JP2012207271A - HOT-DIP Sn-Zn-PLATED STEEL SHEET - Google Patents

HOT-DIP Sn-Zn-PLATED STEEL SHEET Download PDF

Info

Publication number
JP2012207271A
JP2012207271A JP2011073764A JP2011073764A JP2012207271A JP 2012207271 A JP2012207271 A JP 2012207271A JP 2011073764 A JP2011073764 A JP 2011073764A JP 2011073764 A JP2011073764 A JP 2011073764A JP 2012207271 A JP2012207271 A JP 2012207271A
Authority
JP
Japan
Prior art keywords
plating
layer
steel sheet
hot
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011073764A
Other languages
Japanese (ja)
Other versions
JP5664408B2 (en
Inventor
Yasuto Goto
靖人 後藤
Masao Kurosaki
将夫 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011073764A priority Critical patent/JP5664408B2/en
Publication of JP2012207271A publication Critical patent/JP2012207271A/en
Application granted granted Critical
Publication of JP5664408B2 publication Critical patent/JP5664408B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot-dip Sn-Zn-plated steel sheet which has excellent corrosion resistance and is particularly suitable as an automobile fuel tank material which can cope with a common rail type diesel engine.SOLUTION: In the hot-dip Sn-Zn-plated steel sheet, a steel sheet surface is overlaid with a hot-dip Sn-Zn plating layer comprising 91.2-99.0 mass% Sn, 1-8.8 mass% Zn, and the remainder being inevitable impurities. An Ni plating layer exists by 10-100 mg/mon an upper layer of the hot-dip Sn-Zn plating layer, preferably the Ni plating layer exists by 25-60 mg/mon the upper layer of the hot-dip Sn-Zn plating layer.

Description

本発明は、優れた耐食性を有し、特に自動車燃料タンク材料として好適な溶融Sn-Zn系めっき鋼板に関するものである。   The present invention relates to a molten Sn—Zn-based plated steel sheet having excellent corrosion resistance and particularly suitable as an automobile fuel tank material.

従来、燃料タンク材料として耐食性・加工性・はんだ性(溶接性)等の優れたPb-Sn合金めっき鋼板が主として用いられ、自動車用燃料タンクとして幅広く使用されてきた。しかしながら、Pbフリー化が進められ、現在ではSnを主体とするSn-Zn合金めっき鋼板が優れた燃料タンク材料としての特性を有することが知見され、下記特許文献1〜特許文献8の公報において、溶融Sn-Znめっき鋼板が開示されており、Pbフリーの燃料タンク材料として広く使用されている。   Conventionally, Pb—Sn alloy-plated steel sheets having excellent corrosion resistance, workability, solderability (weldability) and the like have been mainly used as fuel tank materials, and have been widely used as fuel tanks for automobiles. However, as Pb-free has been promoted, it has been found that Sn-Zn alloy-plated steel sheet mainly composed of Sn has excellent characteristics as a fuel tank material, and in the following Patent Documents 1 to 8, A molten Sn-Zn plated steel sheet is disclosed and widely used as a Pb-free fuel tank material.

また、下記特許文献9の公報には、Sn含有めっき鋼板において、表層にNiめっきまたはNi合金めっきを積層させスポット溶接性を向上させる発明が記載されている。この特許文献9では被覆すべき対象がSnであり、表層に存在するNiにより、抵抗溶接時の高温下でのSn-Cu合金化反応を抑制することを目的としている。スポット溶接時には電極中に水管を通し、電極/鋼板間の冷却を行っているが、それでもナゲット形成部位は2500℃近くまで昇温され、電極/鋼板間の温度も700℃程度までは上昇する。このため特許文献9ではめっきの主成分のSnと電極の主成分のCuの反応を抑制するために、上層のNi系めっきはNi分で0.1〜1.0g/m2を必要としており、本発明の想定する適正なNiめっき量より多くなっている。また、めっき層の構成から、バリヤー型めっき皮膜として耐食性を持たせることになり、疵部や端面におけるZnによる犠牲防食能は十分に発現されないという問題点があった。 Patent Document 9 listed below describes an invention for improving spot weldability by depositing Ni plating or Ni alloy plating on the surface layer of a Sn-containing plated steel sheet. In this Patent Document 9, the object to be coated is Sn, and the object is to suppress the Sn—Cu alloying reaction under high temperature during resistance welding by Ni present in the surface layer. During spot welding, a water tube is passed through the electrode to cool the electrode / steel plate, but the nugget formation site is still heated to nearly 2500 ° C, and the temperature between the electrode / steel plate also rises to about 700 ° C. Therefore, in Patent Document 9, in order to suppress the reaction between Sn, which is the main component of the plating, and Cu, which is the main component of the electrode, the Ni-based plating of the upper layer requires 0.1 to 1.0 g / m 2 in the Ni content. It is more than the appropriate amount of Ni plating assumed by. In addition, the structure of the plating layer provides corrosion resistance as a barrier-type plating film, and there is a problem that the sacrificial anticorrosive ability due to Zn at the buttock and the end face is not sufficiently exhibited.

特開平08-269734号公報Japanese Unexamined Patent Publication No. 08-269734 特開平09-071879号公報Japanese Unexamined Patent Publication No. 09-071879 特開2000-119867号公報JP 2000-119867 A 特開2002-332556号公報JP 2002-332556 A 特開2003-268521号公報JP 2003-268521 JP 特開2003-268522号公報JP 2003-268522 A 特開2005-320554号公報JP 2005-320554 A 特開2011-006732号公報JP 2011-006732 A 特開2010-100867号公報JP 2010-100867

前記した溶融Sn-Znめっき鋼板は、確かに優れた耐食性および燃料タンク製造工程における加工性、接合特性を有するものであり、ガソリン用、エタノール混合ガソリン用、軽油用の燃料タンクとしては極めてバランスのとれた材料である。   The above-mentioned molten Sn-Zn plated steel sheet has excellent corrosion resistance, processability in the fuel tank manufacturing process, and joining characteristics, and is extremely balanced as a fuel tank for gasoline, ethanol-mixed gasoline, and light oil. It is a good material.

しかし、近年、ディーゼルエンジンに対する排ガス規制や燃費規制が年々強化される傾向にある為、エンジンの駆動力の損失を引き起こす機械式噴射ポンプは徐々に廃れつつあり、代わって、電磁式高圧噴射ポンプが登場している。その代表がコモンレール式ディーゼルエンジンであり、このシステムを用いると非常に高度な燃焼制御が可能となり、高出力かつクリーンなエンジンを実現する事ができる。   However, in recent years, exhaust gas regulations and fuel economy regulations for diesel engines have been tempered year by year, so mechanical injection pumps that cause loss of engine driving power are gradually being abolished. Has appeared. The representative is a common rail type diesel engine, and if this system is used, very advanced combustion control becomes possible, and a high output and clean engine can be realized.

しかし、このコモンレール式ディーゼルエンジンが噴射口は口径が小さくかつ燃料が高温度・高圧下となり、特にBio Diesel Fuel(以下BDFと略す)使用時には噴射口のノズル詰まりにより、出力が低下するという懸念がある。BDFは種々あるが、原料の植物油をメチルエステル交換反応により製造されており、原料に含まれる二重結合、三重結合がそのままBDFに含まれているので、軽油と比較すると容易に分解、重合をおこす。このため各自動車メーカーおよび自動車部品メーカーは、「コモンレール式ディーゼルエンジンはBDF使用時に主に燃料循環系から燃料中に溶出する金属イオンが、噴射口においてBDF劣化物と金属イオンとで金属石鹸を生成もしくは堆積しやすく、これが噴射口のノズル詰まりの原因である。」と考えており、Znが悪影響を及ぼすという元素の一つという見解を持っている。   However, there is a concern that the output of this common rail diesel engine will be low due to the small nozzle diameter and high temperature and high pressure of the fuel, especially when using Bio Diesel Fuel (hereinafter referred to as BDF) due to nozzle clogging of the nozzle. is there. Although there are various types of BDF, the raw material vegetable oil is produced by the methyl ester exchange reaction, and the double bond and triple bond contained in the raw material are included in the BDF as they are. I'll do it. For this reason, automakers and auto parts manufacturers stated, “In common rail diesel engines, metal ions that elute into the fuel mainly from the fuel circulation system when using BDF produce metal soap from the BDF degradation products and metal ions at the injection port. Or it is easy to deposit, and this is the cause of the nozzle clogging of the injection nozzle. ”I think that one of the elements that Zn adversely affects.

これまでの技術で、溶融Sn-Znめっき鋼板で過度のZnの溶出を抑制するためにめっき層の組成および組織制御を行っているが、Znの微量溶出は不可避であるために、Zn溶出を更に低減させる技術を検討することにした。   With conventional technology, the composition and structure of the plating layer are controlled in order to suppress excessive elution of Zn in the hot-dip Sn-Zn plated steel sheet. However, since elution of trace amounts of Zn is inevitable, We decided to study the technology for further reduction.

これまではSn-Znめっき層を有し、偏析Znがめっき層を貫通しないようにZnを微細分散させたものを燃料タンク材料として活用してきた。Snは燃料タンク内外面環境に対しバリヤー型で地鉄を防食し、Znは犠牲防食で地鉄を防食するというように防食効果を機能分担させ、その各々の効果を最大限に引き出そうという設計思想であった。今回は表層のZnをより貴な金属にすることに着眼した。具体的にはNiを使用し、めっき最表層のZnをNiに置換し、その後に化成処理皮膜を付与することにより、Znの溶出抑制を試みた。   So far, a fuel tank material that has a Sn—Zn plating layer and finely dispersed Zn so that segregated Zn does not penetrate the plating layer has been used. Sn is a barrier-type anticorrosion to the environment inside and outside the fuel tank, and Zn is a sacrificial anti-corrosion function, such as anti-corrosion effects, and the design is to maximize each effect. It was an idea. This time, we focused on making surface Zn more precious metal. Specifically, Ni was used, and Zn in the outermost layer of plating was replaced with Ni, and then a chemical conversion treatment film was applied to try to suppress elution of Zn.

本発明の要旨とするところは、特許請求の範囲に記載した通りの下記内容である。
(1)鋼板表面に、Sn:91.2〜99.0質量%、Zn:1〜8.8質量%、残部が不可避的不純物からなる溶融Sn-Znめっき層を形成した溶融Sn-Zn系めっき鋼板であって、前記溶融Sn-Znめっき層の上層にNi系めっきが10mg/m2〜100mg/m2存在することを特徴とする溶融Sn-Zn系めっき鋼板。
(2)前記溶融Sn-Znめっき層の上層にNi系めっきが25mg/m2〜60mg/m2存在することを特徴とする(1)に記載の溶融Sn-Zn系めっき鋼板。
The gist of the present invention is the following contents as described in the claims.
(1) A molten Sn-Zn-based plated steel sheet in which a molten Sn-Zn plated layer consisting of Sn: 91.2-99.0% by mass, Zn: 1-8.8% by mass, and the balance of inevitable impurities is formed on the steel sheet surface, molten Sn-Zn-based plated steel sheet wherein the Ni-based plating layer of the molten Sn-Zn plating layer is characterized by the presence 2 10mg / m 2 ~100mg / m .
(2) the molten Sn-Zn-based plated steel sheet according to the Ni-based plating layer of the molten Sn-Zn plating layer is characterized by the presence 2 25mg / m 2 ~60mg / m (1).

以上述べたように、本発明によって、耐食性、加工性、溶接性に優れる燃料タンク用の鉛フリー防錆鋼板が得られ、コモンレール式ディーゼルエンジンのように溶出金属量に対してセンシィテブな方式でも、好適な特性を有する。   As described above, according to the present invention, a lead-free rust-proof steel sheet for fuel tanks excellent in corrosion resistance, workability, and weldability can be obtained, and even in a sensitive system with respect to the amount of eluted metal like a common rail type diesel engine, It has suitable characteristics.

以下に本発明について詳細に説明する。鋼鋳片を熱間圧延・酸洗・冷間圧延・焼鈍・調質圧延等の一連の工程を経た焼鈍済みの鋼板、また圧延材を被めっき材として、圧延油あるいは酸化膜の除去等の前処理を行った後、めっきを行う。鋼成分については、燃料タンクの複雑な形状に加工できる成分系であること、鋼-めっき層界面の合金層の厚みが薄くめっき剥離を防止できること、燃料タンク内部および外部環境における腐食の進展を抑制する成分系である必要がある。例えば、質量%でC;0.003、Si;0.006、Mn;0.06、P;0.01、S;0.01、Ti;0.055、Nb;0.003とし、更にBを数ppm添加した成分系で良い。また、薄手化対応としハイテンを適用しても良い。 The present invention is described in detail below. Steel strip that has been subjected to a series of processes such as hot rolling, pickling, cold rolling, annealing, temper rolling, etc., and using rolled material as a material to be plated, removing rolling oil or oxide film, etc. After the pretreatment, plating is performed. Regarding steel components, it must be a component system that can be processed into a complex shape of the fuel tank, the thickness of the alloy layer at the steel-plating layer interface is thin and plating peeling can be prevented, and the progress of corrosion inside and outside the fuel tank is suppressed. It must be a component system. For example, a component system in which C is 0.003, Si is 0.006, Mn is 0.06, P is 0.01, S is 0.01, Ti is 0.055, Nb is 0.003, and B is added in several ppm by mass%. In addition, high tension may be applied for thinning.

本発明ではSn-Zn合金めっきは溶融めっき法で行うことを基本とする。溶融めっき法を採用した最大の理由は、めっき付着量の確保のためである。電気めっき法でも長時間の電解を行えばめっき付着量は確保できるが、経済的ではない。本発明で狙うめっき付着量範囲は、20〜100g/m2 (片面)と比較的厚目付の領域であり、溶融めっき法が最適である。さらにSnとZnの様にめっき元素の電位差が大きい場合、適切に組成を制御することは困難を伴うため、Sn-Zn合金は溶融めっき法が最適である。 In the present invention, Sn—Zn alloy plating is basically performed by hot dipping. The biggest reason for adopting the hot dipping method is to secure the plating adhesion amount. Even if electroplating is performed for a long time, the amount of plating can be secured, but it is not economical. The plating adhesion range aimed at in the present invention is a relatively thick weight area of 20 to 100 g / m 2 (single side), and the hot dipping method is optimal. Furthermore, when the potential difference between the plating elements is large, such as Sn and Zn, it is difficult to control the composition appropriately, so the Sn-Zn alloy is most suitable for the hot dipping method.

次に、めっき組成のZnの限定理由であるが、燃料タンク内面と外面における耐食性のバランスにより限定したものである。燃料タンク外面は、完璧な防錆能力が必要とされるため燃料タンク成形後に塗装される。したがって、塗装厚みが防錆能力を決定するが、素材としてはめっき層のもつ防食効果により赤錆を防止する。特に、塗装のつきまわりの悪い部位ではこのめっき層のもつ防食効果は極めて重要となる。Sn基めっきにZnの添加でめっき層の電位を下げ、犠牲防食能を付与する。そのためには1質量%以上のZnの添加が必要である。Sn-Zn二元共晶点である8.8質量%を超える過剰なZnの添加は、粗大なZn結晶の成長を促進する、融点上昇をひきおこしめっき下層の金属間化合物層(いわゆる合金層)の過剰な成長につながる等の理由で8.8質量%以下でなくてはならない。粗大なZn結晶はZnの有する犠牲防食能が発現する点は問題ないが、一方で粗大なZn結晶部で選択腐食をおこしやすくなる。また、めっき下層の金属間化合物層の成長は金属間化合物自体が非常に脆いため、プレス成形時にめっき割れが生じやすくなり、めっき層の防食効果が低下する。   Next, the reason for limiting the Zn of the plating composition is that it is limited by the balance of corrosion resistance between the inner surface and the outer surface of the fuel tank. The outer surface of the fuel tank is painted after the fuel tank is molded because perfect rust prevention capability is required. Therefore, although the coating thickness determines the rust prevention ability, the material prevents red rust by the anticorrosion effect of the plating layer. In particular, the anticorrosive effect of the plating layer is extremely important in the part where the coating is not good. Addition of Zn to Sn-based plating lowers the potential of the plating layer and provides sacrificial corrosion protection. For this purpose, it is necessary to add 1% by mass or more of Zn. Addition of excess Zn exceeding 8.8 mass%, which is the Sn-Zn binary eutectic point, promotes the growth of coarse Zn crystals, causing an increase in melting point and excessive intermetallic compound layer (so-called alloy layer) under plating. It must be 8.8% by mass or less for reasons such as leading to rapid growth. Coarse Zn crystals are not problematic in that they exhibit the sacrificial anticorrosive ability of Zn, but on the other hand, selective corrosion is likely to occur in the coarse Zn crystal part. Moreover, since the intermetallic compound itself is very brittle during the growth of the intermetallic compound layer under the plating layer, plating cracks are likely to occur during press molding, and the anticorrosion effect of the plating layer is reduced.

一方、燃料タンク内面での腐食は、正常なガソリンのみの場合には問題とならないが、水の混入・塩化物イオンの混入・ガソリンの酸化劣化による有機カルボン酸の生成等により、激しい腐食環境が出現する可能性がある。もし、穿孔腐食によりガソリンが燃料タンク外部に漏れた場合、重大事故につながる恐れがあり、これらの腐食は完全に防止されねばならない。上記の腐食促進成分を含む劣化ガソリンを作製し、各種条件下での性能を調べたところ、Znを8.8質量%以下含有するSn-Zn合金めっきは極めて優れた耐食性を発揮することが確認された。   On the other hand, corrosion on the inner surface of the fuel tank is not a problem with only normal gasoline, but there is a severe corrosive environment due to water contamination, chloride ion contamination, and the formation of organic carboxylic acids due to oxidative degradation of gasoline. May appear. If gasoline leaks outside the fuel tank due to piercing corrosion, it can lead to serious accidents, and these corrosions must be completely prevented. When the deteriorated gasoline containing the above corrosion-promoting components was prepared and the performance under various conditions was examined, it was confirmed that Sn-Zn alloy plating containing 8.8% by mass or less of Zn exhibits extremely excellent corrosion resistance. .

Znを全く含まない純SnまたはZn含有量が1質量%未満の場合、腐食環境中に曝露された初期より、めっき金属が地鉄に対し犠牲防食能を持たないため、燃料タンク内面ではめっきピンホール部での孔食、タンク外面では早期の赤錆発生が問題となる。一方、Znが8.8質量%を超えて多量に含まれる場合、Znが優先的に溶解し、腐食生成物が短期間に多量に発生するため、燃料タンクに用いた場合にエンジン用のキャブレターの目詰まりを起こしやすい問題がある。また、耐食性以外の性能面では、Zn含有量が多くなることによってめっき層の加工性も低下し、Sn基めっきの特長である良プレス成形性を損なう。さらに、Zn含有量が多くなることによるめっき層の融点上昇とZn酸化物に起因し、はんだ性が大幅に低下する。したがって、本発明において、Sn-Zn合金めっきにおけるZn含有量は、1〜8.8質量%の範囲、更により十分な犠牲防食作用を得るには4.0〜8.8質量%の範囲にすることが望ましい。   When the pure Sn or Zn content is less than 1% by mass, the plated metal has no sacrificial protection against the iron from the beginning when exposed to the corrosive environment. Pitting corrosion at the hole and early red rust on the outer surface of the tank are problematic. On the other hand, when Zn is contained in a large amount exceeding 8.8% by mass, Zn is preferentially dissolved, and a large amount of corrosion products are generated in a short period of time. There is a problem that tends to cause clogging. In terms of performance other than corrosion resistance, the Zn content increases, the workability of the plating layer also decreases, and good press formability, which is a feature of Sn-based plating, is impaired. Furthermore, the solderability is significantly reduced due to the melting point increase of the plating layer and the Zn oxide due to the increased Zn content. Therefore, in the present invention, the Zn content in the Sn—Zn alloy plating is preferably in the range of 1 to 8.8% by mass, and more preferably in the range of 4.0 to 8.8% by mass in order to obtain a more sufficient sacrificial anticorrosive action.

次にSn-Znめっき層と地鉄の界面に不可避的に生成する合金層であるが、プレめっきの活用、溶融めっき浴温、浸漬時間の調整により制御可能である。めっき濡れ性確保のためには合金層生成は必要不可欠であるが、過剰に合金層が成長するのは加工性等に悪影響を与え好ましくない。以下に推奨される条件を示す。   Next, an alloy layer inevitably formed at the interface between the Sn—Zn plating layer and the ground iron, but can be controlled by utilizing pre-plating, adjusting the hot dipping bath temperature, and dipping time. Formation of an alloy layer is indispensable for ensuring plating wettability, but excessive growth of the alloy layer is not preferable because it adversely affects workability and the like. The recommended conditions are shown below.

<プレめっきの種類および付着量>
Ni単体めっき・・・Niめっきが被覆されている箇所は溶融Sn-ZnとFe(地鉄)の合金化は抑制される。一方、Niめっきが被覆されていない箇所は溶融Sn-ZnメタルとFe(地鉄)の合金化は進行する。その結果、微細な凹凸の合金相が生成する。プレめっき量としては片面あたり0.01〜0.5g/m2の範囲であれば、微細な凹凸の合金相が生成し、めっき濡れ性を確保でき過剰な合金層成長につながらない。Niめっきは一般的に用いられるワット浴で十分である。参考にワット浴の代表組成は硫酸ニッケル240〜350g/L、塩化ニッケル 30〜60g/L、ホウ酸 30〜45g/Lであり、めっき条件はpH=2.5〜4.5、浴温度 40〜60℃、電流密度 2〜10A/dm2の範囲で操業可能である。
<Pre-plating type and adhesion amount>
Ni simple plating ... The alloying of molten Sn-Zn and Fe (base metal) is suppressed in the place where Ni plating is covered. On the other hand, the alloying of the molten Sn—Zn metal and Fe (base metal) proceeds at a portion not covered with Ni plating. As a result, a fine uneven alloy phase is generated. If the amount of pre-plating is in the range of 0.01 to 0.5 g / m 2 per side, a fine uneven alloy phase is generated, plating wettability can be ensured, and excessive alloy layer growth does not occur. For Ni plating, a commonly used watt bath is sufficient. For reference, the typical composition of Watt bath is 240 to 350 g / L of nickel sulfate, 30 to 60 g / L of nickel chloride, 30 to 45 g / L of boric acid, and plating conditions are pH = 2.5 to 4.5, bath temperature 40 to 60 ° C., Operation is possible within a current density range of 2 to 10 A / dm 2 .

Fe-Ni合金めっき・・・Ni単体の説明と重複するがFeとNiでは溶融Sn-Znメタルとの合金化挙動が異なり、Feと溶融Sn-Znメタルでは合金化が進行し、NiとSn-Znメタルでは合金化が抑制される。 その結果、微細な凹凸の合金相が生成する。 したがいFe-Ni合金めっきをプレめっきとしたときも、同様の効果が得られる。Fe-Ni合金めっきの組成はどちらかの元素に対して極度に偏らなければ問題なく、Fe-10質量%Ni〜Fe-80質量%Niの範囲ではプレめっき組成の影響はない。好ましくはFe-25質量%Ni〜Fe-60質量%Niの範囲で安定する領域となる。Fe-Ni合金めっき浴は前記のNiめっきのワット浴に対して、硫酸鉄を30〜200g/L添加したもので使用可能である。Ni単体のように不均一被覆である必要はないので上限を設ける必要はないが、経済的にはプレめっき付着量は片面あたり0.5〜1.5g/m2が適当である。 Fe-Ni alloy plating ... Although it overlaps with the explanation of Ni alone, Fe and Ni have different alloying behavior with molten Sn-Zn metal, and Fe and molten Sn-Zn metal undergo alloying, and Ni and Sn -Zn metal suppresses alloying. As a result, a fine uneven alloy phase is generated. Therefore, the same effect can be obtained when the Fe—Ni alloy plating is pre-plated. There is no problem if the composition of the Fe—Ni alloy plating is not extremely biased with respect to either element, and there is no influence of the pre-plating composition in the range of Fe-10 mass% Ni to Fe-80 mass% Ni. Preferably, the region is stable in the range of Fe-25 mass% Ni to Fe-60 mass% Ni. The Fe—Ni alloy plating bath can be used with the addition of 30 to 200 g / L of iron sulfate to the above-described Ni plating watt bath. It is not necessary to set an upper limit because Ni is not necessarily non-uniform coated as single, the economic pre coating weight is suitably per side 0.5 to 1.5 g / m 2.

<溶融めっき浴温、浸漬時間>
溶融めっき浴温と浸漬時間はともに合金相の成長に影響を及ぼす。溶融めっき浴温は著しく低い場合、合金相は成長せず、著しく高い場合、合金相は成長が促進される。ただし、溶融めっき浴温は操業性の観点から、下限は溶融メタルの液相線温度+10〜50℃、上限はせいぜい液相線温度+100℃に設定することが多い。浴温が低いと、溶融めっき釜内の浴温ばらつきによる溶融メタル凝固の危険性があり、一方、浴温が高いと、過度の合金相成長、溶融めっき後の凝固の冷却能力必要、不経済というデメリットが生じるためである。本発明のSn-Zn系では、Sn-Zn組成範囲も考慮すると、240〜300℃が溶融めっき浴温の適正範囲となり、この温度範囲においては、上記プレめっきと後述する浸漬時間の組み合わせにより適正な合金相の生成は可能である。
<Hot plating bath temperature, immersion time>
Both the hot dip bath temperature and the immersion time affect the growth of the alloy phase. When the hot dip bath temperature is significantly low, the alloy phase does not grow, and when it is extremely high, the alloy phase is promoted to grow. However, from the viewpoint of operability, the hot dipping bath temperature is often set to the liquidus temperature of the molten metal +10 to 50 ° C., and the upper limit is set to the liquidus temperature + 100 ° C. at most. If the bath temperature is low, there is a risk of molten metal solidification due to variations in bath temperature in the hot dipping bath. On the other hand, if the bath temperature is high, excessive alloy phase growth, cooling capacity for solidification after hot dipping is necessary, uneconomical This is because of the disadvantages. In the Sn-Zn system of the present invention, when considering the Sn-Zn composition range, 240 to 300 ° C is an appropriate range of the hot dipping bath temperature, and in this temperature range, it is appropriate depending on the combination of the pre-plating and the immersion time described later. It is possible to generate a simple alloy phase.

浸漬時間は短時間側では合金相の成長が不十分であり、長時間側では合金相の成長が過度となる傾向が一般的にある。ただし、本発明においては1秒の浸漬で合金相は既に成長しており、かつ、長時間浸漬しても合金相の成長は徐々に飽和している。実際の連続溶融めっきにおいては、浸漬時間は少なくとも約2秒かかり、溶融めっき槽の大きさから15秒以上浸漬することは通常はない。浸漬時間が長いことは生産性の低下を意味し、不経済でもある。この浸漬時間、2〜15秒の範囲においては、上記プレめっきと溶融めっき浴温の組み合わせにより適正な合金相の生成は可能である。   As for immersion time, the growth of the alloy phase is generally insufficient on the short time side, and the growth of the alloy phase tends to be excessive on the long time side. However, in the present invention, the alloy phase has already grown by immersion for 1 second, and the growth of the alloy phase is gradually saturated even if immersed for a long time. In actual continuous hot dipping, the dipping time takes at least about 2 seconds, and it is usually not dipping for 15 seconds or longer due to the size of the hot dipping bath. A long immersion time means a reduction in productivity and is uneconomical. In the immersion time range of 2 to 15 seconds, an appropriate alloy phase can be generated by a combination of the pre-plating and the hot dipping bath temperature.

次に溶融Sn-Znめっき層の付着量であるが、10〜150g/m2 (片面)、更に好ましくは30〜50g/m2(片面)を狙うことを推奨する。10g/m2未満であると、溶融Sn-Znめっき被覆性が不完全となる懸念があり、逆に150g/m2を超えると不経済であるばかりか、抵抗溶接性が低下する。抵抗溶接性が低下する理由は抵抗溶接機の電極に主に使われるCuと溶融Sn-Znめっきの主成分がSn-Cu合金(青銅)を容易に生成するために電極の損耗が激しくなるためである。 Next, it is recommended that the adhesion amount of the molten Sn—Zn plating layer be 10 to 150 g / m 2 (single side), more preferably 30 to 50 g / m 2 (single side). If it is less than 10 g / m 2 , there is a concern that the molten Sn—Zn plating coverage becomes incomplete, and conversely if it exceeds 150 g / m 2 , not only is it uneconomical, but also resistance weldability decreases. The reason why resistance weldability deteriorates is that the main component of Cu and molten Sn-Zn plating, which are mainly used for electrodes of resistance welders, easily generates Sn-Cu alloys (bronze), and electrode wear becomes severe. It is.

次に本発明のポイントであるSn-Znめっき層の上層にあるNi系めっきであるが、10mg/ m2〜100mg/m2付着させることが好ましい。この上層Ni系めっきはSn-Znめっき層のZnの溶出を防ぐ役割を果たす。Sn-Znめっき層のSnはバリヤー型防食なので、Snの溶出は特段考慮しなくても良い。本発明のSn-Znめっき組成では、めっき組織は“初晶Sn”と“Sn-Zn二元共晶”となり、SnとZnの間では金属間化合物を生成しないので、ZnはSn-Zn二元共晶にbroken-lamellarもしくはfiberとして存在する。今回の目的とするとNiはSn-Znめっき上層に均一に存在している必要はなく、Sn-Znめっき層のZn相の箇所に選択的に存在し、Sn-Znめっき最表層のZnを被覆すれば十分である。Sn-Znめっき最表層のZnを選択的に被覆するには10mg/m2のNiめっき付着量が必要であり、100mg/m2以上被覆すると効果が飽和するとともに不経済である。 Is a Ni-plated in the upper layer of the Sn-Zn plating layer is then point of the present invention, it is preferable to 10mg / m 2 ~100mg / m 2 is deposited. This upper Ni-based plating plays a role of preventing Zn from eluting in the Sn—Zn plating layer. Since Sn in the Sn-Zn plating layer is a barrier type anticorrosion, the elution of Sn does not need to be considered. In the Sn—Zn plating composition of the present invention, the plating structures are “primary Sn” and “Sn—Zn binary eutectic”, and no intermetallic compound is formed between Sn and Zn. Therefore, Zn is Sn—Zn binary. It exists in the original eutectic as broken-lamellar or fiber. For this purpose, Ni does not need to be uniformly present in the upper layer of Sn-Zn plating, but is selectively present in the Zn phase of the Sn-Zn plating layer, covering the outermost Zn layer of Sn-Zn plating. It is enough. In order to selectively coat Zn on the outermost layer of Sn—Zn plating, an amount of Ni plating deposition of 10 mg / m 2 is necessary, and coating over 100 mg / m 2 saturates the effect and is uneconomical.

また、めっき組成のZnの限定理由であるが、燃料タンク内面と外面における耐食性のバランスにより限定したものである。燃料タンク外面は、完璧な防錆能力が必要とされるため燃料タンク成形後に塗装される。したがって、塗装厚みが防錆能力を決定するが、素材としてはめっき層のもつ防食効果により赤錆を防止する。特に、塗装のつきまわりの悪い部位ではこのめっき層のもつ防食効果は極めて重要となる。Sn基めっきにZnの添加でめっき層の電位を下げ、犠牲防食能を付与する。そのためには1質量%以上のZnの添加が必要である。   Moreover, although it is a reason for limitation of Zn of the plating composition, it is limited by the balance of corrosion resistance between the inner surface and the outer surface of the fuel tank. The outer surface of the fuel tank is painted after the fuel tank is molded because perfect rust prevention capability is required. Therefore, although the coating thickness determines the rust prevention ability, the material prevents red rust by the anticorrosion effect of the plating layer. In particular, the anticorrosive effect of the plating layer is extremely important in the part where the coating is not good. Addition of Zn to Sn-based plating lowers the potential of the plating layer and provides sacrificial corrosion protection. For this purpose, it is necessary to add 1% by mass or more of Zn.

上層NiめっきがSn-ZnめっきのZnと置換めっきにより反応が進行するような場合、あまりにZnがNiに置換されすぎると、めっき層中のZnの絶対量が減り、犠牲防食能が低下する。このような状態で地鉄に到達するような疵が入ると、Znが本来果たすべき犠牲防食能が十分に発現されない。車体のロアー部に設置されることが多い自動車燃料タンクは、実環境では路面の小石、あるいは融雪剤(岩塩が使用されることもある)の跳ね上げによって、地鉄に到達するような疵が生じる可能性もある。したがって、Ni系めっきの上限は経済上の理由とともに犠牲防食能の観点からも100mg/m2とする。更に好ましくは、Niめっき法が置換めっきであればSnとZnで卑な金属であるZnが選択的にNiと置換されるため、上層にNi系めっきが25mg/m2〜60mg/m2であれば経済的に良好なZn溶出抑制が可能である。 In the case where the upper layer Ni plating reacts with Zn of Sn—Zn plating due to displacement plating, if Zn is excessively replaced with Ni, the absolute amount of Zn in the plating layer decreases, and the sacrificial anticorrosive ability decreases. If a wrinkle that reaches the ground iron enters in such a state, the sacrificial anticorrosive ability that Zn should fulfill cannot be fully expressed. Automobile fuel tanks, which are often installed in the lower part of the car body, have a habit of reaching the railroad in the actual environment by jumping up pebble on the road surface or snow melting agent (rock salt may be used). It can happen. Therefore, the upper limit of Ni-based plating is set to 100 mg / m 2 from the viewpoint of sacrificial anticorrosive ability as well as economic reasons. More preferably, since the Ni plating is Zn is less noble metal is replaced with a selectively Ni in if Sn and Zn any substitutable plating, Ni-based plating at 25mg / m 2 ~60mg / m 2 on the upper layer If there is, economically good Zn elution suppression is possible.

また上層Niめっきの方法であるが、プレめっきの方法と同じワット浴ベースの電気Niめっきでも可能である。しかしながら、電気Niめっきは比較的付き回り性が良く、均一に被覆してしまうのでSn上にも不必要にNiめっきが施され、全体の必要Niめっき量が増える。   Although the upper layer Ni plating method is used, the same watt bath-based electric Ni plating as the pre-plating method is also possible. However, electric Ni plating has a relatively good throwing power and coats uniformly, so that Ni is also applied unnecessarily on Sn, and the total amount of necessary Ni plating increases.

一方、Niめっきは無電解めっきも可能であり、この場合はSn-ZnめっきのZnが卑な金属であるために貴なNiと置換反応が進行する。無電解めっきは各種浴生成が提案されているが特に限定するものではない。例えば次亜りん酸を還元剤とする(塩化ニッケル;50g/L、クエン酸ナトリウム;10g/ L、次亜りん酸ナトリウム;10g/ L、 pH=4〜6、80〜90℃)、水酸化ホウ素化合物を還元剤とする(硫酸ニッケル・7水和物;30g/ L、マロン酸ナトリウム;34g/ L、ジメチルアミンボラン;0.06mol/ L、pH=5.1〜6.0、温度;70℃)などを使用すれば良い。また、無電解めっき浴中に被めっき体が浸漬されるときは、その表面で水素ガスの発生と同時にニッケルが析出し、その中にりん(P)が混入することがある。したがって析出物はNi-Pめっきとなることもあるが特に問題ではなく、Ni付着量で管理すれば良い。なお無電解Niめっきの場合の付着量制御は、浸漬時間、浴温で制御可能である。   On the other hand, Ni plating can be performed by electroless plating. In this case, since Zn of Sn—Zn plating is a base metal, substitution reaction proceeds with noble Ni. Electroless plating has been proposed to generate various baths, but is not particularly limited. For example, using hypophosphorous acid as a reducing agent (nickel chloride: 50 g / L, sodium citrate: 10 g / L, sodium hypophosphite; 10 g / L, pH = 4-6, 80-90 ° C.), hydroxylation Using a boron compound as a reducing agent (nickel sulfate heptahydrate; 30 g / L, sodium malonate; 34 g / L, dimethylamine borane; 0.06 mol / L, pH = 5.1 to 6.0, temperature; 70 ° C.) Use it. Further, when the object to be plated is immersed in the electroless plating bath, nickel may be deposited simultaneously with the generation of hydrogen gas on the surface, and phosphorus (P) may be mixed therein. Therefore, the precipitate may become Ni-P plating, but this is not a problem, and it can be controlled by the amount of Ni deposited. The amount of adhesion in the case of electroless Ni plating can be controlled by immersion time and bath temperature.

本発明では、Niめっき後に更に無機化合物あるいは有機化合物、またはその複合物よりなる化成処理を行うことにより万全の耐食性が期待される。化成処理は塗料との密着性、摺動抵抗、抵抗溶接性にも影響を与え得るので、適宜、適当な化成処理を選択すると良い。   In the present invention, complete corrosion resistance is expected by performing chemical conversion treatment comprising an inorganic compound, an organic compound, or a composite thereof after Ni plating. Since the chemical conversion treatment can affect the adhesion to the paint, sliding resistance, and resistance weldability, an appropriate chemical conversion treatment may be selected as appropriate.

次に、実施例により本発明をさらに詳細に説明する。板厚0.8mmの焼鈍・調圧済みの鋼板に、電気めっき法によりFe-Niめっき浴(硫酸ニッケル:125g/L、塩化ニッケル:100g/L、ホウ酸:30g/L、硫酸鉄: 110g/L pH=2.5)からFe-Niめっきを1.0g/m2 (片面あたり 浴温度 50℃、電流密度 10A/dm2)施した。 この鋼板に塩化亜鉛・塩化アンモニウム及び塩酸を含むめっき用フラックスを塗布した後、260℃の各種組成のSn-Zn溶融めっき浴に導入した。めっき浴と鋼板表面を5秒間反応させた後めっき浴より鋼板を引き出し、ガスワイビング法により付着量調整を行い、めっき付着量(Sn+Znの全付着量)は40g/m2 (片面あたり)に制御した。ガスワイビングの後、エアジェットクーラーにて冷却し溶融めっき層を凝固した。 Next, the present invention will be described in more detail with reference to examples. An Fe-Ni plating bath (nickel sulfate: 125 g / L, nickel chloride: 100 g / L, boric acid: 30 g / L, iron sulfate: 110 g / L-Ph = 2.5) was applied with Fe-Ni plating 1.0g / m 2 (bath temperature 50 ° C, current density 10A / dm 2 per side). After applying a plating flux containing zinc chloride / ammonium chloride and hydrochloric acid to the steel sheet, it was introduced into a Sn—Zn hot dipping bath having various compositions at 260 ° C. After reacting the plating bath with the steel plate surface for 5 seconds, pull out the steel plate from the plating bath and adjust the adhesion amount by the gas wiping method, and the plating adhesion amount (total adhesion amount of Sn + Zn) is 40 g / m 2 (per one side) Controlled. After gas wiping, the molten plating layer was solidified by cooling with an air jet cooler.

上層のNiめっきは無電解めっきを行い、浴条件(塩化ニッケル;50g/ L、クエン酸ナトリウム;10g/ L、次亜りん酸ナトリウム;10g/ L、pH=4、浴温90℃)に浸漬し、浸漬後、水洗・乾燥した。上層のNiめっき付着量は浸漬時間を変更し制御した。作製した鋼板は絞り比=2.2で、深さ35mmのツバ付の50mmφの円筒カップ状に成形した。   The upper Ni plating is electroless plating and immersed in bath conditions (nickel chloride: 50 g / L, sodium citrate: 10 g / L, sodium hypophosphite: 10 g / L, pH = 4, bath temperature 90 ° C.) Then, after immersion, it was washed with water and dried. The amount of Ni plating deposited on the upper layer was controlled by changing the immersion time. The produced steel plate was formed into a cylindrical cup shape of 50 mmφ with a flange having a drawing ratio of 2.2 and a depth of 35 mm.

燃料中への金属溶出試験を次に示す。菜種油由来のBDF(RME)を20vol%と軽油を80vol%混合した燃料を24時間酸化劣化(JIS-K2287に準拠)し、劣化BDFを作製した。新品の燃料と劣化BDFを混合し、全酸価;TAN(Total Acid Number)を0.13mgKOH/gに調整し、これに水を0.1vol%添加し試験燃料とした。この燃料を上述した各種鋼板の円筒カップに50mL封入し、90℃の防爆型恒温槽に静置した。燃料入りの円筒カップを168時間後に取り出し、燃料中の浮遊物(燃料重合成分)と供に全燃料を灰化処理した後、硝酸・塩酸の混酸にリーチングし、適宜希釈してICP(Inductively Coupled Plasma)発光分析装置で燃料中に溶出したZn量を算出した。 The metal dissolution test into fuel is shown below. A fuel containing 20 vol% of rapeseed oil-derived BDF (RME) and 80 vol% of light oil was oxidized for 24 hours (based on JIS-K2287) to produce a deteriorated BDF. Mixed with fuel a new deterioration BDF, total acid number; adjust TAN of (T otal A cid N umber) to of 0.13 mgKOH / g, water as a 0.1 vol% added tested fuel thereto. 50 mL of this fuel was sealed in the cylindrical cups of the various steel plates described above, and left in a 90 ° C. explosion-proof thermostat. The cylindrical cup containing the fuel is taken out after 168 hours, and all the fuel is incinerated with the suspended matter (fuel polymerization component) in the fuel, then leached in a mixed acid of nitric acid and hydrochloric acid, and diluted as appropriate to obtain ICP (Inductively Coupled). Plasma) The amount of Zn eluted in the fuel was calculated using an emission spectrometer.

評価はZn溶出量が0.05mg/L未満を優(◎)、0.05〜0.1mg/Lを良(○)、0.1〜0.5mg/Lを可(△)、0.5mg/L以上を不可(×)とした。また、犠牲防食能を評価するために70×150mmサイズの平板の端面をシーリングし地鉄に到達するようにクロスカットを付与し、JIS-Z2371に準ずる塩水噴霧試験も別途実施した。960時間後の赤錆面積率で評価し、赤錆面積率5%未満を優(◎)、5〜10%を良(○)、10〜20%を可(△)、20%以上を不可(×)とした。犠牲防食能が不足していればクロスカットからの赤錆発生が早期に発生することになる。表1に結果を示す。   Evaluation is excellent when the Zn elution amount is less than 0.05 mg / L (◎), 0.05 to 0.1 mg / L is good (○), 0.1 to 0.5 mg / L is acceptable (△), 0.5 mg / L or more is not acceptable (× ). In addition, in order to evaluate sacrificial anticorrosive ability, the end face of a flat plate of 70 × 150 mm size was sealed, a cross cut was given so as to reach the base iron, and a salt spray test according to JIS-Z2371 was also conducted separately. Evaluated by red rust area ratio after 960 hours, red rust area ratio less than 5% is excellent (◎), 5-10% is good (○), 10-20% is acceptable (△), 20% or more is not possible (× ). If the sacrificial anticorrosive ability is insufficient, red rust will be generated early from the crosscut. Table 1 shows the results.

#1、#2はSn-ZnめっきのZn含有率が不足しているために、塩水噴霧試験で十分な犠牲防食能を示さなかった。逆に#12、#13はSn-ZnめっきのZn含有率が共晶組成を超えているため、粗大なZn晶が成長し、Zn溶出を抑制できなかった。#14、#15、#16は上層Niの付着量が十分ではなく、Zn溶出を抑制できなかった。#29はZnがNi置換めっきされ過ぎたため、塩水噴霧試験で犠牲防食能が低下している。一方、本発明例は金属溶出試験、塩水噴霧試験とも十分な耐食性を有する。   # 1 and # 2 did not show sufficient sacrificial anticorrosive ability in the salt spray test because the Zn content of Sn—Zn plating was insufficient. On the other hand, for # 12 and # 13, the Zn content of the Sn—Zn plating exceeded the eutectic composition, so that coarse Zn crystals grew and Zn elution could not be suppressed. In # 14, # 15, and # 16, the amount of upper layer Ni deposited was not sufficient, and Zn elution could not be suppressed. In # 29, Zn was overplated with Ni, and the sacrificial anticorrosive ability decreased in the salt spray test. On the other hand, the examples of the present invention have sufficient corrosion resistance in both the metal elution test and the salt spray test.

板厚0.8mmの焼鈍・調圧済みの鋼板に、電気めっき法によりFe-Niめっき浴(硫酸ニッケル:125g/L、塩化ニッケル:100g/L、ホウ酸:30g/L、硫酸鉄: 110g/L pH=2.5)からFe-Niめっきを1.0g/m2 (片面あたり 浴温度 50℃、電流密度 10A/dm2)施した。この鋼板に塩化亜鉛・塩化アンモニウム及び塩酸を含むめっき用フラックスを塗布した後、260℃のSn-8%Zn溶融めっき浴に導入した。めっき浴と鋼板表面を5秒間反応させた後めっき浴より鋼板を引き出し、ガスワイビング法により付着量調整を行い、めっき付着量(Sn+Znの全付着量)は40g/m2 (片面あたり)に制御した。ガスワイビングの後、エアジェットクーラーにて冷却し溶融めっき層を凝固した。 An Fe-Ni plating bath (nickel sulfate: 125 g / L, nickel chloride: 100 g / L, boric acid: 30 g / L, iron sulfate: 110 g / L-Ph = 2.5) was applied with Fe-Ni plating 1.0g / m 2 (bath temperature 50 ° C, current density 10A / dm 2 per side). After applying a plating flux containing zinc chloride / ammonium chloride and hydrochloric acid to this steel sheet, it was introduced into a Sn-8% Zn hot dipping bath at 260 ° C. After reacting the plating bath with the steel plate surface for 5 seconds, pull out the steel plate from the plating bath and adjust the adhesion amount by the gas wiping method, and the plating adhesion amount (total adhesion amount of Sn + Zn) is 40 g / m 2 (per one side) Controlled. After gas wiping, the molten plating layer was solidified by cooling with an air jet cooler.

上層のNiめっきは電気めっき法によりワット浴(硫酸ニッケル240g/L、塩化ニッケル45g/L、ホウ酸30g/L、pH=4.0 浴温;50℃)で行い、上層のNiめっき付着量は通電時間を変更し制御した。以降の評価方法は実施例1と同じである。表2に結果を示す。   The upper Ni plating is performed in a watt bath (nickel sulfate 240 g / L, nickel chloride 45 g / L, boric acid 30 g / L, pH = 4.0 bath temperature; 50 ° C.) by electroplating. The time was changed and controlled. The subsequent evaluation method is the same as in Example 1. Table 2 shows the results.

#30〜#32は上層Niの付着量が十分ではなく、Zn溶出を抑制できなかった。#45は犠牲防食能が低下している。一方、本発明例は金属溶出試験、塩水噴霧試験とも十分な耐食性を有するが上層Niを電気めっきで行った場合、Sn上にNiが被覆されるため、Zn溶出を抑制するためには、置換めっきよりもNi付着量としてやや多めの量必要となった。   In # 30 to # 32, the amount of upper layer Ni deposited was not sufficient, and Zn elution could not be suppressed. # 45 has reduced sacrificial protection. On the other hand, the present invention example has sufficient corrosion resistance in both the metal elution test and the salt spray test, but when electroplating the upper layer Ni, Ni is coated on Sn, so to suppress Zn elution, substitution A slightly larger amount of Ni was required than the plating.

板厚0.8mmの焼鈍・調圧済みの鋼板に、電気めっき法によりワット浴(硫酸ニッケル240g/L、塩化ニッケル 45g/L、ホウ酸 30g/L pH=4.0)からNiめっきを0.1g/m2 (片面あたり 浴温度 50℃、電流密度 10A/dm2)施した。 この鋼板に塩化亜鉛・塩化アンモニウム及び塩酸を含むめっき用フラックスを塗布した後、260℃のSn-8%Zn溶融めっき浴に導入した。めっき浴と鋼板表面を5秒間反応させた後めっき浴より鋼板を引き出し、ガスワイビング法により付着量調整を行い、めっき付着量(Sn+Znの全付着量)は40g/ m2 (片面あたり)に制御した。ガスワイビングの後、エアジェットクーラーにて冷却し溶融めっき層を凝固した。 0.1mm / m2 Ni plating from watt bath (nickel sulfate 240g / L, nickel chloride 45g / L, boric acid 30g / L pH = 4.0) by electroplating method on steel plate of 0.8mm thickness annealed and pressure adjusted 2 (bath temperature 50 ° C., current density 10 A / dm 2 ) per side. After applying a plating flux containing zinc chloride / ammonium chloride and hydrochloric acid to this steel sheet, it was introduced into a Sn-8% Zn hot dipping bath at 260 ° C. After reacting the plating bath with the steel plate surface for 5 seconds, pull the steel plate out of the plating bath and adjust the amount of adhesion by gas wiping method, and the amount of plating adhesion (total amount of Sn + Zn adhesion) is 40 g / m 2 (per side). Controlled. After gas wiping, the molten plating layer was solidified by cooling with an air jet cooler.

上層のNiめっきは無電解めっきを行い、浴条件(硫酸ニッケル・7水和物;30g/ L、マロン酸ナトリウム;34g/ L、ジメチルアミンボラン;0.06mol/ L、pH=5.1〜6.0、温度;70℃)に浸漬し、浸漬後、水洗・乾燥した。上層のNiめっき付着量は浸漬時間を変更し制御した。以降の評価方法は実施例1と同じである。表3に結果を示す。   The upper Ni plating is electroless plating, bath conditions (nickel sulfate heptahydrate; 30 g / L, sodium malonate; 34 g / L, dimethylamine borane; 0.06 mol / L, pH = 5.1 to 6.0, temperature ; 70 ° C), and after immersing, washed with water and dried. The amount of Ni plating deposited on the upper layer was controlled by changing the immersion time. The subsequent evaluation method is the same as in Example 1. Table 3 shows the results.

#46〜#48は上層Niの付着量が十分ではなく、Zn溶出を抑制できなかった。#61はZnがNi置換めっきされ過ぎたため、塩水噴霧試験で犠牲防食能が低下している。一方、本発明例は金属溶出試験、塩水噴霧試験とも十分な耐食性を有し、上層Niの無電解Niめっき条件を変更しても、上層Ni量が確保できれば良いことが明確となった。   In # 46 to # 48, the adhesion amount of the upper layer Ni was not sufficient, and Zn elution could not be suppressed. As for # 61, Zn was plated with Ni too much, and sacrificial anticorrosive ability decreased in the salt spray test. On the other hand, it has been clarified that the present invention example has sufficient corrosion resistance in both the metal elution test and the salt spray test, and even if the electroless Ni plating conditions for the upper layer Ni are changed, the upper layer Ni amount can be ensured.

Figure 2012207271
Figure 2012207271

Figure 2012207271
Figure 2012207271

Figure 2012207271
Figure 2012207271

Claims (2)

鋼板表面に、Sn:91.2〜99.0質量%、Zn:1〜8.8質量%、残部が不可避的不純物からなる溶融Sn-Znめっき層を形成した溶融Sn-Zn系めっき鋼板であって、前記溶融Sn-Znめっき層の上層にNi系めっきが10mg/m2〜100mg/m2存在することを特徴とする溶融Sn-Zn系めっき鋼板。 A molten Sn-Zn-based plated steel sheet in which a molten Sn-Zn plated layer consisting of Sn: 91.2-99.0% by mass, Zn: 1-8.8% by mass, and the balance of inevitable impurities is formed on the steel sheet surface, the molten Sn molten Sn-Zn-based plated steel sheet layer of Ni-based plating is characterized by the presence 2 10mg / m 2 ~100mg / m of -Zn plating layer. 前記溶融Sn-Znめっき層の上層にNi系めっきが25mg/m2〜60mg/m2存在することを特徴とする請求項1に記載の溶融Sn-Zn系めっき鋼板。
Molten Sn-Zn-based plated steel sheet according to claim 1, wherein the Ni-based plating layer of the molten Sn-Zn plating layer is characterized by the presence 2 25mg / m 2 ~60mg / m .
JP2011073764A 2011-03-30 2011-03-30 Molten Sn-Zn plated steel sheet Active JP5664408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011073764A JP5664408B2 (en) 2011-03-30 2011-03-30 Molten Sn-Zn plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011073764A JP5664408B2 (en) 2011-03-30 2011-03-30 Molten Sn-Zn plated steel sheet

Publications (2)

Publication Number Publication Date
JP2012207271A true JP2012207271A (en) 2012-10-25
JP5664408B2 JP5664408B2 (en) 2015-02-04

Family

ID=47187263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011073764A Active JP5664408B2 (en) 2011-03-30 2011-03-30 Molten Sn-Zn plated steel sheet

Country Status (1)

Country Link
JP (1) JP5664408B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08164496A (en) * 1994-10-11 1996-06-25 Hitachi Ltd Sn-zn solder, sn-zn-bi solder, method for surface treatment of same, and mounted substrate using it
JPH08269734A (en) * 1995-03-29 1996-10-15 Nippon Steel Corp Rust preventive steel sheet for fuel tank
JP2005126772A (en) * 2003-10-24 2005-05-19 Murata Mfg Co Ltd Plating method, and method of producing electronic component
JP2005320554A (en) * 2004-05-06 2005-11-17 Nippon Steel Corp COATED HOT DIP Sn-Zn-PLATED STEEL SHEET
JP2010029915A (en) * 2008-07-30 2010-02-12 Nippon Steel Corp SPOT WELDING METHOD OF Sn-BASED PLATED STEEL PLATE
JP2010100867A (en) * 2008-10-21 2010-05-06 Nippon Steel Corp Sn-BASED PLATING STEEL SHEET EXCELLENT IN SPOT WELDABILITY AND METHOD OF MANUFACTURING THE SAME

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08164496A (en) * 1994-10-11 1996-06-25 Hitachi Ltd Sn-zn solder, sn-zn-bi solder, method for surface treatment of same, and mounted substrate using it
JPH08269734A (en) * 1995-03-29 1996-10-15 Nippon Steel Corp Rust preventive steel sheet for fuel tank
JP2005126772A (en) * 2003-10-24 2005-05-19 Murata Mfg Co Ltd Plating method, and method of producing electronic component
JP2005320554A (en) * 2004-05-06 2005-11-17 Nippon Steel Corp COATED HOT DIP Sn-Zn-PLATED STEEL SHEET
JP2010029915A (en) * 2008-07-30 2010-02-12 Nippon Steel Corp SPOT WELDING METHOD OF Sn-BASED PLATED STEEL PLATE
JP2010100867A (en) * 2008-10-21 2010-05-06 Nippon Steel Corp Sn-BASED PLATING STEEL SHEET EXCELLENT IN SPOT WELDABILITY AND METHOD OF MANUFACTURING THE SAME

Also Published As

Publication number Publication date
JP5664408B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
CN110100036B (en) Hot-dip galvanized steel material having excellent weldability and stamping workability, and method for producing same
WO2013008341A1 (en) Aluminum-plated steel plate having excellent external appearance and corrosion resistance to alcohol or gasoline mixed therewith, and method for manufacturing same
WO2008126945A1 (en) Hot-dip metal coated high-strength steel sheet for press working excellent in low-temperature toughness and process for production thereof
JP2012001818A (en) METHOD FOR MANUFACTURING HOT-DIP Sn-Zn COATED STEEL SHEET AND HOT-DIP Sn-Zn COATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE
JP6094649B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
JP6412596B2 (en) Inexpensive automotive parts and oil pipes with excellent salt corrosion resistance
JP6598478B2 (en) Oil supply pipe for automobiles with excellent salt damage resistance and reduced external appearance deterioration
JP2012255204A (en) Surface treated steel sheet excellent in corrosion resistance after coating, method for producing the same, and automobile part produced using the same
CN105164298A (en) Galvanized steel sheet and production method therefor
JP4940813B2 (en) Method for producing hot-dip galvanized steel sheet having a value of TS × El of 21000 MPa ·% or more
JP2008254053A (en) Spot welding method of tinned steel sheet
JP3133231B2 (en) Rust-proof steel plate for fuel tanks with excellent workability, corrosion resistance and weldability
JP5664408B2 (en) Molten Sn-Zn plated steel sheet
JP2008260967A (en) Automobile member having excellent corrosion resistance in joint part
JP4299591B2 (en) Molten Sn-Zn plated steel sheet with excellent bonding characteristics
JP2002317233A (en) Hot dip tin-zinc based plated steel sheet
KR100667140B1 (en) HOT-DIPPED Sn-Zn PLATING PROVIDED STEEL PLATE OR SHEET EXCELLING IN CORROSION RESISTANCE AND WORKABILITY
JP4537894B2 (en) Hot Sn-Zn plated steel sheet with good corrosion resistance and weldability
JP5428571B2 (en) Fuel tank for vehicles
JP6541992B2 (en) Automotive parts and automotive fueling pipes excellent in puncture resistance utilizing painting and sacrificial corrosion protection effect
JP2004002931A (en) Aluminum plated steel sheet having excellent resistance weldability and worked parts obtained by using the same
CN111989419B (en) Hot-dip Sn-Zn alloy-plated steel sheet and method for producing same
JP2004131819A (en) Hot-dip tin-zinc base coated steel sheet having good corrosion resistance
JP2002105615A (en) HOT-DIP Sn-Mg COATED STEEL SHEET
JPH08269734A (en) Rust preventive steel sheet for fuel tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140403

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141124

R151 Written notification of patent or utility model registration

Ref document number: 5664408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350