JP2005320554A - COATED HOT DIP Sn-Zn-PLATED STEEL SHEET - Google Patents

COATED HOT DIP Sn-Zn-PLATED STEEL SHEET Download PDF

Info

Publication number
JP2005320554A
JP2005320554A JP2004136984A JP2004136984A JP2005320554A JP 2005320554 A JP2005320554 A JP 2005320554A JP 2004136984 A JP2004136984 A JP 2004136984A JP 2004136984 A JP2004136984 A JP 2004136984A JP 2005320554 A JP2005320554 A JP 2005320554A
Authority
JP
Japan
Prior art keywords
steel sheet
plating
plated steel
hot dip
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004136984A
Other languages
Japanese (ja)
Inventor
Shinichi Yamaguchi
伸一 山口
Yasuto Goto
靖人 後藤
Masao Kurosaki
將夫 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004136984A priority Critical patent/JP2005320554A/en
Publication of JP2005320554A publication Critical patent/JP2005320554A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coated Pb-free hot dip Sn-Zn-plated steel sheet which has excellent corrosion resistance and is particularly suitable as an automobile fuel tank material. <P>SOLUTION: The coated hot dip Sn-Zn-plated steel sheet is characterized in that coating is applied to at least one side of a hot dip Sn-Zn plated steel sheet in which a hot dip plating layer comprising Zn of 1 to 8.8 mass%, and the balance Sn of 91.2 to 99.0 mass% with inevitable impurities is formed on a steel sheet subjected to Ni plating of 0.1 to 5 g/m<SP>2</SP>, and baking treatment is performed thereto at ≥200°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、優れた耐食性、接合性、加工性を兼備し、自動車燃料タンク材料、家庭用電気機械、産業機械材料として好適な溶融Sn−Zn系めっき塗装鋼板に関するものである。   The present invention relates to a molten Sn—Zn-based plated steel sheet that has excellent corrosion resistance, bondability, and workability, and is suitable as an automobile fuel tank material, household electric machine, and industrial machine material.

従来、燃料タンク材料としてこれまで内外面耐食性、加工性、はんだ性(溶接性)等の優れたPb−Sn合金めっき鋼板が主として用いられ、自動車用燃料タンクとして幅広く使用されている。一方、Sn−Zn合金めっき鋼板は、例えば特開昭52−130438号公報(特許文献1)に開示されているように、ZnおよびSnイオンを含む水溶液中で電解する電気めっき法によって主として製造されてきた。Snを主体とするSn−Zn合金めっき鋼板は、耐食性やはんだ性に優れており電子部品などに多く使用されてきた。
一方、自動車燃料タンク用途でこのSn−Znめっき鋼板が優れた特性を有することが知見され、特開平8−269733号公報(特許文献2)や特開平8−269734号公報(特許文献3)において、溶融Sn−Znめっき鋼板が開示されている。
Conventionally, Pb—Sn alloy-plated steel sheets having excellent inner and outer surface corrosion resistance, workability, solderability (weldability) and the like have been mainly used as fuel tank materials, and are widely used as fuel tanks for automobiles. On the other hand, the Sn—Zn alloy plated steel sheet is mainly manufactured by an electroplating method in which electrolysis is performed in an aqueous solution containing Zn and Sn ions, as disclosed in, for example, Japanese Patent Laid-Open No. 52-130438 (Patent Document 1). I came. Sn—Zn alloy-plated steel sheets mainly composed of Sn are excellent in corrosion resistance and solderability and have been used in many electronic components.
On the other hand, it has been found that this Sn—Zn plated steel sheet has excellent characteristics for use in automobile fuel tanks, and in JP-A-8-269733 (Patent Document 2) and JP-A-8-269734 (Patent Document 3). A molten Sn—Zn plated steel sheet is disclosed.

特開昭52−130438号公報Japanese Patent Laid-Open No. 52-130438 特開平8−269733号公報JP-A-8-269733 特開平8−269734号公報JP-A-8-269734

自動車用燃料タンク素材として使用されてきたPb−Sn合金めっき鋼板は、各種の優れた特性(例えば、加工性・タンク内面耐食性、はんだ性、シーム溶接性等)が認められ愛用されてきたが、近年の地球環境認識の高まりにつれ、Pbフリー化の方向に移行しつつある。一方、Sn−Zn電気合金めっき鋼板は、主としてはんだ性等の要求される電子部品として腐食環境がさほど厳しくない用途で使用されてきた。   Pb-Sn alloy-plated steel sheet that has been used as a fuel tank material for automobiles has been used habitually, because various excellent properties (for example, workability, tank inner surface corrosion resistance, solderability, seam weldability, etc.) have been recognized. With the recent increase in recognition of the global environment, the trend toward Pb-free is shifting. On the other hand, Sn—Zn electroalloy plated steel sheets have been used in applications where the corrosive environment is not so severe, mainly as electronic parts that require solderability and the like.

前記した溶融Sn−Znめっき鋼板は、確かに優れた耐食性、加工性、はんだ性を有するものである。しかし、近年、更なる燃料タンク外面側の耐食性の向上が求められている。自動車燃料タンク用途に使用する際は、タンク外面側に塗装を施されて使用されており、Sn−Znめっき鋼板では、加工を受けていない平面部でもZn偏析部の優先的腐食に起因する塗膜下腐食が発生しやすく、特に塩害環境を想定した塩水噴霧試験では赤錆発生に至るまでの期間が短い。   The above-described molten Sn—Zn plated steel sheet surely has excellent corrosion resistance, workability, and solderability. However, in recent years, further improvement in corrosion resistance on the outer surface side of the fuel tank has been demanded. When used for automobile fuel tank applications, the tank outer surface is painted and used, and with Sn-Zn plated steel sheets, coating caused by preferential corrosion of Zn segregated parts even on unprocessed flat parts. Sub-film corrosion is likely to occur, especially in the salt spray test assuming a salt damage environment, the period until red rust occurs is short.

従って、塩害環境中での塗装後耐食性は十分とは言えない。犠牲防蝕能を更に向上させるためには、Znの添加量を増やせば良いのであるが、Zn量が高くなりすぎると、めっき層の主体がSnからZnへと移行していく。Zn自体の溶出がSnよりも遙かに大きいため、めっき層自体の耐食性が損なわれる。本発明は、上記の燃料タンク外面側の塗装後耐食性に関する課題を解決し、耐食性、加工性、溶接性を高度にバランスし、Pbを使用しない溶融Sn系塗装めっき鋼板を提供するものである。   Therefore, it cannot be said that the corrosion resistance after painting in a salt-damaged environment is sufficient. In order to further improve the sacrificial corrosion protection capability, the amount of Zn added may be increased. However, when the amount of Zn becomes too high, the main part of the plating layer shifts from Sn to Zn. Since the elution of Zn itself is much larger than Sn, the corrosion resistance of the plating layer itself is impaired. The present invention solves the above-mentioned problems related to post-painting corrosion resistance on the outer surface side of the fuel tank, provides a highly balanced corrosion resistance, workability, and weldability, and provides a molten Sn-based coated plated steel sheet that does not use Pb.

本発明者らは、Pbを含まず防錆能向上させた防錆鋼板を提供することを目的に、めっき組成・組織を種々検討し、本発明に至ったものである。本発明は、1〜8.8質量%のZnと残部がSn:91.2〜99.0質量%、および不可避的不純物からなる溶融めっき層を、0.1〜5g/m2 のNiめっき鋼板表面に形成した溶融Sn−Znめっき鋼板に、少なくとも片面に塗装が施され、200℃以上での焼付け処理が施されたことを特徴とする溶融Sn−Zn系めっき塗装鋼板にある。また、Sn−Znめっき層の下層に、Niと共に、望ましくは、Co、Cuの1種または2種を合計で0.5質量%以上含有する厚み3.0μm以下の合金層を有すること、めっき層表面に、無機化合物あるいは有機化合物、またはその複合物よりなる後処理を有することもある。 In order to provide a rust-preventing steel sheet that does not contain Pb and has an improved rust-preventing ability, the present inventors have studied various plating compositions and structures to arrive at the present invention. In the present invention, a Ni plating of 0.1 to 5 g / m 2 is applied to a hot-plated layer composed of 1 to 8.8 mass% of Zn, the balance being Sn: 91.2 to 99.0 mass%, and unavoidable impurities. The molten Sn—Zn plated coated steel sheet is characterized in that the molten Sn—Zn plated steel sheet formed on the steel sheet surface is coated on at least one side and baked at 200 ° C. or higher. In addition, an alloy layer having a thickness of 3.0 μm or less containing 0.5% by mass or more in total of one or two of Co and Cu, together with Ni, is preferably provided under the Sn—Zn plating layer. The surface of the layer may have a post-treatment made of an inorganic compound, an organic compound, or a composite thereof.

以下、本発明について詳細に説明する。
鋼鋳片を熱間圧延、酸洗、冷間圧延、焼鈍、調質圧延等の一連の工程を経た焼鈍済みの鋼板、また、圧延材を被めっき材として、圧延油あるいは酸化膜の除去等の前処理を行なった後、めっきを行なう。鋼成分については、燃料タンクの複雑な形状に加工できる成分系であること、鋼−めっき層界面の合金層の厚みが薄くめっき剥離を防止できること、燃料タンク内部および外部環境における腐食の進展を抑制する成分系である必要がある。
Hereinafter, the present invention will be described in detail.
Steel strip that has been subjected to a series of processes such as hot rolling, pickling, cold rolling, annealing, temper rolling, etc., and removing rolling oil or oxide film using the rolled material as the material to be plated After performing the pre-treatment, plating is performed. Regarding steel components, it must be a component system that can be processed into a complex shape of the fuel tank, the thickness of the alloy layer at the steel-plating layer interface can be thin to prevent plating peeling, and the progress of corrosion inside and outside the fuel tank is suppressed. It must be a component system.

本発明では、Sn−Zn合金めっきは溶融めっき法で行なうことが望ましい。溶融めっき法を採用するのが望ましい最大の理由は、めっき付着量の確保のためである。電気めっき法でも長時間の電解を行なえばめっき付着量は確保できるが、経済的でない。本発明で狙うめっき付着量範囲は、20〜150g/m2 (片面)と比較的厚目付の領域であり、溶融めっき法が最適である。さらに、めっき元素の電位差が大きい場合、適切に組成を制御することは困難を伴うため、Sn−Zn合金は溶融めっき法が最適である。 In the present invention, Sn—Zn alloy plating is desirably performed by a hot dipping method. The greatest reason why it is desirable to employ the hot dipping method is to ensure the plating adhesion amount. Even if electroplating is performed for a long time, the amount of plating can be secured, but it is not economical. The plating adhesion range targeted by the present invention is a relatively thick area of 20 to 150 g / m 2 (single side), and the hot dipping method is optimal. Furthermore, when the potential difference between the plating elements is large, it is difficult to appropriately control the composition. Therefore, the Sn—Zn alloy is most suitable for the hot dipping method.

次に、めっき組成のZn量の限定理由であるが、燃料タンク内面と外面における耐食性のバランスにより限定したものである。タンク外面は、機械的に塗膜が剥離した際にも優れた耐食性が要求される。Sn基めっきにZnを添加することで、めっき層の電位を下げ、犠牲防食能を付与することが必要である。そのためには1質量%以上のZnの添加が必要である。Sn−Zn二元共晶点である8.8質量%を超える過剰なZnの添加は、Zn巨大背晶が晶出するため、Zn巨大晶部の優先的塗膜下腐食により外面耐食性が悪化する。従って、Znは8.8質量%以下でなくてはならない。   Next, the reason for limiting the amount of Zn in the plating composition is limited by the balance of corrosion resistance between the inner surface and the outer surface of the fuel tank. The outer surface of the tank is required to have excellent corrosion resistance even when the coating film is mechanically peeled off. By adding Zn to the Sn-based plating, it is necessary to lower the potential of the plating layer and provide sacrificial anticorrosive ability. For that purpose, 1 mass% or more of Zn needs to be added. Addition of excess Zn exceeding the Sn-Zn binary eutectic point of 8.8% by mass causes crystallization of the Zn giant back crystal, and therefore the corrosion resistance of the outer surface deteriorates due to preferential coating corrosion of the Zn giant crystal part. To do. Therefore, Zn must be 8.8% by mass or less.

一方、タンク内面での腐食は、正常なガソリンのみの場合は別として、そうでない場合、例えば、水の混入、塩素イオンの混入、ガソリンの酸化劣化による有機カルボン酸の生成等により、かなり激しい腐食環境が出現する。穿孔腐食によりガソリンがタンク外部の漏れることを防ぐため、これらの腐食は完全に防止されねばならない。上記の腐食促進成分を含む劣化ガソリンを作製し、各種条件下での性能を調べたところ、Znを8.8質量%以下含有するSn−Zn合金めっき被膜は極めて優れた耐食性を発揮することが確認された。   On the other hand, the corrosion on the inner surface of the tank is quite severe due to, for example, water contamination, chlorine ion contamination, and generation of organic carboxylic acid due to oxidative degradation of gasoline, except for normal gasoline alone. An environment appears. These corrosions must be completely prevented to prevent gasoline from leaking outside the tank due to piercing corrosion. When a deteriorated gasoline containing the above-mentioned corrosion promoting component was prepared and the performance under various conditions was examined, the Sn—Zn alloy plating film containing Zn of 8.8% by mass or less can exhibit extremely excellent corrosion resistance. confirmed.

Znを全く含まない純SnまたはZn含有量が1質量%未満の場合、腐食環境中に暴露された初期から、めっき金属が地鉄に対し犠牲防蝕能を持たないため、タンク内面ではめっきピンホール部での孔食、タンク外面では早期の赤錆発生が問題となる。一方、Znが8.8質量%を超えて多量に含まれる場合、Znが優先的に溶解し、腐食生成物が短期間に多量に発生するため、キャブレターの目詰まりを起こしやすい問題がある。また、Zn含有量が多くなることによってめっき層の加工性も低下し、Sn基めっきの特徴である良プレス成形性を損なう。さらに、Zn含有量が多くなることによって、めっき層の融点上昇とZn酸化物に起因し、はんだ性が大幅に低下する。   When pure Sn or Zn content is less than 1% by mass, the plating metal has no sacrificial anticorrosive ability against the iron from the beginning of exposure to corrosive environment. There is a problem of pitting corrosion at the part and early red rust generation on the outer surface of the tank. On the other hand, when Zn is contained in a large amount exceeding 8.8% by mass, Zn is preferentially dissolved, and a large amount of corrosion products are generated in a short time, so that there is a problem that the carburetor is easily clogged. Moreover, when Zn content increases, the workability of a plating layer also falls and the good press formability which is the characteristic of Sn group plating is impaired. Furthermore, when the Zn content is increased, the solderability is significantly reduced due to an increase in the melting point of the plating layer and Zn oxide.

従って、本発明におけるSn−Zn合金めっきにおけるZn含有量は、1〜8.8質量%の範囲、更により十分な犠牲防蝕作用を得るには3.0〜8.8質量%の範囲にすることが望ましい。次に、溶融Sn−Zn合金の鋼板への濡れ性向上のためにプレNiめっきが必要である。その効果は、Ni付着量で0.1g/m2 より発現し、付着量増加と共に濡れ性は向上する。ただし、5g/m2 以上になるとその効果は飽和するため5g/m2 を超えるには不経済である。そのため上限を5g/m2 とする。 Therefore, the Zn content in the Sn—Zn alloy plating in the present invention is in the range of 1 to 8.8% by mass, and further in the range of 3.0 to 8.8% by mass in order to obtain a more sufficient sacrificial corrosion protection action. It is desirable. Next, pre-Ni plating is necessary to improve the wettability of the molten Sn—Zn alloy to the steel sheet. The effect is expressed as 0.1 g / m 2 in terms of Ni adhesion amount, and the wettability improves as the adhesion amount increases. However, the effect becomes to 5 g / m 2 or more is uneconomical for more than 5 g / m 2 to saturate. Therefore, the upper limit is set to 5 g / m 2 .

次に、200℃以上の塗装の焼付け温度に関する限定理由であるが、本発明のめっき組成域では、通常、溶融Sn−Znめっき組織は初晶Snとスパングル状の二元共晶組織の混在した凝固組織となる。このときZnはスパングル−スパングル粒界に特に偏析しやすくなっている。スパングル−スパングル粒界にZnが偏析しやすい理由は明確でないが、Znと親和性の高い微量の不純物が影響していると考えられる。このスパングル−スパングル粒界に偏析したZnは前述のように、腐食の起点にあり、穿孔腐食を起こしやすい状態を引き出す。   Next, although it is the reason for limitation regarding the baking temperature of the coating of 200 ° C. or higher, in the plating composition region of the present invention, the molten Sn—Zn plating structure is usually a mixture of primary Sn and spangled binary eutectic structure. It becomes a solidified tissue. At this time, Zn is particularly easily segregated at the spangle-spangle grain boundary. The reason why Zn is likely to segregate at the spangle-spangle grain boundary is not clear, but it is thought that a small amount of impurities having high affinity with Zn are affected. As described above, Zn segregated at the spangle-spangle grain boundary is at the starting point of corrosion, and draws out a state in which piercing corrosion is likely to occur.

このようなZnの偏析をなくすために、塗装時の焼付け条件を最適化することで初晶のSnを積極的にデンドライトとして発達させ、スパングルの成長を抑制することにより可能となる。本発明の組織域ではSnが初晶として晶出するため、Snデンドライトがネットワーク状に凝固初期にめっき層に張りめぐらされれば、共晶反応で生成するスパングル状の二元共晶でデンドライトのアームに成長を抑制され大きく発達できない。そのため、巨大なスパングル同士がぶつかり合うことはなくなり、スパングル−スパングル粒界に偏析するZnはなくなり、タンク外面での塗装後耐食性が著しく向上し、同時に内面耐食性も向上する。   In order to eliminate such segregation of Zn, it becomes possible by optimizing the baking conditions at the time of coating to develop Sn as the primary crystal as a dendrite and to suppress the growth of spangles. Since Sn crystallizes as a primary crystal in the textured region of the present invention, if Sn dendrite is spread over the plating layer in the initial stage of solidification in the form of a network, it is a spangled binary eutectic formed by a eutectic reaction. The growth is restrained by the arm and cannot be developed greatly. Therefore, the spangles do not collide with each other, Zn that segregates at the spangle-spangle grain boundary is eliminated, the corrosion resistance after coating on the outer surface of the tank is remarkably improved, and the inner surface corrosion resistance is also improved.

その差異に、めっき表面に占めるSnデンドライトの面積率は5〜90%であることが望ましい。5%未満では、Snデンドライトによる共晶スパングルの成長を十分に抑制できないことがある。一方、90%を超えると相対的にZnの絶対量が不足し、めっき量全体に犠牲防蝕をうまく作用させることができなくなることがある。Snデンドライト量はめっき組織と凝固速度を制御することにより変更することができる。   As a difference, it is desirable that the area ratio of Sn dendrite in the plating surface is 5 to 90%. If it is less than 5%, the growth of eutectic spangle due to Sn dendrite may not be sufficiently suppressed. On the other hand, if it exceeds 90%, the absolute amount of Zn is relatively insufficient, and sacrificial corrosion protection may not be able to be effectively applied to the entire plating amount. The amount of Sn dendrite can be changed by controlling the plating structure and the solidification rate.

また、Snデンドライトのアーム間隔は0.1mm以下であることが望ましい。デンドライトのアーム間隔が0.1mmより大きい場合は、アーム間で共晶スパングルが成長してしまうことがある。特に、0.1mm以上の直径(楕円形状の場合は長径と短径の平均)の共晶スパングル同士がぶつかり合ったスパングル−スパングル粒界は顕著にZnが偏析しやすくなる傾向にある。このためスパングルを直径0.1mm以上に発達させないためにも、デンドライトのアーム間隔は0.1mm以下であることが望ましい。   Moreover, it is desirable that the arm interval of the Sn dendrite is 0.1 mm or less. If the dendrite arm spacing is larger than 0.1 mm, eutectic spangles may grow between the arms. In particular, Zn tends to segregate remarkably at spangle-spangle grain boundaries where eutectic spangles having a diameter of 0.1 mm or more (average of major axis and minor axis in the case of an elliptical shape) collide with each other. Therefore, in order not to develop the spangle to a diameter of 0.1 mm or more, it is desirable that the dendrite arm interval is 0.1 mm or less.

デンドライトアーム間隔はデンドライトの成長起点を増やす(めっき/地鉄の表面凹凸を微細化する)か、凝固速度を速めることで小さくすることができる。塗料の種類については、特に限定はしないが、水性エポキシ変性アクリル系樹脂やポリウレタン系樹脂、ポリオレフイン系樹脂、ポリカーボネート系樹脂等が挙げられる。これらの樹脂系の中には導電性のAl粉末、SUS粉末、Zn粉末が混入してもかまわない。   The dendrite arm spacing can be reduced by increasing the dendrite growth starting point (reducing the surface roughness of the plating / ground iron) or by increasing the solidification rate. The type of paint is not particularly limited, and examples thereof include water-based epoxy-modified acrylic resins, polyurethane resins, polyolefin resins, and polycarbonate resins. In these resin systems, conductive Al powder, SUS powder, and Zn powder may be mixed.

本発明では、めっき層表面を更に無機化合物、あるいは有機化合物、またはその複合物よりなる後処理を行なうことにより、万全の耐食性が期待される。この処理はSn−Znめっき層とは非常に馴染みが良く、微小ピンホール等の欠陥部を被覆したり、めっき層を溶解させ、ピンホールを修復したりする効果があり耐食性を大幅に向上させる。   In the present invention, the surface of the plating layer is further subjected to a post-treatment made of an inorganic compound, an organic compound, or a composite thereof, so that complete corrosion resistance is expected. This treatment is very familiar with the Sn—Zn plating layer, and has the effect of covering defects such as minute pinholes, dissolving the plating layer, and repairing pinholes, and greatly improves the corrosion resistance. .

以下、本発明について実施例によって具体的に説明する。
板厚0.8mmの焼鈍、調質圧延済みの鋼板に、電気めっき法によりワット浴からNiめっきを0〜5g/m2 (片面当たり)施した。この鋼板に塩化亜鉛、塩化アンモニウムおよび塩酸を含むめっき用フラックスを塗布した後、Sn−Zn溶融めっき浴に導入した。めっき浴と鋼板表面を反応させた後めっき浴より鋼板を引出し、ガスワイピング法により付着量調整を行い、めっき付着量(Sn+Znの全付着量)は40g/m2 (片面当たり)に制御した。このめっき鋼板にエポキシ変性アクリル系樹脂塗料を塗布し、各種温度で焼付けし耐食性を塩水噴霧試験(剪断端面からの腐食幅および表面ブリスター)で評価した。また、燃料タンクの内面耐食性をサワーガソリン中にサンプルを45℃×1000Hr浸漬し腐食深さで評価した。その結果、表1に示すように、本発明によって塗装後耐食性、燃料タンク内面耐食性に優れた塗装Sn−Znめっき鋼板が得られた。
Hereinafter, the present invention will be specifically described with reference to examples.
A steel plate having a thickness of 0.8 mm annealed and temper-rolled was subjected to 0 to 5 g / m 2 (per side) of Ni plating from a watt bath by electroplating. After applying a plating flux containing zinc chloride, ammonium chloride and hydrochloric acid to this steel plate, it was introduced into a Sn-Zn hot dipping bath. The plating bath and the steel sheet surface drawn out steel sheet from a plating bath After reaction, the adhesion amount adjusted by gas wiping method, (total coating weight of Sn + Zn) coating weight was controlled at 40 g / m 2 (per one side). An epoxy-modified acrylic resin coating was applied to the plated steel sheet, and baked at various temperatures, and the corrosion resistance was evaluated by a salt spray test (corrosion width from the shear end face and surface blister). In addition, the corrosion resistance of the inner surface of the fuel tank was evaluated by immersing the sample in sour gasoline at 45 ° C. × 1000 Hr. As a result, as shown in Table 1, a coated Sn—Zn plated steel sheet having excellent post-painting corrosion resistance and fuel tank inner surface corrosion resistance was obtained according to the present invention.

Figure 2005320554

特許出願人 新日本製鐵株式会社
代理人 弁理士 椎 名 彊 他1
Figure 2005320554

Patent applicant: Nippon Steel Corporation
Attorney Attorney Shiina and others 1

Claims (2)

1〜8.8質量%のZnと残部がSn:91.2〜99.0質量%、および不可避的不純物からなる溶融めっき層を、0.1〜5g/m2 のNiめっき鋼板表面に形成した溶融Sn−Znめっき鋼板に、少なくとも片面に塗装が施され、200℃以上での焼付け処理が施されたことを特徴とする溶融Sn−Zn系めっき塗装鋼板。 A hot-dip plated layer consisting of 1 to 8.8% by mass of Zn and the balance Sn: 91.2 to 99.0% by mass and inevitable impurities is formed on the surface of the Ni-plated steel sheet of 0.1 to 5 g / m 2. A molten Sn—Zn-plated coated steel sheet, wherein the molten Sn—Zn-plated steel sheet is coated on at least one side and baked at 200 ° C. or higher. 請求項1に記載のSn−Znめっき層の下層に、NiにCo、Cuの1種または2種を合計で0.5質量%以上含有させた合金層からなることを特徴とする溶融Sn−Zn系めっき塗装鋼板。 The molten Sn-, comprising an alloy layer containing a total of 0.5 mass% or more of Co or Cu in Ni in the lower layer of the Sn-Zn plating layer according to claim 1. Zn-based plated steel sheet.
JP2004136984A 2004-05-06 2004-05-06 COATED HOT DIP Sn-Zn-PLATED STEEL SHEET Withdrawn JP2005320554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004136984A JP2005320554A (en) 2004-05-06 2004-05-06 COATED HOT DIP Sn-Zn-PLATED STEEL SHEET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004136984A JP2005320554A (en) 2004-05-06 2004-05-06 COATED HOT DIP Sn-Zn-PLATED STEEL SHEET

Publications (1)

Publication Number Publication Date
JP2005320554A true JP2005320554A (en) 2005-11-17

Family

ID=35468032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004136984A Withdrawn JP2005320554A (en) 2004-05-06 2004-05-06 COATED HOT DIP Sn-Zn-PLATED STEEL SHEET

Country Status (1)

Country Link
JP (1) JP2005320554A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101857964A (en) * 2010-04-02 2010-10-13 安徽启明表面技术有限公司 Method for processing plating layer on inner wall of oil tank and device thereof
JP2012136741A (en) * 2010-12-27 2012-07-19 Nippon Steel Corp Surface-treated steel plate for fuel tank
JP2012207271A (en) * 2011-03-30 2012-10-25 Nippon Steel Corp HOT-DIP Sn-Zn-PLATED STEEL SHEET

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101857964A (en) * 2010-04-02 2010-10-13 安徽启明表面技术有限公司 Method for processing plating layer on inner wall of oil tank and device thereof
CN101857964B (en) * 2010-04-02 2012-02-08 安徽启明表面技术有限公司 Method for processing plating layer on inner wall of oil tank
JP2012136741A (en) * 2010-12-27 2012-07-19 Nippon Steel Corp Surface-treated steel plate for fuel tank
JP2012207271A (en) * 2011-03-30 2012-10-25 Nippon Steel Corp HOT-DIP Sn-Zn-PLATED STEEL SHEET

Similar Documents

Publication Publication Date Title
CN110100036B (en) Hot-dip galvanized steel material having excellent weldability and stamping workability, and method for producing same
KR101665883B1 (en) Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND BENDABILITY AND METHOD FOR MANUFACTURING SAME
JPS58177446A (en) Manufacture of steel plate plated with alloy by hot dipping and provided with superior corrosion resistance and coatability
JP2013541645A (en) Hot-dip galvanized steel sheet excellent in plating property, plating adhesion and spot weldability, and its production method
JP3684135B2 (en) Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and method for producing the same
JP5640312B2 (en) Zinc-based alloy-plated steel with excellent corrosion resistance and weldability and painted steel with excellent corrosion resistance
JP4970231B2 (en) Hot-dip galvanized steel and its manufacturing method
JP5130486B2 (en) High corrosion resistance hot-dip galvanized steel
JP2009120948A (en) Alloy plated steel member having excellent corrosion resistance and weldability
KR20200136066A (en) Plated steel sheet and method of manufacturing the same
JP2002317233A (en) Hot dip tin-zinc based plated steel sheet
JP2005320554A (en) COATED HOT DIP Sn-Zn-PLATED STEEL SHEET
KR102305753B1 (en) Zn-Al-Mg BASED HOT DIP ALLOY COATED STEEL MATERIAL HAVING EXCELLENT CORROSION RESISTANCE OF PROCESSED PARTS AND METHOD OF MANUFACTURING THE SAME
JP6480132B2 (en) Al-plated steel sheet
JP3135818B2 (en) Manufacturing method of zinc-tin alloy plated steel sheet
JPH0681099A (en) Galvannealed steel sheet
KR100667140B1 (en) HOT-DIPPED Sn-Zn PLATING PROVIDED STEEL PLATE OR SHEET EXCELLING IN CORROSION RESISTANCE AND WORKABILITY
JPS58177447A (en) Manufacture of galvanized steel plate with superior corrosion resistance and coatability
JPH0397840A (en) Alloying hot dip galvanized steel sheet
JP2001279411A (en) Manufacturing method for galvanized steel sheet
JP2004131819A (en) Hot-dip tin-zinc base coated steel sheet having good corrosion resistance
JPH08269733A (en) Rust preventive steel sheet for fuel tank
JPH11158595A (en) Continuous hot dipping method for hardly platable steel sheet excellent in external appearance characteristic and adhesion
JP4537894B2 (en) Hot Sn-Zn plated steel sheet with good corrosion resistance and weldability
JPH08269734A (en) Rust preventive steel sheet for fuel tank

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807