JP2002317233A - Hot dip tin-zinc based plated steel sheet - Google Patents

Hot dip tin-zinc based plated steel sheet

Info

Publication number
JP2002317233A
JP2002317233A JP2001122175A JP2001122175A JP2002317233A JP 2002317233 A JP2002317233 A JP 2002317233A JP 2001122175 A JP2001122175 A JP 2001122175A JP 2001122175 A JP2001122175 A JP 2001122175A JP 2002317233 A JP2002317233 A JP 2002317233A
Authority
JP
Japan
Prior art keywords
steel sheet
plating
plated steel
corrosion
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001122175A
Other languages
Japanese (ja)
Inventor
Yasuto Goto
靖人 後藤
Shinichi Yamaguchi
伸一 山口
Masahiro Fuda
雅裕 布田
Teruaki Isaki
輝明 伊崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001122175A priority Critical patent/JP2002317233A/en
Publication of JP2002317233A publication Critical patent/JP2002317233A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide Pb-free hot dip Sn-Zn based plating which has excellent corrosion resistance, and is particularly suitable as an automotive fuel tank material. SOLUTION: The hot dip Sn based plated steel sheet is obtained by forming a hot dip plated layer containing, by weight, 1 to 20% Zn and 0.001 to 0.5% of one or more kinds selected from the group 4A elements (Ti, Zr and Hf), and containing 79.5 to 98.0% Sn on the surface of a steel sheet. The plated layer has a metallic structure in which an Sn single phase or a Zn single phase is coexistent in an Sn-Zn binary eutectic structure, and the major axis of the Zn single phase is <=5 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れた耐食性、接
合性、加工性を兼備し、自動車燃料タンク材料、家庭用
電気機械、産業機械材料として好適な溶融Sn−Zn系
めっき鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot-dip Sn-Zn coated steel sheet having excellent corrosion resistance, bonding properties and workability and suitable as a material for automobile fuel tanks, domestic electric machines and industrial machines. is there.

【0002】[0002]

【従来の技術】従来、燃料タンク材料としてこれまで耐
食性・加工性・はんだ性(溶接性)等の優れたPb−S
n合金めっき鋼板が主として用いられ、自動車用燃料タ
ンクとして幅広く使用されている。一方、Sn−Zn合
金めっき鋼板は、例えば特開昭52−130438号公
報のように、ZnおよびSnイオンを含む水溶液中で電
解する電気めっき法で主として製造されてきた。Snを
主体とするSn−Zn合金めっき鋼板は、耐食性やはん
だ性に優れており電子部品などに多く使用されてきた。
一方、自動車燃料タンク用途でこのSn−Znめっき鋼
板が優れた特性を有することが知見され、特開平8−2
69733号公報、特開平8−269734号公報等に
おいて、溶融Sn−Znめっき鋼板が開示されてきた。
2. Description of the Related Art Conventionally, as a fuel tank material, Pb-S which has been excellent in corrosion resistance, workability, solderability (weldability), etc.
N-alloy-plated steel sheets are mainly used and widely used as fuel tanks for automobiles. On the other hand, Sn-Zn alloy-plated steel sheets have been mainly produced by an electroplating method in which electrolysis is carried out in an aqueous solution containing Zn and Sn ions, as disclosed in, for example, JP-A-52-130438. BACKGROUND ART Sn-Zn alloy-plated steel sheets mainly composed of Sn are excellent in corrosion resistance and solderability, and have been frequently used for electronic components and the like.
On the other hand, it has been found that this Sn-Zn-plated steel sheet has excellent properties for use in automobile fuel tanks.
JP-A-69733, JP-A-8-269934, and the like have disclosed hot-dip Sn-Zn plated steel sheets.

【0003】[0003]

【発明が解決しようとする課題】自動車用燃料タンク素
材として使用されてきたPb−Sn合金めっき鋼板は、
各種の優れた特性(例えば、加工性・タンク内面耐食性
・はんだ性・シーム溶接性等)が認められ愛用されてき
たが、近年の地球環境認識の高まりにつれPbフリー化
の方向に移行しつつある。一方、Sn−Zn電気合金め
っき鋼板は、主としてはんだ性等の要求される電子部品
として腐食環境がさほど厳しくない用途で使用されてき
た。
SUMMARY OF THE INVENTION Pb-Sn alloy plated steel sheets that have been used as fuel tank materials for automobiles are:
Various excellent characteristics (for example, workability, corrosion resistance of tank inner surface, solderability, seam weldability, etc.) have been recognized and used. . On the other hand, Sn-Zn electro-alloy plated steel sheets have been mainly used as electronic components requiring solderability or the like in applications where the corrosive environment is not so severe.

【0004】前記した溶融Sn−Znめっき鋼板は、確
かに優れた耐食性、加工性、半田性を有するものであ
る。しかし、近年、更なる耐食性の向上が求められてお
り、Sn−Znめっき鋼板では、加工を受けていない平
面部でもZn偏析に起因する孔食が発生しやすく、特に
塩害環境を想定した塩水噴霧試験では赤錆発生に至るま
での期間が短く、塩害環境中の耐食性は十分とはいえな
い。犠牲防食能を更に向上させるためにはZnの添加量
を増やせば良いのであるが、Zn量が高くなりすぎると
めっき層の主体がSnからZnへと移行していき、Zn
自体の溶出がSnよりも遙かに大きいため、めっき層自
体の耐食性が損なわれる。本発明は、上記の課題を解決
し、耐食性、加工性、溶接性を高度にバランスし、Pb
を使用しない溶融Sn系めっき鋼板を提供するものであ
る。
[0004] The above-mentioned hot-dip Sn-Zn-plated steel sheet certainly has excellent corrosion resistance, workability and solderability. However, in recent years, further improvement in corrosion resistance has been demanded, and in Sn-Zn plated steel sheets, pitting corrosion due to Zn segregation easily occurs even in a flat part that has not been processed, and particularly, salt water spray assuming a salt damage environment. In the test, the period until the occurrence of red rust is short, and the corrosion resistance in a salt damage environment is not sufficient. In order to further improve the sacrificial corrosion protection, it is sufficient to increase the amount of Zn added. However, if the amount of Zn is too high, the main constituent of the plating layer shifts from Sn to Zn, and Zn
Since the elution itself is much larger than Sn, the corrosion resistance of the plating layer itself is impaired. The present invention solves the above-mentioned problems and highly balances corrosion resistance, workability, and weldability,
The present invention provides a hot-dip Sn-based plated steel sheet that does not use any steel.

【0005】[0005]

【課題を解決するための手段】本発明者らは、Pbを含
まず防錆能を向上させた防錆鋼板を提供することを目的
に、めっき組成・皮膜構造・構成等を種々検討し、本発
明に至ったものである。本発明は、Znを1〜20wt
%、4A族元素(Ti、Zr、Hf)のうち1種類もし
くは2種類以上を合計で0.001〜0.5wt%含有
し、Sn:79.5〜98.0wt%を含有する溶融め
っき層を鋼板表面に形成した溶融Sn基めっき鋼板であ
って、該めっき層が、Sn−Zn二元共晶組織の素地中
に、Sn単相もしくはZn単相が混在した金属組織を有
しており、Zn単相の長径が5μm以下であることを特
徴とする溶融Sn−Zn系めっき鋼板である。
DISCLOSURE OF THE INVENTION The present inventors have studied variously the plating composition, film structure, constitution, etc. with the aim of providing a rustproof steel sheet which does not contain Pb and has an improved rustproof ability. This has led to the present invention. In the present invention, Zn is added in an amount of 1 to 20 wt.
Hot-dip coating layer containing one or more of the 4A group elements (Ti, Zr, Hf) in total of 0.001 to 0.5 wt% and Sn: 79.5 to 98.0 wt% A molten Sn-based plated steel sheet formed on the surface of a steel sheet, wherein the plating layer has a metal structure in which a Sn single phase or a Zn single phase is mixed in a base of a Sn-Zn binary eutectic structure. And a hot-dip Sn—Zn-based plated steel sheet, wherein the major axis of the Zn single phase is 5 μm or less.

【0006】また、Sn基めっき鋼板のめっき層中のS
n−Zn二元共晶組織がZnの球状化組織を有する場
合、二元共晶中のZnの最大粒径が1μm以下であるこ
とを特徴とし、Sn−Zn二元共晶組織が層状組織を有
する場合は二元共晶中のSnとZnの最大層間距離が1
μm以下であることを特徴とする。めっき層にはSn、
Zn、4A族元素に加えて、Mgを0.1〜4.0wt
%添加してもよく、また、めっき層の下層に、Ni、C
o、Cuの1種または2種以上を合計で0.5wt%以
上含有する厚み3.0μm以下の合金層を有すること、
めっき層表面に、無機化合物あるいは有機化合物、また
はその複合物よりなる後処理層を有することもある。
[0006] In addition, S in the plating layer of the Sn-based plated steel sheet.
When the n-Zn binary eutectic structure has a spheroidized structure of Zn, the maximum grain size of Zn in the binary eutectic is 1 μm or less, and the Sn—Zn binary eutectic structure has a layered structure. When the maximum interlayer distance between Sn and Zn in the binary eutectic is 1
μm or less. Sn for the plating layer
0.1 to 4.0 wt% Mg in addition to Zn and 4A group elements
%, And Ni, C
o, having an alloy layer having a thickness of 3.0 μm or less containing at least 0.5 wt% of one or more of Cu,
The plating layer surface may have a post-treatment layer made of an inorganic compound, an organic compound, or a composite thereof.

【0007】以下に本発明について詳細に説明する。鋼
鋳片を熱間圧延・酸洗・冷間圧延・焼鈍・調質圧延等の
一連の工程を経た焼鈍済みの鋼板、また圧延材を被めっ
き材として、圧延油あるいは酸化膜の除去等の前処理を
行った後、めっきを行う。鋼成分については、燃料タン
クの複雑な形状に加工できる成分系であること、鋼−め
っき層界面の合金層の厚みが薄くめっき剥離を防止でき
ること、燃料タンク内部および外部環境における腐食の
進展を抑制する成分系である必要がある。
Hereinafter, the present invention will be described in detail. The steel slab is subjected to a series of steps such as hot rolling, pickling, cold rolling, annealing, temper rolling, etc. After performing the pretreatment, plating is performed. Regarding steel components, it is a component system that can be processed into a complicated shape of the fuel tank, the alloy layer at the steel-plating layer interface is thin and the plating can be prevented from peeling, and the corrosion progress in the fuel tank internal and external environment is suppressed. Component system.

【0008】本発明では、Sn−Zn合金めっきは溶融
めっき法で行うことを基本とする。溶融めっき法を採用
した最大の理由は、めっき付着量の確保のためである。
電気めっき法でも長時間の電解を行えばめっき付着量は
確保できるが、経済的ではない。本発明で狙うめっき付
着量範囲は、20〜150g/m2 (片面)と比較的厚
目付の領域であり、溶融めっき法が最適である。さらに
めっき元素の電位差が大きい場合、適切に組成を抑制す
ることは困難を伴うため、Sn−Zn合金は溶融めっき
法が最適である。
In the present invention, Sn-Zn alloy plating is basically performed by a hot-dip plating method. The main reason for adopting the hot-dip plating method is to secure the coating weight.
Even in the electroplating method, if the electrolysis is performed for a long time, the amount of plating can be secured, but it is not economical. The range of the amount of plating applied in the present invention is a relatively thick region of 20 to 150 g / m 2 (one side), and the hot-dip plating method is most suitable. Further, when the potential difference between the plating elements is large, it is difficult to appropriately suppress the composition. Therefore, the hot-dip plating method is optimal for the Sn—Zn alloy.

【0009】次に、めっき組成におけるZn量の限定理
由を述べる。めっき組成におけるZn量は、ガソリンタ
ンク内面と外面における耐食性のバランスにより限定し
たものである。タンク外面は、完璧な防錆能力が必要と
されるためタンク成形後に塗装される。したがって、塗
装厚みが防錆能力を決定するが、素材としてはめっき層
のもつ防食効果により赤錆を防止する。特に、塗装が回
りにくい部位ではこのめっき層のもつ防食効果は極めて
重要となる。Sn基めっきのZnの添加でめっき層の電
位を下げ、犠牲防食能を付与する。そのためには1wt
%以上の添加が必要であるが、過剰な添加は融点上昇を
ひき起こし、めっき下層の金属間化合物層の過剰な成長
につながるので20wt%以下でなくてはならない。
Next, the reasons for limiting the amount of Zn in the plating composition will be described. The amount of Zn in the plating composition is limited by the balance of corrosion resistance between the inner surface and the outer surface of the gasoline tank. The outer surface of the tank is painted after forming the tank because perfect rust prevention is required. Therefore, the coating thickness determines the rust-preventive ability, but as a raw material, red rust is prevented by the anticorrosive effect of the plating layer. In particular, the anticorrosion effect of this plating layer is extremely important in a portion where the coating is difficult to rotate. The addition of Zn in the Sn-based plating lowers the potential of the plating layer and provides sacrificial corrosion protection. For that, 1wt
% Or more is necessary, but excessive addition causes an increase in the melting point and leads to excessive growth of the intermetallic compound layer under the plating, so it must be 20 wt% or less.

【0010】一方、タンク内面での腐食は、正常なガソ
リンのみの場合には問題とならないが、水の混入・塩素
イオンの混入・ガソリンの酸化劣化による有機カルボン
酸の生成等により、かなり激しい腐食環境が出現する。
もし、穿孔腐食によりガソリンがタンク外部に漏れた場
合、重大事故につながる恐れがあり、これらの腐食は完
全に防止されねばならない。上記の腐食促進成分を含む
劣化ガソリンを作製し、各種条件下での性能を調べたと
ころ、Znを20wt%以下含有するSn−Zn合金め
っき皮膜は極めて優れた耐食性を発揮することが確認さ
れた。
[0010] On the other hand, corrosion on the inner surface of the tank is not a problem when only normal gasoline is used. However, the corrosion is extremely severe due to mixing of water, mixing of chlorine ions, generation of organic carboxylic acid due to oxidation deterioration of gasoline, and the like. The environment appears.
If gasoline leaks out of the tank due to pitting corrosion, serious accidents may occur, and these corrosions must be completely prevented. When deteriorated gasoline containing the above-mentioned corrosion promoting component was prepared and its performance under various conditions was examined, it was confirmed that the Sn—Zn alloy plating film containing Zn at 20 wt% or less exhibited extremely excellent corrosion resistance. .

【0011】Znを全く含まない純SnまたはZn含有
量が1wt%未満の場合、腐食環境中に暴露された初期
より、めっき金属が地鉄に対し犠牲防食能を持たないた
め、タンク内面ではめっきピンホール部での孔食、タン
ク外面では早期の赤錆発生が問題となる。Znが20w
t%を超えて多量に含まれる場合、Znが優先的に溶解
し、腐食生成物が短期間に多量に発生するため、キャブ
レターの目詰まりを起こしやすい問題がある。また、Z
n含有量が多くなることによってめっき層の加工性も低
下し、Sn基めっきの特長である良プレス成形性を損な
う。さらにZn含有量が多くなることによってはんだ性
が大幅に低下する。したがって、本発明におけるSn−
Zn合金めっきにおけるZn含有量は、1〜20wt%
の範囲とする必要があり、更により十分な犠牲防食作用
を得、Znの溶解を抑制してキャブレターの目詰まりを
より起こしにくくするには5.0〜8.8wt%の範囲
にすることが望ましい。
When the content of pure Sn or Zn containing no Zn is less than 1% by weight, the plating metal does not have a sacrificial anticorrosion ability to the ground iron from the initial stage of exposure to a corrosive environment. Pitting at the pinholes and the early occurrence of red rust on the outer surface of the tank are problems. Zn is 20w
If it is contained in a large amount exceeding t%, Zn is preferentially dissolved, and a large amount of corrosion products are generated in a short period of time. Also, Z
As the n content increases, the workability of the plating layer also decreases, deteriorating the good press formability characteristic of Sn-based plating. Further, the solderability is significantly reduced by increasing the Zn content. Therefore, Sn- in the present invention
Zn content in Zn alloy plating is 1 to 20 wt%
In order to obtain an even more sufficient sacrificial anticorrosive action, suppress the dissolution of Zn, and make clogging of the carburetor less likely to occur, the content should be in the range of 5.0 to 8.8 wt%. desirable.

【0012】次に、めっき組成の4A族元素(Ti、Z
r、Hf)の限定理由であるが、本発明では最も重要な
添加元素であり、ガソリンタンク内面と外面における耐
食性と製造性のバランスとにより限定したものである。
Znは前述の様に、Sn基めっきにおいて犠牲防食能を
付与することにより、タンク内外面での腐食を制御して
いるが、かかる腐食環境において、Zn自体は本来溶出
する速度が速いため、めっき層にZn偏析部があるとそ
の部位だけ優先的に溶出してしまい、その部位で穿孔腐
食を起こしやすい状態となってしまう。4A族元素(T
i、Zr、Hf)はめっき中のZn偏析を抑制し、均質
なめっき皮膜をつくることを目的に添加する。均質化の
機構は明確ではないが、4A族元素(Ti、Zr、H
f)がめっき層中の核発生の増大に作用しており、特定
めっき成分(本系ではZn)の粗大化を抑制していると
推定される。
Next, a 4A group element (Ti, Z
The reason for limiting r, Hf) is that it is the most important additive element in the present invention, and is limited by the balance between corrosion resistance and productivity on the inner and outer surfaces of the gasoline tank.
As described above, Zn controls corrosion on the inner and outer surfaces of the tank by imparting a sacrificial anti-corrosion ability in Sn-based plating. However, in such a corrosive environment, Zn itself originally elutes at a high rate. If there is a Zn segregation part in the layer, only that part is eluted preferentially, and the state is liable to cause pitting corrosion at that part. Group 4A element (T
i, Zr, Hf) are added for the purpose of suppressing Zn segregation during plating and forming a uniform plating film. Although the mechanism of the homogenization is not clear, the group 4A element (Ti, Zr, H
It is presumed that f) acts to increase the nucleation in the plating layer and suppresses the coarsening of the specific plating component (Zn in this system).

【0013】この均質化はめっき組織のZn単相の長径
に顕著に効果を示しており、4A族元素(Ti、Zr、
Hf)添加によりZn単相の長径は小さくなる傾向があ
る。また、同様にSn−Zn二元共晶中においても、Z
nの球状組織を有する場合にはZnの最大粒径、層状組
織を有する場合にはSnとZnの最大層間距離のいずれ
も、4A族元素(Ti、Zr、Hf)添加により小さく
なる傾向があり、二元共晶の組織の微細化にも4A族元
素(Ti、Zr、Hf)が作用する。
This homogenization has a remarkable effect on the major axis of the Zn single phase in the plating structure, and the 4A group element (Ti, Zr,
The addition of Hf) tends to decrease the major axis of the Zn single phase. Similarly, in the Sn-Zn binary eutectic, Z
In the case of having a spherical structure of n, the maximum grain size of Zn, and in the case of having a layered structure, both of the maximum interlayer distance between Sn and Zn tend to be reduced by the addition of a Group 4A element (Ti, Zr, Hf). Also, the elements of the 4A group (Ti, Zr, Hf) act on the refinement of the binary eutectic structure.

【0014】このような均質化効果は4A族元素(T
i、Zr、Hf)が0.001wt%未満の添加では発
現しない。一方、4A族元素(Ti、Zr、Hf)の添
加量が合計で0.5wt%を超えると、均質化効果が飽
和するばかりでなく、操業時のめっき浴からのドロスの
大量発生および融点の上昇により、めっき品質とコスト
の悪化を招く。したがって、本発明における4A族元素
(Ti、Zr、Hf)含有量は、1種類または2種類以
上の合計で0.001〜0.5wt%の範囲とする。こ
の範囲内において、上記知見に基づいて添加量を適宜調
整することで、下記のめっき層の組織を制御することが
できる。
Such a homogenizing effect is achieved by using a group 4A element (T
i, Zr, Hf) does not appear when added at less than 0.001 wt%. On the other hand, when the total amount of the 4A group elements (Ti, Zr, Hf) exceeds 0.5 wt%, not only the homogenization effect is saturated, but also a large amount of dross is generated from the plating bath during operation and the melting point is reduced. The rise causes deterioration of plating quality and cost. Therefore, the content of the Group 4A element (Ti, Zr, Hf) in the present invention is in the range of 0.001 to 0.5 wt% in total of one or two or more kinds. Within this range, the structure of the plating layer described below can be controlled by appropriately adjusting the amount of addition based on the above findings.

【0015】次に、めっき層の金属組織の形態の限定の
理由であるが、タンク内外面の耐食性の向上、特に穿孔
腐食抑制の効果により決定される。Sn−Zn二元系は
金属間化合物を持たない共晶型であり、その共晶点はZ
n8.8wt%にある。したがって、凝固後得られる組
織は、共晶組成であればSn−Zn二元共晶組織であ
り、Znが8.8wt%未満であればSn−Zn二元共
晶組織素地中にSn単相、Znが8.8wt%より多け
れば、Sn−Zn二元共晶組織素地中にZn単相が混在
した金属組織となる。
Next, the reason for limiting the form of the metallographic structure of the plating layer is determined by the effect of improving the corrosion resistance of the inner and outer surfaces of the tank, particularly the effect of suppressing perforation corrosion. The Sn—Zn binary system is a eutectic type having no intermetallic compound, and its eutectic point is Z
n 8.8 wt%. Therefore, the structure obtained after solidification is a Sn-Zn binary eutectic structure if it has a eutectic composition, and if the Zn content is less than 8.8 wt%, the Sn-Zn binary eutectic structure is contained in the Sn-Zn binary eutectic structure. If Zn is more than 8.8 wt%, a metal structure in which a Zn single phase is mixed in the Sn-Zn binary eutectic structure base material is obtained.

【0016】本めっきではめっきの地鉄側は多少地鉄の
影響を受けるが、めっき層自体はSn−Zn二元系の組
織を有している。Znは前述のごとく、Sn基めっきに
犠牲防食能を付与する意味から必須な元素ではあるが、
そもそものZnの持つ性質で腐食環境においては比較的
容易に溶出してしまうので、その分布状態は特に重要で
あり微細かつ均質に分散していることが好ましい。なか
でもZn単相部が極めて粗大に成長してしまうと、腐食
環境中において、その部位だけ選択的に溶解してしま
い、結果、穿孔腐食の起点となる。
In this plating, the ground iron side of the plating is slightly affected by the ground iron, but the plated layer itself has a Sn-Zn binary system structure. As described above, Zn is an essential element from the viewpoint of imparting sacrificial corrosion protection to Sn-based plating.
Since Zn elutes relatively easily in a corrosive environment due to the nature of Zn, its distribution is particularly important, and it is preferable that it is finely and homogeneously dispersed. Above all, if the Zn single-phase portion grows very coarsely, only that portion is selectively dissolved in a corrosive environment, and as a result, it becomes a starting point of perforation corrosion.

【0017】また、穿孔腐食に至らない場合でもZnが
直ちに抜け出てしまうため、長期にわたる犠牲防食は期
待できない。この様な長期にわたる耐食性を維持するに
はZn単相の長径が5μm以下であることが必要であ
る。本発明においてZn単相の大きさは、結晶の長径に
より定義した。形成される結晶は必ずしも球形(二次元
的には円形)とはならないため、結晶の長径と短径は等
しくないため、本発明では結晶の長径により定義するこ
とにした。針状の形態をとる場合はその長さを長径とす
る。
Further, even if the corrosion does not occur, the Zn is immediately released, so that long-term sacrificial corrosion cannot be expected. In order to maintain such long-term corrosion resistance, the major axis of the Zn single phase needs to be 5 μm or less. In the present invention, the size of the Zn single phase is defined by the major axis of the crystal. Since the formed crystal is not necessarily spherical (two-dimensionally circular), the major axis and the minor axis of the crystal are not equal. Therefore, in the present invention, the crystal is defined by the major axis of the crystal. When taking the form of a needle, its length is taken as the major axis.

【0018】また、Zn単相部ほど顕著ではないが、め
っき層全体で長期間にわたり犠牲防食能を維持し続ける
ためには、Sn−Zn二元共晶組織中のZnの分布状態
も微細に分散している方が好ましい。Sn−Zn二元共
晶組織は凝固時の冷却方法、めっき層に含まれる微量の
不純物により、Znの球状化組織を有する場合と層状組
織を有する場合があるが、それぞれ、Znの球状化組織
を有する場合は二元共晶中のZnの最大粒径が1μm以
下、層状組織を有する場合は二元共晶中のSnとZnの
最大層間距離が1μm以下であることが長期に犠牲防食
を維持するためには好ましい。層状組織の相間距離の定
義はSn層の厚みの中心部からZn層の厚みの中心部ま
での距離とし、実質〔(Sn層−層分の厚み)+(Zn
層−層分の厚み)〕÷2であらわされる。
Although not as remarkable as the Zn single phase portion, the distribution of Zn in the Sn-Zn binary eutectic structure must be fine in order to maintain the sacrificial corrosion protection ability over the entire plating layer for a long period of time. It is preferred that they are dispersed. The Sn-Zn binary eutectic structure may have a Zn spheroidized structure or a layered structure due to a cooling method at the time of solidification and a trace amount of impurities contained in the plating layer. The maximum grain size of Zn in the binary eutectic is 1 μm or less in the case of having a eutectic, and the maximum interlayer distance between Sn and Zn in the binary eutectic is 1 μm or less in the case of having a layered structure. It is preferable to maintain. The inter-phase distance of the layered structure is defined as a distance from the center of the thickness of the Sn layer to the center of the thickness of the Zn layer, and is substantially [(Sn layer-thickness of layer) + (Zn
Layer-thickness of layer)] ÷ 2.

【0019】また、耐食性向上にはSn基めっき鋼板の
めっき層中にSn,Zn,4A族元素に加え、Mgを添
加することが有効である。MgはZnの腐食性生物を安
定させる作用とMg自体が塩害環境中で保護性のMg系
水酸化皮膜をめっき表面に形成する作用があり、特にタ
ンク外面の耐食性が向上する。この作用は0.1wt%
未満では添加有無の有意差がない。一方、4wt%より
多く添加するとドロスの多量発生、めっき浴の融点の上
昇により操業性、コストの面で不利になるばかりでな
く、Sn−Mg系もしくはZn−Mg系の脆い金属間化
合物のめっき層中の多量晶出をまねき、めっき層の加工
性が低下する。したがって、Mgを添加する場合には、
Mgの添加量は0.1〜4wt%とする。
For improving the corrosion resistance, it is effective to add Mg to the plating layer of the Sn-based plated steel sheet in addition to the Sn, Zn, and 4A group elements. Mg has an action of stabilizing the corrosive organisms of Zn and an action of itself forming a protective Mg-based hydroxide film on the plating surface in a salt damage environment, and particularly improves the corrosion resistance of the outer surface of the tank. This effect is 0.1wt%
If less, there is no significant difference in the presence or absence of addition. On the other hand, if it is added in an amount of more than 4 wt%, a large amount of dross is generated, and the melting point of the plating bath is increased, which is disadvantageous in terms of operability and cost. This leads to a large amount of crystallization in the layer, and the workability of the plating layer is reduced. Therefore, when adding Mg,
The added amount of Mg is 0.1 to 4 wt%.

【0020】溶融めっき法においては、合金層の形成を
避けることはできない。めっきピンホールの発生を防止
し均一で耐食性良好なめっき皮膜を得るためには、被め
っき表面とめっき金属が良く濡れる(合金化する)こと
が重要であるからである。一方、燃料タンクのように複
雑な形状に加工するためには、高度の加工性を確保する
必要がある。合金層は、良く濡れるためには少量生成し
なければならないが、硬くて脆いために加工時にクラッ
クを生じ易く、ある厚みよりも厚くなると合金層外側の
めっき層にクラックが伝播しめっき層中に割れを生ずる
ことになり、めっき剥離やめっき層のダメージによる耐
食性劣化の原因となる。このようなめっき剥離は、めっ
き種・厚み・鋼種と非常に大きな関連があり、本発明の
場合、合金層の厚みは3.0μm以下であるのが望まし
い。
In the hot-dip plating method, formation of an alloy layer cannot be avoided. This is because it is important that the surface to be plated and the plating metal are well wetted (alloyed) in order to prevent the occurrence of plating pinholes and obtain a uniform and good corrosion-resistant plating film. On the other hand, in order to process into a complicated shape like a fuel tank, it is necessary to secure a high degree of workability. The alloy layer must be formed in a small amount in order to wet well, but because it is hard and brittle, cracks are likely to occur during processing, and when it is thicker than a certain thickness, cracks propagate to the plating layer outside the alloy layer and Cracking is caused, which causes deterioration of corrosion resistance due to plating peeling or damage to the plating layer. Such plating exfoliation has a very large relationship with the plating type, thickness, and steel type. In the case of the present invention, the thickness of the alloy layer is desirably 3.0 μm or less.

【0021】濡れ性の改善のためには、鋼板表面を変化
させることも有効である。鋼板の製造工程において、鋼
板表面に形成される酸化物は除去しにくいものであり、
めっき性を阻害する。この影響を排除するため、めっき
直前の鋼板表面に錫と反応しやすいNi・Co・Cu等
をめっきし、濡れ性を改善する。Ni・Co・Cu等は
単体でめっきしても良いし、Feとの合金、あるいはこ
れらの金属同士の合金であっても良い。めっき量として
は鋼板表面を均一に覆う程度、例えば0.1〜2.0g
/m2 程度で十分である。めっき後の製品としては、N
i・Co・Cuの1種または2種以上を0.5wt%以
上合金層中に含有することで加工性・耐食性に優れた防
錆鋼板を得ることができる。
To improve the wettability, it is effective to change the surface of the steel sheet. In the steel sheet manufacturing process, oxides formed on the steel sheet surface are difficult to remove,
Inhibits plating properties. In order to eliminate this influence, Ni, Co, Cu or the like which easily reacts with tin is plated on the surface of the steel sheet immediately before plating to improve the wettability. Ni, Co, Cu or the like may be plated alone, or may be an alloy with Fe or an alloy of these metals. The plating amount is such that the surface of the steel sheet is uniformly covered, for example, 0.1 to 2.0 g.
/ M 2 is sufficient. The product after plating is N
By containing one or more of i, Co and Cu in the alloy layer in an amount of 0.5 wt% or more, a rust-preventive steel sheet having excellent workability and corrosion resistance can be obtained.

【0022】本発明では、めっき層表面を更に無機化合
物あるいは有機化合物、またはその複合物よりなる後処
理を行うことにより万全の耐食性が期待される。この処
理は下地のSn−Znめっき層とは非常に馴染みが良
く、微小ピンホール等の欠陥部を被覆したり、めっき層
を溶解させピンホールを修復する効果があり耐食性を大
幅に向上させる。
In the present invention, perfect corrosion resistance is expected by further performing a post-treatment of the surface of the plating layer with an inorganic compound, an organic compound, or a composite thereof. This treatment is very familiar with the underlying Sn—Zn plating layer, has the effect of covering a defective portion such as a minute pinhole, or repairing the pinhole by dissolving the plating layer, and greatly improves corrosion resistance.

【0023】[0023]

【実施例】本発明の燃料タンク用防錆鋼板の品質特性を
実施例で示す。 (実施例1)板厚0.8mmの焼鈍・調圧済みの鋼板
を、塩化亜鉛、塩化アンモニウム及び塩酸を含むめっき
用フラックスを塗布した後、Tiを含むSn−Znめっ
き浴(浴の融点+80℃)に導入した。めっき浴と鋼板
表面を十分に反応させた後めっき浴より鋼板を引き出
し、ガスワイピング法により付着量調整を行い冷却し
た。めっき後の鋼板は、FeSn2 を主体とする合金層
を有するものであり、めっき付着量(Sn+Znの全付
着量)は40g/m2 (片面あたり)に制御した。この
表面上にクロムとして15mg/m2 の付着量のクロメ
ート処理を行い製品板とした。
EXAMPLES The quality characteristics of the rustproof steel plate for a fuel tank according to the present invention will be shown in examples. (Example 1) An annealed and pressure-regulated steel sheet having a thickness of 0.8 mm was coated with a flux for plating containing zinc chloride, ammonium chloride and hydrochloric acid, and then an Sn-Zn plating bath containing Ti (bath melting point +80) ° C). After the plating bath and the steel sheet surface were sufficiently reacted, the steel sheet was drawn out of the plating bath, the amount of the steel sheet was adjusted by a gas wiping method, and cooled. The plated steel sheet had an alloy layer mainly composed of FeSn 2 , and the amount of plating (the total amount of Sn + Zn) was controlled to 40 g / m 2 (per one side). The surface was subjected to a chromate treatment with an adhesion amount of 15 mg / m 2 as chromium to obtain a product plate.

【0024】この鋼板の金属組織を調べるため、断面研
磨後、SnとZnの分布状態をEPMA(電子プローブ
マイクロアナライザー)にて分析した。タンク外面の塩
害環境での耐食性はSST960時間後の腐食形態と孔
食深さで評価した。腐食形態は均一腐食を良好とした。
タンク内面の耐食性は圧力容器中にて、100℃で一昼
夜放置した強制劣化ガソリンに10vol%の水を添加
し腐食液を作製した。この腐食液350ml中にて、ビ
ードつき引き抜き加工を行っためっき鋼板(30×35
mm端面・裏面シール)を45℃×3週間の腐食試験を
行い、溶出した金属イオンのイオン種と溶出量を測定し
た。溶出量は200ppmを良好とした。
In order to examine the metallographic structure of the steel sheet, after the cross section was polished, the distribution of Sn and Zn was analyzed by an EPMA (Electron Probe Microanalyzer). The corrosion resistance of the outer surface of the tank in a salt damage environment was evaluated by the corrosion form and the pit depth after 960 hours of SST. The corrosion form was good for uniform corrosion.
The corrosion resistance of the inner surface of the tank was determined by adding 10 vol% water to forcedly degraded gasoline left at 100 ° C. for 24 hours in a pressure vessel to prepare a corrosion liquid. In 350 ml of this corrosive liquid, a plated steel plate (30 × 35
mm end face / back face seal) was subjected to a corrosion test at 45 ° C. × 3 weeks, and the ionic species and the amount of metal ions eluted were measured. The elution amount was determined to be 200 ppm.

【0025】表1に示す本発明例(No.1〜9)では
Zn単相、二元共晶組織とも微細に制御されておりかつ
合金層も厚く成長していない。外面環境腐食試験では、
腐食形態は均一腐食であり赤錆も発生しておらず、Zn
偏析に起因する孔食は認められなかった。内面環境腐食
試験では、検出される金属種はめっき層を構成している
Zn、Snであり、かつ溶出量も少なく非常に良好な耐
食性を示している。
In the present invention examples (Nos. 1 to 9) shown in Table 1, both the Zn single phase and the binary eutectic structure are finely controlled, and the alloy layer does not grow thick. In the external environmental corrosion test,
The corrosion mode was uniform corrosion, no red rust was generated, and Zn
Pitting corrosion due to segregation was not observed. In the internal environmental corrosion test, the detected metal species are Zn and Sn constituting the plating layer, and the amount of elution is small and very good corrosion resistance is shown.

【0026】比較例(No.14)ではTiが添加され
ておらず、Zn単相、二元共晶組織が微細化/均質化さ
れていない。同様に比較例(No.10、12)では二
元共晶組織が微細化/均質化されていない。このような
均質化されていないめっきでは、内外面双方の腐食環境
において、Znの偏析部で局部的に溶解が進行し、結
果、直ちに地鉄に到達する孔食が起こっている。
In Comparative Example (No. 14), Ti was not added, and the Zn single phase and binary eutectic structure were not refined / homogenized. Similarly, in Comparative Examples (Nos. 10 and 12), the binary eutectic structure is not refined / homogenized. In such non-homogenized plating, local dissolution progresses in the segregated portion of Zn in the corrosive environment on both the inner and outer surfaces, and as a result, pitting corrosion that immediately reaches the base iron occurs.

【0027】比較例(No.11、13、15)はTi
が過剰に添加されており、めっき浴の融点が上昇したた
め、500℃を超える操業を余儀なくされ、結果、合金
層厚みが厚くなっている。硬く脆い合金層が成長したた
めSn基めっきの良加工性が損なわれ、ビードつき引き
抜き加工を行った際、めっき層にクラックが多数入り、
その結果、内面環境腐食試験で地鉄からの溶出も認めら
れた。比較例(No.16)はZnが全く添加されてい
ないため犠牲防食能が全くなく、やむなく存在するピン
ホールから孔食が発生し内外面双方の腐食環境において
耐食性が劣位である。比較例(No.17)はZnが過
剰に添加されており、もはやTiの均質化効果も及ば
ず、めっき層全体の性質がZnに近づいてしまい良好な
耐食性は得られていない。
The comparative examples (Nos. 11, 13, and 15) were made of Ti
Is excessively added, and the melting point of the plating bath rises, so that operation exceeding 500 ° C. is forced, and as a result, the thickness of the alloy layer is increased. Since the hard and brittle alloy layer grew, the good workability of the Sn-based plating was impaired, and when the beaded drawing was performed, many cracks were formed in the plating layer,
As a result, elution from the ground iron was observed in the internal environmental corrosion test. In Comparative Example (No. 16), no Zn was added at all, so there was no sacrificial anticorrosive ability, pitting occurred from the pinholes that had to be present, and corrosion resistance was poor in a corrosive environment on both the inner and outer surfaces. In Comparative Example (No. 17), Zn was added excessively, the Ti homogenization effect was no longer exerted, the properties of the entire plating layer approached Zn, and good corrosion resistance was not obtained.

【0028】[0028]

【表1】 [Table 1]

【0029】(実施例2)板厚0.8mmの焼鈍・調圧
済みの鋼板を、塩化亜鉛、塩化アンモニウム及び塩酸を
含むめっき用フラックスを塗布した後、Ti、Zr、H
fを各種wt%含むSn−15wt%Znめっき浴(浴
の融点+80℃)に導入した。めっき浴と鋼板表面を十
分に反応させた後めっき浴より鋼板を引き出し、ガスワ
イピング法により付着量調整を行い冷却した。めっき後
の鋼板は、FeSn2 を主体とする合金層を有するもの
であり、めっき付着量(Sn+Znの全付着量)は40
g/m2 (片面あたり)に制御した。この表面上にクロ
ムとして15mg/m2 の付着量のクロメート処理を行
い製品板とした。
Example 2 An annealed and pressure-regulated steel sheet having a thickness of 0.8 mm is coated with a plating flux containing zinc chloride, ammonium chloride and hydrochloric acid, and then Ti, Zr, H
f was introduced into a Sn-15 wt% Zn plating bath containing various wt% (bath melting point + 80 ° C.). After the plating bath and the steel sheet surface were sufficiently reacted, the steel sheet was drawn out of the plating bath, the amount of the steel sheet was adjusted by a gas wiping method, and cooled. The plated steel sheet has an alloy layer mainly composed of FeSn 2 , and has a plating adhesion amount (total adhesion amount of Sn + Zn) of 40.
g / m 2 (per one side). The surface was subjected to a chromate treatment with an adhesion amount of 15 mg / m 2 as chromium to obtain a product plate.

【0030】この鋼板の金属組織を調べるため、断面研
磨後、SnとZnの分布状態をEPMA(電子プローブ
マイクロアナライザー)にて分析した。タンク外面の塩
害環境での耐食性はSST960時間後の腐食形態と孔
食深さで評価した。腐食形態は均一腐食を良好とした。
タンク内面の耐食性は圧力容器中にて、100℃で一昼
夜放置した強制劣化ガソリンに10vol%の水を添加
し腐食液を作製した。この腐食液350ml中にて、ビ
ードつき引き抜き加工を行っためっき鋼板(30×35
mm端面・裏面シール)を45℃×3週間の腐食試験を
行い、溶出した金属イオンのイオン種と溶出量を測定し
た。溶出量は200ppmを良好とした。
In order to examine the metallographic structure of the steel sheet, the distribution of Sn and Zn was analyzed by EPMA (Electron Probe Microanalyzer) after polishing the cross section. The corrosion resistance of the outer surface of the tank in a salt damage environment was evaluated by the corrosion form and the pit depth after 960 hours of SST. The corrosion form was good for uniform corrosion.
The corrosion resistance of the inner surface of the tank was determined by adding 10 vol% water to forcedly degraded gasoline left at 100 ° C. for 24 hours in a pressure vessel to prepare a corrosive liquid. In 350 ml of this corrosive liquid, a plated steel plate (30 × 35
mm end face / back face seal) was subjected to a corrosion test at 45 ° C. × 3 weeks, and the ionic species and the amount of metal ions eluted were measured. The elution amount was determined to be 200 ppm.

【0031】表2に示す本発明例(No.18〜29)
ではZn単相、二元共晶組織とも微細に制御されてお
り、かつ合金層も厚く成長していない。外面環境腐食試
験では、腐食形態は均一腐食であり赤錆も発生しておら
ず、Zn偏析に起因する孔食は認められなかった。内面
環境腐食試験では、検出される金属種はめっき層を構成
しているZn、Snであり、かつ溶出量も少なく非常に
良好な耐食性を示している。
Examples of the present invention shown in Table 2 (Nos. 18 to 29)
In this case, both the Zn single phase and the binary eutectic structure are finely controlled, and the alloy layer is not grown thick. In the external surface corrosion test, the corrosion mode was uniform corrosion, no red rust was generated, and no pitting corrosion due to Zn segregation was observed. In the internal environmental corrosion test, the detected metal species are Zn and Sn constituting the plating layer, and the amount of elution is small and very good corrosion resistance is shown.

【0032】[0032]

【表2】 [Table 2]

【0033】(実施例3)板厚0.8mmの焼鈍・調圧
済みの鋼板に塩化亜鉛、塩化アンモニウム及び塩酸を含
むめっき用フラックスを塗布した後、Tiを0.05w
t%、Mgを各種wt%含むSn−8wt%Znめっき
浴に導入した。めっき浴と鋼板表面を十分に反応させた
後めっき浴より鋼板を引き出し、ガスワイピング法によ
り付着量調整を行い冷却した。めっき後の鋼板は、Fe
Sn2 を主体とする合金層を有するものであった。めっ
き付着量(Sn+Zn全付着量)は40g/m2 (片面
あたり)に制御した。この表面上にクロムとして15m
g/m2 の付着量のクロメート処理を行い製品板とし
た。
(Example 3) A plating flux containing zinc chloride, ammonium chloride and hydrochloric acid was applied to an annealed and pressure-regulated steel sheet having a thickness of 0.8 mm, and then Ti was added to 0.05 w.
It was introduced into a Sn-8 wt% Zn plating bath containing various wt% of t% and Mg. After the plating bath and the steel sheet surface were sufficiently reacted, the steel sheet was drawn out of the plating bath, the amount of the steel sheet was adjusted by a gas wiping method, and cooled. The steel sheet after plating is Fe
It had an alloy layer mainly composed of Sn 2 . The plating weight (Sn + Zn total weight) was controlled at 40 g / m 2 (per one side). 15m as chrome on this surface
The product plate was subjected to chromate treatment with an adhesion amount of g / m 2 .

【0034】本発明例を表3(No.30〜33)に示
す。この鋼板の金属組織を調べるため、断面研磨後、S
nとZnとMgの分布状態をEPMA(電子プローブマ
イクロアナライザー)にて分析したところ微細かつ均一
な組織が観察された。タンク外面の塩害環境での耐食性
はSST960時間後の腐食形態は均一腐食であり孔食
もなく良好であった。また、タンク内面の耐食性は溶出
した金属イオンはめっき層のSn、Zn、Mgであり溶
出量はいずれも200ppm未満と良好であった。一
方、Mgを過剰に添加した比較例(No.34)では融
点が上昇したため、合金層が厚く成長したことと、脆い
Mg系金属間化合物のめっき層中への多量導入により加
工性が悪くなり、特に内面環境の腐食試験で劣位となっ
た。
Examples of the present invention are shown in Table 3 (Nos. 30 to 33). To examine the metallographic structure of this steel sheet,
When the distribution states of n, Zn, and Mg were analyzed by EPMA (Electron Probe Microanalyzer), a fine and uniform structure was observed. The corrosion resistance of the outer surface of the tank in a salt-damaged environment was good after corrosion for 960 hours after SST with uniform corrosion and no pitting. The corrosion resistance of the inner surface of the tank was such that the metal ions eluted were Sn, Zn, and Mg in the plating layer, and the elution amounts were all less than 200 ppm, which was good. On the other hand, in the comparative example (No. 34) in which Mg was excessively added, the melting point was increased, so that the alloy layer grew thickly and workability was deteriorated due to the introduction of a large amount of brittle Mg-based intermetallic compound into the plating layer. Especially, it was inferior in the corrosion test of the internal environment.

【0035】[0035]

【表3】 [Table 3]

【0036】(実施例4)板厚0.8mmの焼鈍・調圧
済みの鋼板にワット浴中で1.0g/m2 となるように
電気Niめっきを施した。引き続き、塩化亜鉛、塩化ア
ンモニウム及び塩酸を含むめっき用フラックスを塗布し
た後、Tiを0.05wt%含むSn−8wt%Znめ
っき浴に導入した。めっき浴と鋼板表面を十分に反応さ
せた後めっき浴より鋼板を引き出し、ガスワイピング法
により付着量調整を行い冷却した。めっき後の鋼板は、
FeSn2 を主体とする合金層を有するものであり、N
iが20wt%含有しており、その厚みは2μmであっ
た。めっき付着量(Sn+Znの全付着量)は40g/
2 (片面あたり)に制御した。この表面上にクロムと
して15mg/m2 の付着量のクロメート処理を行い製
品板とした。
Example 4 An annealed and pressure-adjusted steel sheet having a thickness of 0.8 mm was subjected to electric Ni plating in a Watt bath so as to be 1.0 g / m 2 . Subsequently, a plating flux containing zinc chloride, ammonium chloride and hydrochloric acid was applied, and then introduced into a Sn-8 wt% Zn plating bath containing 0.05 wt% of Ti. After the plating bath and the steel sheet surface were sufficiently reacted, the steel sheet was drawn out of the plating bath, the amount of the steel sheet was adjusted by a gas wiping method, and cooled. After plating,
It has an alloy layer mainly composed of FeSn 2 ,
i was contained at 20 wt%, and the thickness was 2 μm. The plating weight (total Sn + Zn weight) is 40 g /
m 2 (per side). The surface was subjected to a chromate treatment with an adhesion amount of 15 mg / m 2 as chromium to obtain a product plate.

【0037】この鋼板の金属組織を調べるため、断面研
磨後、SnとZnの分布状態をEPMA(電子プローブ
マイクロアナライザー)にて分析したところ微細かつ均
一な組織が観察された。タンク外面の塩害環境での耐食
性はSST960時間後の腐食形態は均一腐食であり孔
食もなく良好であった。また、タンク内面の耐食性は溶
出した金属イオンはめっき層のSn、Znであり溶出量
は50ppmであり良好であった。
In order to examine the metallographic structure of this steel sheet, the distribution of Sn and Zn was analyzed by EPMA (Electron Probe Microanalyzer) after section polishing, and a fine and uniform structure was observed. The corrosion resistance of the outer surface of the tank in a salt-damage environment was excellent after SST 960 hours with uniform corrosion and no pitting. The corrosion resistance of the inner surface of the tank was good because the eluted metal ions were Sn and Zn in the plating layer and the elution amount was 50 ppm.

【0038】(実施例5)板厚0.8mmの焼鈍・調圧
済みの鋼板にワット浴中で1.0g/m2 となるように
電気Niめっきを施した。引き続き、塩化亜鉛、塩化ア
ンモニウム及び塩酸を含むめっき用フラックスを塗布し
た後、Tiを0.05wt%含むSn−8wt%Znめ
っき浴に導入した。めっき浴と鋼板表面を十分に反応さ
せた後めっき浴より鋼板を引き出し、ガスワイピング法
により付着量調整を行い冷却した。めっき後の鋼板は、
FeSn2 を主体とする合金層を有するものでありNi
が20wt%含有しており、その厚みは2μmであっ
た。めっき付着量(Sn+Znの全付着量)は40g/
2 (片面あたり)に制御した。この表面上にシリカ、
リン酸、アクリル樹脂からなる後処理をSiO2 として
40mg/m2 を行い製品板とした。
Example 5 An annealed and pressure-regulated steel sheet having a thickness of 0.8 mm was subjected to electric Ni plating in a Watt bath so as to have a thickness of 1.0 g / m 2 . Subsequently, a plating flux containing zinc chloride, ammonium chloride and hydrochloric acid was applied, and then introduced into a Sn-8 wt% Zn plating bath containing 0.05 wt% of Ti. After the plating bath and the steel sheet surface were sufficiently reacted, the steel sheet was drawn out of the plating bath, the amount of the steel sheet was adjusted by a gas wiping method, and cooled. After plating,
It has an alloy layer mainly composed of FeSn 2 and is made of Ni
Was contained at 20 wt%, and the thickness was 2 μm. The plating weight (total Sn + Zn weight) is 40 g /
m 2 (per side). Silica on this surface,
A post-treatment consisting of phosphoric acid and an acrylic resin was performed at 40 mg / m 2 as SiO 2 to obtain a product plate.

【0039】この鋼板の金属組織を調べるため、断面研
磨後、SnとZnの分布状態をEPMA(電子プローブ
マイクロアナライザー)にて分析したところ微細かつ均
一な組織が観察された。タンク外面の塩害環境での耐食
性はSST960時間後の腐食形態は均一腐食であり孔
食もなく良好であった。また、タンク内面の耐食性は溶
出した金属イオンはめっき層のSn、Znであり溶出量
は70ppmであり良好であった。
In order to examine the metallographic structure of the steel sheet, the distribution of Sn and Zn was analyzed by EPMA (Electron Probe Microanalyzer) after section polishing, and a fine and uniform structure was observed. The corrosion resistance of the outer surface of the tank in a salt-damaged environment was good after corrosion for 960 hours after SST with uniform corrosion and no pitting. The corrosion resistance of the inner surface of the tank was good because the eluted metal ions were Sn and Zn of the plating layer, and the elution amount was 70 ppm.

【0040】(実施例6)板厚0.8mmの冷延鋼板を
ゼンジマー方式で圧延油を加熱除去した後に鋼板表面を
還元し、Tiを0.05wt%含むSn−8wt%Zn
めっき浴に導入した。めっき浴と鋼板表面を十分に反応
させた後めっき浴より鋼板を引き出し、ガスワイピング
法により付着量調整を行い冷却した。めっき後の鋼板
は、FeSn 2 を主体とする合金層を有するものであ
り、その厚みは1μmであった。めっき付着量(Sn+
Znの全付着量)は40g/m2 (片面あたり)に制御
した。この表面上にクロムとして15mg/m2 の付着
量のクロメート処理を行い製品板とした。
(Example 6) A cold-rolled steel sheet having a thickness of 0.8 mm was used.
After removing the rolling oil by the Sendzimer method,
Reduced, Sn-8 wt% Zn containing 0.05 wt% Ti
It was introduced into the plating bath. Sufficient reaction between plating bath and steel sheet surface
After steel sheet is pulled out from plating bath, gas wiping
The coating amount was adjusted by the method and cooled. Plated steel sheet
Is FeSn TwoHaving an alloy layer mainly composed of
Its thickness was 1 μm. Plating weight (Sn +
Total amount of Zn) is 40 g / mTwo Control (per side)
did. 15 mg / m as chromium on this surfaceTwo Adhesion of
A quantity of chromate treatment was performed to obtain a product plate.

【0041】この鋼板の金属組織を調べるため、断面研
磨後、SnとZnの分布状態をEPMA(電子プローブ
マイクロアナライザー)にて分析したところ微細かつ均
一な組織が観察された。タンク外面の塩害環境での耐食
性はSST960時間後の腐食形態は均一腐食であり孔
食もなく良好であった。また、タンク内面の耐食性は溶
出した金属イオンはめっき層のSn、Znであり溶出量
は40ppmであり良好であった。
In order to examine the metallographic structure of this steel sheet, the distribution of Sn and Zn was analyzed by EPMA (Electron Probe Microanalyzer) after section polishing, and a fine and uniform structure was observed. The corrosion resistance of the outer surface of the tank in a salt-damaged environment was good after corrosion for 960 hours after SST with uniform corrosion and no pitting. Further, the corrosion resistance of the inner surface of the tank was good because the eluted metal ions were Sn and Zn of the plating layer and the elution amount was 40 ppm.

【0042】[0042]

【発明の効果】本発明によって、耐食性、加工性、溶接
性に優れ、劣化ガソリン等に対しても長期間耐える燃料
タンク用の鉛フリー防錆鋼板が得られた。
According to the present invention, a lead-free rust-preventive steel plate for a fuel tank having excellent corrosion resistance, workability, and weldability and enduring long-term against degraded gasoline or the like is obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 布田 雅裕 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 (72)発明者 伊崎 輝明 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 Fターム(参考) 4K027 AA05 AA22 AB02 AB05 AB12 AB13 AB46 AC03 AC15 AC52 AE03 AE23 4K044 AA02 AB02 BA06 BA10 BB01 BB03 BC02 BC05 BC08 CA11 CA18  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masahiro Fuda 1-1-1, Hibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka New Nippon Steel Corporation Yawata Works (72) Inventor Teruaki Izaki Tobata-ku, Kitakyushu-shi, Fukuoka No. 1-1, Nippon Steel Corporation Yawata Works F-term (reference) 4K027 AA05 AA22 AB02 AB05 AB12 AB13 AB46 AC03 AC15 AC52 AE03 AE23 4K044 AA02 AB02 BA06 BA10 BB01 BB03 BC02 BC05 BC08 CA11 CA18

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 1〜20wt%のZnとTi、Zr、H
fの4A族元素から選ばれる1種類もしくは2種類以上
を合計で0.001〜0.5wt%含有し、Sn:7
9.5〜98.0wt%を含有する溶融めっき層を鋼板
表面に形成した溶融Sn基めっき鋼板であって、該めっ
き層が、Sn−Zn二元共晶組織の素地中に、Sn単相
もしくはZn単相が混在した金属組織を有しており、Z
n単相の長径が5μm以下であることを特徴とする溶融
Sn−Zn系めっき鋼板。
1. 1 to 20 wt% of Zn and Ti, Zr, H
One or more elements selected from the group 4A elements of f, 0.001 to 0.5 wt% in total, Sn: 7
A hot-dip Sn-based coated steel sheet having a hot-dip coating layer containing 9.5 to 98.0 wt% formed on the surface of a steel sheet, wherein the plating layer is formed of a Sn-single-phase Sn-Zn binary eutectic base. Alternatively, it has a metal structure in which Zn single phase is mixed,
A hot-dip Sn—Zn-based plated steel sheet, wherein the long diameter of n single phase is 5 μm or less.
【請求項2】 Sn基めっき鋼板のめっき層中のSn−
Zn二元共晶組織中にZnの球状化組織を有し、二元共
晶中のZnの最大粒径が1μm以下であることを特徴と
する請求項1に記載の溶融Sn−Zn系めっき鋼板。
2. The method according to claim 1, wherein the Sn—
2. The Sn—Zn-based plating according to claim 1, wherein the Zn binary eutectic structure has a spheroidized structure of Zn, and the maximum particle diameter of Zn in the binary eutectic is 1 μm or less. 3. steel sheet.
【請求項3】 Sn基めっき鋼板のめっき層中のSn−
Zn二元共晶組織にSnとZnの層状組織を有し、二元
共晶中のSnとZnの最大層間距離が1μm以下である
ことを特徴とする請求項1に記載の溶融Sn−Zn系め
っき鋼板。
3. The method according to claim 1, wherein the Sn—
2. The molten Sn—Zn according to claim 1, wherein the Zn binary eutectic structure has a layered structure of Sn and Zn, and the maximum interlayer distance between Sn and Zn in the binary eutectic is 1 μm or less. 3. System plated steel sheet.
【請求項4】 Sn基めっき鋼板のめっき層中にSn、
Zn、4A族元素に加え、Mgを0.1〜4wt%含有
することを特徴とする請求項1〜3いずれかに記載の溶
融Sn−Zn系めっき鋼板。
4. The method according to claim 1, wherein Sn is contained in the plating layer of the Sn-based plated steel sheet.
The hot-dip Sn-Zn-based plated steel sheet according to any one of claims 1 to 3, further comprising 0.1 to 4 wt% of Mg in addition to Zn and a 4A group element.
【請求項5】 鋼板表面に、Ni、Co、Cuの1種ま
たは2種以上を合計で0.5wt%以上含有する厚み
3.0μm以下の合金層を有することを特徴とする請求
項1〜4いずれかに記載の溶融Sn−Zn系めっき鋼
板。
5. The steel sheet according to claim 1, further comprising an alloy layer having a thickness of 3.0 μm or less containing at least 0.5 wt% of one or more of Ni, Co and Cu. 4. The hot-dip Sn-Zn-based plated steel sheet according to any one of 4.
【請求項6】 めっき層表面に、無機化合物あるいは有
機化合物、またはその複合物よりなる後処理層を有する
ことを特徴とする請求項1〜5いずれかに記載の溶融S
n−Zn系めっき鋼板。
6. The molten metal according to claim 1, further comprising a post-treatment layer made of an inorganic compound, an organic compound, or a composite thereof on the surface of the plating layer.
n-Zn plated steel sheet.
JP2001122175A 2001-04-20 2001-04-20 Hot dip tin-zinc based plated steel sheet Withdrawn JP2002317233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001122175A JP2002317233A (en) 2001-04-20 2001-04-20 Hot dip tin-zinc based plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001122175A JP2002317233A (en) 2001-04-20 2001-04-20 Hot dip tin-zinc based plated steel sheet

Publications (1)

Publication Number Publication Date
JP2002317233A true JP2002317233A (en) 2002-10-31

Family

ID=18971925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001122175A Withdrawn JP2002317233A (en) 2001-04-20 2001-04-20 Hot dip tin-zinc based plated steel sheet

Country Status (1)

Country Link
JP (1) JP2002317233A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100584766B1 (en) * 2001-12-27 2006-05-30 주식회사 포스코 Sn-Zn Alloy Plating Fluids Having Superior Abrasive Resistance and Surface Roughness
KR100605716B1 (en) * 2001-12-26 2006-08-01 주식회사 포스코 Bath and electrodeposit of Sn-Zn-Ti alloy
AU2003271161B2 (en) * 2002-10-11 2006-10-12 Nippon Steel Corporation Hot-dipped Sn-Zn plating provided steel plate or sheet excelling in corrosion resistance and workability
JP2014177661A (en) * 2013-03-13 2014-09-25 Nippon Steel & Sumitomo Metal METHOD FOR DETERMINING CORROSION RESISTANCE OF Sn-Zn PLATING STEEL SHEET AND Sn-Zn PLATING STEEL SHEET SATISFYING CORROSION RESISTANCE CRITERIA
JP2016520715A (en) * 2013-04-15 2016-07-14 ツォレルン・ベーハーベー・グライトラガー・ゲーエムベーハー・ウント・コンパニー・カーゲーZollern BHW Gleitlager GmbH & Co. KG Tin-based plain bearing alloy
WO2017111530A1 (en) * 2015-12-24 2017-06-29 주식회사 포스코 Plated steel sheet having fine and even plating structure and plated steel sheet manufacturing method
JP2018538446A (en) * 2015-12-24 2018-12-27 ポスコPosco Plated steel sheet having fine and uniform plating structure and method for producing plated steel sheet
JP2021091939A (en) * 2019-12-11 2021-06-17 Dowaメタルテック株式会社 Sn PLATING MATERIAL AND PRODUCTION METHOD THEREOF

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100605716B1 (en) * 2001-12-26 2006-08-01 주식회사 포스코 Bath and electrodeposit of Sn-Zn-Ti alloy
KR100584766B1 (en) * 2001-12-27 2006-05-30 주식회사 포스코 Sn-Zn Alloy Plating Fluids Having Superior Abrasive Resistance and Surface Roughness
AU2003271161B2 (en) * 2002-10-11 2006-10-12 Nippon Steel Corporation Hot-dipped Sn-Zn plating provided steel plate or sheet excelling in corrosion resistance and workability
US7135237B2 (en) * 2002-10-11 2006-11-14 Nippon Steel Corporation Hot-dipped Sn—Zn plating provided steel plate or sheet excelling in corrosion resistance and workability
JP2014177661A (en) * 2013-03-13 2014-09-25 Nippon Steel & Sumitomo Metal METHOD FOR DETERMINING CORROSION RESISTANCE OF Sn-Zn PLATING STEEL SHEET AND Sn-Zn PLATING STEEL SHEET SATISFYING CORROSION RESISTANCE CRITERIA
JP2016520715A (en) * 2013-04-15 2016-07-14 ツォレルン・ベーハーベー・グライトラガー・ゲーエムベーハー・ウント・コンパニー・カーゲーZollern BHW Gleitlager GmbH & Co. KG Tin-based plain bearing alloy
WO2017111530A1 (en) * 2015-12-24 2017-06-29 주식회사 포스코 Plated steel sheet having fine and even plating structure and plated steel sheet manufacturing method
JP2018538446A (en) * 2015-12-24 2018-12-27 ポスコPosco Plated steel sheet having fine and uniform plating structure and method for producing plated steel sheet
JP2021091973A (en) * 2015-12-24 2021-06-17 ポスコPosco Galvanized steel sheet having fine and uniform plating composition
US11168389B2 (en) 2015-12-24 2021-11-09 Posco Plated steel sheet having fine and even plating structure
JP7093866B2 (en) 2015-12-24 2022-06-30 ポスコ Plated steel sheet with fine and uniform plating composition
JP2021091939A (en) * 2019-12-11 2021-06-17 Dowaメタルテック株式会社 Sn PLATING MATERIAL AND PRODUCTION METHOD THEREOF
JP7404053B2 (en) 2019-12-11 2023-12-25 Dowaメタルテック株式会社 Sn plating material and its manufacturing method

Similar Documents

Publication Publication Date Title
JP5000039B2 (en) Tin-plated or aluminum-plated surface-treated steel with excellent corrosion resistance
RU2387735C2 (en) STEEL PLATE WITH Sn-Zn SYSTEM COATING APPLIED BY MELT DIPPING, WHICH HAS HIGH CORROSION RESISTANCE
JP2000328216A (en) High corrosion resistance plated steel sheet
JP2002129300A (en) Surface treated steel sheet having excellent corrosion resistance and workability, and its manufacturing method
JP2002317233A (en) Hot dip tin-zinc based plated steel sheet
JP2001323357A (en) HIGHLY CORROSION RESISTANT Al PLATED STEEL SHEET EXCELLENT IN APPEARANCE
JP3133231B2 (en) Rust-proof steel plate for fuel tanks with excellent workability, corrosion resistance and weldability
JP2001214280A (en) Sn SERIES AND Al SERIES PLATED STEEL SHEET COATED WITH Cr- FREE FILM EXCELLENT IN LUBRICITY
JP2004131818A (en) Hot-dip tin-zinc base coated steel sheet excellent in workability and corrosion resistance
JP4299591B2 (en) Molten Sn-Zn plated steel sheet with excellent bonding characteristics
KR100667140B1 (en) HOT-DIPPED Sn-Zn PLATING PROVIDED STEEL PLATE OR SHEET EXCELLING IN CORROSION RESISTANCE AND WORKABILITY
JP2002332556A (en) METHOD FOR PRODUCING HOT DIP Sn-Zn PLATED STEEL SHEET
JP3126622B2 (en) Rustproof steel plate for fuel tank
JP3071667B2 (en) Rustproof steel plate for fuel tanks with excellent workability and corrosion resistance
JP2002105615A (en) HOT-DIP Sn-Mg COATED STEEL SHEET
JP2001355051A (en) HOT DIP Zn-Sn PLATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE
JP3135818B2 (en) Manufacturing method of zinc-tin alloy plated steel sheet
JP2004131819A (en) Hot-dip tin-zinc base coated steel sheet having good corrosion resistance
JP3126623B2 (en) Rustproof steel plate for fuel tank
JP3129628B2 (en) Rustproof steel plate for fuel tank
JP4537894B2 (en) Hot Sn-Zn plated steel sheet with good corrosion resistance and weldability
JP2938449B1 (en) Hot-dip Sn-Zn plated steel sheet
JP5428571B2 (en) Fuel tank for vehicles
JPH07286240A (en) High corrosion resistant surface treated steel sheet excellent in workability and its production
JP2002146505A (en) Hot dip tin-magnesium based plated steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701