JP2012204349A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2012204349A
JP2012204349A JP2011064242A JP2011064242A JP2012204349A JP 2012204349 A JP2012204349 A JP 2012204349A JP 2011064242 A JP2011064242 A JP 2011064242A JP 2011064242 A JP2011064242 A JP 2011064242A JP 2012204349 A JP2012204349 A JP 2012204349A
Authority
JP
Japan
Prior art keywords
light
emitting device
light emitting
conversion member
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011064242A
Other languages
Japanese (ja)
Inventor
Kenichiro Tanaka
健一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011064242A priority Critical patent/JP2012204349A/en
Publication of JP2012204349A publication Critical patent/JP2012204349A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce color unevenness in a light-emitting device which emits light by mixing light in multiple colors.SOLUTION: A light-emitting device 1 comprises: a plurality of LEDs 3; a first translucent member 4 which mutually covers the LEDs 3; and a light-converting member 5 which directly covers a light-extracting surface of the first translucent member 4. The light-converting member 5 includes: regions each corresponding to the LEDs 3 and having a fluorescent material 6 which converts the wavelength of light emitted from the LEDs 3; and regions free of the fluorescent material 6. Light from the LEDs 3 and incident onto the regions having the fluorescent material 6 is emitted after being subjected to wavelength conversion by the fluorescent material 6. Light from the LEDs 3 and incident onto the regions free of the fluorescent material 6 is emitted as it is without being subjected to wavelength conversion. Thus, color unevenness of the emitted light can be reduced by appropriately setting the arrangement of the light-converting member 5.

Description

本発明は、LED(Light emitting diode)等の固体発光素子を用いた発光装置に関する。   The present invention relates to a light emitting device using a solid light emitting element such as an LED (Light emitting diode).

従来からLEDと蛍光体を用いて、複数色の光を混合して発光する発光装置が知られている(例えば、特許文献1参照)。このような発光装置は、例えば、図8に示されるように、青色光を発する複数のLED10と、LED10からの青色光が入射する面に設けられた蛍光体層20と、を備える。蛍光体層20は、LED10からの青色光により励起されて緑色光を発する緑色蛍光体21を含む領域と、LED10からの青色光により励起されて赤色光を発する赤色蛍光体22を含む領域と、から構成される。これら領域から発せられた緑色光及び赤色光は、緑色蛍光体21及び赤色蛍光体22により吸収されなかったLED20からの青色光と互いに混ざり合って白色光となり、蛍光体層20から導出される(光路を破線矢印で示す)。   2. Description of the Related Art Conventionally, a light emitting device that emits light by mixing light of a plurality of colors using an LED and a phosphor is known (for example, see Patent Document 1). For example, as shown in FIG. 8, such a light emitting device includes a plurality of LEDs 10 that emit blue light, and a phosphor layer 20 that is provided on a surface on which the blue light from the LEDs 10 is incident. The phosphor layer 20 includes a region including a green phosphor 21 that emits green light when excited by the blue light from the LED 10, a region including a red phosphor 22 that emits red light when excited by the blue light from the LED 10, and Consists of The green light and the red light emitted from these regions are mixed with the blue light from the LED 20 that has not been absorbed by the green phosphor 21 and the red phosphor 22 to become white light, and are derived from the phosphor layer 20 ( The optical path is indicated by a dashed arrow).

特開2008−123969号公報JP 2008-123969 A

しかしながら、上記特許文献1のような装置では、LED10の位置に対して緑色蛍光体21の位置と赤色蛍光体22の位置とが対応していないため、各々のLED10が励起する蛍光体にばらつきがある。そのため、各々のLED10に対応する位置から導出される白色光は、LED10毎に緑色光又は赤色光が強い白色光となる可能性があり、色むらを生じやすい。   However, in the device as described in Patent Document 1, since the position of the green phosphor 21 and the position of the red phosphor 22 do not correspond to the position of the LED 10, the phosphors excited by the respective LEDs 10 vary. is there. Therefore, the white light derived from the position corresponding to each LED 10 may become white light with strong green light or red light for each LED 10, and color unevenness is likely to occur.

本発明は、上記課題を解決するものであって、複数の固体発光素子を用いた場合における光照射の色むらを低減することができる発光装置を提供することを目的とする。   The present invention solves the above-described problems, and an object of the present invention is to provide a light-emitting device that can reduce color unevenness of light irradiation when a plurality of solid-state light-emitting elements are used.

本発明の発光装置は、複数の固体発光素子と、前記複数の固体発光素子を共通して被覆する第1の透光性部材と、前記第1の透光性部材の光導出面を、直接又は第1の透光性部材とは異なる第2の透光性部材若しくは空気層を介して被覆する光変換部材と、を備え、前記光変換部材は、前記複数の固体発光素子の一部又は全部に対応して、該固体発光素子から出射された光の波長を変換する蛍光体を有する領域を備えたことを特徴とする。   The light emitting device of the present invention includes a plurality of solid light emitting elements, a first light transmissive member that covers the plurality of solid light emitting elements in common, and a light guide surface of the first light transmissive member, directly or A second light transmissive member different from the first light transmissive member, or a light conversion member that covers through an air layer, wherein the light conversion member is a part or all of the plurality of solid state light emitting devices. Corresponding to the above, a region having a phosphor for converting the wavelength of light emitted from the solid-state light emitting device is provided.

前記蛍光体は、前記光変換部材の表面又は裏面又は内部に配されることが好ましい。   It is preferable that the phosphor is disposed on the front surface, the back surface, or the inside of the light conversion member.

前記蛍光体は、前記光変換部材の表面又は裏面に貼着された蛍光体シートから成ることが好ましい。   The phosphor is preferably composed of a phosphor sheet attached to the front surface or the back surface of the light conversion member.

本発光装置は、前記複数の固体発光素子間に形成され、該固体発光素子から出射された光を拡散する第1の光拡散部を備えることが好ましい。   The light emitting device preferably includes a first light diffusing unit that is formed between the plurality of solid state light emitting elements and diffuses light emitted from the solid state light emitting elements.

本発光装置は、前記光変換部材の光導出面を被覆し、前記複数の固体発光素子から出射された光を拡散する第2の光拡散部を備えることが好ましい。   The light emitting device preferably includes a second light diffusing unit that covers a light guide surface of the light converting member and diffuses light emitted from the plurality of solid state light emitting elements.

前記複数の固体発光素子は、アレイ状又はマトリクス状に配置されることが好ましい。   The plurality of solid state light emitting devices are preferably arranged in an array or a matrix.

前記光変換部材から導出される光の色は、光の三原色であることが好ましい。   The color of light derived from the light conversion member is preferably the three primary colors of light.

本発明の発光装置によれば、複数の固体発光素子の各々から出射された光は、それら固体発光素子に対応して設けられた光変換部材により波長変換されて光照射されるので、光変換部材の配置を適宜に設定しておくことで、照射光の色むらを低減することができる。   According to the light emitting device of the present invention, the light emitted from each of the plurality of solid state light emitting elements is subjected to light conversion after being wavelength-converted by the light conversion member provided corresponding to the solid state light emitting elements. By setting the arrangement of the members appropriately, uneven color of the irradiated light can be reduced.

(a)は本発明の第1の実施形態に係る発光装置の平面図、(b)は(a)のI−I線における断面図、(c)は(a)のII−II線における断面図。(A) is a top view of the light-emitting device which concerns on the 1st Embodiment of this invention, (b) is sectional drawing in the II line of (a), (c) is a cross section in the II-II line of (a). Figure. (a)(b)は、それぞれ上記実施形態の第1の変形例に係る発光装置の縦断面図。(A) (b) is a longitudinal cross-sectional view of the light-emitting device which concerns on the 1st modification of the said embodiment, respectively. (a)(b)は、それぞれ上記実施形態の第2の変形例に係る発光装置の縦断面図。(A) (b) is a longitudinal cross-sectional view of the light-emitting device which concerns on the 2nd modification of the said embodiment, respectively. (a)(b)(c)は、それぞれ上記実施形態の第3の変形例に係る発光装置の縦断面図。(A) (b) (c) is a longitudinal cross-sectional view of the light-emitting device which concerns on the 3rd modification of the said embodiment, respectively. 上記実施形態の第4の変形例に係る発光装置の縦断面図。The longitudinal cross-sectional view of the light-emitting device which concerns on the 4th modification of the said embodiment. 本発明の第2の実施形態に係る発光装置の分解斜視図。The disassembled perspective view of the light-emitting device which concerns on the 2nd Embodiment of this invention. 上記発光装置の断面図。Sectional drawing of the said light-emitting device. 従来の発光装置の縦断面図。The longitudinal cross-sectional view of the conventional light-emitting device.

本発明の第1の実施形態に係る発光装置について、図1乃至図5を参照して説明する。本発光装置は、固体発光素子としてLEDを用いている。   A light emitting device according to a first embodiment of the present invention will be described with reference to FIGS. This light-emitting device uses LEDs as solid-state light-emitting elements.

図1(a)(b)(c)に示されるように、発光装置1は、長尺状の配線基板2と、配線基板2上にアレイ状(線状)に配置された複数のLED3と、を備えた線状発光装置である。これらLED3は、等間隔に配置されており、すべて青色光を発する青色LEDとされる。LED3は、第1の透光性部材4により共通して被覆されており、第1の透光性部材4の光導出面は、光変換部材5により被覆されている。光変換部材5は、各々のLED3に一対一で対応して、LED3から出射された青色光の波長を変換する蛍光体6を有する領域と、蛍光体6を有していない領域と、を含む。蛍光体6は、LED3からの青色光を赤色光に波長変換する赤色蛍光体6(R:赤)と、LED3からの青色光を緑色光に波長変換する緑色蛍光体6(G:緑)と、から構成される。光変換部材5の赤色蛍光体6(R)を有する領域は、波長変換部7(R)となり、光変換部材5の緑色蛍光体6(G)を有する領域は、波長変換部7(G)となる。光変換部材5の蛍光体6を有していない領域は、青色光透過部7(B:青)となる。波長変換部7(R)、7(G)及び青色光透過部7(B)は、波長変換部7(R)−波長変換部7(G)−青色光透過部7(B)の並びが繰り返すパターンで、光変換部材5中において互いに隣接して連続的に配置されている。   As shown in FIGS. 1A, 1B, and 1C, a light emitting device 1 includes a long wiring board 2 and a plurality of LEDs 3 arranged in an array (line shape) on the wiring board 2. , A linear light emitting device. These LEDs 3 are arranged at equal intervals, and are all blue LEDs that emit blue light. The LEDs 3 are covered in common by the first light transmissive member 4, and the light lead-out surface of the first light transmissive member 4 is covered by the light conversion member 5. The light conversion member 5 includes a region having a phosphor 6 for converting the wavelength of blue light emitted from the LED 3 and a region not having the phosphor 6 in a one-to-one correspondence with each LED 3. . The phosphor 6 includes a red phosphor 6 (R: red) that converts the wavelength of blue light from the LED 3 into red light, and a green phosphor 6 (G: green) that converts the wavelength of the blue light from the LED 3 into green light. Is composed of. The area | region which has the red fluorescent substance 6 (R) of the light conversion member 5 becomes the wavelength conversion part 7 (R), and the area | region which has the green fluorescent substance 6 (G) of the light conversion member 5 is the wavelength conversion part 7 (G). It becomes. The area | region which does not have the fluorescent substance 6 of the light conversion member 5 becomes the blue light transmissive part 7 (B: blue). The wavelength conversion units 7 (R) and 7 (G) and the blue light transmission unit 7 (B) are arranged in the order of the wavelength conversion unit 7 (R), the wavelength conversion unit 7 (G), and the blue light transmission unit 7 (B). In a repeating pattern, the light conversion member 5 is continuously arranged adjacent to each other.

配線基板2は、270mm×30mmの大きさとされ、その厚みは、配線基板2の取り扱い時に撓み等の変形が起こらない程度の厚みとされる。配線基板2は、高い熱伝導率を有する材料を母材として構成され、例えば、アルミニウム等の金属、ガラスエポキシ等の樹脂、又はセラミック等の無機材料を母材として構成される。配線基板2は、そのLED実装面に高い光反射率を有する銀やアルミニウム等から構成された平坦な光反射部材(図示なし)を備える。ここでいう平坦とは、高低差が略75μm以下の凹凸を有した形状を指す。また、配線基板2は、LED3への給電を担う銅箔等から構成された配線パターン(図示なし)を備える。なお、配線基板2の大きさ、形状、及び構成材料は、上記のものに限定されない。また、配線基板2は、配線基板2を天井や壁等に取り付けるための保持構造(図示なし)を備える。   The wiring board 2 has a size of 270 mm × 30 mm, and the thickness thereof is such that deformation such as bending does not occur when the wiring board 2 is handled. The wiring board 2 is configured using a material having high thermal conductivity as a base material, and is configured using, for example, a metal such as aluminum, a resin such as glass epoxy, or an inorganic material such as ceramic as a base material. The wiring board 2 includes a flat light reflecting member (not shown) made of silver, aluminum or the like having a high light reflectance on the LED mounting surface. The term “flat” as used herein refers to a shape having irregularities with an elevation difference of about 75 μm or less. Further, the wiring board 2 includes a wiring pattern (not shown) made of a copper foil or the like that bears power supply to the LEDs 3. Note that the size, shape, and constituent materials of the wiring board 2 are not limited to those described above. Moreover, the wiring board 2 includes a holding structure (not shown) for attaching the wiring board 2 to a ceiling, a wall, or the like.

LED3は、略0.3mm四方の大きさとされ、窒化インジウムガリウム(InGaN)等の窒化物から構成されている。LED3は、略460nmにピーク波長を有する青色光を発する。LED3は、配線基板2の配線パターンに対してフェイスアップ実装されてもよいし、フリップチップ実装されてもよい。LED3をフェイスアップ実装する場合には、LED3は、配線パターン上にダイボンド接合され、金ワイヤ等により配線パターンとワイヤボンディングされる。LED3をフリップチップ実装する場合には、LED3は、金バンプや半田等を介して配線パターン上に接合される。なお、LED3の大きさ及び構成材料は、上記のものに限定されない。   The LED 3 has a size of about 0.3 mm square and is made of a nitride such as indium gallium nitride (InGaN). The LED 3 emits blue light having a peak wavelength at approximately 460 nm. The LED 3 may be mounted face-up on the wiring pattern of the wiring board 2 or may be flip-chip mounted. When the LED 3 is mounted face up, the LED 3 is die-bonded on the wiring pattern and wire-bonded to the wiring pattern with a gold wire or the like. When the LED 3 is flip-chip mounted, the LED 3 is bonded onto the wiring pattern via a gold bump, solder, or the like. In addition, the magnitude | size and constituent material of LED3 are not limited to said thing.

第1の透光性部材4は、透明シリコーン樹脂、透明エポキシ樹脂、透明ガラス等の透光性材料から構成される。第1の透光性部材4は、両端部が閉口して蓋部を形成した細長の樋状とされ、その凹部に複数のLED3をまとめて内含した状態で配線基板2上に固定されている。第1の透光性部材4の横断面を形成する半円の直径は、LED3の外接円直径の「第1の透光性部材4の屈折率」倍以上とされる。なお、第1の透光性部材4の形状は、樋状に限定されず、例えば、半楕円体面状とされてもよい。   The 1st translucent member 4 is comprised from translucent materials, such as a transparent silicone resin, a transparent epoxy resin, and transparent glass. The first translucent member 4 has an elongated bowl shape with both ends closed to form a lid, and is fixed on the wiring board 2 with a plurality of LEDs 3 included in the recess. Yes. The diameter of the semicircle forming the cross section of the first translucent member 4 is equal to or larger than the “refractive index of the first translucent member 4” times the circumscribed circle diameter of the LED 3. In addition, the shape of the 1st translucent member 4 is not limited to hook shape, For example, you may be made into semi-ellipsoid surface shape.

光変換部材5は、1.2〜1.7の屈折率を有する透光性材料から構成され、例えば、透明シリコーン樹脂から構成される。光変換部材5を構成する透光性材料の屈折率は、第1の透光性部材4を構成する透光性材料の屈折率よりも大きくされる。光変換部材5は、第1の透光性部材4の光導出面に密着する樋状とされ、0.5〜1mmの厚みを有するシートから構成される。光変換部材5の端部の厚みは、光変換部材5の他の部分の厚みよりも薄くされる。   The light conversion member 5 is comprised from the translucent material which has the refractive index of 1.2-1.7, for example, is comprised from transparent silicone resin. The refractive index of the translucent material constituting the light conversion member 5 is made larger than the refractive index of the translucent material constituting the first translucent member 4. The light conversion member 5 has a bowl shape that is in close contact with the light guide surface of the first light transmissive member 4 and is formed of a sheet having a thickness of 0.5 to 1 mm. The thickness of the end of the light conversion member 5 is made thinner than the thickness of the other part of the light conversion member 5.

発光装置1は、LED3の発光を制御する駆動ドライバ(図示なし)を備える。駆動ドライバは、スイッチやマイコン等から構成された調光装置を有し、商用電源に接続されると共に、配線パターンを介してLED3と電気的に接続されている。駆動ドライバは、商用電源から得た電力のLED3への供給を制御することにより、LED3をオン/オフ制御及び調光制御する。駆動ドライバは、複数設けられ、波長変換部7(R)、7(G)及び青色光透過部7(B)の各々に対応しているLED3をそれぞれ一括して制御する3種類から構成される。   The light emitting device 1 includes a drive driver (not shown) that controls the light emission of the LED 3. The drive driver has a light control device composed of a switch, a microcomputer, and the like, and is connected to a commercial power source and is electrically connected to the LED 3 via a wiring pattern. The drive driver performs on / off control and dimming control of the LED 3 by controlling supply of power obtained from the commercial power source to the LED 3. A plurality of drive drivers are provided, and are composed of three types that collectively control the LEDs 3 corresponding to the wavelength conversion units 7 (R) and 7 (G) and the blue light transmission unit 7 (B), respectively. .

上記のように構成された本実施形態の発光装置1の作用を説明する。各々のLED3から出射された青色光は、それぞれのLED3に対応して設けられた波長変換部7(R)又は波長変換部7(G)又は青色光透過部7(B)のいずれか1つに入射する。波長変換部7(R)に入射したLED3からの青色光は、赤色蛍光体6(R)により赤色光に波長変換された後、光変換部材5から導出される。波長変換部7(G)に入射したLED3からの青色光は、緑色蛍光体6(G)により緑色光に波長変換された後、光変換部材5から導出される。青色光透過部7(B)に入射したLED3からの青色光は、そこを波長変換されることなく透過し、青色光のまま光変換部材5から導出される。これにより、光変換部材5から導出される光の色は、赤色、緑色、青色から成る光の三原色となる。これら赤色光、緑色光、青色光は、波長変換部7(R)、7(G)及び青色光透過部7(B)が互いに隣接して連続的に配置されているため、容易に混合し合って色むらの少ない白色光を生み出す。   The operation of the light emitting device 1 of the present embodiment configured as described above will be described. The blue light emitted from each LED 3 is one of the wavelength conversion unit 7 (R), the wavelength conversion unit 7 (G), or the blue light transmission unit 7 (B) provided corresponding to each LED 3. Is incident on. The blue light from the LED 3 incident on the wavelength conversion unit 7 (R) is converted into red light by the red phosphor 6 (R) and then led out from the light conversion member 5. The blue light from the LED 3 incident on the wavelength conversion unit 7 (G) is converted into green light by the green phosphor 6 (G) and then derived from the light conversion member 5. The blue light from the LED 3 that has entered the blue light transmitting portion 7 (B) passes through the LED 3 without being wavelength-converted, and is led out from the light conversion member 5 as blue light. Thereby, the color of the light led out from the light conversion member 5 becomes the three primary colors of light composed of red, green, and blue. These red light, green light, and blue light are easily mixed because the wavelength converting portions 7 (R), 7 (G) and the blue light transmitting portion 7 (B) are continuously arranged adjacent to each other. Together, it produces white light with little color unevenness.

光変換部材5から導出される白色光の色度は、駆動ドライバを用いて特定のLED3をオン/オフ制御及び調光制御することにより自在に調整可能である。例えば、波長変換部7(R)に対応しているLED3の出力を上げて、波長変換部7(R)から導出される赤色光を増やすことにより、光変換部材5から導出される白色光を赤みがかった暖かみのある白色光とすることができる。また、光変換部材5から導出される白色光の色度や明るさは、蛍光体6の種類、濃度、他の蛍光体との濃度比等を変化させることによっても調整することができる。   The chromaticity of the white light derived from the light conversion member 5 can be freely adjusted by performing on / off control and dimming control of a specific LED 3 using a drive driver. For example, by increasing the output of the LED 3 corresponding to the wavelength conversion unit 7 (R) and increasing the red light derived from the wavelength conversion unit 7 (R), the white light derived from the light conversion member 5 is increased. It can be white light with reddish warmth. Further, the chromaticity and brightness of the white light derived from the light conversion member 5 can be adjusted by changing the type and concentration of the phosphor 6, the concentration ratio with other phosphors, and the like.

また、光変換部材5が樋状とされていることにより、LED3から出射された光の多くは、光変換部材5に対して直角に入射する(図1(c)において破線矢印で示された光路を参照)。そのため、波長変換部7(R)、7(G)を伝搬する光の光路長差が小さくなり、LED3からの青色光は、LED3からの照射角によらず同程度波長変換されることになる。これにより、波長変換部7(R)、7(G)から導出される光の色むらを低減することができる。   In addition, since the light conversion member 5 has a bowl shape, most of the light emitted from the LED 3 is incident on the light conversion member 5 at a right angle (indicated by broken arrows in FIG. 1C). See light path). Therefore, the optical path length difference of the light propagating through the wavelength conversion units 7 (R) and 7 (G) is reduced, and the blue light from the LED 3 is converted to the same wavelength regardless of the irradiation angle from the LED 3. . Thereby, the color nonuniformity of the light derived | led-out from the wavelength conversion parts 7 (R) and 7 (G) can be reduced.

ところで、図8に示される上記特許文献1のような装置では、LEDの側方が枠体や光を反射するリフレクタ等により遮蔽されているため、装置の側方に光を照射することができない。これに対し、発光装置1では、光変換部材5が樋状とされていることにより、LED3の側方にも光変換部材5が配置される。これにより、発光装置1は、その側方にも光を照射することができると共に、光変換部材5の樋状構造の曲率を調整することにより、この側方へ照射する光の配光を制御することができる。   By the way, in the device as in Patent Document 1 shown in FIG. 8, the side of the LED is shielded by a frame, a reflector that reflects light, or the like, so that the side of the device cannot be irradiated with light. . On the other hand, in the light emitting device 1, the light conversion member 5 is also arranged on the side of the LED 3 because the light conversion member 5 has a bowl shape. Thereby, the light-emitting device 1 can irradiate light to the side, and controls the light distribution of the light radiated to the side by adjusting the curvature of the bowl-shaped structure of the light conversion member 5. can do.

波長変換部7(R)、7(G)に入射したLED3からの青色光は、それぞれ赤色蛍光体6(R)及び緑色蛍光体6(G)により波長変換されると共に、これらの蛍光体分子に衝突して種々の方向に散乱される。これにより、波長変換部7(R)、7(G)から導出される赤色光及び緑色光の輝度むらを低減することが可能となり、その結果、波長変換部7(R)、7(G)をそれぞれ面状光源化することができる。一方、青色光透過部7(B)には蛍光体が配されていないため、青色光透過部7(B)から導出される青色光の輝度むらを低減することができない。そこで、青色光透過部7(B)に光を散乱させる微粒子を分散させてもよい。これにより、青色光透過部7(B)から導出される青色光の輝度むらを低減することが可能となり、青色光透過部7(B)を面状光源化することができる。   The blue light from the LED 3 incident on the wavelength converters 7 (R) and 7 (G) is converted in wavelength by the red phosphor 6 (R) and the green phosphor 6 (G), respectively, and these phosphor molecules And is scattered in various directions. Thereby, it becomes possible to reduce the luminance unevenness of the red light and the green light derived from the wavelength conversion units 7 (R) and 7 (G), and as a result, the wavelength conversion units 7 (R) and 7 (G). Can be made into planar light sources. On the other hand, since the phosphor is not disposed in the blue light transmitting portion 7 (B), the luminance unevenness of the blue light derived from the blue light transmitting portion 7 (B) cannot be reduced. Therefore, fine particles that scatter light may be dispersed in the blue light transmitting portion 7 (B). Thereby, it is possible to reduce the luminance unevenness of the blue light derived from the blue light transmitting portion 7 (B), and the blue light transmitting portion 7 (B) can be made into a planar light source.

青色光透過部7(B)は、LED3から出射された青色光により励起されてLED3からの青色光とは色度が異なる青色光を発する青色蛍光体を備えていてもよい。これにより、所望の色度を有する青色光を得ることができると共に、LED3の光学特性ばらつきに起因する青色光ばらつきを補正することができる。   The blue light transmitting portion 7 (B) may include a blue phosphor that emits blue light that is excited by the blue light emitted from the LED 3 and has a chromaticity different from that of the blue light from the LED 3. As a result, blue light having a desired chromaticity can be obtained, and variations in blue light caused by variations in the optical characteristics of the LEDs 3 can be corrected.

また、光変換部材5を構成する透光性材料の屈折率を、第1の透光性部材4を構成する透光性材料の屈折率よりも大きくすることにより、LED3から出射された青色光が、これらの部材の界面において全反射されるのを防ぐことができる。また、光変換部材5で波長変換された光の一部や光変換部材5で散乱された光の一部、そして光変換部材5と外界(大気)との界面で全反射された光の一部を、上記界面において全反射させて、発光装置1の外部方向へ向かわせることができる。これらにより、発光装置1からの光取り出し効率を向上させることができる。   Further, the blue light emitted from the LED 3 is made by making the refractive index of the translucent material constituting the light converting member 5 larger than the refractive index of the translucent material constituting the first translucent member 4. However, total reflection at the interface between these members can be prevented. Further, a part of the light wavelength-converted by the light conversion member 5, a part of the light scattered by the light conversion member 5, and one of the light totally reflected at the interface between the light conversion member 5 and the outside (atmosphere). The part can be totally reflected at the interface and directed toward the outside of the light emitting device 1. Thus, the light extraction efficiency from the light emitting device 1 can be improved.

上記界面において全反射されずに、発光装置1の内部方向へ戻ってきた光(戻り光)は、配線基板2のLED実装面に光反射部材が設けられているため、この光反射部材により反射されて、再び発光装置1の外部方向へ向かい得る。これにより、発光装置1の光取り出し効率を向上させることができる。   The light (returned light) that is not totally reflected at the interface and returns to the inner direction of the light emitting device 1 is reflected by the light reflecting member because the LED mounting surface of the wiring board 2 is provided with the light reflecting member. Then, it can be directed again toward the outside of the light emitting device 1. Thereby, the light extraction efficiency of the light emitting device 1 can be improved.

また、配線基板2が熱伝導率の高い材料を母材として構成されていることにより、LED3の発光に伴って生じる熱や蛍光体6による波長変換に伴って生じる熱を、配線基板2を通じて外界へ放熱することができる。これにより、発光装置1内部の異常な温度上昇を防ぐことができるため、LED3の寿命を延ばすことが可能となると共に、蛍光体6の熱劣化を抑制することができる。   In addition, since the wiring board 2 is configured using a material having high thermal conductivity as a base material, heat generated by light emission of the LED 3 and heat generated by wavelength conversion by the phosphor 6 are transmitted through the wiring board 2 to the outside world. Can dissipate heat. Thereby, since the abnormal temperature rise inside the light-emitting device 1 can be prevented, the lifetime of the LED 3 can be extended, and thermal deterioration of the phosphor 6 can be suppressed.

LED3の側方には、光変換部材5の端部が位置する。光変換部材5の端部にはLED3からの青色光が行き届きにくいため、光変換部材5の端部では、蛍光体6による波長変換頻度が低く、その結果、波長変換に伴って生じる熱による蛍光体6の熱劣化が起こりにくい。そのため、LED3からの青色光は、光変換部材5の他の部分と比較して、光変換部材5の端部においてより効率良く波長変換され、色むらを与える可能性がある。そこで、光変換部材5の端部の厚みを、光変換部材5の他の部分の厚みよりも薄くすることにより、光変換部材5の端部に含まれる蛍光体6の量を減らしてもよい。これにより、光変換部材5の端部における波長変換効率の向上効果が相殺され、色むらの発生を低減することができる。   The end of the light conversion member 5 is located on the side of the LED 3. Since the blue light from the LED 3 is difficult to reach the end portion of the light conversion member 5, the wavelength conversion frequency by the phosphor 6 is low at the end portion of the light conversion member 5, and as a result, the fluorescence due to heat generated by the wavelength conversion Thermal degradation of the body 6 is difficult to occur. Therefore, the blue light from the LED 3 may be wavelength-converted more efficiently at the end of the light conversion member 5 than the other parts of the light conversion member 5 and may give color unevenness. Therefore, the amount of the phosphor 6 included in the end portion of the light conversion member 5 may be reduced by making the thickness of the end portion of the light conversion member 5 thinner than the thickness of other portions of the light conversion member 5. . Thereby, the improvement effect of the wavelength conversion efficiency in the edge part of the light conversion member 5 is canceled, and generation | occurrence | production of color unevenness can be reduced.

次に、本実施形態の第1の変形例に係る発光装置を図2(a)(b)に示す。図2(a)に示される発光装置1は、第1の透光性部材4と光変換部材5との間に、第1の透光性部材4とは異なる第2の透光性部材41を備える。第2の透光性部材41は、第1の透光性部材4や光変換部材5と同様の透光性材料から構成される。第2の透光性部材41を構成する透光性材料の屈折率は、第1の透光性部材4を構成する透光性材料の屈折率よりも大きく、かつ光変換部材5を構成する透光性材料の屈折率よりも小さくされる。これにより、LED3から出射された青色光の第1の透光性部材4と第2の透光性部材41との界面における全反射及び第2の透光性部材41と光変換部材5との界面における全反射を防止することができる。   Next, a light emitting device according to a first modification of the present embodiment is shown in FIGS. The light emitting device 1 shown in FIG. 2A has a second light transmissive member 41 different from the first light transmissive member 4 between the first light transmissive member 4 and the light converting member 5. Is provided. The second translucent member 41 is made of a translucent material similar to the first translucent member 4 and the light conversion member 5. The refractive index of the translucent material constituting the second translucent member 41 is larger than the refractive index of the translucent material constituting the first translucent member 4 and constitutes the light conversion member 5. It is made smaller than the refractive index of a translucent material. Thereby, the total reflection in the interface of the 1st translucent member 4 of the blue light radiate | emitted from LED3, and the 2nd translucent member 41 and the 2nd translucent member 41 and the light conversion member 5 are carried out. Total reflection at the interface can be prevented.

図1に示される発光装置1では、戻り光の一部を、第1の透光性部材4内部の空気層と第1の透光性部材4との界面及び第1の透光性部材4と光変換部材5との界面の2カ所において全反射することにより、発光装置1の外部方向へ向かわせることができる。これに対し、本変形例では、戻り光の一部を、第1の透光性部材4内部の空気層と第1の透光性部材4との界面、第1の透光性部材4と第2の透光性部材41との界面、第2の透光性部材41と光変換部材5との界面の3カ所において全反射することができる。そのため、本変形例によれば、図1に示される発光装置1と比較して、より発光装置1からの光取り出し効率を向上させることができる。   In the light emitting device 1 shown in FIG. 1, a part of the return light is separated from the air layer inside the first light transmissive member 4 and the interface between the first light transmissive member 4 and the first light transmissive member 4. By making total reflection at two points on the interface between the light-emitting device 5 and the light-converting member 5, the light-emitting device 1 can be directed outward. On the other hand, in this modification, a part of the return light is separated from the interface between the air layer inside the first translucent member 4 and the first translucent member 4, the first translucent member 4 and Total reflection can be performed at three places, that is, the interface with the second light transmissive member 41 and the interface between the second light transmissive member 41 and the light conversion member 5. Therefore, according to this modification, the light extraction efficiency from the light emitting device 1 can be further improved as compared with the light emitting device 1 shown in FIG.

図2(b)に示される発光装置1は、第1の透光性部材4と光変換部材5との間に、空気層8を備える。これにより、空気層8と光変換部材5との界面における光の全反射を防止することができると共に、戻り光の多くを、空気層8と光変換部材5との界面において全反射することができる。そのため、発光装置1の光取り出し効率を向上させることができる。また、空気層8は、断熱作用を有するため、光変換部材5において蛍光体6による波長変換に伴って生じた熱が第1の透光性部材4に伝播されるのを防ぐことにより、第1の透光性部材4の熱劣化を抑制することができる。また、空気層8は、LED3の発光に伴って生じた熱が光変換部材5に伝播されるのを防ぐことにより、光変換部材5の熱劣化及び蛍光体6の熱劣化を抑制することもできる。   The light emitting device 1 shown in FIG. 2B includes an air layer 8 between the first light transmissive member 4 and the light conversion member 5. Thereby, total reflection of light at the interface between the air layer 8 and the light conversion member 5 can be prevented, and much of the return light can be totally reflected at the interface between the air layer 8 and the light conversion member 5. it can. Therefore, the light extraction efficiency of the light emitting device 1 can be improved. Further, since the air layer 8 has a heat insulating action, the heat generated by the wavelength conversion by the phosphor 6 in the light conversion member 5 is prevented from being propagated to the first light transmissive member 4, thereby Thermal degradation of the one translucent member 4 can be suppressed. Moreover, the air layer 8 can also suppress the thermal degradation of the light conversion member 5 and the phosphor 6 by preventing the heat generated with the light emission of the LED 3 from being propagated to the light conversion member 5. it can.

次に、本実施形態の第2の変形例に係る発光装置を図3(a)(b)に示す。図3(a)に示される発光装置1は、光変換部材5の表面(光導出面側)に蛍光体層61を備える。蛍光体層61は、赤色蛍光体6(R)を含む領域と、緑色蛍光体6(G)を含む領域と、蛍光体6を含まない領域と、を備え、これら領域は、それぞれ各々のLED3に対応する位置に互いに隣接して連続的に配置されている。図3(b)に示される発光装置1は、上記と同様に構成された蛍光体層61を、光変換部材5の裏面(光入射面側)に備える。このような光変換部材5の表面に配置された蛍光体層61や光変換部材5の裏面に配置された蛍光体層61は、スクリーン印刷等のパターニング塗設により簡便に設けることができる。従って、本変形例によれば、図1に示される発光装置1と比較して、より簡便に発光装置1を製造することができる。   Next, a light emitting device according to a second modification of the present embodiment is shown in FIGS. The light emitting device 1 shown in FIG. 3A includes a phosphor layer 61 on the surface of the light conversion member 5 (light deriving surface side). The phosphor layer 61 includes a region including the red phosphor 6 (R), a region including the green phosphor 6 (G), and a region not including the phosphor 6, and each of these regions includes each LED 3. Are continuously arranged adjacent to each other at positions corresponding to. The light emitting device 1 illustrated in FIG. 3B includes a phosphor layer 61 configured in the same manner as described above on the back surface (light incident surface side) of the light conversion member 5. The phosphor layer 61 disposed on the surface of the light conversion member 5 and the phosphor layer 61 disposed on the back surface of the light conversion member 5 can be easily provided by patterning coating such as screen printing. Therefore, according to this modification, the light emitting device 1 can be more easily manufactured as compared with the light emitting device 1 shown in FIG.

蛍光体層61は、光変換部材5の表面に貼着された蛍光体シート、又は光変換部材5の裏面に貼着された蛍光体シートから構成されてもよい。これにより、図3に示される発光装置1より更に簡便に発光装置1を製造することができる。   The phosphor layer 61 may be composed of a phosphor sheet attached to the surface of the light conversion member 5 or a phosphor sheet attached to the back surface of the light conversion member 5. Thereby, the light-emitting device 1 can be manufactured more simply than the light-emitting device 1 shown in FIG.

次に、本実施形態の第3の変形例に係る発光装置を図4(a)(b)(c)に示す。図4(a)に示される発光装置1は、互いに隣接するLED3に挟まれた領域の配線基板2上に、第1の光拡散部9aを備える。図4(b)に示される発光装置1は、互いに隣接するLED3に挟まれた領域に位置する第1の透光性部材4の光導出面に、第1の光拡散部9aを備える。図4(c)に示される発光装置1は、互いに隣接するLED3に挟まれた領域に位置する光変換部材5の光入射面に、第1の光拡散部9aを備える。これら第1の光拡散部9aは、凹凸形状から構成されており、LED3からLED3の側方に出射された青色光や戻り光を拡散して発光装置1の外部方向へ向かわせる。これにより、光量が少なくなりがちなLED3に挟まれた領域の光量を増加させることが可能となるため、発光装置1の輝度むら及び色むらを低減することができる。なお、第1の光拡散部9aは、必ずしも凸凹形状から構成される必要はなく、例えば、光拡散粒子から構成されてもよい。   Next, a light emitting device according to a third modification of the present embodiment is shown in FIGS. The light emitting device 1 shown in FIG. 4A includes a first light diffusion portion 9a on a wiring board 2 in a region sandwiched between adjacent LEDs 3. The light emitting device 1 shown in FIG. 4B includes a first light diffusing portion 9a on the light guide surface of the first light transmissive member 4 located in a region sandwiched between adjacent LEDs 3. The light emitting device 1 shown in FIG. 4C includes a first light diffusion portion 9a on the light incident surface of the light conversion member 5 located in a region sandwiched between adjacent LEDs 3. These first light diffusing portions 9 a are formed in a concavo-convex shape, and diffuse blue light and return light emitted from the LED 3 to the side of the LED 3 so as to be directed toward the outside of the light emitting device 1. As a result, it is possible to increase the amount of light in the region sandwiched between the LEDs 3 where the amount of light tends to be small, so that it is possible to reduce uneven brightness and uneven color of the light emitting device 1. In addition, the 1st light-diffusion part 9a does not necessarily need to be comprised from uneven shape, for example, may be comprised from light-diffusion particle | grains.

次に、本実施形態の第4の変形例に係る発光装置を図5に示す。図5に示される発光装置1は、光変換部材5の光導出面を被覆する第2の光拡散部9bを備える。第2の光拡散部9bは、例えば、粒子状物質が分散された透光性材料から構成される。この場合、粒子状物質としては、例えば、二酸化ケイ素やセラミックが用いられ、透光性材料としては、例えば、透明ガラス、透明アクリル樹脂が用いられる。または、第2の光拡散部9bは、その表面又はその裏面の少なくとも一方に、フロスト加工等によって凹凸が形成された上記透光性材料から構成される。第2の光拡散部9bは、50%以下の直線透過率を有することが好ましい。第2の光拡散部9bは、光変換部材5から導出された白色光を種々の方向に拡散する。これにより、図1に示される発光装置1と比較して、発光装置1から導出される白色光の色むら及び輝度むらをより低減することができる。また、第2の光拡散部9bを比較的硬度が高い透明ガラスや透明アクリル樹脂等から構成した場合には、第2の光拡散部9bを発光装置1を衝撃等から保護する外殻部材としても機能させることができる。なお、第2の光拡散部9bは、本変形例においては、光変換部材5の光導出面との間に隙間を設けて配置されているが、光変換部材5の光導出面に密着して配置されてもよい。   Next, a light emitting device according to a fourth modification of the present embodiment is shown in FIG. The light emitting device 1 shown in FIG. 5 includes a second light diffusing portion 9 b that covers the light guide surface of the light conversion member 5. The second light diffusing unit 9b is made of, for example, a light transmissive material in which particulate matter is dispersed. In this case, for example, silicon dioxide or ceramic is used as the particulate material, and for example, transparent glass or transparent acrylic resin is used as the translucent material. Or the 2nd light-diffusion part 9b is comprised from the said translucent material by which the unevenness | corrugation was formed in at least one of the surface or the back surface by frost processing etc. The second light diffusion portion 9b preferably has a linear transmittance of 50% or less. The second light diffusing unit 9b diffuses the white light derived from the light conversion member 5 in various directions. Thereby, compared with the light-emitting device 1 shown in FIG. 1, the color unevenness and luminance unevenness of the white light derived from the light-emitting device 1 can be further reduced. When the second light diffusing portion 9b is made of transparent glass or transparent acrylic resin having a relatively high hardness, the second light diffusing portion 9b is used as an outer shell member that protects the light emitting device 1 from an impact or the like. Can also work. In addition, in this modification, the second light diffusion portion 9b is disposed with a gap between it and the light derivation surface of the light conversion member 5, but is disposed in close contact with the light derivation surface of the light conversion member 5. May be.

上述した本実施形態及びその変形例によれば、色むら及び輝度むらが低減された白色光を発することができ、しかもその白色光の色度を調節することができる線状発光装置1を得ることができる。また、発光装置1は、装置の側方にも配光制御可能な白色光を発することができる。   According to the above-described embodiment and its modification, the linear light-emitting device 1 that can emit white light with reduced color unevenness and brightness unevenness and can adjust the chromaticity of the white light is obtained. be able to. Further, the light emitting device 1 can emit white light that can be subjected to light distribution control on the side of the device.

次に、本発明の第2の実施形態に係る発光装置について、図6及び図7を参照して説明する。発光装置11は、矩形状の配線基板2と、配線基板2上にマトリクス状(面状)に配置された複数のLED3と、を備えた面状発光装置である。これらLED3は、等間隔を置いて縦5個×横6個のマトリクス状に配置されており、すべて青色光を発する青色LEDとされる。LED3は、矩形状の第1の透光性部材4により共通して被覆されており、第1の透光性部材4の光導出面には、光変換部材5が固着される。光変換部材5は、第1の透光性部材4の光導出面とほぼ同じ大きさとされ、光入射面及び光導出面の両面が開口した矩形状の枠体と、この枠体の内部を縦5個×横6個の格子状に仕切る帯状の板と、から構成される。この帯状の板は、その表面に高い光反射率を有する銀やアルミニウム等から構成された平坦な光反射部材(図示なし)を備える。各々の格子は、それぞれ光導出面側が100%開口した逆四角錐台形状となっており(図7参照)、各々のLED3に対応する位置に配置されている。各々の格子には、赤色蛍光体6(R)が分散された透光性材料から構成される波長変換部7(R)、又は緑色蛍光体6(G)が分散された透光性材料から構成される波長変換部7(G)、又は透光性材料のみから構成される青色光透過部7(B)が充填される。透光性材料は、例えば、シリコーン樹脂から構成される。これら波長変換部7(R)、7(G)及び青色光透過部7(B)は、それぞれ10個ずつ配され、光変換部材5内において一様に分布されている。なお、LED3の数及び配置は、図例のものに限定されない。また、光変換部材5の構造は、本実施形態のものに限定されず、例えば、その格子の形状が光導出面側が100%開口となった逆六角錐台形状とされてもよい。更に、波長変換部7(R)、7(G)及び青色光透過部7(B)の配置は、本実施形態のものに限定されない。   Next, a light emitting device according to a second embodiment of the present invention will be described with reference to FIGS. The light emitting device 11 is a planar light emitting device including a rectangular wiring board 2 and a plurality of LEDs 3 arranged in a matrix (planar shape) on the wiring board 2. These LEDs 3 are arranged in a matrix of 5 × 6 horizontally at equal intervals, and are all blue LEDs that emit blue light. The LEDs 3 are commonly covered with a rectangular first light transmissive member 4, and a light conversion member 5 is fixed to the light guide surface of the first light transmissive member 4. The light conversion member 5 is approximately the same size as the light guide surface of the first light transmissive member 4, and has a rectangular frame body in which both the light incident surface and the light guide surface are open, and the inside of the frame member 5 in the vertical direction. It is comprised from the strip | belt-shaped board partitioned off in a grid | lattice form of piece x 6 pieces. This belt-like plate is provided with a flat light reflecting member (not shown) made of silver, aluminum or the like having a high light reflectance on the surface thereof. Each grating has an inverted quadrangular pyramid shape with 100% opening on the light exit surface side (see FIG. 7), and is arranged at a position corresponding to each LED 3. Each grating includes a wavelength conversion unit 7 (R) made of a translucent material in which red phosphor 6 (R) is dispersed, or a translucent material in which green phosphor 6 (G) is dispersed. The wavelength conversion unit 7 (G) configured or the blue light transmission unit 7 (B) configured only from the translucent material is filled. The translucent material is made of, for example, a silicone resin. Ten wavelength conversion units 7 (R) and 7 (G) and 10 blue light transmission units 7 (B) are arranged in each of the light conversion members 5. In addition, the number and arrangement of the LEDs 3 are not limited to those illustrated. Further, the structure of the light conversion member 5 is not limited to that of the present embodiment, and for example, the shape of the grating may be an inverted hexagonal frustum shape in which the light exit surface side is 100% open. Furthermore, the arrangement of the wavelength conversion units 7 (R) and 7 (G) and the blue light transmission unit 7 (B) is not limited to that of the present embodiment.

発光装置11は、配線基板2上におけるLED3の配置、光変換部材5の構造、及び波長変換部7(R)、7(G)及び青色光透過部7(B)の形態が異なる以外は、図1に示される発光装置1と同一の構成を備える。   The light emitting device 11 is different except that the arrangement of the LEDs 3 on the wiring board 2, the structure of the light converting member 5, and the forms of the wavelength converting portions 7 (R), 7 (G) and the blue light transmitting portion 7 (B) are different. It has the same configuration as the light emitting device 1 shown in FIG.

上記のように構成された本実施形態の発光装置11の作用を説明する。各々のLED3から出射された青色光は、それぞれのLED3に対応して配置された波長変換部7(R)又は波長変換部7(G)又は青色光透過部7(B)のいずれか1つに入射し、赤色光又は緑色光又は青色光となって発光装置11から導出される。ここで、波長変換部7(R)、7(G)及び青色光透過部7(B)が、光変換部材5内において互いに隣接して一様に分布されているため、これら赤色光、緑色光、青色光は、容易に混ざり合って色むらの少ない白色光となる。   The operation of the light emitting device 11 of the present embodiment configured as described above will be described. The blue light emitted from each LED 3 is either one of the wavelength conversion unit 7 (R), the wavelength conversion unit 7 (G), or the blue light transmission unit 7 (B) arranged corresponding to each LED 3. Is emitted from the light emitting device 11 as red light, green light, or blue light. Here, since the wavelength conversion units 7 (R) and 7 (G) and the blue light transmission unit 7 (B) are uniformly distributed adjacent to each other in the light conversion member 5, these red light, green Light and blue light are easily mixed and become white light with little color unevenness.

光変換部材5の各々の格子が逆四角錐台形状とされ、その斜面に光反射部材が設けられているため、波長変換部7(R)、7(G)及び青色光透過部7(B)で生じた戻り光の一部を、発光装置11の外部方向へ向かわせることができる(図7の破線矢印参照)。これにより、発光装置11の光取り出し効率を向上させることができる。   Since each grating | lattice of the light conversion member 5 is made into a reverse quadrangular pyramid shape, and the light reflection member is provided in the slope, the wavelength conversion parts 7 (R) and 7 (G) and the blue light transmission part 7 (B ) Can be directed to the outside of the light emitting device 11 (see the broken line arrow in FIG. 7). Thereby, the light extraction efficiency of the light emitting device 11 can be improved.

上述した本実施形態によれば、色むら及び輝度むらが低減された白色光を発することができ、しかもその白色光の色度を調節することができる面状発光装置11を得ることができる。   According to the above-described embodiment, it is possible to obtain the planar light emitting device 11 that can emit white light with reduced color unevenness and brightness unevenness and can adjust the chromaticity of the white light.

なお、本発明に係る発光装置は、上記実施形態に限定されず、種々の変形が可能である。例えば、光変換部材は、本実施形態においては、複数の固体発光素子の一部に対応して蛍光体を備えた構成とされているが、すべての固体発光素子に対応して蛍光体を備えた構成とされてもよい。また、固体発光素子は、本実施形態においては青色光を発するLEDとされるが、これに限定されず、緑色光、青緑色光、青紫色光、紫色光、又は紫外光を発するLEDとされてもよいし、有機EL素子のようなLED以外の固体発光素子とされてもよい。固体発光素子を青紫色光、紫色光、又は紫外光を発するLEDから構成した場合には、これらの視感度の低い光を直接白色光生成に利用することは困難なため、すべての固体発光素子に対応して蛍光体を設け、蛍光体により波長変換された光を白色光生成に利用する。また、固体発光素子は、必ずしも1種類の固体発光素子から構成される必要はなく、複数種類の固体発光素子から構成されてもよい。また、本実施形態においては、1つの固体発光素子に対して1種の蛍光体が配置されているが、1つの固体発光素子に対して複数種の蛍光体が配置されてもよいし、複数の固体発光素子に対して1つの蛍光体が配置されてもよい。また、発光装置は白色光以外の光を照射する構成とされてもよい。更に、第1の透光性部材は、本実施形態においては、すべての固体発光素子を共通して被覆しているが、各々の固体発光素子を個別に被覆してもよいし、特定の固体発光素子を複数個ずつ被覆してもよい。   The light emitting device according to the present invention is not limited to the above embodiment, and various modifications can be made. For example, in this embodiment, the light conversion member is configured to include a phosphor corresponding to a part of the plurality of solid state light emitting elements, but includes a phosphor corresponding to all the solid state light emitting elements. The configuration may be different. Further, in the present embodiment, the solid light-emitting element is an LED that emits blue light, but is not limited thereto, and is an LED that emits green light, blue-green light, blue-violet light, violet light, or ultraviolet light. Alternatively, a solid light emitting element other than an LED such as an organic EL element may be used. When the solid-state light emitting device is composed of LEDs emitting blue-violet light, violet light, or ultraviolet light, it is difficult to directly use these low-viscosity light for white light generation. A phosphor is provided corresponding to the above, and light converted in wavelength by the phosphor is used for white light generation. Further, the solid light-emitting element does not necessarily need to be composed of one type of solid light-emitting element, and may be composed of a plurality of types of solid-state light-emitting elements. In the present embodiment, one type of phosphor is disposed for one solid-state light emitting element, but a plurality of types of phosphors may be disposed for one solid-state light emitting element. One phosphor may be arranged for each solid-state light emitting device. The light emitting device may be configured to emit light other than white light. Further, in the present embodiment, the first translucent member covers all the solid light emitting elements in common, but each solid light emitting element may be individually coated, or a specific solid A plurality of light emitting elements may be covered one by one.

1、11 発光装置
3 固体発光素子(LED)
4 第1の透光性部材
41 第2の透光性部材
5 光変換部材
6 蛍光体
6(R) 赤色蛍光体
6(G) 緑色蛍光体
8 空気層
9a 第1の光拡散部
9b 第2の光拡散部
1, 11 Light emitting device 3 Solid light emitting element (LED)
4 First translucent member 41 Second translucent member 5 Light converting member 6 Phosphor 6 (R) Red phosphor 6 (G) Green phosphor 8 Air layer 9 a First light diffusion portion 9 b Second Light diffusion part

Claims (7)

複数の固体発光素子と、
前記複数の固体発光素子を共通して被覆する第1の透光性部材と、
前記第1の透光性部材の光導出面を、直接又は第1の透光性部材とは異なる第2の透光性部材若しくは空気層を介して被覆する光変換部材と、を備え、
前記光変換部材は、前記複数の固体発光素子の一部又は全部に対応して、該固体発光素子から出射された光の波長を変換する蛍光体を有する領域を備えたことを特徴とする発光装置。
A plurality of solid state light emitting devices;
A first translucent member that covers the plurality of solid state light emitting elements in common;
A light conversion member that covers the light guiding surface of the first light transmissive member directly or via a second light transmissive member or an air layer different from the first light transmissive member,
The light conversion member includes a region having a phosphor corresponding to a part or all of the plurality of solid state light emitting elements and converting a wavelength of light emitted from the solid state light emitting elements. apparatus.
前記蛍光体は、前記光変換部材の表面又は裏面又は内部に配されることを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the phosphor is disposed on a front surface, a back surface, or an inside of the light conversion member. 前記蛍光体は、前記光変換部材の表面又は裏面に貼着された蛍光体シートから成ることを特徴とする請求項2に記載の発光装置。   The light emitting device according to claim 2, wherein the phosphor is made of a phosphor sheet attached to a front surface or a back surface of the light conversion member. 前記複数の固体発光素子間に形成され、該固体発光素子から出射された光を拡散する第1の光拡散部を備えたことを特徴とする請求項1乃至請求項3のいずれか一項に記載の発光装置。   The first light diffusing section that is formed between the plurality of solid state light emitting elements and diffuses the light emitted from the solid state light emitting elements is provided. The light emitting device described. 前記光変換部材の光導出面を被覆し、前記複数の固体発光素子から出射された光を拡散する第2の光拡散部を備えたことを特徴とする請求項1乃至請求項4のいずれか一項に記載の発光装置。   5. The device according to claim 1, further comprising: a second light diffusing portion that covers a light guide surface of the light conversion member and diffuses light emitted from the plurality of solid state light emitting elements. The light emitting device according to item. 前記複数の固体発光素子は、アレイ状又はマトリクス状に配置されることを特徴とする請求項1乃至請求項5のいずれか一項に記載の発光装置。   The light emitting device according to claim 1, wherein the plurality of solid state light emitting elements are arranged in an array or a matrix. 前記光変換部材から導出される光の色は、光の三原色であることを特徴とする請求項1乃至請求項6のいずれか一項に記載の発光装置。   The light emitting device according to any one of claims 1 to 6, wherein the color of light derived from the light conversion member is three primary colors of light.
JP2011064242A 2011-03-23 2011-03-23 Light-emitting device Pending JP2012204349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011064242A JP2012204349A (en) 2011-03-23 2011-03-23 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011064242A JP2012204349A (en) 2011-03-23 2011-03-23 Light-emitting device

Publications (1)

Publication Number Publication Date
JP2012204349A true JP2012204349A (en) 2012-10-22

Family

ID=47185087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011064242A Pending JP2012204349A (en) 2011-03-23 2011-03-23 Light-emitting device

Country Status (1)

Country Link
JP (1) JP2012204349A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101645858B1 (en) * 2015-03-09 2016-08-04 한국광기술원 Passive type luminous element using phosphor sheet
WO2017175858A1 (en) * 2016-04-08 2017-10-12 富士フイルム株式会社 Planar light source, back-light unit, and liquid crystal display device
JP2019526925A (en) * 2016-06-30 2019-09-19 アルディア Optoelectronic device having pixels with enhanced contrast and brightness
KR20190127302A (en) * 2018-05-04 2019-11-13 엘지이노텍 주식회사 Lighting apparatus
JP2020035738A (en) * 2018-08-28 2020-03-05 隆達電子股▲ふん▼有限公司 Light emitting device and backlight module

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031547A (en) * 1998-07-09 2000-01-28 Stanley Electric Co Ltd Planar light source
JP2000276069A (en) * 1999-03-25 2000-10-06 Hitachi Building Systems Co Ltd Liquid crystal device and its manufacture
JP2004349647A (en) * 2003-05-26 2004-12-09 Matsushita Electric Works Ltd Light-emitting device and method of manufacturing the same
JP2005093681A (en) * 2003-09-17 2005-04-07 Toyoda Gosei Co Ltd Light-emitting device
JP2007035802A (en) * 2005-07-25 2007-02-08 Matsushita Electric Works Ltd Light-emitting device
JP2007180234A (en) * 2005-12-27 2007-07-12 Matsushita Electric Ind Co Ltd Light-emitting source, and luminaire
JP2007535175A (en) * 2004-04-26 2007-11-29 ゲルコアー リミテッド ライアビリティ カンパニー Light emitting diode element
JP2008060129A (en) * 2006-08-29 2008-03-13 Nec Lighting Ltd Full-color light-emitting diode
JP2008294224A (en) * 2007-05-24 2008-12-04 Stanley Electric Co Ltd Semiconductor light emitting device
JP2009123803A (en) * 2007-11-13 2009-06-04 Sanyo Electric Co Ltd Light emitting diode device
JP2010153500A (en) * 2008-12-24 2010-07-08 Nitto Denko Corp Method of manufacturing optical semiconductor device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031547A (en) * 1998-07-09 2000-01-28 Stanley Electric Co Ltd Planar light source
JP2000276069A (en) * 1999-03-25 2000-10-06 Hitachi Building Systems Co Ltd Liquid crystal device and its manufacture
JP2004349647A (en) * 2003-05-26 2004-12-09 Matsushita Electric Works Ltd Light-emitting device and method of manufacturing the same
JP2005093681A (en) * 2003-09-17 2005-04-07 Toyoda Gosei Co Ltd Light-emitting device
JP2007535175A (en) * 2004-04-26 2007-11-29 ゲルコアー リミテッド ライアビリティ カンパニー Light emitting diode element
JP2007035802A (en) * 2005-07-25 2007-02-08 Matsushita Electric Works Ltd Light-emitting device
JP2007180234A (en) * 2005-12-27 2007-07-12 Matsushita Electric Ind Co Ltd Light-emitting source, and luminaire
JP2008060129A (en) * 2006-08-29 2008-03-13 Nec Lighting Ltd Full-color light-emitting diode
JP2008294224A (en) * 2007-05-24 2008-12-04 Stanley Electric Co Ltd Semiconductor light emitting device
JP2009123803A (en) * 2007-11-13 2009-06-04 Sanyo Electric Co Ltd Light emitting diode device
JP2010153500A (en) * 2008-12-24 2010-07-08 Nitto Denko Corp Method of manufacturing optical semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101645858B1 (en) * 2015-03-09 2016-08-04 한국광기술원 Passive type luminous element using phosphor sheet
WO2017175858A1 (en) * 2016-04-08 2017-10-12 富士フイルム株式会社 Planar light source, back-light unit, and liquid crystal display device
JPWO2017175858A1 (en) * 2016-04-08 2019-02-21 富士フイルム株式会社 Planar light source, backlight unit, and liquid crystal display device
JP2019526925A (en) * 2016-06-30 2019-09-19 アルディア Optoelectronic device having pixels with enhanced contrast and brightness
JP7165059B2 (en) 2016-06-30 2022-11-02 アルディア Optoelectronic device having pixels with enhanced contrast and brightness
KR20190127302A (en) * 2018-05-04 2019-11-13 엘지이노텍 주식회사 Lighting apparatus
KR102593592B1 (en) 2018-05-04 2023-10-25 엘지이노텍 주식회사 Lighting apparatus
JP2020035738A (en) * 2018-08-28 2020-03-05 隆達電子股▲ふん▼有限公司 Light emitting device and backlight module
CN110867507A (en) * 2018-08-28 2020-03-06 隆达电子股份有限公司 Light emitting device and backlight module
CN110867507B (en) * 2018-08-28 2021-10-08 隆达电子股份有限公司 Light emitting device and backlight module

Similar Documents

Publication Publication Date Title
US11028979B2 (en) Lighting source using solid state emitter and phosphor materials
JP5899507B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
CN102760823B (en) Luminaire and comprise the lighting device of this luminaire
JP5810301B2 (en) Lighting device
JP4698412B2 (en) Light emitting device and lighting device
US8419219B2 (en) Light emitting apparatus
US20120140436A1 (en) Solid-state lamps with light guide and photoluminescence material
JP5903672B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP5052397B2 (en) Light emitting device and light emitting apparatus
JP2007266356A (en) Light-emitting device and illuminator using the same
JP2012195404A (en) Light-emitting device and luminaire
JP2012248553A (en) Light-emitting device and luminaire using the same
JP6233750B2 (en) LIGHT EMITTING DEVICE AND ITS MANUFACTURING METHOD, LIGHTING LIGHT SOURCE, AND LIGHTING DEVICE
JP4986608B2 (en) Light emitting device and lighting device
KR20130032110A (en) Lighting device
JP6284079B2 (en) Light emitting device, illumination light source, and illumination device
JP2016092271A (en) Phosphor sheet and lighting system
JP2012204349A (en) Light-emitting device
JP4707433B2 (en) Light emitting device and lighting device
JP2012174939A (en) Light-emitting device
JP5899476B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP2013149690A (en) Light-emitting device and illuminating device
JP5312556B2 (en) Light emitting device and lighting device
JP2015176968A (en) Light emitting device, manufacturing method for the same, light source for illumination and lighting device
JP2013004941A (en) Light-emitting device and lighting apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140718

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141008

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20141023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150804