JP5428571B2 - Fuel tank for vehicles - Google Patents

Fuel tank for vehicles Download PDF

Info

Publication number
JP5428571B2
JP5428571B2 JP2009150265A JP2009150265A JP5428571B2 JP 5428571 B2 JP5428571 B2 JP 5428571B2 JP 2009150265 A JP2009150265 A JP 2009150265A JP 2009150265 A JP2009150265 A JP 2009150265A JP 5428571 B2 JP5428571 B2 JP 5428571B2
Authority
JP
Japan
Prior art keywords
plating
hot
steel sheet
dip
fuel tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009150265A
Other languages
Japanese (ja)
Other versions
JP2011006732A (en
Inventor
靖人 後藤
将夫 黒崎
伸一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009150265A priority Critical patent/JP5428571B2/en
Publication of JP2011006732A publication Critical patent/JP2011006732A/en
Application granted granted Critical
Publication of JP5428571B2 publication Critical patent/JP5428571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、車両用の燃料タンクに関する。 The present invention relates to a fuel tank for a vehicle .

従来、燃料タンク材料として、耐食性、加工性、はんだ性(溶接性)等の優れたPb-Sn合金めっき鋼板が主として用いられ、自動車用燃料タンクとして幅広く使用されている。
一方、Sn-Zn合金めっき鋼板は、例えば特許文献1のように、ZnおよびSnイオンを含む水溶液中で電解する電気めっき法で主として製造されてきた。Snを主体とするSn-Zn合金めっき鋼板は、耐食性やはんだ性に優れており電子部品などに多く使用されてきた。このSn-Znめっき鋼板は、自動車燃料タンク用途において優れた特性を有することが知見され、以下の特許文献2〜4において、溶融Sn-Znめっき鋼板が開示されてきた。
Conventionally, Pb—Sn alloy-plated steel sheets having excellent corrosion resistance, workability, solderability (weldability) and the like have been mainly used as fuel tank materials, and are widely used as fuel tanks for automobiles.
On the other hand, Sn—Zn alloy-plated steel sheets have been mainly produced by an electroplating method in which electrolysis is performed in an aqueous solution containing Zn and Sn ions, for example, as in Patent Document 1. Sn-Zn alloy-plated steel sheets mainly composed of Sn are excellent in corrosion resistance and solderability and have been used in many electronic parts. This Sn-Zn plated steel sheet has been found to have excellent characteristics in automotive fuel tank applications, and in the following Patent Documents 2 to 4, molten Sn-Zn plated steel sheets have been disclosed.

自動車用燃料タンク素材として使用されてきたPb-Sn合金めっき鋼板は、各種の優れた特性(例えば、加工性、燃料タンク内面耐食性、はんだ性、シーム溶接性等)が認められ愛用されてきたが、近年の地球環境認識の高まりにつれ、Pbフリー化の方向に移行しつつある。   Pb-Sn alloy-plated steel sheets that have been used as fuel tank materials for automobiles have been used habitually because they have recognized various excellent properties (for example, workability, fuel tank inner surface corrosion resistance, solderability, seam weldability, etc.). In recent years, with the increasing awareness of the global environment, we are shifting to the direction of Pb-free.

一方、Sn-Zn電気合金めっき鋼板は、主としてはんだ性等の要求される電子部品として、腐食環境がさほど厳しくない用途で使用されてきた。しかし、自動車用燃料タンクを構成する鋼板は、内面がガソリン等の自動車燃料に曝されるので、比較的厳しい腐食環境におかれる。また、ガソリン等の自動車燃料が劣化して有機酸が発生する場合もあり、有機酸を含む自動車燃料に鋼板が曝されることで更に厳しい腐食環境におかれる場合がある。また、Sn-Znめっき鋼板は、加工を受けていない平面部でもZn偏析に起因する孔食が発生する場合がある。以上のことから、犠牲防食能を更に向上させるために、Sn-Znめっき中のZnの添加量を調整することが検討されている。   On the other hand, Sn—Zn electroalloy plated steel sheets have been used in applications where the corrosive environment is not so severe, mainly as electronic parts that require solderability and the like. However, since the inner surface of the steel plate constituting the fuel tank for automobiles is exposed to automobile fuel such as gasoline, it is subjected to a relatively severe corrosive environment. In addition, automobile fuel such as gasoline may be deteriorated to generate organic acid, and the steel sheet may be exposed to automobile fuel containing organic acid, which may lead to a more severe corrosive environment. In addition, the Sn-Zn plated steel sheet may cause pitting corrosion due to Zn segregation even in a flat portion that has not been processed. From the above, in order to further improve the sacrificial anticorrosive ability, it has been studied to adjust the amount of Zn added in the Sn—Zn plating.

特開昭52−130438号公報Japanese Patent Laid-Open No. 52-130438 特許第3126622号公報Japanese Patent No. 3126622 特許第3126623号公報Japanese Patent No. 3126623 国際公開第1996/30560号公報International Publication No. 1996/30560

ところで、自動車用燃料タンクは、鋼板を深絞り加工してシェルと呼ばれる部品を製造し、次いで、一対のシェルを重ね合わせて相互に溶接することによって製造される。最近では、タンクの軽量化及び車体デザインの複雑化、更には燃料タンクの収納場所の関係から、燃料タンク形状の複雑化が進んでいる。このような複雑形状の燃料タンクを製造するためには、鋼板を深絞り加工する際に鋼板に皺を生じさせないように、鋼板の端部を拘束しながら加工が行われる。このときの鋼板には、大きく加工を受ける部分と、加工を殆ど受けない部分とが存在する。このように、部分的に大きな加工を受けた場合の鋼板の耐腐食性については、これまであまり検討がされていなかった。   By the way, a fuel tank for automobiles is manufactured by deep drawing a steel plate to manufacture a part called a shell, and then superposing a pair of shells and welding them together. Recently, the shape of the fuel tank is becoming more complex due to the weight reduction of the tank, the complexity of the vehicle body design, and the relationship of the storage location of the fuel tank. In order to manufacture such a complex-shaped fuel tank, processing is performed while restraining the end of the steel plate so as not to cause wrinkles in the steel plate when deep drawing the steel plate. The steel plate at this time has a portion that undergoes large machining and a portion that undergoes little machining. As described above, the corrosion resistance of the steel sheet when subjected to partial large processing has not been studied so far.

本発明は上記事情に鑑みてなされたもので耐食性に優れた車両用の燃料タンクを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a fuel tank for excellent vehicle corrosion resistance.

本発明者らが鋼板に対する加工の程度と腐食との関係について鋭意研究したところ、溶融めっき層に析出するZn結晶が、鋼板の加工時にめっき割れの起点となることが推測され、このZn結晶によるめっき割れを防止することが耐食性の向上に結びつくことを見出した。その要旨とするところは
) 鋼板と、前記鋼板の表面に形成されてなるものであって15質量%以上40%質量%以下のNiと残部にFeを含む下地めっき層と、前記下地めっき層上に形成されてなるものであって4質量%以上8.8%質量%以下のZnと残部にSnを含む溶融めっき層とを具備してなる溶融めっき鋼板から構成され、前記溶融めっき鋼板には、板厚減少率が15%以上30%以下の部分があり、前記溶融めっき鋼板は、金型凸側R3〜5mm、凹側R1.5〜2.5mm、凸部長さ1〜6mmの金型で、引き抜き速度100〜300mm/min、板厚減少率15%以上30%以下の条件でドロービード加工した時に生じる前記溶融めっき層におけるめっき割れ欠陥の合計長さが、ドロービード加工時の前記鋼板の引き抜き方向10mm当たり0.5mm以下となる溶融めっき鋼板であることを特徴とする車両用の燃料タンク。
前記溶融めっき鋼板は、金型凸側R3〜5mm、凹側R1.5〜2.5mm、凸部長さ1〜6mmの金型で、引き抜き速度100〜300mm/min、板厚減少率15%以上30%以下の条件でドロービード加工した時に生じる前記溶融めっき層におけるめっき割れ欠陥の数が、ドロービード加工時の前記鋼板の引き抜き方向10mm当たり50個以下となる溶融めっき鋼板であることを特徴とする()に記載の車両用の燃料タンクである。
When the present inventors diligently studied the relationship between the degree of processing of steel sheets and corrosion, it was speculated that the Zn crystals deposited on the hot dipped layer would be the starting point of plating cracks during the processing of the steel sheets. It has been found that prevention of plating cracking leads to improved corrosion resistance. The gist is that
( 1 ) A steel plate, formed on the surface of the steel plate, and formed on the base plating layer, the base plating layer containing 15% by mass to 40% by mass Ni and the remainder Fe. It consists that is in a molten plated steel sheet ing to and a hot dip plated layer containing 4 wt% or more 8.8% mass% of Zn and the balance to Sn, wherein the molten plated steel sheet, sheet thickness There is a part where the reduction rate is 15% or more and 30% or less, and the hot dip plated steel sheet is a mold having a convex side R3 to 5 mm, a concave side R1.5 to 2.5 mm, and a convex part length 1 to 6 mm. The total length of plating crack defects in the hot-dip plated layer that occurs when draw bead processing is performed at a speed of 100 to 300 mm / min and a sheet thickness reduction rate of 15% to 30% is 10 mm in the drawing direction of the steel sheet during draw bead processing. The A fuel tank for a vehicle, which is a hot dip plated steel sheet to be 0.5mm or less.
( 2 ) The hot-dip galvanized steel sheet is a mold having a mold convex side R3 to 5 mm, a concave side R1.5 to 2.5 mm, and a convex part length 1 to 6 mm, a drawing speed of 100 to 300 mm / min, and a thickness reduction rate. It is a hot-dip plated steel sheet in which the number of plating crack defects in the hot-dip plated layer that occurs when the draw bead processing is performed at 15% to 30% is 50 or less per 10 mm in the drawing direction of the steel plate during the draw bead processing. The fuel tank for vehicles according to ( 1 ).

本発明によれば、耐食性に優れた車両用の燃料タンクを提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the fuel tank for vehicles excellent in corrosion resistance can be provided.

図1は、ドロービード加工で用いる金型の断面形状を示す図である。FIG. 1 is a diagram showing a cross-sectional shape of a mold used in draw bead processing. 図2は、本発明例のEPMA法による元素分析結果を示す図である。FIG. 2 is a diagram showing the results of elemental analysis by the EPMA method of the example of the present invention. 図3は、比較例のEPMA法による元素分析結果を示す図である。FIG. 3 is a diagram showing the results of elemental analysis by the EPMA method of the comparative example.

以下に本発明について詳細に説明する。
本実施形態の車両の燃料タンク用の溶融めっき鋼板は、鋼板と、この鋼板の表面に形成された下地めっき層と、下地めっき層の上に形成された溶融めっき層とを有する。鋼板としては、鋼鋳片を熱間圧延、酸洗、冷間圧延、焼鈍、調質圧延等の一連の工程を経た焼鈍済みの鋼板、または圧延材などが挙げられる。鋼成分については、燃料タンクの複雑な形状に加工できる成分系であること、鋼−めっき層界面の合金層の厚みが薄くめっき剥離を防止できること、燃料タンク内部および外部環境における腐食の進展を抑制する成分系である必要がある。特に高度な加工性を要求される部位だけに、加工性に優れたIF鋼(Interstitial atom Free)の適用が望ましく、さらには溶接後の溶接気密性、二次加工性等を確保するためにBを数ppm添加した鋼板が望ましい。このIF鋼の代表成分範囲は、C≦0.003質量%、Si<0.01質量%、Mn:0.10質量%〜0.20質量%、P<0.025質量%、S:0.005質量%〜0.02質量%、Ti:0.040質量%〜0.060質量%、残部:Fe及び不可避不純物が好ましく、これにさらにBが5ppm程度含有されていることがさらに好ましい。例えばC:0.003質量%、Si:0.01質量%、Mn:0.20質量%、P:0.01質量%、S:0.01質量%、Ti:0.06質量%、残部:Fe及び不可避不純物からなるIF鋼が挙げられる。熱延では1150℃前後でスラブ加熱した後、3〜6mm程度に圧延し、酸洗後に0.5〜1.5mm程度に冷延し、表面の圧延油・鉄粉などをアルカリ電解にて除去した後に焼鈍する。焼鈍は、コストの点からは連続焼鈍が望ましいが、バッチ焼鈍でも製造可能である。その後、調質圧延し、Fe−Ni合金のプレめっきを行い、一般的にフラックス法と呼ばれるめっき法にて溶融めっきする。
The present invention is described in detail below.
The hot dip galvanized steel sheet for a fuel tank of a vehicle according to this embodiment includes a steel sheet, a base plating layer formed on the surface of the steel plate, and a hot dip plating layer formed on the base plating layer. Examples of the steel plate include steel plates that have been annealed through a series of steps such as hot rolling, pickling, cold rolling, annealing, and temper rolling of steel slabs, or rolled materials. Regarding steel components, it must be a component system that can be processed into a complex shape of the fuel tank, the thickness of the alloy layer at the steel-plating layer interface can be thin to prevent plating peeling, and the progress of corrosion inside and outside the fuel tank is suppressed. It must be a component system. In particular, it is desirable to apply IF steel (Interstitial atom Free), which is excellent in workability, only to parts that require high workability. Furthermore, in order to ensure weld hermeticity, secondary workability, etc. after welding. A steel sheet with several ppm added is desirable. The representative component ranges of this IF steel are C ≦ 0.003 mass%, Si <0.01 mass%, Mn: 0.10 mass% to 0.20 mass%, P <0.025 mass%, and S: 0. 0.005 mass% to 0.02 mass%, Ti: 0.040 mass% to 0.060 mass%, balance: Fe and inevitable impurities are preferable, and it is more preferable that B is further contained in an amount of about 5 ppm. For example, C: 0.003% by mass, Si: 0.01% by mass, Mn: 0.20% by mass, P: 0.01% by mass, S: 0.01% by mass, Ti: 0.06% by mass, balance : IF steel composed of Fe and inevitable impurities. In hot rolling, after slab heating at around 1150 ° C, it is rolled to about 3 to 6 mm, cold-rolled to about 0.5 to 1.5 mm after pickling, and surface rolling oil and iron powder are removed by alkaline electrolysis. After annealing. The annealing is preferably continuous annealing from the viewpoint of cost, but can also be manufactured by batch annealing. Thereafter, temper rolling is performed, Fe—Ni alloy pre-plating is performed, and hot dip plating is performed by a plating method generally called a flux method.

溶融めっき層は、4〜8.8質量%のZnと残部がSn:91.2〜96.0質量%および不可避的不純物からなる。めっき組成のZnは、燃料タンク内面と外面における耐食性のバランスを考慮して限定されている。燃料タンク外面は、完璧な防錆能力が必要とされるため燃料タンク成形後に塗装される。したがって、塗装厚みが防錆能力を決定するが、素材としてはめっき層のもつ防食効果により赤錆を防止する。特に、塗装のつきまわりの悪い部位ではこのめっき層のもつ防食効果が極めて重要となる。Sn基めっきにZnの添加によりめっき層の電位を下げ、犠牲防食能を付与する。そのためには、4質量%以上のZnの添加が必要である。Sn-Zn二元共晶点である8.8質量%を超える過剰なZnの添加は、粗大なZn結晶の成長を促進する融点上昇をひきおこす。これによりめっき下層の金属間化合物層(いわゆる合金層)が過剰に成長することとなる。これ等の理由によりZnの含有量は8.8質量%以下でなくてはならない。粗大なZn結晶は、Znの有する犠牲防食能が発現する点では問題ないが、一方で粗大なZn結晶部で選択腐食をおこしやすくなる。また、金属間化合物自体が非常に脆いため、めっき下層の金属間化合物層の成長によって、プレス成形時にめっき割れが生じやすくなり、めっき層の防食効果が低下する。   The hot-dip plating layer is composed of 4 to 8.8% by mass of Zn and the balance of Sn: 91.2 to 96.0% by mass and inevitable impurities. The plating composition Zn is limited in consideration of the balance of corrosion resistance between the inner surface and the outer surface of the fuel tank. The outer surface of the fuel tank is painted after the fuel tank is molded because perfect rust prevention capability is required. Therefore, although the coating thickness determines the rust prevention ability, the material prevents red rust by the anticorrosion effect of the plating layer. In particular, the anticorrosive effect of the plating layer is extremely important at the part where the coating is poor. Addition of Zn to Sn-based plating lowers the potential of the plating layer and provides sacrificial anticorrosive ability. For this purpose, it is necessary to add 4% by mass or more of Zn. Addition of excess Zn exceeding the Sn-Zn binary eutectic point of 8.8% by mass causes an increase in melting point that promotes the growth of coarse Zn crystals. As a result, the intermetallic compound layer (so-called alloy layer) under the plating layer grows excessively. For these reasons, the Zn content must be 8.8% by mass or less. The coarse Zn crystal is not problematic in that it exhibits the sacrificial anticorrosive ability of Zn, but on the other hand, selective corrosion is likely to occur in the coarse Zn crystal part. In addition, since the intermetallic compound itself is very brittle, the growth of the intermetallic compound layer under the plating layer tends to cause plating cracking during press molding, and the corrosion protection effect of the plating layer is reduced.

一方、燃料タンク内面での腐食は、正常なガソリンのみの場合には問題とならないが、水の混入、塩素イオンの混入、ガソリンの酸化劣化による有機カルボン酸の生成等により、激しい腐食環境が出現する可能性がある。もし、穿孔腐食によりガソリンが燃料タンク外部に漏れた場合、重大事故につながる恐れがあり、これらの腐食は完全に防止されねばならない。上記の腐食促進成分を含む劣化ガソリンを作製し、各種条件下での性能を調べたところ、Znを8.8質量%以下含有するSn-Zn合金めっきは極めて優れた耐食性を発揮することが確認された。   On the other hand, corrosion on the inner surface of the fuel tank is not a problem when only normal gasoline is used, but a severe corrosive environment appears due to water contamination, chlorine ion contamination, and production of organic carboxylic acids due to oxidative degradation of gasoline. there's a possibility that. If gasoline leaks outside the fuel tank due to piercing corrosion, it can lead to serious accidents, and these corrosions must be completely prevented. When the deteriorated gasoline containing the above corrosion-promoting components was prepared and the performance under various conditions was examined, it was confirmed that Sn-Zn alloy plating containing 8.8% by mass or less of Zn exhibits extremely excellent corrosion resistance. .

Znを全く含まない純SnまたはZn含有量が4質量%未満の場合、腐食環境中に曝露された初期より、めっき金属が地鉄(被めっき材)に対し犠牲防食能を持たない。このため、燃料タンク内面ではめっきピンホール部での孔食、タンク外面では早期の赤錆発生がそれぞれ問題となる。
一方、Znが8.8質量%を超えて多量に含まれる場合、Znが優先的に溶解し、腐食生成物が短期間に多量に発生する。このため、溶融めっき鋼板を燃料タンクに用いた場合にエンジン用のキャブレターの目詰まりを起こしやすくなる問題がある。また、耐食性以外の性能面では、Zn含有量が多くなることによってめっき層の加工性も低下し、Sn基めっきの特長である良プレス成形性を損なう。さらに、Zn含有量が多くなることによるめっき層の融点上昇とZn酸化物に起因し、はんだ性が大幅に低下する。
When the pure Sn or Zn content containing no Zn is less than 4% by mass, the plated metal has no sacrificial anticorrosive ability to the ground iron (material to be plated) from the initial stage of exposure to the corrosive environment. For this reason, pitting corrosion at the plating pinhole portion on the inner surface of the fuel tank and early red rust on the outer surface of the tank are problematic.
On the other hand, when Zn is contained in a large amount exceeding 8.8% by mass, Zn is preferentially dissolved, and a large amount of corrosion products are generated in a short time. For this reason, there is a problem that the carburetor for an engine is likely to be clogged when a hot-dip plated steel sheet is used for a fuel tank. In terms of performance other than corrosion resistance, the Zn content increases, the workability of the plating layer also decreases, and good press formability, which is a feature of Sn-based plating, is impaired. Furthermore, the solderability is significantly reduced due to the melting point increase of the plating layer and the Zn oxide due to the increased Zn content.

したがって、本実施形態において、溶融めっき層におけるZn含有量は、4〜8.8質量%の範囲であり、更により十分な犠牲防食作用を得るには6〜8.8質量%の範囲にすることが望ましい。   Therefore, in the present embodiment, the Zn content in the hot dipped layer is in the range of 4 to 8.8% by mass, and in order to obtain a more sufficient sacrificial anticorrosive action, it is desirable to be in the range of 6 to 8.8% by mass.

前述の様に、溶融めっき層のSn基めっきにおいてZnが含有されたことにより、犠牲防食能が付与される。この効果を利用して、燃料タンク内面と外面での腐食を制御している。しかしながら、かかる腐食環境において、Zn自体は本来溶出する速度が速いため、上述のように粗大なZn結晶の存在は、めっき層にZn偏析部を形成することになり、このZn偏析部があるとその部位だけ優先的に溶出してしまい、その部位で穿孔腐食をおこしやすい状態となってしまう。   As described above, sacrificial anticorrosive ability is imparted by the inclusion of Zn in the Sn-based plating of the hot dipped layer. This effect is used to control corrosion on the inner and outer surfaces of the fuel tank. However, in such a corrosive environment, Zn itself has a high elution rate, so the presence of coarse Zn crystals as described above will form a Zn segregation part in the plating layer, and there is this Zn segregation part. Only that part elutes preferentially, and it becomes a state in which perforation corrosion tends to occur at that part.

本実施形態の溶融めっき層のめっき組成域では、通常、溶融Sn-Znめっき組織はSn初晶とセル状の二元Sn-Zn共晶組織の混在した凝固組織となりやすい。このときZnは共晶セル-共晶セル粒界に特に偏析しやすくなっている。共晶セル-共晶セル粒界にZnが偏析しやすい理由は明確ではないが、以下の理由が考えられる。
(a)Znと親和性の高い微量の不純物の影響。
(b)最終凝固部の共晶セル−共晶セル粒界では共晶組織が粗大化しやすいこと。
(c)ZnがSn-Zn共晶凝固の先行相であるため、共晶セル−共晶セル粒界では異なる共晶セルのそれぞれの先行Zn相同士が結合すること。
この共晶セル−共晶セル粒界に偏析したZnは、前述のように腐食の起点になり、選択腐食をおこしやすくする。
In the plating composition region of the hot-dip plating layer of this embodiment, the hot Sn-Zn plating structure usually tends to be a solidified structure in which a Sn primary crystal and a cellular binary Sn-Zn eutectic structure are mixed. At this time, Zn is particularly easily segregated at the eutectic cell-eutectic cell grain boundary. The reason why Zn tends to segregate at the eutectic cell-eutectic cell grain boundary is not clear, but the following reasons are considered.
(A) Influence of a trace amount of impurities having high affinity with Zn.
(B) The eutectic structure tends to be coarsened at the eutectic cell-eutectic cell grain boundary in the final solidified part.
(C) Since Zn is a preceding phase of Sn—Zn eutectic solidification, each preceding Zn phase of different eutectic cells is bonded at the eutectic cell-eutectic cell grain boundary.
Zn segregated at this eutectic cell-eutectic cell grain boundary becomes a starting point of corrosion as described above, and facilitates selective corrosion.

このようなZnの偏析をなくすことは、Sn初晶を積極的に成長させ、共晶セルの成長を抑制することにより可能となる。本実施形態の溶融めっき層の組成域ではSnが初晶として晶出するため、Snデンドライトがネットワーク状に凝固初期にめっき層に張りめぐらされれば、共晶反応で成長するセル状のSn-Zn二元共晶はデンドライトのアームに成長を抑制され大きく発達できない。そのため、巨大な共晶セル同士がぶつかり合うことはなくなり、共晶セル-共晶セル粒界に偏析するZnはなくなり、燃料タンク内外面での耐食性が著しく向上する。   Such segregation of Zn can be eliminated by positively growing Sn primary crystals and suppressing the growth of eutectic cells. In the composition range of the hot-dip plating layer of this embodiment, Sn crystallizes as an initial crystal, so if Sn dendrite is spread over the plating layer in the early stage of solidification in a network form, a cellular Sn- Zn binary eutectic cannot be developed greatly because its growth is suppressed by the dendrite arm. Therefore, the huge eutectic cells do not collide with each other, Zn that segregates at the eutectic cell-eutectic cell grain boundary disappears, and the corrosion resistance on the inner and outer surfaces of the fuel tank is remarkably improved.

Sn初晶を積極的に発達させるために、Snの成長起点(核生成サイト)を増やしてやればよい。溶融めっきの凝固過程では、鋼板側の抜熱が大きいため、めっき/地鉄の界面側から凝固していく。したがって、溶融めっき層の下層の合金層に微細な凹凸をつけるか、地鉄そのものに微細な凹凸をつければ、Sn初晶デンドライトの成長起点(核生成サイト)をつくることができる。
この核生成サイトの付与の仕方で最も効果的な手法は、溶融めっき層の下層にある合金相(地鉄と溶融メタルの反応で生成)の形態制御である。Snの核生成に影響を与えるためには微細な凹凸が有効であり、合金相の生成のさせ方を制御すれば良い。即ち合金相の生成が進んでいる箇所は凸となり、合金相の生成が抑制されている箇所は凹となり、この制御は、溶融めっき浴温、溶融めっき浸漬時間、および溶融めっきに先立って下地めっき層を鋼板に施すことにより可能である。
In order to develop Sn primary crystals actively, the growth start point (nucleation site) of Sn should be increased. In the solidification process of hot dipping, since the heat removal on the steel plate side is large, it solidifies from the interface side of the plating / base metal. Therefore, the growth starting point (nucleation site) of the Sn primary crystal dendrite can be created by providing fine irregularities on the lower alloy layer of the hot dip plating layer or fine irregularities on the base iron itself.
The most effective method for providing the nucleation site is the form control of the alloy phase (generated by the reaction between the base iron and the molten metal) in the lower layer of the hot dip plating layer. In order to influence the nucleation of Sn, fine irregularities are effective, and it is only necessary to control how the alloy phase is generated. That is, the part where the generation of the alloy phase is progressing is convex, the part where the generation of the alloy phase is suppressed is concave, and this control is performed by the base plating prior to the hot dipping bath temperature, hot dipping time, and hot dipping. This is possible by applying a layer to the steel sheet.

また、Znを8.8質量%以下としても、Sn初晶の成長が十分ではない場合、微小なZn結晶が存在することもある。このようなZn結晶は、鋼板が大きな加工を受けた際の溶融めっき層の欠陥の起点になる。従って、Zn結晶は少なければ少ない程よい。Zn結晶の存在頻度は、ドロービード加工後の欠陥の長さ及び欠陥の数によって評価できる。ドロービード加工後の欠陥の長さ及び数が少ない溶融めっき鋼板ほどZn結晶が少なくなり、燃料タンクの内面及び外面において、溶融めっき層の耐食性を高めることができる。微小なZn結晶を低減するには、下地めっき層を最適化することが好ましい。   Even if Zn is 8.8% by mass or less, if the growth of the Sn primary crystal is not sufficient, a minute Zn crystal may be present. Such a Zn crystal is a starting point for defects in the hot-dip plated layer when the steel sheet is subjected to a large processing. Therefore, the smaller the number of Zn crystals, the better. The existence frequency of the Zn crystal can be evaluated by the length of the defect and the number of defects after the draw bead processing. The hot-dip plated steel sheet with fewer defects and fewer defects after the draw bead processing has fewer Zn crystals, and the corrosion resistance of the hot-dip plated layer can be enhanced on the inner and outer surfaces of the fuel tank. In order to reduce the fine Zn crystals, it is preferable to optimize the base plating layer.

本発明の溶融めっき鋼板においては、下地めっき層としてFe-Ni合金からなるめっき層を形成することが好ましい。下地めっきによりFe-Niめっき層が被覆されている箇所では、溶融めっきの凝固過程において、下地めっきのFeと溶融めっきのSn-Znメタルとの間では合金化が進行し、下地めっきのNiと溶融めっきのSn-Znメタルとの間では合金化が抑制される。その結果、微細な凹凸の合金相が生成する。Fe-Ni合金めっき層の組成はどちらかの元素に対して極度に偏らなければ問題ないが、特に溶融めっき層におけるZn結晶の析出を抑制するには、Ni組成比が少ない方がよい。これにより、ドロービード加工時の溶融めっき層の欠陥の発生を抑制することが可能になる。従って、下地めっき層におけるNiの組成比は15〜40質量%の範囲が好ましく、15質量%以上21質量%未満の範囲がより好ましい。Ni組成比が15〜40質量%の範囲では下地めっき層の組成の影響はない。また、この範囲であれば、Sn初晶生成がより安定する領域となる。Fe-Ni合金めっき浴は、硫酸ニッケル240〜350g/L、塩化ニッケル30〜60g/L、ホウ酸30〜45g/Lに更に、硫酸鉄を40〜100g/L添加したもので使用可能である。Fe-Niめっき組成とFe-Ni合金めっき浴組成には正の相関があり、これらのFe-Ni合金めっき浴組成の範囲内でNi2+とFe2+の比率を変化させることでFe-Niめっき組成を制御することが可能である。めっき条件はpH=2.5〜4.5、浴温度40〜60℃、電流密度2〜10A/dmの範囲で操業可能である。めっきの付着量については、Fe-Ni合金めっき層は不均一被覆である必要はないので上限を設ける必要はないが、経済的には下地めっき付着量は片面あたり0.01〜2.0g/m2が適当である。 In the hot-dip galvanized steel sheet of the present invention, it is preferable to form a plating layer made of an Fe—Ni alloy as the base plating layer. In the area where the Fe-Ni plating layer is covered by the base plating, alloying proceeds between the base plating Fe and the hot-plated Sn-Zn metal during the solidification process of the hot-dip plating. Alloying is suppressed between the hot-dip Sn-Zn metal. As a result, a fine uneven alloy phase is generated. There is no problem if the composition of the Fe—Ni alloy plating layer is not extremely biased with respect to either element. However, in order to suppress the precipitation of Zn crystals in the hot dip plating layer, it is better that the Ni composition ratio is small. Thereby, generation | occurrence | production of the defect of the hot dip plating layer at the time of draw bead processing can be suppressed. Accordingly, the composition ratio of Ni in the base plating layer is preferably in the range of 15 to 40% by mass, and more preferably in the range of 15% by mass or more and less than 21% by mass. When the Ni composition ratio is in the range of 15 to 40% by mass, there is no influence of the composition of the underlying plating layer. Moreover, if it is this range, it will become an area | region where Sn primary crystal production | generation is more stable. Fe-Ni alloy plating bath can be used with nickel sulfate 240-350 g / L, nickel chloride 30-60 g / L, boric acid 30-45 g / L and iron sulfate 40-100 g / L. . There is a positive correlation between the Fe-Ni plating composition and the Fe-Ni alloy plating bath composition. By changing the ratio of Ni 2+ and Fe 2+ within the range of these Fe-Ni alloy plating bath compositions, It is possible to control the Ni plating composition. The plating conditions are pH = 2.5 to 4.5, bath temperature 40 to 60 ° C., and current density 2 to 10 A / dm 2 . As for the amount of plating, the Fe-Ni alloy plating layer does not need to be non-uniformly coated, so there is no need to set an upper limit, but economically, the amount of base plating is 0.01 to 2.0 g / m 2 per side. Is appropriate.

(溶融めっき浴温、浸漬時間)
溶融めっき浴温と浸漬時間はともに合金相の成長に影響を及ぼす。
溶融めっき浴温は著しく低い場合、合金相は成長せず、著しく高い場合、合金相は成長が促進される。ただし、溶融めっき浴温は操業性の観点から、下限は溶融メタルの液相線温度+10〜50℃、上限はせいぜい液相線温度+100℃に設定することが多い。浴温が低い場合、溶融めっき釜内の浴温バラツキによる溶融メタル凝固の危険性がある。一方、浴温が高い場合、過度の合金相成長、溶融めっき後の凝固の冷却能力の必要、不経済というデメリットが生じる。本実施形態の溶融めっき層のSn-Zn系めっきでは、Sn-Zn組成範囲も考慮すると、240〜300℃が溶融めっき浴温の適正範囲となり、この温度範囲においては、上記下地めっき層と後述する浸漬時間の組み合わせにより微細凹凸を有する合金相の生成は可能である。
(Hot plating bath temperature, immersion time)
Both the hot dip bath temperature and the immersion time affect the growth of the alloy phase.
When the hot dip bath temperature is significantly low, the alloy phase does not grow, and when it is extremely high, the alloy phase is promoted to grow. However, from the viewpoint of operability, the hot dipping bath temperature is often set to the liquidus temperature of the molten metal +10 to 50 ° C., and the upper limit is set to the liquidus temperature + 100 ° C. at most. If the bath temperature is low, there is a risk of solidification of the molten metal due to variations in bath temperature in the hot dipping bath. On the other hand, when the bath temperature is high, there are disadvantages such as excessive alloy phase growth, the need for cooling capacity for solidification after hot dipping, and uneconomical. In the Sn-Zn-based plating of the hot-dip plating layer of the present embodiment, 240 to 300 ° C. is an appropriate hot-dip bath temperature range in consideration of the Sn-Zn composition range. It is possible to generate an alloy phase having fine irregularities by combining the immersion times.

浸漬時間は短時間側では合金相の成長が不十分であり、長時間側では合金相の成長が過度となる傾向が一般的にある。ただし、本実施形態においては1秒の浸漬で合金相は既に成長しており、かつ、長時間浸漬しても合金相の成長は徐々に飽和している。実際の連続溶融めっきにおいては、浸漬時間は少なくとも約2秒かかり、溶融めっき釜の大きさから15秒以上浸漬することは通常はない。浸漬時間が長いことは生産性の低下を意味し、不経済でもある。この浸漬時間、2〜15秒の範囲においては、上記下地めっきと溶融めっき浴温の組み合わせにより微細凹凸を有する合金相の生成は可能である。   As for immersion time, the growth of the alloy phase is generally insufficient on the short time side, and the growth of the alloy phase tends to be excessive on the long time side. However, in this embodiment, the alloy phase has already grown by immersion for 1 second, and the growth of the alloy phase is gradually saturated even if immersed for a long time. In actual continuous hot dipping, the dipping time takes at least about 2 seconds, and it is usually not dipping for more than 15 seconds due to the size of the hot dipping pot. A long immersion time means a reduction in productivity and is uneconomical. In the immersion time range of 2 to 15 seconds, an alloy phase having fine irregularities can be generated by a combination of the base plating and the hot dipping bath temperature.

さらに、Sn初晶を発達させるための条件として、めっき付着量制御のために行うガスワイビング後の冷却速度の影響もある。Sn初晶と二元Sn-Zn共晶組織では、Sn初晶の方が先に凝固するが、Sn初晶を十分に発達させるためには、冷却速度は遅い方が好ましい。上記プレめっき方法との組み合わせで製造した場合は、溶融Sn-Znめっき層の冷却速度は30℃/秒以下であることが好ましい。下限値は特に設けるものではないが、冷却速度が遅すぎると生産性が低下するため、10℃/秒以上の冷却速度が実生産上は好ましい。   Further, as a condition for developing the Sn primary crystal, there is also an influence of a cooling rate after gas wiping performed for controlling the amount of plating adhesion. In the Sn primary crystal and the binary Sn—Zn eutectic structure, the Sn primary crystal solidifies first, but in order to sufficiently develop the Sn primary crystal, a slower cooling rate is preferable. When manufactured in combination with the pre-plating method, the cooling rate of the molten Sn—Zn plating layer is preferably 30 ° C./second or less. The lower limit is not particularly set, but if the cooling rate is too slow, the productivity is lowered. Therefore, a cooling rate of 10 ° C./second or more is preferable in actual production.

本発明の溶融めっき鋼板は、使用される鋼板の厚み、めっき付着量に関しては製造可能な範囲にあるものであれば良く特に限定するものでは無い。通常の燃料タンク等の加工部品に用いられている加工では鋼板の板厚減少率が30%以下であるが、特に15%以上となる部位での腐食が問題となる。ここでいう板厚減少率とは(鋼板初期厚み−加工後鋼板厚み)×100/(鋼板初期厚み)で定義される数値である。これは加工程度の増加と供にめっき損傷が発生し腐食起点として作用するためであり、本発明の溶融めっき鋼板では板厚減少率が15%以上になるとめっき層を貫通する欠陥が発生し腐食を誘発するおそれがある。   The hot dip galvanized steel sheet of the present invention is not particularly limited as long as it is within a manufacturable range with respect to the thickness of the steel sheet used and the coating adhesion amount. In the processing used for processing parts such as ordinary fuel tanks, the reduction rate of the thickness of the steel sheet is 30% or less, but corrosion particularly in a region where the thickness is 15% or more becomes a problem. The plate thickness reduction rate referred to here is a numerical value defined by (initial steel plate thickness−steel plate thickness after processing) × 100 / (initial steel plate thickness). This is because the plating damage occurs with an increase in the degree of processing and acts as a starting point of corrosion. In the hot-dip plated steel sheet of the present invention, when the thickness reduction rate is 15% or more, defects penetrating the plating layer are generated and corrosion occurs. May be induced.

本発明における溶融めっき層のめっき割れ欠陥は、溶融めっき層を貫通してめっき表面から鋼板に達する割れによる欠陥をいう。めっき層のみに発生して鋼板まで達しない割れや、下地めっき層と溶融めっき層の間の合金層の割れは含まない。めっき割れ欠陥は、鋼板まで割れが到達しているので、鋼板の主要構成元素であるFeを検出することで、めっき割れ鋼板を検出できる。具体的には、EPMA法でFeを検出し、Feが検出された1つの領域をめっき割れ欠陥とすればよい。このめっき割れ欠陥は、溶融めっき層におけるZn結晶が多いほど発生しやすくなることを発明者らが見出し、また、欠陥の数、大きさを測定すれば加工後の耐食性を評価できることを発明者らは見出している。   The plating crack defect of the hot-dipped layer in the present invention refers to a defect caused by a crack that penetrates the hot-dipped layer and reaches the steel plate from the plating surface. It does not include cracks that occur only in the plating layer and do not reach the steel sheet, or cracks in the alloy layer between the base plating layer and the hot dipping layer. Since the plating crack defect reaches the steel plate, the plating cracked steel plate can be detected by detecting Fe, which is a main constituent element of the steel plate. Specifically, Fe may be detected by the EPMA method, and one region where Fe is detected may be regarded as a plating crack defect. The inventors have found that this plating crack defect is more likely to occur as the number of Zn crystals in the hot-dip plating layer increases, and the inventors have found that the corrosion resistance after processing can be evaluated by measuring the number and size of defects. Is heading.

めっき割れ欠陥の数及び合計長さは、ドロービード加工後の鋼板の各所から切り出した複数の試片に関し、下記の方法によって個々の試片における欠陥の数並びに欠陥による割れの長さの合計を求め、これらの平均から算出することができる。
即ち、切り出した鋼片について、ドロービード加工の引き抜き方向に沿って長さ10mmの仮想直線をランダムに設定する。この仮想線に重なる欠陥をEPMA法で検出する。欠陥の数は、EPMA法でFeを検出し、Feが検出された1つの領域を1つのめっき割れ欠陥とし、仮想直線に重なるめっき割れ欠陥の数を測定すればよい。また、めっき割れ欠陥の合計長さは、仮想直線に重なるめっき割れ欠陥(Feの検出領域)の長さの合計を、めっき割れ欠陥の合計長さとすればよい。その後、全ての鋼片のメッキ割れ欠陥の数及び合計長さを平均すればよい。
The number of plating crack defects and the total length are the number of defects in each specimen and the total length of cracks caused by the defects by the following method for multiple specimens cut out from various locations on the steel sheet after draw bead processing. It can be calculated from the average of these.
That is, an imaginary straight line having a length of 10 mm is randomly set along the drawing direction of the draw bead processing for the cut steel piece. A defect that overlaps the virtual line is detected by the EPMA method. The number of defects may be determined by detecting Fe by the EPMA method, setting one region where Fe is detected as one plating crack defect, and measuring the number of plating crack defects overlapping the virtual line. Moreover, what is necessary is just to let the sum total length of the plating crack defect (Fe detection area | region) which overlaps a virtual straight line be the total length of a plating crack defect about the total length of a plating crack defect. Then, what is necessary is just to average the number and the total length of the plating crack defect of all the steel pieces.

本発明の溶融めっき鋼板においては、めっき割れ欠陥の合計長さが、前記ドロービード加工の引き抜き方向10mm当たり0.5mm以下であることが好ましい。めっき割れ欠陥の合計長さが0.5mmを超えると、溶融めっき鋼板の耐食性が低下するので好ましくない。また、めっき割れ欠陥の数は、前記ドロービード加工の引き抜き方向10mm当たり50個以下であればよい。めっき割れ欠陥の数が50個を超えると、溶融めっき鋼板の耐食性が低下するので好ましくない。   In the hot dip galvanized steel sheet of the present invention, the total length of plating crack defects is preferably 0.5 mm or less per 10 mm in the drawing direction of the draw bead processing. If the total length of plating crack defects exceeds 0.5 mm, the corrosion resistance of the hot dip plated steel sheet is lowered, which is not preferable. Moreover, the number of plating crack defects should just be 50 or less per 10 mm of drawing directions of the said draw bead process. If the number of plating crack defects exceeds 50, the corrosion resistance of the hot dip plated steel sheet is lowered, which is not preferable.

また、加工後の耐食性を簡易に評価する方法についても鋭意検討した結果、実プレス後のめっき損傷状況は金型条件、加工条件を特定したドロービード加工で発生するめっき損傷に極めて良く対応し、また加工後の耐食性はめっき割れ欠陥の発生状況との対応がある。そのため特定条件でドロービード加工を行なった試料のめっき割れ欠陥を把握することで、加工後の耐食性を評価することが可能になる。   In addition, as a result of intensive investigations on a method for simply evaluating the corrosion resistance after processing, the plating damage status after actual pressing corresponds extremely well to the plating damage that occurs in draw bead processing that specifies the die conditions and processing conditions. Corrosion resistance after processing corresponds to the occurrence of plating crack defects. Therefore, it becomes possible to evaluate the corrosion resistance after processing by grasping the plating crack defect of the sample that has been subjected to the draw bead processing under specific conditions.

すなわち、図1はドロービード加工で用いる金型の断面形状を示す。図1中、符号8は凸側Rであり、符号9は凹側Rであり、符号10は凸部長さであり、符号11は引き抜き方向である。本発明者は金型の形状並びにドロービードの引き抜き速度を種々変化させた状態で加工し、板厚減少率と引き抜き方向の10mm当たりのめっき層を貫通するめっき割れの数、並びにめっき表層における割れ長さの合計を測定したところ、金型凸側R3〜5mm、凹側R1.5〜2.5mm、凸部長さ1〜6mmの金型で引き抜き速度100〜300mm/minでドロービード加工することで、実プレスでの板厚減少率とめっき割れ欠陥との関係が再現出来ることが明らかになった。また、この条件でドロービード加工した材料の塗装後耐食性を調査した結果、実プレスでのめっき損傷と耐食性との関係をも再現できる。なお、本発明の溶融メッキ鋼板を製造する際には、溶融めっき後の鋼板の一部を切り出してドロービード加工を行い、加工後の鋼板のめっき割れ欠陥の数及び合計長さを測定し、これらが本発明の範囲内に入るものを選択しても良い。   That is, FIG. 1 shows a cross-sectional shape of a mold used in draw bead processing. In FIG. 1, reference numeral 8 denotes a convex side R, reference numeral 9 denotes a concave side R, reference numeral 10 denotes a convex portion length, and reference numeral 11 denotes a drawing direction. The present inventor processed with various changes in the shape of the mold and the drawing speed of the draw bead, and reduced the plate thickness, the number of plating cracks penetrating the plating layer per 10 mm in the drawing direction, and the crack length in the plating surface layer. When the total of the thickness was measured, by drawing bead processing at a drawing speed of 100 to 300 mm / min with a mold having a mold convex side R3 to 5 mm, a concave side R1.5 to 2.5 mm, and a convex length 1 to 6 mm, It became clear that the relationship between the plate thickness reduction rate and plating cracking defect in the actual press can be reproduced. Moreover, as a result of investigating the post-coating corrosion resistance of the material subjected to the draw bead processing under these conditions, the relationship between the plating damage and the corrosion resistance in the actual press can be reproduced. When producing the hot dip galvanized steel sheet of the present invention, a part of the hot dip plated steel sheet is cut out and subjected to draw beading, and the number of plating crack defects and the total length of the processed steel sheet are measured. May fall within the scope of the present invention.

また、本実施形態の燃料タンクは、本発明に係る溶融めっき鋼板を深絞り加工してシェルと呼ばれる部品を製造し、次いで、一対のシェルを重ね合わせて相互に溶接することによって製造することができる。燃料タンクの外側には、耐食性を高めるために塗装が施されていても良い。   In addition, the fuel tank of the present embodiment can be manufactured by deep-drawing the hot-dip plated steel sheet according to the present invention to manufacture a part called a shell, and then superimposing a pair of shells and welding them together. it can. The outside of the fuel tank may be painted to improve corrosion resistance.

以下に本発明の実施例を示す。
板厚0.8mmの焼鈍・調圧済みの鋼板に、電気めっき法によりFe-Niめっき浴(硫酸ニッケル:240g/L、塩化ニッケル:30g/L、ホウ酸:30g/L、硫酸鉄:0、30、40、50、55、100、150g/L、pH=2.5)から各種組成のFe-NiめっきまたはNiめっきを1.0g/m2(片面あたり浴温度50℃、電流密度10A/dm2)施した。この鋼板に塩化亜鉛、塩化アンモニウム及び塩酸を含むめっき用フラックスを塗布した後、250、300、350℃の各種組成のSn-Zn溶融めっき浴に導入した。めっき浴と鋼板表面を2、5、10、15、20秒間反応させた後、めっき浴より鋼板を引き出し、ガスワイビング法により付着量調整を行い、めっき付着量(Sn+Znの全付着量)を40g/m2(片面あたり)に制御した。ガスワイビングの後、エアジェットクーラーにて冷却速度を種々変化させ溶融めっき層を凝固した。
Examples of the present invention are shown below.
An Fe-Ni plating bath (nickel sulfate: 240 g / L, nickel chloride: 30 g / L, boric acid: 30 g / L, iron sulfate: 0) 30g, 40, 50, 55, 100, 150g / L, pH = 2.5) Fe-Ni plating or Ni plating of various compositions 1.0g / m 2 (bath temperature 50 ° C per side, current density 10A / dm 2 ) gave. The steel sheet was coated with a plating flux containing zinc chloride, ammonium chloride and hydrochloric acid, and then introduced into a Sn-Zn hot dipping bath having various compositions at 250, 300 and 350 ° C. After reacting the plating bath and steel plate surface for 2, 5, 10, 15, 20 seconds, pull out the steel plate from the plating bath, adjust the adhesion amount by gas wiping method, and apply the plating adhesion amount (total Sn + Zn adhesion amount). Controlled to 40 g / m 2 (per side). After gas wiping, the cooling rate was variously changed with an air jet cooler to solidify the hot-dip plated layer.

得られた鋼板から、ドロービード加工用として40×300mmの試料を切り出し、鉱油を主成分とする防錆油を1〜2.5g/m2塗布したのち、凸側R4mm、凹側R2mm、凸部長さ4mmの金型(材質SKD−11、Crめっき20μm実施)で引き抜き速度200mm/minで板厚減少率15〜30%になるようにドロービード加工した。加工後の試料一部を切り出し、EPMA法によってFeを検出することで、ドロービード加工方向10mm当たりで確認されためっき層を貫通するめっき割れ欠陥の数、並びにめっき割れ欠陥の割れの長さの合計を測定した。 From the obtained steel sheet, a 40 × 300 mm sample was cut out for draw bead processing, and 1 to 2.5 g / m 2 of rust preventive oil mainly composed of mineral oil was applied, followed by convex side R4 mm, concave side R2 mm, and convex part length. A draw bead process was performed with a 4 mm metal mold (material SKD-11, Cr plating 20 μm) at a drawing speed of 200 mm / min so that the plate thickness reduction rate was 15 to 30%. By cutting out a part of the sample after processing and detecting Fe by the EPMA method, the total number of plating crack defects penetrating the plating layer confirmed per 10 mm in the draw bead processing direction, and the total crack length of the plating crack defects Was measured.

その後、アルカリ脱脂を施し塗布した防錆油を除去した後、以下の方法で耐食性を評価した。
燃料タンク外面の塩害環境での耐食性はSST960時間後の赤錆発生面積率で評価し、赤錆面積率10%以下を良好とした。
燃料タンク内面の耐食性は以下の方法により行なった。圧力容器中にて100℃で24時間放置した強制劣化ガソリンに10vo1%の水を添加し腐食液を作製した。この腐食液350ml中にて、ビードつき引抜加工を行っためっき鋼板(板厚減少率15%、30×35mm端面・裏面シール)を45℃にて3週間の腐食試験を行い、溶出した金属イオンのイオン種と溶出量を測定した。溶出量は総金属量200ppm未満を良好とした。
Then, after carrying out alkali degreasing and removing the applied rust preventive oil, the corrosion resistance was evaluated by the following method.
Corrosion resistance in the salt damage environment on the outer surface of the fuel tank was evaluated by the red rust generation area ratio after SST 960 hours, and the red rust area ratio was 10% or less.
The corrosion resistance of the inner surface of the fuel tank was performed by the following method. Corrosion solution was prepared by adding 10vo1% water to forced deteriorated gasoline left at 100 ℃ for 24 hours in a pressure vessel. In 350 ml of this corrosive solution, a plated steel sheet with a bead drawn (plate thickness reduction rate 15%, 30 x 35 mm end face / back face seal) was subjected to a corrosion test at 45 ° C for 3 weeks. The ion species and the amount of elution were measured. The amount of elution was considered good when the total metal amount was less than 200 ppm.

表1及び表2に結果を示すが、本発明例の溶融めっき鋼板は、ドロービード加工後のめっき割れ発生が大幅に減少し、結果として外面耐食性及び内面耐食性がともに良好であり、総合評価もAまたはBとなった。
また、図2には、本発明例(試料No.1)のEPMA法による元素分析の結果を示し、図3には比較例のEPMA法による元素分析の結果を示す。比較例は、下地めっきを純Niめっきとした以外は試料No.1と同様にして製造した溶融めっき鋼板である。
図2と図3の比較で明らかなように、本発明例の鋼板は、比較例に比べて、Feの検出領域が大幅に低いことが分かる。また、本発明例の鋼板では、Znの偏析が大幅に低くなっていることが分かる。
尚、表1及び表2中、各試料の総合評価の結果を以下のように示した。
A:Good、耐食性良好
B:Fair、使用可
C:Bad、使用不可
The results are shown in Tables 1 and 2. As for the hot-dip plated steel sheet of the present invention example, the occurrence of plating cracks after draw bead processing is greatly reduced, and as a result, both the outer surface corrosion resistance and the inner surface corrosion resistance are good. Or B.
2 shows the result of elemental analysis by the EPMA method of the present invention example (sample No. 1), and FIG. 3 shows the result of elemental analysis by the EPMA method of the comparative example. The comparative example is Sample No. except that the base plating is pure Ni plating. 1 is a hot dip galvanized steel sheet manufactured in the same manner as in No. 1.
As is clear from the comparison between FIG. 2 and FIG. 3, it can be seen that the steel sheet of the example of the present invention has a significantly lower Fe detection region than the comparative example. Moreover, in the steel plate of this invention example, it turns out that the segregation of Zn is low significantly.
In Tables 1 and 2, the results of comprehensive evaluation of each sample are shown as follows.
A: Good, good corrosion resistance B: Fair, usable C: Bad, unusable

Figure 0005428571
Figure 0005428571

Figure 0005428571
Figure 0005428571

Claims (2)

鋼板と、前記鋼板の表面に形成されてなるものであって15質量%以上40%質量%以下のNiと残部にFeを含む下地めっき層と、前記下地めっき層上に形成されてなるものであって4質量%以上8.8%質量%以下のZnと残部にSnを含む溶融めっき層とを具備してなる溶融めっき鋼板から構成され、
前記溶融めっき鋼板には、板厚減少率が15%以上30%以下の部分があり、
前記溶融めっき鋼板は、金型凸側R3〜5mm、凹側R1.5〜2.5mm、凸部長さ1〜6mmの金型で、引き抜き速度100〜300mm/min、板厚減少率15%以上30%以下の条件でドロービード加工した時に生じる前記溶融めっき層におけるめっき割れ欠陥の合計長さが、ドロービード加工時の前記鋼板の引き抜き方向10mm当たり0.5mm以下となる溶融めっき鋼板であることを特徴とする車両用の燃料タンク。
A steel plate, formed on the surface of the steel plate, and formed on the base plating layer, a base plating layer containing 15 to 40% by mass of Ni and Fe in the balance. consists dip plated steel sheet ing to and a hot dip plated layer containing 4 wt% or more 8.8% mass% of Zn and the balance of Sn and a,
The hot-dip plated steel sheet has a portion with a thickness reduction rate of 15% to 30%,
The hot-dip galvanized steel sheet is a mold having a convex side R3 to 5 mm, a concave side R1.5 to 2.5 mm, and a convex part length 1 to 6 mm, a drawing speed of 100 to 300 mm / min, and a plate thickness reduction rate of 15% or more. It is a hot dip galvanized steel sheet in which the total length of plating crack defects in the hot dip plating layer generated when the draw bead processing is performed at a condition of 30% or less is 0.5 mm or less per 10 mm in the drawing direction of the steel sheet during the draw bead processing. A fuel tank for vehicles.
前記溶融めっき鋼板は、金型凸側R3〜5mm、凹側R1.5〜2.5mm、凸部長さ1〜6mmの金型で、引き抜き速度100〜300mm/min、板厚減少率15%以上30%以下の条件でドロービード加工した時に生じる前記溶融めっき層におけるめっき割れ欠陥の数が、ドロービード加工時の前記鋼板の引き抜き方向10mm当たり50個以下となる溶融めっき鋼板であることを特徴とする請求項に記載の車両用の燃料タンク。 The hot-dip galvanized steel sheet is a mold having a convex side R3 to 5 mm, a concave side R1.5 to 2.5 mm, and a convex part length 1 to 6 mm, a drawing speed of 100 to 300 mm / min, and a plate thickness reduction rate of 15% or more. The number of plating crack defects in the hot-dip plated layer generated when the draw bead processing is performed under a condition of 30% or less is a hot-dip plated steel plate that is 50 or less per 10 mm in the drawing direction of the steel plate during the draw bead processing. Item 2. A fuel tank for a vehicle according to Item 1 .
JP2009150265A 2009-06-24 2009-06-24 Fuel tank for vehicles Active JP5428571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009150265A JP5428571B2 (en) 2009-06-24 2009-06-24 Fuel tank for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009150265A JP5428571B2 (en) 2009-06-24 2009-06-24 Fuel tank for vehicles

Publications (2)

Publication Number Publication Date
JP2011006732A JP2011006732A (en) 2011-01-13
JP5428571B2 true JP5428571B2 (en) 2014-02-26

Family

ID=43563706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009150265A Active JP5428571B2 (en) 2009-06-24 2009-06-24 Fuel tank for vehicles

Country Status (1)

Country Link
JP (1) JP5428571B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113061827A (en) * 2021-02-25 2021-07-02 宁波博威合金板带有限公司 Hot-dip tinned silver alloy coating and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192798A (en) * 2000-01-12 2001-07-17 Nippon Steel Corp Aluminum plated steel sheet excellent in corrosion resistance in worked area, and its manufacturing method
JP2002332556A (en) * 2001-05-14 2002-11-22 Nippon Steel Corp METHOD FOR PRODUCING HOT DIP Sn-Zn PLATED STEEL SHEET
JP3717114B2 (en) * 2002-03-18 2005-11-16 新日本製鐵株式会社 Molten Sn-Zn plated steel sheet
JP2005015834A (en) * 2003-06-25 2005-01-20 Nippon Steel Corp Highly corrosion-resistant coated steel sheet capable of being welded superior in corrosion resistance
US20090047542A1 (en) * 2005-07-05 2009-02-19 Nippon Steel Corporation, Yawata Works Hot-Dip Sn-Zn Coated Steel Sheet Having Excellent Corrosion Resistance

Also Published As

Publication number Publication date
JP2011006732A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
RU2387735C2 (en) STEEL PLATE WITH Sn-Zn SYSTEM COATING APPLIED BY MELT DIPPING, WHICH HAS HIGH CORROSION RESISTANCE
KR101876603B1 (en) Aluminum-plated steel plate having excellent external appearance and corrosion resistance to alcohol or gasoline mixed therewith, and method for manufacturing same
EP2143816B1 (en) Hot dip plated high-strength steel sheet for press forming use excellent in low-temperature toughness and process for production thereof
US5827618A (en) Rust-proofing steel sheet for fuel tanks and production method thereof
CN105164298A (en) Galvanized steel sheet and production method therefor
JP4940813B2 (en) Method for producing hot-dip galvanized steel sheet having a value of TS × El of 21000 MPa ·% or more
JP5428571B2 (en) Fuel tank for vehicles
JP3133231B2 (en) Rust-proof steel plate for fuel tanks with excellent workability, corrosion resistance and weldability
JP2004131818A (en) Hot-dip tin-zinc base coated steel sheet excellent in workability and corrosion resistance
JP2002317233A (en) Hot dip tin-zinc based plated steel sheet
JP4299591B2 (en) Molten Sn-Zn plated steel sheet with excellent bonding characteristics
EP1561835B1 (en) HOT-DIPPED Sn-Zn PLATED STEEL PLATE OR SHEET EXCELLING IN CORROSION RESISTANCE AND WORKABILITY
JP3126622B2 (en) Rustproof steel plate for fuel tank
JP4537894B2 (en) Hot Sn-Zn plated steel sheet with good corrosion resistance and weldability
JP2004131819A (en) Hot-dip tin-zinc base coated steel sheet having good corrosion resistance
JP3126623B2 (en) Rustproof steel plate for fuel tank
JP3129628B2 (en) Rustproof steel plate for fuel tank
JP3071667B2 (en) Rustproof steel plate for fuel tanks with excellent workability and corrosion resistance
CN115244208B (en) Plated steel sheet for hot stamping
JP6136672B2 (en) High strength galvannealed steel sheet and method for producing the same
JP5664408B2 (en) Molten Sn-Zn plated steel sheet
JP2002105615A (en) HOT-DIP Sn-Mg COATED STEEL SHEET
JP6645031B2 (en) Manufacturing method of galvannealed steel sheet
JP2002146505A (en) Hot dip tin-magnesium based plated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R151 Written notification of patent or utility model registration

Ref document number: 5428571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350