electrolytic polishing in a phosphoric acid solution. Thus, it is easy to control the surface roughness (Rz) and the surface area of the copper foil after the treatment by setting the TD surface roughness (Rz) and the glossiness of the copper foil before the treatment within the above range. Can do.
When the surface roughness (Rz) of the copper foil after the surface treatment is desired to be smaller (for example, Rz = 0.20 μm), the TD roughness (Rz) of the treated side surface of the copper foil before the surface treatment is set. 0.18 to 0.80 μm, preferably 0.25 to 0.50 μm, and the glossiness at an incident angle of 60 degrees in the rolling direction (MD) is 350 to 800%, preferably 500 to 800%, The current density is made higher than that of the conventional roughening treatment, and the roughening treatment time is shortened.
Further, the copper foil before the roughening treatment preferably has an MD 60 degree gloss of 500 to 800%, more preferably 501 to 800%, and even more preferably 510 to 750%. . If the 60 degree glossiness of MD of the copper foil before the roughening treatment is less than 500%, the transparency of the resin may be poorer than the case of 500% or more. The problem that it becomes difficult may arise.
High gloss rolling can be performed by setting the oil film equivalent defined by the following formula to 13000 or more and 24000 or less. When the surface roughness (Rz) of the copper foil after the surface treatment is desired to be smaller (for example, Rz = 0.20 μm), the oil film equivalent defined by the following formula is set to 12000 to 24000 for high gloss rolling. To do.
Oil film equivalent = {(rolling oil viscosity [cSt]) × (sheet feeding speed [mpm] + roll peripheral speed [mpm])} / {(roll biting angle [rad]) × (yield stress of material [kg / mm 2 ])}
The rolling oil viscosity [cSt] is a kinematic viscosity at 40 ° C.
In order to make the oil film equivalent 12000 or more and 24000 or less, a known method such as using a low viscosity rolling oil or slowing a sheet passing speed may be used.
Chemical polishing is performed over a long period of time using an etching solution such as sulfuric acid-hydrogen peroxide-water system or ammonia-hydrogen peroxide-water system at a concentration lower than usual.

粗化処理表面のMDの60度光沢度とTDの60度光沢度との比C(C=(MDの60度光沢度)/(TDの60度光沢度))が0.80〜1.40であるのが好ましい。粗化処理表面のMDの60度光沢度とTDの60度光沢度との比Cが0.80未満であると、0.80以上である場合よりも樹脂の透明性が低下するおそれがある。また、当該比Cが1.40超であると、1.40以下である場合よりも樹脂の透明性が低下するおそれがある。当該比Cは、0.90〜1.35であるのがより好ましく、1.00〜1.30であるのが更により好ましい。   The ratio C (C = (60 degree gloss of MD) / (60 degree gloss of TD)) of the 60 degree gloss of MD and 60 degree gloss of TD on the roughened surface is 0.80 to 1. 40 is preferred. If the ratio C between the 60 ° glossiness of MD and the 60 ° glossiness of TD on the roughened surface is less than 0.80, the transparency of the resin may be lower than when the ratio C is 0.80 or more. . Further, if the ratio C is more than 1.40, the transparency of the resin may be lower than when the ratio C is 1.40 or less. The ratio C is more preferably 0.90 to 1.35, and even more preferably 1.00 to 1.30.

〔明度曲線の傾き〕
本発明の表面処理銅箔は、粗化処理表面側から厚さ50μmのポリイミド(銅箔に張り合わせ前のポリイミドについての下記ΔB(PI)が20以上33以下であるポリイミド)基板の両面に貼り合わせた後、エッチングで両面の銅箔を除去し、ライン状のマークを印刷した印刷物を、露出した前記ポリイミド基板の下に敷いて、印刷物を前記ポリイミド基板越しにCCDカメラで撮影したとき、撮影によって得られた画像について、観察されたライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点−明度グラフにおいて、マークの端部からマークが描かれていない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が20以上であり、ΔB/ΔB(PI)からなる比率が0.7以上であり、Btを基準に0.4ΔB〜0.6ΔBの深さ範囲における明度曲線の傾きk1が65°以上87°以下となる。
ここで、「明度曲線のトップ平均値Bt」、「明度曲線のボトム平均値Bb」、「明度曲線の傾きk1」、及び、後述の「明度曲線の傾きk2」について、図を用いて説明する。
図1に、Bt及びBbを定義する模式図を示す。図1の「マーク」は、上記CCDカメラによる撮影で得られた画像に観察された印刷物のライン状のマーク(幅約1.3mm)を示している。当該マークに重なるように描かれた曲線が上記観察地点−明度グラフにおいて、マークの端部からマークが描かれていない部分にかけて生じる明度曲線を示している。図1に示すように、「明度曲線のトップ平均値Bt」は、マークの両側の端部位置から100μm離れた位置から30μm間隔で5箇所(両側で合計十箇所)測定したときの明度の平均値を示す。「明度曲線のボトム平均値Bb」は、マークの端部位置から100μm内側に入った位置から100μm間隔で11箇所測定したときの明度の平均値を示す。
図2に、k1及びk2を定義する模式図を示す。「明度曲線の傾き(角度)k1」は、Btを基準に0.4ΔB〜0.6ΔB〔ΔBは、明度曲線のトップ平均値Btとボトム平均値Bbとの差(ΔB=Bt−Bb)〕の深さ範囲における明度曲線の傾き(角度)を示す(k1(°)=tan-1(b(階調)/a(ピクセル)))。なお、横軸の1ピクセルは10μm長さに相当する。そして、明度曲線のグラフにおける1ピクセルと1階調の長さの比率を3.5:5(明度曲線のグラフにおける1ピクセルの長さ:明度曲線のグラフにおける1階調の長さ=3.5:5)とした明度曲線のグラフにおいてk1(°)の値を算出した。また、k1は、マークの両側を測定し、傾き(角度)の小さい値を採用する。「明度曲線の傾き(角度)k2」は、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲における明度曲線の傾き(角度)を示す(k2(°)=tan-1(d(階調)/c(ピクセル)))。なお、横軸の1ピクセルは10μm長さに相当する。そして、明度曲線のグラフにおける1ピクセルと1階調の長さの比率を3.5:5(明度曲線のグラフにおける1ピクセルの長さ:明度曲線のグラフにおける1階調の長さ=3.5:5)とした明度曲線のグラフにおいてk1(°)の値を算出した。また、k2は、マークの両側を測定し、傾き(角度)の小さい値を採用する。さらに、明度曲線の形状が不安定で上記「明度曲線とBtとの交点」が複数存在する場合は、最もマークに近い交点を採用する。
ΔB(PI)は、銅箔に張り合わせ前のポリイミドについての明度曲線のトップ平均値Btとボトム平均値Bbとの差を示す。
CCDカメラで撮影した上記画像において、マークが付されていない部分では高い明度となるが、マーク端部に到達したとたんに明度が低下する。ポリイミド基板の視認性が良好であれば、このような明度の低下状態が明確に観察される。一方、ポリイミド基板の視認性が不良であれば、明度がマーク端部付近で一気に「高」から「低」へ急に下がるのではなく、低下の状態が緩やかとなり、明度の低下状態が不明確となってしまう。
本発明はこのような知見に基づき、本発明の表面処理銅箔を貼り合わせて除去したポリイミド基板に対し、マークを付した印刷物を下に置き、ポリイミド基板越しにCCDカメラで撮影した上記マーク部分の画像から得られる観察地点−明度グラフにおいて描かれるマーク端部付近の明度曲線の傾きを制御している。より詳細には、明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)を20以上とし、ΔB/ΔB(PI)からなる比率が0.7以上とし、Btを基準に0.4ΔB〜0.6ΔBの深さ範囲における明度曲線の傾き(角度)k1が65°以上87°以下となるように制御する。このような構成によれば、CCDカメラによるポリイミド越しのマークの識別力が向上する。このため、視認性に優れるポリイミド基板を作製することができ、電子基板製造工程等でポリイミド基板に所定の処理を行う場合のマーキングによる位置決め精度が向上し、これによって歩留まりが向上する等の効果が得られる。ΔBは好ましくは28以上であり、k1は好ましくは75°以上87°以下である。ΔBの上限は特に限定する必要は無いが、例えば100以下、あるいは60以下、あるいは50以下、あるいは40以下である。また、k1の上限は87°以下であることが好ましく、85°以下であることが更に好ましく、83°以下であることが更により好ましい。k1が87°を超えるとピール強度が小さくなる場合がある。ΔB/ΔB(PI)の上限は特に規定する必要は無いが例えば、1.70以下、あるいは1.50以下、あるいは1.40以下である。
[Slope of brightness curve]
The surface-treated copper foil of the present invention is bonded to both surfaces of a substrate having a thickness of 50 μm from the surface of the roughened surface (polyimide having the following ΔB (PI) of 20 to 33 for the polyimide before being bonded to the copper foil). Then, the copper foil on both sides is removed by etching, and the printed matter on which the line-shaped mark is printed is laid under the exposed polyimide substrate, and when the printed matter is photographed with a CCD camera through the polyimide substrate, In the observation point-lightness graph prepared by measuring the brightness of each observation point along the direction perpendicular to the direction in which the observed line-shaped mark extends, the mark is drawn from the end of the mark. The difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the lightness curve generated over the part that is not present is 20 or more, and ΔB / The ratio of ΔB (PI) is 0.7 or more, and the slope k1 of the brightness curve in the depth range of 0.4ΔB to 0.6ΔB with reference to Bt is 65 ° or more and 87 ° or less.
Here, “the top average value Bt of the lightness curve”, “the bottom average value Bb of the lightness curve”, “the slope k1 of the lightness curve”, and “the slope k2 of the lightness curve” described later will be described with reference to the drawings. .
FIG. 1 shows a schematic diagram defining Bt and Bb. The “mark” in FIG. 1 indicates a line-like mark (width of about 1.3 mm) of the printed matter observed in an image obtained by photographing with the CCD camera. A curve drawn so as to overlap the mark indicates a lightness curve generated from the end of the mark to a portion where no mark is drawn in the observation point-lightness graph. As shown in FIG. 1, the “top average value Bt of the lightness curve” is an average of lightness values measured at 5 points (a total of 10 points on both sides) at 30 μm intervals from a position 100 μm away from the end positions on both sides of the mark Indicates the value. The “bottom average value Bb of the lightness curve” indicates an average value of lightness when 11 positions are measured at intervals of 100 μm from a position inside 100 μm from the end position of the mark.
FIG. 2 shows a schematic diagram defining k1 and k2. “Brightness curve slope (angle) k1” is 0.4 ΔB to 0.6 ΔB based on Bt [ΔB is the difference between the top average value Bt and the bottom average value Bb of the lightness curve (ΔB = Bt−Bb)] The inclination (angle) of the lightness curve in the depth range is shown (k1 (°) = tan −1 (b (gradation) / a (pixel))). One pixel on the horizontal axis corresponds to a length of 10 μm. Then, the ratio of the length of one pixel to one gradation in the lightness curve graph is 3.5: 5 (the length of one pixel in the lightness curve graph: the length of one gradation in the lightness curve graph = 3. The value of k1 (°) was calculated in the lightness curve graph of 5: 5). Further, k1 is measured on both sides of the mark and adopts a value with a small inclination (angle). “Inclination (angle) k2 of the lightness curve” indicates the inclination (angle) of the lightness curve in the depth range from the intersection of the lightness curve and Bt to 0.1 ΔB with reference to Bt (k2 (°) = tan − 1 (d (gradation) / c (pixel))). One pixel on the horizontal axis corresponds to a length of 10 μm. Then, the ratio of the length of one pixel to one gradation in the lightness curve graph is 3.5: 5 (the length of one pixel in the lightness curve graph: the length of one gradation in the lightness curve graph = 3. The value of k1 (°) was calculated in the lightness curve graph of 5: 5). Also, k2 is measured on both sides of the mark, and a value with a small inclination (angle) is adopted. Further, when the shape of the lightness curve is unstable and there are a plurality of the “intersections between the lightness curve and Bt”, the intersection closest to the mark is adopted.
ΔB (PI) represents the difference between the top average value Bt and the bottom average value Bb of the brightness curve for the polyimide before being bonded to the copper foil.
In the image taken by the CCD camera, the brightness is high at the portion where the mark is not attached, but the brightness decreases as soon as the end of the mark is reached. If the visibility of the polyimide substrate is good, such a lowered state of brightness is clearly observed. On the other hand, if the visibility of the polyimide substrate is poor, the lightness does not suddenly drop from “high” to “low” in the vicinity of the mark end, but the state of decline is slow and the state of lightness decline is unclear. End up.
Based on such knowledge, the present invention is based on such a polyimide substrate from which the surface-treated copper foil of the present invention is bonded and removed, and a mark printed matter is placed under the polyimide substrate and photographed with a CCD camera over the polyimide substrate. The inclination of the lightness curve near the mark end portion drawn in the observation point-lightness graph obtained from the image is controlled. More specifically, the difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the lightness curve is set to 20 or more, the ratio of ΔB / ΔB (PI) is set to 0.7 or more, and Bt Is controlled so that the slope (angle) k1 of the brightness curve in the depth range of 0.4ΔB to 0.6ΔB is 65 ° or more and 87 ° or less. According to such a configuration, the discriminating power of the mark over the polyimide by the CCD camera is improved. For this reason, it is possible to produce a polyimide substrate with excellent visibility, and the positioning accuracy by marking when performing a predetermined treatment on the polyimide substrate in an electronic substrate manufacturing process or the like is improved, thereby improving the yield. can get. ΔB is preferably 28 or more, and k1 is preferably 75 ° or more and 87 ° or less. The upper limit of ΔB is not particularly limited, but is, for example, 100 or less, 60 or less, or 50 or less, or 40 or less. The upper limit of k1 is preferably 87 ° or less, more preferably 85 ° or less, and even more preferably 83 ° or less. When k1 exceeds 87 °, the peel strength may be reduced. The upper limit of ΔB / ΔB (PI) need not be specified, but is, for example, 1.70 or less, or 1.50 or less, or 1.40 or less.

また、撮影によって得られた画像から作製した観察地点−明度グラフにおいて、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲における明度曲線の傾きk2が30°以上となるのが好ましい。このような構成によれば、マークとマークで無い部分との境界がより明確になり、位置決め精度が向上して、マーク画像認識による誤差が少なくなり、より正確に位置合わせができるようになる。k2は、より好ましくは40°以上である。k2の上限は特に限定する必要は無いが例えば87°以下、あるいは82°以下、あるいは77°以下、あるいは72°以下である。   Further, in an observation point-lightness graph prepared from an image obtained by photographing, the slope k2 of the lightness curve in a depth range from the intersection of the lightness curve and Bt to 0.1 ΔB with respect to Bt is 30 ° or more. Is preferred. According to such a configuration, the boundary between the mark and the non-mark portion becomes clearer, the positioning accuracy is improved, the error due to the mark image recognition is reduced, and the alignment can be performed more accurately. k2 is more preferably 40 ° or more. The upper limit of k2 is not particularly limited, but is, for example, 87 ° or less, alternatively 82 ° or less, alternatively 77 ° or less, or 72 ° or less.

〔粒子の表面積〕
粗化粒子の表面積Aと、粗化粒子を銅箔表面側から平面視したときに得られる面積Bとの比A/Bは、上述の樹脂の透明性に大いに影響を及ぼす。すなわち、表面粗さRzが同じであれば、比A/Bが小さい銅箔ほど、上述の樹脂の透明性が良好となる。このため、本発明の表面処理銅箔は、当該比A/Bが1.90〜2.40であるのが好ましく、2.00〜2.20であるのがより好ましい。
[Particle surface area]
The ratio A / B between the surface area A of the roughened particles and the area B obtained when the roughened particles are viewed in plan from the copper foil surface side greatly affects the transparency of the resin. That is, if the surface roughness Rz is the same, the smaller the ratio A / B, the better the transparency of the resin. For this reason, as for the surface-treated copper foil of this invention, it is preferable that the said ratio A / B is 1.90-2.40, and it is more preferable that it is 2.00-2.20.

粒子形成時の電流密度とメッキ時間とを制御することで、粒子の形態や形成密度が決まり、上記表面粗さRz、光沢度及び粒子の面積比A/Bを制御することができる。   By controlling the current density and the plating time during particle formation, the particle morphology and formation density are determined, and the surface roughness Rz, glossiness, and particle area ratio A / B can be controlled.

上述のように、粗化粒子の表面積Aと、粗化粒子を銅箔表面側から平面視したときに得られる面積Bとの比A/Bを1.90〜2.40に制御して表面の凹凸を大きくし、粗化処理表面のTDの平均粗さRzを0.30〜0.80μmに制御して表面に極端に粗い部分を無くし、その一方で、粗化処理表面の光沢度を80〜350%と高くすることができる。このような制御を行うことで、本発明の表面処理銅箔において、粗化処理表面における粗化粒子の粒径を小さくすることができる。この粗化粒子の粒径は、銅箔をエッチング除去した後の樹脂透明性に影響を及ぼすが、このような制御することは、粗化粒子の粒径を適切な範囲で小さくすることを意味しており、このため銅箔をエッチング除去した後の樹脂透明性がより良好となると共に、ピール強度もより良好となる。   As described above, the ratio A / B between the surface area A of the roughened particles and the area B obtained when the roughened particles are viewed in plan view from the copper foil surface side is controlled to 1.90 to 2.40. The roughness of the roughened surface is controlled to 0.30 to 0.80 μm to eliminate extremely rough portions, while the glossiness of the roughened surface is increased. It can be as high as 80 to 350%. By performing such control, in the surface-treated copper foil of the present invention, the particle size of the roughened particles on the roughened surface can be reduced. The particle size of the roughened particles affects the resin transparency after the copper foil is removed by etching, but such control means that the particle size of the roughened particles is reduced within an appropriate range. Therefore, the resin transparency after removing the copper foil by etching becomes better, and the peel strength becomes better.

〔エッチングファクター〕
銅箔を用いて回路を形成する際のエッチングファクターの値が大きい場合、エッチング時に生じる回路のボトム部のすそ引きが小さくなるため、回路間のスペースを狭くすることができる。そのため、エッチングファクターの値は大きい方が、ファインパターンによる回路形成に適しているため好ましい。本発明の表面処理銅箔は、例えば、エッチングファクターの値は1.8以上であることが好ましく、2.0以上であることが好ましく、2.2以上であることが好ましく、2.3以上であることが好ましく、2.4以上であることがより好ましい。
なお、プリント配線板または銅張積層板においては、樹脂を溶かして除去することで、銅回路または銅箔表面について、前述の粒子の面積比(A/B)、光沢度、表面粗さRzを測定することができる。
[Etching factor]
When the value of the etching factor when forming a circuit using copper foil is large, the bottom of the circuit that occurs during etching is reduced, so that the space between the circuits can be narrowed. Therefore, a larger etching factor is preferable because it is suitable for forming a circuit with a fine pattern. In the surface-treated copper foil of the present invention, for example, the etching factor is preferably 1.8 or more, preferably 2.0 or more, preferably 2.2 or more, and 2.3 or more. Preferably, it is 2.4 or more.
In the printed wiring board or copper-clad laminate, the above-mentioned particle area ratio (A / B), glossiness, and surface roughness Rz are obtained for the copper circuit or copper foil surface by dissolving and removing the resin. Can be measured.

〔伝送損失〕
伝送損失が小さい場合、高周波で信号伝送を行う際の、信号の減衰が抑制されるため、高周波で信号の伝送を行う回路において、安定した信号の伝送を行うことができる。そのため、伝送損失の値が小さい方が、高周波で信号の伝送を行う回路用途に用いることに適するため好ましい。表面処理銅箔を、市販の液晶ポリマー樹脂((株)クラレ製Vecstar CTZ−50μm)と貼り合わせた後、エッチングで特性インピーダンスが50Ωのとなるようマイクロストリップ線路を形成し、HP社製のネットワークアナライザーHP8720Cを用いて透過係数を測定し、周波数20GHzでの伝送損失を求めた場合に、周波数20GHzにおける伝送損失が、5.0dB/10cm未満が好ましく、4.1dB/10cm未満がより好ましく、3.7dB/10cm未満が更により好ましい。
[Transmission loss]
When the transmission loss is small, attenuation of the signal when performing signal transmission at a high frequency is suppressed, so that a stable signal transmission can be performed in a circuit that transmits the signal at a high frequency. Therefore, a smaller transmission loss value is preferable because it is suitable for use in a circuit for transmitting a signal at a high frequency. After bonding the surface-treated copper foil to a commercially available liquid crystal polymer resin (Vecstar CTZ-50 μm manufactured by Kuraray Co., Ltd.), a microstrip line is formed by etching so that the characteristic impedance is 50Ω, and a network manufactured by HP When the transmission coefficient was measured using the analyzer HP8720C and the transmission loss at a frequency of 20 GHz was determined, the transmission loss at a frequency of 20 GHz is preferably less than 5.0 dB / 10 cm, more preferably less than 4.1 dB / 10 cm. Even more preferred is less than 0.7 dB / 10 cm.

本発明の表面処理銅箔を、粗化処理面側から樹脂基板に貼り合わせて積層体を製造することができる。樹脂基板はプリント配線板等に適用可能な特性を有するものであれば特に制限を受けないが、例えば、リジッドPWB用に紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂等を使用し、FPC用にポリエステルフィルムやポリイミドフィルム、液晶ポリマー(LCP)フィルム、フッ素樹脂等を使用する事ができる。なお、液晶ポリマー(LCP)フィルムやフッ素樹脂フィルムを用いた場合、ポリイミドフィルムを用いた場合よりも、当該フィルムと表面処理銅箔とのピール強度が小さくなる傾向にある。よって、液晶ポリマー(LCP)フィルムやフッ素樹脂フィルムを用いた場合には、当該表面処理銅箔をエッチングして銅回路を形成後、当該銅回路をカバーレイで覆うことによって、当該フィルムと当該銅回路とが剥がれにくくし、ピール強度の低下による当該フィルムと当該銅回路との剥離を防止することができる。
なお、誘電特性が良い樹脂(誘電正接が小さく(例えば誘電正接が0.008以下)および/または、比誘電率が小さい(例えば、信号周波数が25GHzの場合に3以下)樹脂)や低誘電樹脂(比誘電率が小さい(例えば、信号周波数が25GHzの場合に3以下)樹脂)は誘電損失が小さい。そのため、当該誘電特性が良い樹脂または低誘電樹脂または低誘電損失樹脂と本願発明に係る表面処理銅箔とを用いた銅張積層板、プリント配線板、プリント回路板は高周波回路(高周波で信号の伝送を行う回路)用途に適する。ここで、低誘電損失樹脂とは従来一般に銅張積層板に用いられてきたポリイミドよりも誘電損失が小さい樹脂のことをいう。また、本願発明に係る表面処理銅箔は表面粗さRzが小さく、光沢度が高いため表面が平滑であり、高周波回路用途に適する。誘電特性が良い樹脂または低誘電樹脂または低誘電損失樹脂としては例えば、液晶ポリマー(LCP)フィルムやフッ素樹脂フィルムが挙げられる。
なお、本発明の表面処理銅箔は全ての用途に好適に用いることができる。例えば、プリント配線板やプリント回路板、高周波回路用のプリント配線板やプリント回路板、半導体パッケージ基板、2次電池やキャパシターの電極などに用いることができる。
The surface-treated copper foil of the present invention can be bonded to a resin substrate from the roughened surface side to produce a laminate. The resin substrate is not particularly limited as long as it has characteristics applicable to a printed wiring board or the like. For example, a paper base phenol resin, a paper base epoxy resin, a synthetic fiber cloth base epoxy resin for rigid PWB Glass cloth / paper composite base material epoxy resin, glass cloth / glass nonwoven fabric composite base material epoxy resin and glass cloth base material epoxy resin, etc. are used, polyester film, polyimide film, liquid crystal polymer (LCP) film, fluorine for FPC Resin etc. can be used. In addition, when a liquid crystal polymer (LCP) film or a fluororesin film is used, the peel strength between the film and the surface-treated copper foil tends to be smaller than when a polyimide film is used. Therefore, when a liquid crystal polymer (LCP) film or a fluororesin film is used, the surface-treated copper foil is etched to form a copper circuit, and then the copper circuit is covered with a cover lay to cover the film and the copper The circuit is difficult to peel off, and peeling of the film and the copper circuit due to a decrease in peel strength can be prevented.
Resins with good dielectric properties (low dielectric loss tangent (for example, dielectric loss tangent is 0.008 or less) and / or low relative dielectric constant (for example, 3 or less when the signal frequency is 25 GHz)) or low dielectric resin (Resin having a small relative dielectric constant (for example, 3 or less when the signal frequency is 25 GHz)) has a small dielectric loss. Therefore, copper-clad laminates, printed wiring boards, and printed circuit boards using a resin, low dielectric resin or low dielectric loss resin with good dielectric properties and the surface-treated copper foil according to the present invention are high frequency circuits (signals at high frequencies). Suitable for transmission circuit). Here, the low dielectric loss resin refers to a resin having a dielectric loss smaller than that of polyimide conventionally used for a copper clad laminate. Further, the surface-treated copper foil according to the present invention has a small surface roughness Rz and a high glossiness, so that the surface is smooth and suitable for high-frequency circuit applications. Examples of the resin having good dielectric characteristics, the low dielectric resin, or the low dielectric loss resin include a liquid crystal polymer (LCP) film and a fluororesin film.
In addition, the surface-treated copper foil of this invention can be used suitably for all the uses. For example, it can be used for printed wiring boards, printed circuit boards, printed wiring boards for high frequency circuits, printed circuit boards, semiconductor package substrates, secondary batteries, capacitor electrodes, and the like.

貼り合わせの方法は、リジッドPWB用の場合、ガラス布などの基材に樹脂を含浸させ、樹脂を半硬化状態まで硬化させたプリプレグを用意する。銅箔を被覆層の反対側の面からプリプレグに重ねて加熱加圧させることにより行うことができる。FPCの場合、ポリイミドフィルム等の基材に接着剤を介して、又は、接着剤を使用せずに高温高圧下で銅箔に積層接着して、又は、ポリイミド前駆体を塗布・乾燥・硬化等を行うことで積層板を製造することができる。   In the case of the rigid PWB, a prepreg is prepared by impregnating a base material such as a glass cloth with a resin and curing the resin to a semi-cured state. It can be carried out by superposing a copper foil on the prepreg from the opposite surface of the coating layer and heating and pressing. In the case of FPC, it is laminated on a copper foil under high temperature and high pressure without using an adhesive on a substrate such as a polyimide film, or a polyimide precursor is applied, dried, cured, etc. A laminated board can be manufactured by performing.

本発明の積層体は各種のプリント配線板(PWB)に使用可能であり、特に制限されるものではないが、例えば、導体パターンの層数の観点からは片面PWB、両面PWB、多層PWB(3層以上)に適用可能であり、絶縁基板材料の種類の観点からはリジッドPWB、フレキシブルPWB(FPC)、リジッド・フレックスPWBに適用可能である。   The laminate of the present invention can be used for various printed wiring boards (PWB) and is not particularly limited. For example, from the viewpoint of the number of layers of the conductor pattern, the single-sided PWB, the double-sided PWB, and the multilayer PWB (3 It is applicable to rigid PWB, flexible PWB (FPC), and rigid flex PWB from the viewpoint of the type of insulating substrate material.

〔積層板及びそれを用いたプリント配線板の位置決め方法〕
本発明の表面処理銅箔と樹脂基板との積層板の位置決めをする方法について説明する。まず、表面処理銅箔と樹脂基板との積層板を準備する。本発明の表面処理銅箔と樹脂基板との積層板の具体例としては、本体基板と付属の回路基板と、それらを電気的に接続するために用いられる、ポリイミド等の樹脂基板の少なくとも一方の表面に銅配線が形成されたフレキシブルプリント基板とで構成される電子機器において、フレキシブルプリント基板を正確に位置決めして当該本体基板及び付属の回路基板の配線端部に圧着させて作製される積層板が挙げられる。すなわち、この場合であれば、積層板は、フレキシブルプリント基板及び本体基板の配線端部が圧着により貼り合わせられた積層体、或いは、フレキシブルプリント基板及び回路基板の配線端部が圧着により貼り合わせられた積層板となる。積層板は、当該銅配線の一部や別途材料で形成したマークを有している。マークの位置については、当該積層板を構成する樹脂越しにCCDカメラ等の撮影手段で撮影可能な位置であれば特に限定されない。ここで、マークとは積層板やプリント配線板等の位置を検出し、または、位置決めをし、または、位置合わせをするために用いられる印(しるし)のことをいう。
[Lamination board and printed wiring board positioning method using the same]
A method for positioning the laminate of the surface-treated copper foil and the resin substrate of the present invention will be described. First, a laminate of a surface-treated copper foil and a resin substrate is prepared. As a specific example of the laminate of the surface-treated copper foil and the resin substrate according to the present invention, at least one of a main substrate, an attached circuit substrate, and a resin substrate such as polyimide used for electrically connecting them. In an electronic device composed of a flexible printed circuit board with copper wiring formed on the surface, a laminated board manufactured by accurately positioning the flexible printed circuit board and crimping it to the wiring ends of the main circuit board and the attached circuit board Is mentioned. That is, in this case, the laminate is a laminate in which the wiring end portions of the flexible printed circuit board and the main body substrate are bonded together by pressure bonding, or the wiring edge portions of the flexible printed circuit board and the circuit board are bonded together by pressure bonding. Laminated board. The laminated board has a mark formed of a part of the copper wiring and a separate material. The position of the mark is not particularly limited as long as it can be photographed by photographing means such as a CCD camera through the resin constituting the laminated plate. Here, the mark refers to a mark used to detect, position, or align the position of a laminated board, printed wiring board, or the like.

このように準備された積層板において、上述のマークを樹脂越しに撮影手段で撮影すると、前記マークの位置を良好に検出することができる。そして、このようにして前記マークの位置を検出して、前記検出されたマークの位置に基づき表面処理銅箔と樹脂基板との積層板の位置決めを良好に行うことができる。また、積層板としてプリント配線板を用いた場合も同様に、このような位置決め方法によって撮影手段がマークの位置を良好に検出し、プリント配線板の位置決めをより正確に行うことが出来る。   In the laminated plate thus prepared, when the above-described mark is photographed by the photographing means through the resin, the position of the mark can be detected satisfactorily. And the position of the said mark can be detected in this way, and based on the position of the said detected mark, the positioning of the laminated board of surface-treated copper foil and a resin substrate can be performed favorably. Similarly, when a printed wiring board is used as the laminated board, the photographing means can detect the position of the mark well by such a positioning method, and the printed wiring board can be positioned more accurately.

そのため、一つのプリント配線板ともう一つのプリント配線板を接続する際に、接続不良が低減し、歩留まりが向上すると考えられる。なお、一つのプリント配線板ともう一つのプリント配線板を接続する方法としては半田付けや異方性導電フィルム(Anisotropic Conductive Film、ACF)を介した接続、異方性導電ペースト(Anisotropic Conductive Paste、ACP)を介した接続または導電性を有する接着剤を介しての接続など公知の接続方法を用いることができる。なお、本発明において、「プリント配線板」には部品が装着されたプリント配線板およびプリント回路板およびプリント基板も含まれることとする。また、本発明のプリント配線板を2つ以上接続して、プリント配線板が2つ以上接続したプリント配線板を製造することができ、また、本発明のプリント配線板を少なくとも1つと、もう一つの本発明のプリント配線板又は本発明のプリント配線板に該当しないプリント配線板とを接続することができる。また、本発明の表面処理銅箔を用いたプリント配線板を2つ以上接続して、プリント配線板が2つ以上接続したプリント配線板を製造してもよい。また、プリント配線板が2つ以上接続したプリント配線板の製造として、本発明の表面処理銅箔を用いたプリント配線板を少なくとも1つと、もう一つの本発明のプリント配線板又は本発明のプリント配線板に該当しないプリント配線板とを接続する工程を含んでもよい。そして、これらのプリント配線板を用いて電子機器を製造することもできる。
なお、本発明において、「銅回路」には銅配線も含まれることとする。さらに、本発明のプリント配線板を、部品と接続してプリント配線板を製造してもよい。また、本発明のプリント配線板を少なくとも1つと、もう一つの本発明のプリント配線板又は本発明のプリント配線板に該当しないプリント配線板とを接続し、さらに、本発明のプリント配線板が2つ以上接続したプリント配線板と、部品とを接続することで、プリント配線板が2つ以上接続したプリント配線板を製造してもよい。ここで、「部品」としては、コネクタやLCD(Liquid Cristal Display)、LCDに用いられるガラス基板などの電子部品、IC(Integrated Circuit)、LSI(Large scale integrated circuit)、VLSI(Very Large scale integrated circuit)、ULSI (Ultra−Large Scale Integration)などの半導体集積回路を含む電子部品(例えばICチップ、LSIチップ、VLSIチップ、ULSIチップ)、電子回路をシールドするための部品およびプリント配線板にカバーなどを固定するために必要な部品等が挙げられる。
Therefore, when one printed wiring board and another printed wiring board are connected, it is considered that the connection failure is reduced and the yield is improved. In addition, as a method of connecting one printed wiring board and another printed wiring board, connection via soldering or anisotropic conductive film (ACF), anisotropic conductive paste (Anisotropic Conductive Paste, A known connection method such as connection via ACP) or connection via a conductive adhesive can be used. In the present invention, the “printed wiring board” includes a printed wiring board, a printed circuit board, and a printed board on which components are mounted. Also, it is possible to manufacture a printed wiring board in which two or more printed wiring boards are connected by connecting two or more printed wiring boards according to the present invention, and at least one printed wiring board according to the present invention. One printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention can be connected. Moreover, you may manufacture the printed wiring board which connected two or more printed wiring boards using the surface-treated copper foil of this invention, and connected two or more printed wiring boards. Further, as a production of a printed wiring board in which two or more printed wiring boards are connected, at least one printed wiring board using the surface-treated copper foil of the present invention and another printed wiring board of the present invention or the printed circuit board of the present invention. You may include the process of connecting with the printed wiring board which does not correspond to a wiring board. And an electronic device can also be manufactured using these printed wiring boards.
In the present invention, “copper circuit” includes copper wiring. Furthermore, the printed wiring board of the present invention may be connected to a component to produce a printed wiring board. Further, at least one printed wiring board of the present invention is connected to another printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention. A printed wiring board in which two or more printed wiring boards are connected may be manufactured by connecting two or more printed wiring boards and components. Here, as “components”, connectors, LCDs (Liquid Crystal Display), electronic components such as glass substrates used in LCDs, ICs (Integrated Circuits), LSIs (Large scale integrated circuits), VLSIs (Very Large scale circuits). ), Electronic components including semiconductor integrated circuits such as ULSI (Ultra-Large Scale Integration) (for example, IC chips, LSI chips, VLSI chips, ULSI chips), components for shielding electronic circuits, and covers on printed wiring boards Examples include parts necessary for fixing.

なお、本発明の実施の形態に係る位置決め方法は積層板(銅箔と樹脂基板との積層板やプリント配線板を含む)を移動させる工程を含んでいてもよい。移動工程においては例えばベルトコンベヤーやチェーンコンベヤーなどのコンベヤーにより移動させてもよく、アーム機構を備えた移動装置により移動させてもよく、気体を用いて積層板を浮遊させることで移動させる移動装置や移動手段により移動させてもよく、略円筒形などの物を回転させて積層板を移動させる移動装置や移動手段(コロやベアリングなどを含む)、油圧を動力源とした移動装置や移動手段、空気圧を動力源とした移動装置や移動手段、モーターを動力源とした移動装置や移動手段、ガントリ移動型リニアガイドステージ、ガントリ移動型エアガイドステージ、スタック型リニアガイドステージ、リニアモーター駆動ステージなどのステージを有する移動装置や移動手段などにより移動させてもよい。また、公知の移動手段による移動工程を行ってもよい。上記、積層板を移動させる工程において、積層板を移動させて位置合わせをすることができる。そして、位置合わせをすることで、一つのプリント配線板ともう一つのプリント配線板や部品を接続する際に、接続不良が低減し、歩留まりが向上すると考えられる。
なお、本発明の実施の形態に係る位置決め方法は表面実装機やチップマウンターに用いてもよい。
また、本発明において位置決めされる表面処理銅箔と樹脂基板との積層板が、樹脂板及び前記樹脂板の上に設けられた回路を有するプリント配線板であってもよい。また、その場合、前記マークが前記回路であってもよい。
The positioning method according to the embodiment of the present invention may include a step of moving a laminated board (including a laminated board of copper foil and a resin substrate and a printed wiring board). In the moving process, for example, it may be moved by a conveyor such as a belt conveyor or a chain conveyor, may be moved by a moving device provided with an arm mechanism, or may be moved by floating a laminated plate using gas. It may be moved by a moving means, a moving device or moving means (including a roller or a bearing) that moves a laminated plate by rotating an object such as a substantially cylindrical shape, a moving device or moving means that uses hydraulic pressure as a power source, Moving devices and moving means powered by air pressure, moving devices and moving means powered by motors, gantry moving linear guide stages, gantry moving air guide stages, stacked linear guide stages, linear motor drive stages, etc. It may be moved by a moving device or moving means having a stage. Moreover, you may perform the movement process by a well-known moving means. In the step of moving the laminated plate, the laminated plate can be moved for alignment. Then, it is considered that by performing alignment, connection failure is reduced and yield is improved when one printed wiring board is connected to another printed wiring board or components.
The positioning method according to the embodiment of the present invention may be used for a surface mounter or a chip mounter.
Moreover, the printed wiring board which has the circuit provided on the resin board and the said resin board may be sufficient as the laminated board of the surface treatment copper foil and the resin board which are positioned in this invention. In that case, the mark may be the circuit.

本発明において「位置決め」とは「マークや物の位置を検出すること」を含む。また、本発明において、「位置合わせ」とは、「マークや物の位置を検出した後に、前記検出した位置に基づいて、当該マークや物を所定の位置に移動すること」を含む。   In the present invention, “positioning” includes “detecting the position of a mark or an object”. In the present invention, “alignment” includes “after detecting the position of a mark or object, moving the mark or object to a predetermined position based on the detected position”.

実施例1〜24及び比較例1〜13として、各種銅箔を準備し、一方の表面に、粗化処理として表1〜8に記載の条件にてめっき処理を行った。
上述の粗化めっき処理を行った後、実施例1〜13、15〜20、22〜24、比較例2、4、7〜10について次の耐熱層および防錆層形成のためのめっき処理を行った。
耐熱層1の形成条件を以下に示す。
液組成 :ニッケル5〜20g/L、コバルト1〜8g/L
pH :2〜3
液温 :40〜60℃
電流密度 :5〜20A/dm2
クーロン量:10〜20As/dm2
上記耐熱層1を施した銅箔上に、耐熱層2を形成した。比較例3、5、6については、粗化めっき処理は行わず、準備した銅箔に、この耐熱層2を直接形成した。耐熱層2の形成条件を以下に示す。
液組成 :ニッケル2〜30g/L、亜鉛2〜30g/L
pH :3〜4
液温 :30〜50℃
電流密度 :1〜2A/dm2
クーロン量:1〜2As/dm2
上記耐熱層1及び2を施した銅箔上に、さらに防錆層を形成した。防錆層の形成条件を以下に示す。
液組成 :重クロム酸カリウム1〜10g/L、亜鉛0〜5g/L
pH :3〜4
液温 :50〜60℃
電流密度 :0〜2A/dm2(浸漬クロメート処理のため)
クーロン量:0〜2As/dm2(浸漬クロメート処理のため)
上記耐熱層1、2及び防錆層を施した銅箔上に、さらに耐候性層を形成した。形成条件を以下に示す。
アミノ基を有するシランカップリング剤として、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン(実施例17)、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン(実施例1〜13、15、16、24)、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン(実施例18)、3−アミノプロピルトリメトキシシラン(実施例19)、3−アミノプロピルトリエトキシシラン(実施例20)、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン(実施例22)、N−フェニル−3−アミノプロピルトリメトキシシラン(実施例23)で、塗布・乾燥を行い、耐候性層を形成した。これらのシランカップリング剤を2種以上の組み合わせで用いることもできる。
As Examples 1 to 24 and Comparative Examples 1 to 13, various copper foils were prepared, and plating treatment was performed on one surface under the conditions described in Tables 1 to 8 as a roughening treatment.
After performing the above-mentioned roughening plating treatment, plating treatment for forming the following heat-resistant layer and rust-preventing layer is performed for Examples 1 to 13, 15 to 20, 22 to 24, and Comparative Examples 2, 4, and 7 to 10. went.
The conditions for forming the heat-resistant layer 1 are shown below.
Liquid composition: Nickel 5-20 g / L, cobalt 1-8 g / L
pH: 2-3
Liquid temperature: 40-60 degreeC
Current density: 5 to 20 A / dm 2
Coulomb amount: 10-20 As / dm 2
A heat-resistant layer 2 was formed on the copper foil provided with the heat-resistant layer 1. In Comparative Examples 3, 5, and 6, the rough plating treatment was not performed, and the heat-resistant layer 2 was directly formed on the prepared copper foil. The conditions for forming the heat-resistant layer 2 are shown below.
Liquid composition: nickel 2-30 g / L, zinc 2-30 g / L
pH: 3-4
Liquid temperature: 30-50 degreeC
Current density: 1 to 2 A / dm 2
Coulomb amount: 1-2 As / dm 2
On the copper foil which gave the said heat-resistant layers 1 and 2, the antirust layer was further formed. The conditions for forming the rust preventive layer are shown below.
Liquid composition: potassium dichromate 1-10 g / L, zinc 0-5 g / L
pH: 3-4
Liquid temperature: 50-60 degreeC
Current density: 0 to 2 A / dm 2 (for immersion chromate treatment)
Coulomb amount: 0 to 2 As / dm 2 (for immersion chromate treatment)
On the copper foil which gave the said heat-resistant layers 1 and 2 and a rust prevention layer, the weathering layer was further formed. The formation conditions are shown below.
As silane coupling agents having amino groups, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane (Example 17), N-2- (aminoethyl) -3-aminopropyltriethoxysilane (implementation) Examples 1-13, 15, 16, 24), N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane (Example 18), 3-aminopropyltrimethoxysilane (Example 19), 3-amino Propyltriethoxysilane (Example 20), 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine (Example 22), N-phenyl-3-aminopropyltrimethoxysilane (Example 23) ) Was applied and dried to form a weather resistant layer. These silane coupling agents can be used in combination of two or more.

なお、圧延銅箔は以下のように製造した。表9に示す組成の銅インゴットを製造し、熱間圧延を行った後、300〜800℃の連続焼鈍ラインの焼鈍と冷間圧延を繰り返して1〜2mm厚の圧延板を得た。この圧延板を300〜800℃の連続焼鈍ラインで焼鈍して再結晶させ、表9の厚みまで最終冷間圧延し、銅箔を得た。表9の「種類」の欄の「タフピッチ銅」はJIS H3100 C1100に規格されているタフピッチ銅を、「無酸素銅」はJIS H3100 C1020に規格されている無酸素銅を示す。また、「タフピッチ銅+Ag:100ppm」はタフピッチ銅にAgを100質量ppm添加したことを意味する。
電解銅箔はJX日鉱日石金属社製電解銅箔HLP箔を用いた。電解研磨又は化学研磨を行った場合には、電解研磨又は化学研磨後の板厚を記載した。
なお、表9に表面処理前の銅箔作製工程のポイントを記載した。「高光沢圧延」は、最終の冷間圧延(最終の再結晶焼鈍後の冷間圧延)を記載の油膜当量の値で行ったことを意味する。「通常圧延」は、最終の冷間圧延(最終の再結晶焼鈍後の冷間圧延)を記載の油膜当量の値で行ったことを意味する。「化学研磨」、「電解研磨」は、以下の条件で行ったことを意味する。
「化学研磨」はH2SO4が1〜3質量%、H22が0.05〜0.15質量%、残部水のエッチング液を用い、研磨時間を1時間とした。
「電解研磨」はリン酸67%+硫酸10%+水23%の条件で、電圧10V/cm2、表9に記載の時間(10秒間の電解研磨を行うと、研磨量は1〜2μmとなる。)で行った。
In addition, the rolled copper foil was manufactured as follows. After manufacturing the copper ingot of the composition shown in Table 9 and performing hot rolling, annealing and cold rolling of a continuous annealing line at 300 to 800 ° C. were repeated to obtain a rolled sheet having a thickness of 1 to 2 mm. This rolled plate was annealed and recrystallized in a continuous annealing line at 300 to 800 ° C., and finally cold-rolled to the thickness shown in Table 9 to obtain a copper foil. “Tough pitch copper” in the “Type” column of Table 9 indicates tough pitch copper standardized in JIS H3100 C1100, and “Oxygen-free copper” indicates oxygen-free copper standardized in JIS H3100 C1020. “Tough pitch copper + Ag: 100 ppm” means that 100 mass ppm of Ag is added to tough pitch copper.
The electrolytic copper foil used was an electrolytic copper foil HLP foil manufactured by JX Nippon Mining & Metals. When electrolytic polishing or chemical polishing was performed, the plate thickness after electrolytic polishing or chemical polishing was described.
Table 9 shows the points of the copper foil preparation process before the surface treatment. “High gloss rolling” means that the final cold rolling (cold rolling after the final recrystallization annealing) was performed at the value of the oil film equivalent. “Normal rolling” means that the final cold rolling (cold rolling after the final recrystallization annealing) was performed at the oil film equivalent value described. “Chemical polishing” and “electropolishing” mean the following conditions.
“Chemical polishing” was performed using an etching solution of 1 to 3% by mass of H 2 SO 4 , 0.05 to 0.15% by mass of H 2 O 2 , and the remaining water, and the polishing time was 1 hour.
“Electropolishing” is a condition of phosphoric acid 67% + sulfuric acid 10% + water 23%, voltage 10 V / cm 2 , and the time shown in Table 9 (when electropolishing for 10 seconds, the polishing amount is 1 to 2 μm. ).

上述のようにして作製した実施例及び比較例の各サンプルについて、各種評価を下記の通り行った。
(1)表面粗さ(Rz)の測定;
株式会社小阪研究所製接触粗さ計Surfcorder SE−3Cを使用してJIS B0601−1994に準拠して十点平均粗さを粗化面について測定した。測定基準長さ0.8mm、評価長さ4mm、カットオフ値0.25mm、送り速さ0.1mm/秒の条件で圧延方向と垂直に(TDに、電解銅箔の場合は通箔方向に垂直に)測定位置を変えて10回行い、10回の測定での値を求めた。
なお、表面処理前の銅箔についても、同様にして表面粗さ(Rz)を求めておいた。
Various evaluation was performed as follows about each sample of the Example and comparative example which were produced as mentioned above.
(1) Measurement of surface roughness (Rz);
Ten-point average roughness was measured on the roughened surface using a contact roughness meter Surfcorder SE-3C manufactured by Kosaka Laboratory Co., Ltd. in accordance with JIS B0601-1994. Measurement standard length 0.8mm, evaluation length 4mm, cut-off value 0.25mm, feed rate 0.1mm / sec. Perpendicular to rolling direction (in TD, in case of electrolytic copper foil, in foil passing direction) The measurement position was changed 10 times (perpendicularly), and the values for 10 measurements were obtained.
In addition, the surface roughness (Rz) was calculated | required similarly about the copper foil before surface treatment.

(2)粒子の面積比(A/B);
粗化粒子の表面積はレーザー顕微鏡による測定法を使用した。株式会社キーエンス製レーザーマイクロスコープVK8500を用いて粗化処理面の倍率2000倍における100×100μm相当面積B(実データでは9982.52μm2)における三次元表面積Aを測定して、三次元表面積A÷二次元表面積B=面積比(A/B)とする手法により設定を行った。
(2) Particle area ratio (A / B);
The surface area of the roughened particles was measured by a laser microscope. Using a laser microscope VK8500 manufactured by Keyence Co., Ltd., measuring the three-dimensional surface area A in an area B equivalent to 100 × 100 μm at a magnification of 2000 times the roughened surface (actual data: 9982.52 μm 2 ), the three-dimensional surface area A ÷ Setting was performed by a method of setting a two-dimensional surface area B = area ratio (A / B).

(3)光沢度;
JIS Z8741に準拠した日本電色工業株式会社製光沢度計ハンディーグロスメーターPG−1を使用し、圧延方向(MD、電解銅箔の場合は通箔方向)及び圧延方向に直角な方向(TD、電解銅箔の場合は通箔方向に直角な方向)のそれぞれの入射角60度で粗化面について測定した。
なお、表面処理前の銅箔についても、同様にして光沢度を求めておいた。
(3) Glossiness;
Using Nippon Denshoku Industries Co., Ltd. gloss meter handy gloss meter PG-1 in accordance with JIS Z8741, rolling direction (MD, foil direction in the case of electrolytic copper foil) and direction perpendicular to the rolling direction (TD, In the case of an electrolytic copper foil, the roughened surface was measured at an incident angle of 60 degrees in a direction perpendicular to the direction of threading.
In addition, the glossiness was calculated | required similarly about the copper foil before surface treatment.

(4)明度曲線の傾き;
銅箔をラミネート用熱硬化性接着剤付きポリイミドフィルム(厚み50μm、宇部興産製ユーピレックス)の両面に貼り合わせ、銅箔をエッチング(塩化第二鉄水溶液)で除去してサンプルフィルムを作製した。続いて、ライン状の黒色マークを印刷した印刷物を、サンプルフィルムの下に敷いて、印刷物をサンプルフィルム越しにCCDカメラで撮影し、撮影によって得られた画像について、観察されたライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点−明度グラフにおいて、マークの端部からマークが描かれていない部分にかけて生じる明度曲線の傾き(角度)を測定した。このとき用いた撮影装置の構成及び明度曲線の傾きの測定方法を表す模式図を図3に示す。また、ΔB及び傾きはk1、k2は、図2で示すように測定した。なお、横軸の1ピクセルは10μm長さに相当する。そして、明度曲線のグラフにおける1ピクセルと1階調の長さの比率を3.5:5(明度曲線のグラフにおける1ピクセルの長さ:明度曲線のグラフにおける1階調の長さ=3.5(mm):5(mm))とした明度曲線のグラフにおいてk1、k2(°)の値を算出した。
撮影装置は、CCDカメラ、マークを付した紙を下に置いたポリイミド基板を置くステージ(白色)、ポリイミド基板の撮影部に光を照射する照明用電源、撮影対象のマークが付された紙を下に置いた評価用ポリイミド基板をステージ上に搬送する搬送機(不図示)を備えている。当該撮影装置の主な仕様を以下に示す:
・撮影装置:株式会社ニレコ製シート検査装置Mujiken
・CCDカメラ:8192画素(160MHz)、1024階調ディジタル(10ビット)
・照明用電源:高周波点灯電源(電源ユニット×2)
・照明:蛍光灯(30W)
明度曲線の傾き(角度)は、マーク端部付近に対応する部分の明度の上昇率(又は低下率)を示す指標であり、図3において、明度が上昇(又は低下)している所定の曲線部分における「tan-1(明度の上昇分又は低下分(y)/観察距離(x))」で表されるものである。
なお、図3に示された明度について、0は「黒」を意味し、明度255は「白」を意味し、「黒」から「白」までの灰色の程度(白黒の濃淡、グレースケール)を256階調に分割して表示している。
(4) The slope of the brightness curve;
The copper foil was bonded to both surfaces of a polyimide film with a thermosetting adhesive for lamination (thickness 50 μm, Upilex manufactured by Ube Industries), and the copper foil was removed by etching (ferric chloride aqueous solution) to prepare a sample film. Subsequently, a printed material on which a line-shaped black mark is printed is laid under the sample film, the printed material is photographed with a CCD camera through the sample film, and the observed line-shaped mark is observed on the image obtained by photographing. In the observation point-lightness graph created by measuring the lightness at each observation point along the direction perpendicular to the direction of extension, the inclination (angle) of the lightness curve that occurs from the end of the mark to the part where the mark is not drawn It was measured. FIG. 3 is a schematic diagram showing the configuration of the photographing apparatus used at this time and the method of measuring the inclination of the brightness curve. Further, ΔB and inclinations k1 and k2 were measured as shown in FIG. One pixel on the horizontal axis corresponds to a length of 10 μm. Then, the ratio of the length of one pixel to one gradation in the lightness curve graph is 3.5: 5 (the length of one pixel in the lightness curve graph: the length of one gradation in the lightness curve graph = 3. The values of k1 and k2 (°) were calculated in a lightness curve graph with 5 (mm): 5 (mm)).
The photographing device has a CCD camera, a stage (white) on which a polyimide substrate is placed with a marked paper underneath, an illumination power source that irradiates light onto the photographing portion of the polyimide substrate, and a paper with a mark to be photographed. A transporter (not shown) for transporting the evaluation polyimide substrate placed below onto the stage is provided. The main specifications of the camera are as follows:
・ Photographing device: Sheet inspection device Mujken manufactured by Nireco Corporation
CCD camera: 8192 pixels (160 MHz), 1024 gradation digital (10 bits)
・ Power supply for lighting: High frequency lighting power supply (power supply unit x 2)
・ Lighting: Fluorescent lamp (30W)
The slope (angle) of the lightness curve is an index indicating the rate of increase (or rate of decrease) in the portion corresponding to the vicinity of the mark end, and in FIG. 3, a predetermined curve in which the lightness is increased (or decreased). It is expressed by “tan −1 (increased or decreased brightness (y) / observation distance (x))” in the portion.
For the lightness shown in FIG. 3, 0 means “black”, lightness 255 means “white”, and the gray level from “black” to “white” (black and white shading, gray scale) Is divided into 256 gradations for display.

(5)視認性(樹脂透明性);
銅箔をラミネート用熱硬化性接着剤付きポリイミドフィルム(厚み50μm、宇部興産製ユーピレックス)の両面に貼り合わせ、銅箔をエッチング(塩化第二鉄水溶液)で除去してサンプルフィルムを作成した。得られた樹脂層の一面に印刷物(直径6cmの黒色の円)を貼り付け、反対面から樹脂層越しに印刷物の視認性を判定した。印刷物の黒色の円の輪郭が円周の90%以上の長さにおいてはっきりしたものを「◎」、黒色の円の輪郭が円周の80%以上90%未満の長さにおいてはっきりしたものを「○」(以上合格)、黒色の円の輪郭が円周の0〜80%未満の長さにおいてはっきりしたもの及び輪郭が崩れたものを「×」(不合格)と評価した。
(5) Visibility (resin transparency);
The copper foil was laminated on both sides of a polyimide film with a thermosetting adhesive for lamination (thickness 50 μm, Ube Industries Upilex), and the copper foil was removed by etching (ferric chloride aqueous solution) to prepare a sample film. A printed material (black circle with a diameter of 6 cm) was attached to one surface of the obtained resin layer, and the visibility of the printed material was judged from the opposite surface through the resin layer. “◎” indicates that the outline of the black circle of the printed material is clear when the length is 90% or more of the circumference, and “Clear” indicates that the outline of the black circle is clear when the length is 80% or more and less than 90% of the circumference. “O” (passed above), a black circle with a clear outline of 0 to less than 80% of the circumference and a broken outline were evaluated as “x” (failed).

(6)ピール強度(接着強度);
PC−TM−650に準拠し、引張り試験機オートグラフ100で常態ピール強度を測定し、上記常態ピール強度が0.7N/mm以上を積層基板用途に使用できるものとした。
(6) Peel strength (adhesive strength);
Based on PC-TM-650, the normal peel strength was measured with a tensile tester Autograph 100, and a normal peel strength of 0.7 N / mm or more could be used for laminated substrate applications.

(7)はんだ耐熱評価;
銅箔をラミネート用熱硬化性接着剤付きポリイミドフィルム(厚み50μm、宇部興産製ユーピレックス)の両面に貼り合わせた。得られた両面積層板について、JIS C6471に準拠したテストクーポンを作成した。作成したテストクーポンを85℃、85%RHの高温高湿下で48時間暴露した後に、300℃のはんだ槽に浮かべて、はんだ耐熱特性を評価した。はんだ耐熱試験後に、銅箔粗化処理面とポリイミド樹脂接着面の界面において、テストクーポン中の銅箔面積の5%以上の面積において、膨れにより界面が変色したものを×(不合格)、面積が5%未満の膨れ変色の場合を○、全く膨れ変色が発生しなかったものを◎として評価した。
(7) Solder heat resistance evaluation;
The copper foil was bonded to both surfaces of a polyimide film with a thermosetting adhesive for laminating (thickness 50 μm, Upilex manufactured by Ube Industries). About the obtained double-sided laminated board, the test coupon based on JISC6471 was created. The prepared test coupon was exposed to high temperature and high humidity of 85 ° C. and 85% RH for 48 hours, and then floated in a solder bath at 300 ° C. to evaluate solder heat resistance. After the solder heat resistance test, at the interface between the copper foil roughening surface and the polyimide resin adhesion surface, the area where the interface discolored due to blistering in an area of 5% or more of the copper foil area in the test coupon is x (failed), area When the color change was less than 5%, the case was evaluated as ◯, and the case where no color change occurred was evaluated as ◎.

(8)歩留まり;
銅箔をラミネート用熱硬化性接着剤付きポリイミドフィルム(厚み50μm、宇部興産製ユーピレックス)の両面に貼り合わせ、銅箔をエッチング(塩化第二鉄水溶液)して、L/Sが30μm/30μmの回路幅のFPCを作成した。その後、20μm×20μm角のマークをポリイミド越しにCCDカメラで検出することを試みた。10回中9回以上検出できた場合には「◎」、7〜8回検出できた場合には「○」、6回検出できた場合には「△」、5回以下検出できた場合には「×」とした。
(8) Yield;
The copper foil was bonded to both sides of a polyimide film with a thermosetting adhesive for lamination (thickness 50 μm, Ube Industries Upilex), the copper foil was etched (ferric chloride aqueous solution), and L / S was 30 μm / 30 μm. An FPC with a circuit width was created. After that, an attempt was made to detect a 20 μm × 20 μm square mark with a CCD camera through polyimide. “◎” when 9 times or more out of 10 times can be detected, “◯” when 7 to 8 times can be detected, “△” when 6 times can be detected, and when 5 times or less can be detected. Is “×”.

(9)エッチングによる回路形状(ファインパターン特性);
銅箔をラミネート用熱硬化性接着剤付きポリイミドフィルム(厚み50μm、宇部興産製ユーピレックス)の両面に貼り合わせた。ファインパターン回路形成を行うために銅箔厚みを同じにする必要があり、ここでは12μm銅箔厚みを基準とした。すなわち、12μmよりも厚みが厚い場合には、電解研磨により12μm厚みまで減厚した。一方で12μmより厚みが薄い場合には、銅めっき処理により12μm厚みまで増厚した。得られた両面積層板の片面側について、積層板の銅箔光沢面側に感光性レジスト塗布及び露光工程により、ファインパターン回路を印刷し、銅箔の不要部分を下記条件でエッチング処理を行い、L/S=20/20μmとなるようなファインパターン回路を形成した。ここで回路幅は回路断面のボトム幅が20μmとなるようにした。
(エッチング条件)
装置:スプレー式小型エッチング装置
スプレー圧:0.2MPa
エッチング液:塩化第二鉄水溶液(比重40ボーメ)
液温度:50℃
ファインパターン回路形成後に、45℃のNaOH水溶液に1分間浸漬させて感光性レジスト膜を剥離した。
(9) Circuit shape by etching (fine pattern characteristics);
The copper foil was bonded to both surfaces of a polyimide film with a thermosetting adhesive for laminating (thickness 50 μm, Upilex manufactured by Ube Industries). In order to perform fine pattern circuit formation, it is necessary to make the copper foil thickness the same, and here, a thickness of 12 μm copper foil was used as a reference. That is, when the thickness was thicker than 12 μm, the thickness was reduced to 12 μm by electrolytic polishing. On the other hand, when the thickness was thinner than 12 μm, the thickness was increased to 12 μm by copper plating. For one side of the resulting double-sided laminate, the fine pattern circuit is printed by the photosensitive resist coating and exposure process on the copper foil glossy side of the laminate, and unnecessary portions of the copper foil are etched under the following conditions, A fine pattern circuit having L / S = 20/20 μm was formed. Here, the circuit width was set such that the bottom width of the circuit cross section was 20 μm.
(Etching conditions)
Equipment: Spray type small etching equipment Spray pressure: 0.2 MPa
Etching solution: Ferric chloride aqueous solution (specific gravity 40 Baume)
Liquid temperature: 50 ° C
After forming the fine pattern circuit, the photosensitive resist film was peeled off by dipping in a 45 ° C. NaOH aqueous solution for 1 minute.

(10)エッチングファクター(Ef)の算出;
上記にて得られたファインパターン回路サンプルを、日立ハイテクノロジーズ社製走査型電子顕微鏡写真S4700を用いて、2000倍の倍率で回路上部から観察を行い、回路上部のトップ幅(Wa)と回路底部のボトム幅(Wb)を測定した。銅箔厚み(T)は12μmとした。エッチングファクター(Ef)は、下記式により算出した。
エッチングファクター(Ef) = (2×T)/(Wb−Wa)
(10) Calculation of etching factor (Ef);
The fine pattern circuit sample obtained above is observed from the top of the circuit at a magnification of 2000 using a scanning electron micrograph S4700 manufactured by Hitachi High-Technologies Corporation. The top width (Wa) of the top of the circuit and the bottom of the circuit The bottom width (Wb) of was measured. The copper foil thickness (T) was 12 μm. The etching factor (Ef) was calculated by the following formula.
Etching factor (Ef) = (2 × T) / (Wb−Wa)

(11)伝送損失の測定;
18μm厚の各サンプルについて、市販の液晶ポリマー樹脂((株)クラレ製Vecstar CTZ−50μm)と貼り合わせた後、エッチングで特性インピーダンスが50Ωのとなるようマイクロストリップ線路を形成し、HP社製のネットワークアナライザーHP8720Cを用いて透過係数を測定し、周波数20GHzおよび周波数40GHzでの伝送損失を求めた。周波数20GHzにおける伝送損失の評価として、3.7dB/10cm未満を◎、3.7dB/10cm以上且つ4.1dB/10cm未満を○、4.1dB/10cm以上且つ5.0dB/10cm未満を△、5.0dB/10cm以上を×とした。
上記各試験の条件及び評価を表1〜12に示す。
(11) Measurement of transmission loss;
For each sample having a thickness of 18 μm, after bonding with a commercially available liquid crystal polymer resin (Vecstar CTZ-50 μm manufactured by Kuraray Co., Ltd.), a microstrip line is formed by etching so that the characteristic impedance is 50Ω. The transmission coefficient was measured using a network analyzer HP8720C, and the transmission loss at a frequency of 20 GHz and a frequency of 40 GHz was determined. As an evaluation of transmission loss at a frequency of 20 GHz, 未 満 less than 3.7 dB / 10 cm, ◎ 3.7 dB / 10 cm or more and less than 4.1 dB / 10 cm, 、 4 4.1 dB / 10 cm or more and less than 5.0 dB / 10 cm, △, 5.0 dB / 10 cm or more was defined as x.
The conditions and evaluation of each test are shown in Tables 1-12.

Figure 2013176133
Figure 2013176133

Figure 2013176133
Figure 2013176133

Figure 2013176133
Figure 2013176133

Figure 2013176133
Figure 2013176133

Figure 2013176133
Figure 2013176133

Figure 2013176133
Figure 2013176133

Figure 2013176133
Figure 2013176133

Figure 2013176133
Figure 2013176133














Figure 2013176133
Figure 2013176133





Figure 2013176133
Figure 2013176133






Figure 2013176133
Figure 2013176133


Figure 2013176133
Figure 2013176133

(評価結果)
実施例1〜24は、いずれも視認性、ピール強度、はんだ耐熱評価及び歩留まりが良好であった。
比較例1〜2、4、7〜11、13は、ΔB、ΔB/ΔB(PI)およびk1の1つ以上の値が本願発明の範囲から外れているため、視認性が不良であった。
比較例3、5、6、12は、視認性は優れていたが、k1の値が87°を超えたため、基板密着性が不良であった。また、比較例1〜13ははんだ耐熱評価が不良であった。
図4に、上記Rz評価の際の、(a)比較例1、(b)比較例2、(c)比較例3、(d)比較例4、(e)実施例1、(f)実施例2の銅箔表面のSEM観察写真をそれぞれ示す。
(Evaluation results)
In Examples 1 to 24, visibility, peel strength, solder heat resistance evaluation and yield were all good.
Comparative Examples 1-2, 4, 7-11, and 13 had poor visibility because one or more values of ΔB, ΔB / ΔB (PI), and k1 were out of the scope of the present invention.
In Comparative Examples 3, 5, 6, and 12, the visibility was excellent, but since the value of k1 exceeded 87 °, the substrate adhesion was poor. In Comparative Examples 1 to 13, the solder heat resistance evaluation was poor.
FIG. 4 shows (a) Comparative Example 1, (b) Comparative Example 2, (c) Comparative Example 3, (d) Comparative Example 4, (e) Example 1, and (f) in the Rz evaluation. The SEM observation photograph of the copper foil surface of Example 2 is shown, respectively.

Claims (21)

少なくとも一方の表面に粗化処理により粗化粒子が形成された表面処理銅箔であって、
前記銅箔を、粗化処理表面側から厚さ50μmのポリイミド(銅箔に張り合わせ前のポリイミドについての下記ΔB(PI)が20以上33以下であるポリイミド)基板の両面に貼り合わせた後、エッチングで前記両面の銅箔を除去し、
ライン状のマークを印刷した印刷物を、露出した前記ポリイミド基板の下に敷いて、前記印刷物を前記ポリイミド基板越しにCCDカメラで撮影したとき、
前記撮影によって得られた画像について、観察された前記ライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点−明度グラフにおいて、
前記マークの端部から前記マークが描かれていない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が20以上であり、
ΔB/ΔB(PI)からなる比率が0.7以上であり、
Btを基準に0.4ΔB〜0.6ΔBの深さ範囲における前記明度曲線の傾き(角度)k1が65°以上87°以下となる表面処理銅箔。
A surface-treated copper foil in which roughened particles are formed by roughening treatment on at least one surface,
Etching after bonding the copper foil to both surfaces of a substrate having a thickness of 50 μm from the surface of the roughening treatment (polyimide having the following ΔB (PI) of 20 to 33 for the polyimide before being bonded to the copper foil). To remove the copper foil on both sides,
When a printed matter on which a line-shaped mark is printed is laid under the exposed polyimide substrate, and the printed matter is photographed with a CCD camera through the polyimide substrate,
For the image obtained by the photographing, an observation point-brightness graph prepared by measuring the brightness of each observation point along the direction perpendicular to the direction in which the observed line-shaped mark extends,
A difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion where the mark is not drawn is 20 or more,
The ratio of ΔB / ΔB (PI) is 0.7 or more,
A surface-treated copper foil in which the slope (angle) k1 of the lightness curve in a depth range of 0.4 ΔB to 0.6 ΔB with respect to Bt is 65 ° or more and 87 ° or less.
前記撮影によって得られた画像から作製した観察地点−明度グラフにおいて、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲における前記明度曲線の傾き(角度)k2が30°以上となる請求項1に記載の表面処理銅箔。   In the observation point-lightness graph prepared from the image obtained by the photographing, the slope (angle) k2 of the lightness curve in the depth range from the intersection of the lightness curve and Bt to 0.1 ΔB with reference to Bt is 30 °. The surface-treated copper foil of Claim 1 used as the above. 前記撮影によって得られた画像から作製した観察地点−明度グラフにおいて、ΔBが28以上となる請求項1又は2に記載の表面処理銅箔。   The surface-treated copper foil according to claim 1 or 2, wherein ΔB is 28 or more in an observation point-lightness graph produced from an image obtained by the photographing. 前記明度曲線の傾き(角度)k1が75°以上87°以下となる請求項1〜3のいずれか一項に記載の表面処理銅箔。   The surface-treated copper foil as described in any one of Claims 1-3 from which the inclination (angle) k1 of the said brightness curve becomes 75 to 87 degree. 前記明度曲線の傾き(角度)k2が40°以上となる請求項2〜4のいずれか一項に記載の表面処理銅箔。   The surface-treated copper foil according to any one of claims 2 to 4, wherein an inclination (angle) k2 of the lightness curve is 40 ° or more. 前記粗化処理表面のTDの平均粗さRzが0.20〜0.80μmであり、粗化処理表面のMDの60度光沢度が76〜350%であり、
前記粗化粒子の表面積Aと、前記粗化粒子を前記銅箔表面側から平面視したときに得られる面積Bとの比A/Bが1.90〜2.40である請求項1〜5のいずれか一項に記載の表面処理銅箔。
The TD average roughness Rz of the roughened surface is 0.20 to 0.80 μm, the 60 degree gloss of MD of the roughened surface is 76 to 350%,
The ratio A / B between the surface area A of the roughened particles and the area B obtained when the roughened particles are viewed in plan from the copper foil surface side is 1.90 to 2.40. The surface-treated copper foil as described in any one of these.
前記MDの60度光沢度が90〜250%である請求項6に記載の表面処理銅箔。   The surface-treated copper foil according to claim 6, wherein the MD has a 60-degree glossiness of 90 to 250%. 前記TDの平均粗さRzが0.30〜0.60μmである請求項6又は7に記載の表面処理銅箔。   The surface-treated copper foil according to claim 6 or 7, wherein the average roughness Rz of the TD is 0.30 to 0.60 µm. 前記A/Bが2.00〜2.20である請求項6〜8のいずれか一項に記載の表面処理銅箔。   Said A / B is 2.00-2.20, The surface-treated copper foil as described in any one of Claims 6-8. 粗化処理表面のMDの60度光沢度とTDの60度光沢度との比C(C=(MDの60度光沢度)/(TDの60度光沢度))が0.80〜1.40である請求項6〜9のいずれか一項に記載の表面処理銅箔。   The ratio C (C = (60 degree gloss of MD) / (60 degree gloss of TD)) of the 60 degree gloss of MD and 60 degree gloss of TD on the roughened surface is 0.80 to 1. The surface-treated copper foil according to any one of claims 6 to 9, which is 40. 粗化処理表面のMDの60度光沢度とTDの60度光沢度との比C(C=(MDの60度光沢度)/(TDの60度光沢度))が0.90〜1.35である請求項10に記載の表面処理銅箔。   The ratio C (C = (60 ° gloss of MD) / (60 ° gloss of TD)) of the 60 ° gloss of MD and 60 ° gloss of TD on the roughened surface is 0.90 to 1. The surface-treated copper foil according to claim 10, which is 35. 請求項1〜11のいずれか一項に記載の表面処理銅箔と樹脂基板とを積層して構成した積層板。   The laminated board comprised by laminating | stacking the surface treatment copper foil and resin substrate as described in any one of Claims 1-11. 請求項1〜11のいずれか一項に記載の表面処理銅箔を用いたプリント配線板。   The printed wiring board using the surface-treated copper foil as described in any one of Claims 1-11. 請求項13に記載のプリント配線板を用いた電子機器。   An electronic device using the printed wiring board according to claim 13. 請求項13に記載のプリント配線板を2つ以上接続して、プリント配線板が2つ以上接続したプリント配線板を製造する方法。   A method of manufacturing a printed wiring board in which two or more printed wiring boards are connected by connecting two or more printed wiring boards according to claim 13. 請求項13に記載のプリント配線板を少なくとも1つと、もう一つの請求項13に記載のプリント配線板又は請求項13に記載のプリント配線板に該当しないプリント配線板とを接続する工程を含む、プリント配線板が2つ以上接続したプリント配線板を製造する方法。   Connecting at least one printed wiring board according to claim 13 to another printed wiring board according to claim 13 or a printed wiring board not corresponding to the printed wiring board according to claim 13; A method of manufacturing a printed wiring board in which two or more printed wiring boards are connected. 請求項15に記載のプリント配線板が2つ以上接続したプリント配線板を1つ以上用いた電子機器。   An electronic device using one or more printed wiring boards in which two or more printed wiring boards according to claim 15 are connected. 請求項16に記載のプリント配線板が2つ以上接続したプリント配線板を1つ以上用いた電子機器。   An electronic device using one or more printed wiring boards to which two or more printed wiring boards according to claim 16 are connected. 請求項15又は16に記載のプリント配線板が少なくとも1つ接続したプリント配線板を1つ以上用いた電子機器。   An electronic apparatus using at least one printed wiring board to which at least one printed wiring board according to claim 15 is connected. 請求項13に記載のプリント配線板と、部品とを接続する工程を少なくとも含む、プリント配線板を製造する方法。   A method for manufacturing a printed wiring board, comprising at least a step of connecting the printed wiring board according to claim 13 and a component. 請求項13に記載のプリント配線板を少なくとも1つと、もう一つの請求項13に記載のプリント配線板又は請求項13に記載のプリント配線板に該当しないプリント配線板とを接続する工程、および、
請求項13に記載のプリント配線板又は請求項16に記載のプリント配線板が2つ以上接続したプリント配線板と、部品とを接続する工程
を少なくとも含む、プリント配線板が2つ以上接続したプリント配線板を製造する方法。
Connecting at least one printed wiring board according to claim 13 to another printed wiring board according to claim 13 or a printed wiring board not corresponding to the printed wiring board according to claim 13, and
A printed wiring board having two or more printed wiring boards connected, comprising at least a step of connecting a printed wiring board according to claim 13 or two or more printed wiring boards according to claim 16 and a component. A method of manufacturing a wiring board.
JP2014516806A 2012-05-21 2013-05-21 Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for producing printed wiring board Active JP5855244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014516806A JP5855244B2 (en) 2012-05-21 2013-05-21 Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for producing printed wiring board

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012129314 2012-05-21
JP2012129314 2012-05-21
JP2014516806A JP5855244B2 (en) 2012-05-21 2013-05-21 Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for producing printed wiring board
PCT/JP2013/064096 WO2013176133A1 (en) 2012-05-21 2013-05-21 Printed wiring board

Publications (2)

Publication Number Publication Date
JPWO2013176133A1 true JPWO2013176133A1 (en) 2016-01-14
JP5855244B2 JP5855244B2 (en) 2016-02-09

Family

ID=49623822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014516806A Active JP5855244B2 (en) 2012-05-21 2013-05-21 Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for producing printed wiring board

Country Status (3)

Country Link
JP (1) JP5855244B2 (en)
TW (1) TWI503062B (en)
WO (1) WO2013176133A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5710737B1 (en) * 2013-11-29 2015-04-30 Jx日鉱日石金属株式会社 Surface-treated copper foil, laminated board, printed wiring board, printed circuit board, and electronic equipment
MY183425A (en) * 2013-12-10 2021-02-18 Jx Nippon Mining & Metals Corp Surface treated copper foil, copper clad laminate, printed wiring board, electronic apparatus and method for manufacturing printed wiring board
CN105980609B (en) * 2013-12-10 2018-08-07 Jx金属株式会社 The manufacturing method of surface treatment copper foil, copper-cover laminated plate, printing distributing board, e-machine and printing distributing board
JPWO2015178455A1 (en) * 2014-05-21 2017-04-20 三井金属鉱業株式会社 Copper foil for transparent resin substrate and transparent resin substrate with fine copper wiring
KR101942621B1 (en) * 2015-02-06 2019-01-25 제이엑스금속주식회사 Copper foil with carrier, laminate, printed circuit board, electronic device and method of manufacturing printed circuit board
JP7492807B2 (en) * 2016-12-06 2024-05-30 Jx金属株式会社 Surface-treated copper foil, carrier-attached copper foil, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987889A (en) * 1995-09-28 1997-03-31 Nikko Gould Foil Kk Treatment of copper foil for printed circuit
JP2011240625A (en) * 2010-05-19 2011-12-01 Jx Nippon Mining & Metals Corp Copper-clad laminated sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5232823B2 (en) * 2010-03-30 2013-07-10 Jx日鉱日石金属株式会社 Copper foil for printed wiring board excellent in etching property and laminate using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987889A (en) * 1995-09-28 1997-03-31 Nikko Gould Foil Kk Treatment of copper foil for printed circuit
JP2011240625A (en) * 2010-05-19 2011-12-01 Jx Nippon Mining & Metals Corp Copper-clad laminated sheet

Also Published As

Publication number Publication date
WO2013176133A1 (en) 2013-11-28
JP5855244B2 (en) 2016-02-09
TWI503062B (en) 2015-10-01
TW201406227A (en) 2014-02-01

Similar Documents

Publication Publication Date Title
JP5362898B1 (en) Surface-treated copper foil, laminate using the same, printed wiring board, and copper-clad laminate
JP5819569B1 (en) Surface-treated copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
JP5417538B1 (en) Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for manufacturing printed wiring board
JP5362924B1 (en) Surface-treated copper foil and laminate using the same
JP5475897B1 (en) Surface-treated copper foil and laminate using the same, copper foil, printed wiring board, electronic device, and method for manufacturing printed wiring board
JP5362921B1 (en) Surface-treated copper foil and laminate using the same
JP5855244B2 (en) Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for producing printed wiring board
JP5362923B1 (en) Surface-treated copper foil and laminate using the same
JP2015092013A (en) Surface-treated rolled copper foil, laminated sheet, printed circuit board, electronic equipment and method for producing the printed circuit board
WO2014038716A1 (en) Surface-treated copper foil and laminated board using same
JP5432357B1 (en) Surface-treated copper foil and laminated board, copper-clad laminated board, printed wiring board and electronic device using the same
JP5362899B1 (en) Surface-treated copper foil and laminate using the same
JP5362922B1 (en) Surface-treated copper foil and laminate using the same
JP2014065974A (en) Surface-treated copper foil, and laminate, copper-clad laminate, printed-wiring board, and electronic apparatus using the same
WO2014073696A1 (en) Surface-treated copper foil and laminate using same
JP6081883B2 (en) Copper foil, laminated board using the same, method for manufacturing electronic device, and method for manufacturing printed wiring board
JP5819571B1 (en) Surface-treated copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
JP2014148747A (en) Surface-treated copper foil and laminate, printed wiring board, and electronic apparatus with use of the foil, and manufacturing method of printed wiring board

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151208

R150 Certificate of patent or registration of utility model

Ref document number: 5855244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250