JP2012200666A - Li SOLUTION RECOVERY APPARATUS AND Li SOLUTION RECOVERY METHOD - Google Patents

Li SOLUTION RECOVERY APPARATUS AND Li SOLUTION RECOVERY METHOD Download PDF

Info

Publication number
JP2012200666A
JP2012200666A JP2011067060A JP2011067060A JP2012200666A JP 2012200666 A JP2012200666 A JP 2012200666A JP 2011067060 A JP2011067060 A JP 2011067060A JP 2011067060 A JP2011067060 A JP 2011067060A JP 2012200666 A JP2012200666 A JP 2012200666A
Authority
JP
Japan
Prior art keywords
chamber
lithium
solution
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011067060A
Other languages
Japanese (ja)
Inventor
Yoshihiro Honma
善弘 本間
Kouji Fujita
浩示 藤田
Satoshi Kawakami
智 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Eco Systems Co Ltd
Original Assignee
Dowa Eco Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Eco Systems Co Ltd filed Critical Dowa Eco Systems Co Ltd
Priority to JP2011067060A priority Critical patent/JP2012200666A/en
Publication of JP2012200666A publication Critical patent/JP2012200666A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and a method for recovering lithium from a solution obtained by leaching a fired product including a positive electrode material of a lithium ion secondary battery with water, and containing ions of lithium and fluorine, sulfuric acid, etc., by continuously and simultaneously purifying and concentrating lithium.SOLUTION: An electrolytic cell is partitioned between an insoluble anode and a cathode with a plurality of diaphragms to keep concentration differences between cations and anions in the partitioned chambers, and while uniform concentration is kept in each chamber, a concentration gradient of ions is maintained from the anode side to the cathode side. A stock solution is supplied to a chamber near the middle to extract a lithium ion concentrate from a chamber nearest the cathode of high lithium ion concentration, and to discharge an impurity concentrate from a chamber nearest the anode of high impurity ion concentration.

Description

本発明は、Li溶液回収装置及びLi溶液回収方法であって、液中の陽イオン、陰イオンを電気分解により精製、濃縮し、濃縮されたLiイオン等を効率的に回収する装置及び方法に関する。特に、リチウムイオン二次電池の正極材料を含む焼成物を水又は酸により溶解させた溶液からリチウムを精製及び濃縮して回収する装置及び方法に関する。   The present invention relates to a Li solution recovery apparatus and a Li solution recovery method, and relates to an apparatus and method for efficiently recovering concentrated Li ions and the like by purifying and concentrating cations and anions in a liquid by electrolysis. . In particular, the present invention relates to an apparatus and method for purifying and concentrating lithium from a solution obtained by dissolving a fired product containing a positive electrode material of a lithium ion secondary battery with water or an acid.

リチウムイオン二次電池は、従来の鉛蓄電池、ニッカド二次電池等に比較して軽量、高容量、高起電力の優れた二次電池であり、携帯電話、ノートパソコン等のモバイル機器などに広く使用されている。
このようなリチウムイオン二次電池の正極材料としては、例えばコバルト酸リチウム(LiCoO2)、マンガン酸リチウム(LiMn24)などが用いられており、これらには希少有価物質であるリチウムが含まれている。そこで、使用済みのリチウムイオン二次電池からこれらの有価物質を回収し、再びリチウムイオン二次電池の正極材料としてリサイクル利用を図ることが望まれている。
Lithium-ion secondary batteries are secondary batteries that are lighter, have higher capacity, and have higher electromotive force than conventional lead-acid batteries and nickel-cadmium secondary batteries, and are widely used in mobile devices such as mobile phones and laptop computers. in use.
As a positive electrode material of such a lithium ion secondary battery, for example, lithium cobaltate (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ) or the like is used, and these include lithium which is a rare valuable material. It is. Therefore, it is desired to recover these valuable substances from the used lithium ion secondary battery and to recycle them as a positive electrode material for the lithium ion secondary battery.

ここで、リチウムイオン二次電池の正極材料を焼成すると、リチウムが酸化リチウム(Li2O)となり、この焼成物を水で浸出すると、水酸化リチウム(LiOH)、水中ではリチウムイオンと水酸化物イオンとなって溶出することが知られている。
しかし、リチウムイオン二次電池の廃棄物をリサイクル対象とした場合、上述の水による浸出により、リチウムと同時にフッ素や硫酸が不純物として溶出する。フッ素は電解質として、例えば、LiPF6などが使用されており、これに起因する。硫酸は(CF3SO22NLi、(C25SO22NLiなどの電解質添加剤由来のSが硫酸となって浸出すると考えられる。
また、電池又は正極材の重量に対してリチウムの含有量はそれほど多くはなく、リチウムを浸出した液の濃度も比較的低い。それらの理由から、不純物を除去する精製工程と濃縮工程が必要となり、より低コストで高効率の精製、濃縮方法が求められている。また、工業利用の観点から、連続的に精製、濃縮できる工程が望まれている。
Here, when the positive electrode material of the lithium ion secondary battery is fired, lithium becomes lithium oxide (Li 2 O), and when this fired product is leached with water, lithium hydroxide (LiOH), in water, lithium ions and hydroxides It is known to elute as ions.
However, when lithium ion secondary battery waste is to be recycled, leaching with water described above elutes fluorine and sulfuric acid as impurities simultaneously with lithium. As the electrolyte, for example, LiPF 6 is used as the electrolyte. In sulfuric acid, it is considered that S derived from an electrolyte additive such as (CF 3 SO 2 ) 2 NLi and (C 2 F 5 SO 2 ) 2 NLi is leached as sulfuric acid.
Further, the lithium content is not so much with respect to the weight of the battery or the positive electrode material, and the concentration of the liquid from which lithium is leached is relatively low. For these reasons, a purification step and a concentration step for removing impurities are required, and a more efficient purification and concentration method is required at a lower cost. Moreover, the process which can be refine | purified and concentrated continuously from a viewpoint of industrial utilization is desired.

不純物の除去や濃縮の方法として、例えば、特許文献1には、電池廃棄物を溶解したリチウム含有溶液をろ過し、可溶性リチウム塩を含有する溶液を、陽極室と陰極室が陽イオン交換膜で仕切られた電解槽を用いて精製する方法が提案されている。この方法は、陽極室中に電池廃棄物を溶解したリチウム含有溶液を供し、多孔性を有する陽イオン交換膜を隔てて陰極室へ選択的にリチウムイオンを電気により泳動させ、陰極室にリチウムを濃縮する手法である。   As a method for removing and concentrating impurities, for example, in Patent Document 1, a lithium-containing solution in which battery waste is dissolved is filtered, and a solution containing a soluble lithium salt is replaced with a cation exchange membrane in the anode chamber and the cathode chamber. A method of refining using a partitioned electrolytic cell has been proposed. In this method, a lithium-containing solution in which battery waste is dissolved is provided in an anode chamber, lithium ions are selectively electrophoresed into the cathode chamber across a porous cation exchange membrane, and lithium is added to the cathode chamber. It is a technique to concentrate.

しかし、この提案では、陽極室へリチウムを供給し、陰極室から取り出す工程となっているため、バッチ処理では陽イオン、陰イオンを分離することが可能ではあるが、連続的に液の供給と抜き出しを行う場合には適していない。連続的に給液する場合は、陽極側からの陰イオン濃縮液を連続的に排出し、陰極側から陽イオン濃縮液を連続的に抜き出しする必要がある。しかし、この提案では、リチウム含有液を陽極室へ供給した時点でリチウムが拡散し、陽極室のリチウム濃度が上昇したまま抜き出しを行うこととなり、排出側のリチウム濃度が上昇したまま排出することとなり、リチウムの回収率が低下する。また、滞留時間を十分に長くとることで解決が可能であるが、その分電気エネルギーを多量に使用することとなり経済的でない。また、この提案の槽を複数準備し、数回にわたる繰り返し処理にて実施できる可能性もあるが、電極板や電解槽が複数必要となることから経済的でない。   However, in this proposal, it is a process of supplying lithium to the anode chamber and taking it out of the cathode chamber. Therefore, it is possible to separate cations and anions in batch processing, but it is possible to continuously supply liquid. It is not suitable for extraction. In the case of continuous supply, it is necessary to continuously discharge the anion concentrate from the anode side and continuously extract the cation concentrate from the cathode side. However, in this proposal, when the lithium-containing liquid is supplied to the anode chamber, the lithium diffuses and is extracted while the lithium concentration in the anode chamber is increased, and is discharged while the lithium concentration on the discharge side is increased. Lithium recovery rate decreases. Moreover, although it is possible to solve the problem by taking a sufficiently long residence time, a large amount of electric energy is used accordingly, which is not economical. In addition, there is a possibility that a plurality of the proposed tanks may be prepared and repeated several times, but this is not economical because a plurality of electrode plates and electrolytic tanks are required.

また、この提案では、陽イオン交換膜を利用していることから、運転を繰り返すと陽イオン(カチオン)交換膜の接点が充分に得られなくなり、膜を頻繁に交換する必要があり、消耗した場合もコストがかかるという問題がある。
また、泳動を伴わずに濃縮のみを行う場合、例えば蒸発濃縮などが考えられるが、蒸発に多大なエネルギーを必要とすることに加えて、不純物も同時に濃縮されることから得られる回収物に不純物が多く混入するという問題がある。
精製と濃縮を別々に実施するという方法もあるが、工程が二つになり設備が増大し、各工程でエネルギーを必要とすることから、この場合も当然コストが増大する。
In addition, in this proposal, since a cation exchange membrane is used, if the operation is repeated, sufficient contact of the cation (cation) exchange membrane cannot be obtained, and it is necessary to frequently exchange the membrane, which is consumed. In some cases, there is a problem that the cost is high.
In addition, when only concentration is performed without migration, evaporative concentration, for example, can be considered. In addition to requiring a large amount of energy for evaporation, impurities are also concentrated at the same time. There is a problem that a lot is mixed.
There is also a method of performing purification and concentration separately, but since the number of steps becomes two and the equipment increases, and energy is required in each step, the cost naturally increases in this case.

したがってリチウムを溶出させた溶液から、リチウムの精製と濃縮を低コストで同時に、連続的に行うことができるリチウムの回収方法の提供が望まれているのが現状である。   Therefore, the present situation is that it is desired to provide a method for recovering lithium capable of continuously purifying and concentrating lithium at a low cost from a solution in which lithium is eluted.

特表2001−508925号公報Special table 2001-508925

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、リチウムイオン二次電池の正極材料を含む焼成物を水に浸出させて得たリチウムとフッ素、硫酸などを含有する溶解液から、リチウムの精製と濃縮を行うことにより、リチウム溶解液を回収できる装置及び方法を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. In other words, the present invention provides lithium lithium by purifying and concentrating lithium from a solution containing lithium obtained by leaching a fired product containing a positive electrode material of a lithium ion secondary battery in water, fluorine, sulfuric acid, and the like. It is an object of the present invention to provide an apparatus and method capable of recovering a lysate.

前記課題を解決するための手段としては、以下の通りである。即ち、
本発明のLi溶液回収装置は、電解槽に供給されるLi溶解原液中の陽イオン、陰イオンを該電解槽への直流電流の通電によりそれぞれ陰極側、陽極側へ泳動させてLi濃度の異なる溶液を回収するLi溶液回収装置であって、
前記電解槽は、通液性隔壁により仕切られてLi溶解原液供給室、陽極室及び陰極室を有し、該Li溶解原液供給室は該陽極室と該陰極室の間に位置し、該陽極室、該陰極室にはそれぞれ不溶性陽極、陰極が配置され、
前記Li溶解原液を前記Li溶解原液供給室に供給する供給手段と、前記陽極室、前記陰極室からそれぞれLi濃度の異なる溶液を回収する回収手段と、を有する。
Means for solving the problems are as follows. That is,
In the Li solution recovery apparatus of the present invention, the cation and the anion in the Li dissolution undiluted solution supplied to the electrolytic cell are migrated to the cathode side and the anode side, respectively, by applying a direct current to the electrolytic cell, and the Li concentration is different. A Li solution recovery device for recovering a solution,
The electrolytic cell is partitioned by a liquid-permeable partition and has a Li-dissolved stock solution supply chamber, an anode chamber, and a cathode chamber, and the Li-dissolved stock solution supply chamber is located between the anode chamber and the cathode chamber, An insoluble anode and a cathode are disposed in the chamber and the cathode chamber, respectively.
Supply means for supplying the Li-dissolved stock solution to the Li-dissolved stock solution supply chamber, and recovery means for recovering solutions having different Li concentrations from the anode chamber and the cathode chamber, respectively.

また、本発明のLi溶液回収装置の好適形態は、第1に、前記電解槽は通液性隔壁により5室〜10室に仕切られているものである。
第2に、前記陰極室が前記Li溶解原液供給室と該陰極室とを仕切る前記通液性隔壁に略平行な通液性隔壁により複数の陰極室に仕切られるものである。
第3に、前記陽極室が前記Li溶解原液供給室と該陽極室とを仕切る前記通液性隔壁に略平行な通液性隔壁により複数の陽極室に仕切られるものである。
第4に、上記陰イオンが、フッ素イオン、硫酸イオンの少なくとも一種を含む。
第5に、上記Li溶解原液が、廃リチウムイオン電池を焼成し、リチウムをリチウム陽イオンとして溶解させた液である。
第6に、前記通液性隔壁の通気度が10〜1000cm3/cm2・分である。
Moreover, the suitable form of the Li solution collection | recovery apparatus of this invention is 1st. WHEREIN: The said electrolytic cell is divided into 5 chambers-10 chambers by the liquid-permeable partition.
Second, the cathode chamber is partitioned into a plurality of cathode chambers by a liquid-permeable partition that is substantially parallel to the liquid-permeable partition that partitions the Li-dissolved stock solution supply chamber and the cathode chamber.
Third, the anode chamber is partitioned into a plurality of anode chambers by a liquid-permeable partition that is substantially parallel to the liquid-permeable partition that partitions the Li-dissolved stock solution supply chamber and the anode chamber.
Fourth, the anion contains at least one of fluorine ion and sulfate ion.
Fifth, the Li dissolution stock solution is a solution obtained by firing a waste lithium ion battery and dissolving lithium as a lithium cation.
Sixth, the air permeability of the liquid-permeable partition wall is 10 to 1000 cm 3 / cm 2 · min.

一方、本発明のLi溶液回収方法は、上述のLi溶液回収装置を用い、前記Li溶解原液供給室にLi溶解原液を供給し、前記電解槽へ直流電流を通電して、前記陽極室、前記陰極室からそれぞれLi濃度の異なる溶液を回収することを特徴とする。
好ましくは、Li溶解原液の供給、Li濃度の異なる溶液の回収をいずれも連続的に行うものである。
On the other hand, the Li solution recovery method of the present invention uses the above-described Li solution recovery apparatus, supplies a Li dissolution stock solution to the Li dissolution stock solution supply chamber, energizes a direct current to the electrolytic cell, the anode chamber, It is characterized by recovering solutions having different Li concentrations from the cathode chamber.
Preferably, both the supply of the Li dissolution stock solution and the recovery of solutions having different Li concentrations are performed continuously.

前記課題を解決するための手段の詳細を説明する。液中のイオンを通電による泳動にて分離、精製する場合、リチウムイオンは陰極方向へ泳動され、陰極室で濃縮する。不純物であるフッ素イオン、硫酸イオンは陽極方向へ泳動され、陽極室で濃縮する。これらは当たり前のことであるが、この操作を連続的に実施する場合、単純に通液性隔壁の無い電解槽や、通液性隔壁を隔てて陰極室と陽極室とに2槽に分けた電解槽では連続的に給液と排出を繰り返した場合に、陽イオン、陰イオンの濃度勾配を保つことができずに分離ができなくなる。そのため、連続的に精製と濃縮を実施することができない。   Details of means for solving the above-described problems will be described. When the ions in the liquid are separated and purified by electrophoretic migration, the lithium ions migrate toward the cathode and concentrate in the cathode chamber. Impurities such as fluorine ions and sulfate ions migrate toward the anode and concentrate in the anode chamber. These are natural, but when this operation is carried out continuously, it is simply divided into an electrolytic cell without a liquid-permeable partition wall, or two chambers, a cathode chamber and an anode chamber, with a liquid-permeable partition wall therebetween. In the electrolytic cell, when supply and discharge are repeated continuously, the concentration gradient of cations and anions cannot be maintained and separation is impossible. Therefore, continuous purification and concentration cannot be performed.

これに対し、本発明では、電解槽が通液性隔壁により仕切られてLi溶解原液供給室、陽極室及び陰極室を有し、Li溶解原液供給室は該陽極室と該陰極室の間に位置することにより、仕切られた各室で陽イオンと陰イオンの濃度差が保持され、各室で均一な濃度が保持されたまま、陽極側から陰極側へとイオンの濃度勾配を維持できる。このことにより、通液性隔壁により仕切られた各室のうち、Li溶解液のリチウムイオン濃度に近い中間付近の室へLi溶解原液を供給し、リチウムイオン濃度の高い陰極室からリチウムイオン濃縮液を抜き出し、不純物であるフッ素イオン、硫酸イオン濃度の高い陽極室から不純物濃縮液を排出していくことで、連続的にリチウムの精製と濃縮行い、不純物濃度が低いリチウム濃縮液を回収できる。これにより、リチウムイオン二次電池の正極材料を含む焼成物を水に浸出させて得たリチウム、フッ素、硫酸などを含有する溶液から、リチウムの精製と濃縮を同時に、連続的に行うことができるリチウム回収方法を提供できる。   On the other hand, in the present invention, the electrolytic cell is partitioned by a liquid-permeable partition and has a Li-dissolved stock solution supply chamber, an anode chamber, and a cathode chamber, and the Li-dissolved stock solution supply chamber is between the anode chamber and the cathode chamber. By being positioned, the concentration difference between the cation and the anion is maintained in each partitioned chamber, and the concentration gradient of ions can be maintained from the anode side to the cathode side while maintaining a uniform concentration in each chamber. As a result, among the chambers partitioned by the liquid-permeable partition wall, the Li-dissolved stock solution is supplied to a chamber in the vicinity of the middle of the Li-dissolved solution that is close to the lithium-ion concentration. The impurity concentrate is discharged from the anode chamber having high concentrations of fluorine ions and sulfate ions, which are impurities, so that lithium can be continuously purified and concentrated to recover a lithium concentrate having a low impurity concentration. Thereby, purification and concentration of lithium can be performed simultaneously and continuously from a solution containing lithium, fluorine, sulfuric acid and the like obtained by leaching a fired product containing a positive electrode material of a lithium ion secondary battery in water. A lithium recovery method can be provided.

本発明によると、従来における問題を解決することができ、リチウムイオン二次電池の正極材料を含む焼成物を水に浸出させて得たリチウム、フッ素、硫酸などを含有する溶解液から、連続的にリチウムの精製と濃縮を同時に行うことにより、リチウムを回収できる方法を提供できる。   According to the present invention, conventional problems can be solved, and continuously from a solution containing lithium, fluorine, sulfuric acid and the like obtained by leaching a fired product containing a positive electrode material of a lithium ion secondary battery in water. In addition, a method capable of recovering lithium can be provided by simultaneously performing purification and concentration of lithium.

リチウム溶液の精製と濃縮を行う装置の模式図の例1(縦断面図)。Example 1 (longitudinal sectional view) of a schematic diagram of an apparatus for purifying and concentrating a lithium solution. リチウム溶液の精製と濃縮を行う装置の模式図の例2(横断面図、平面図)。Example 2 (transverse view, plan view) of a schematic diagram of an apparatus for purifying and concentrating a lithium solution. 実施例1の試験方法と装置の概要を示す模式図(縦断面図)。The schematic diagram (longitudinal sectional view) which shows the outline of the test method and apparatus of Example 1. FIG. 実施例1の各室のリチウムイオン濃度を示すグラフ。3 is a graph showing the lithium ion concentration in each chamber of Example 1. 実施例1の各室のフッ素イオン濃度を示すグラフ。3 is a graph showing the fluorine ion concentration in each chamber of Example 1. 実施例1の各室の硫酸イオン濃度を示すグラフ。3 is a graph showing the sulfate ion concentration in each chamber of Example 1. 実施例2の試験方法と装置の概要を示す模式図(縦断面図)。The schematic diagram (longitudinal sectional view) which shows the outline of the test method and apparatus of Example 2. FIG. 実施例2の各室のリチウムイオン濃度を示すグラフ。6 is a graph showing the lithium ion concentration in each chamber of Example 2. 実施例2の各室のフッ素イオン濃度を示すグラフ。6 is a graph showing the fluorine ion concentration in each chamber of Example 2. 実施例2の各室の硫酸イオン濃度を示すグラフ。6 is a graph showing the sulfate ion concentration in each chamber of Example 2. 実施例3の試験方法と装置の概要を示す模式図(縦断面図)。The schematic diagram (longitudinal sectional view) which shows the outline of the test method and apparatus of Example 3. FIG. 実施例3の各室のリチウムイオン濃度を示すグラフ。10 is a graph showing the lithium ion concentration in each chamber of Example 3. 実施例3の各室のフッ素イオン濃度を示すグラフ。6 is a graph showing the fluorine ion concentration in each chamber of Example 3. 実施例3の各室の硫酸イオン濃度を示すグラフ。6 is a graph showing the sulfate ion concentration in each chamber of Example 3. 比較例1の試験方法と装置の概要を示す模式図(縦断面図)。The schematic diagram (longitudinal sectional view) which shows the outline of the test method and apparatus of Comparative Example 1. 比較例2の試験方法と装置の概要を示す模式図(縦断面図)。The schematic diagram (longitudinal sectional view) which shows the outline of the test method and apparatus of Comparative Example 2. 比較例2の各室のリチウムイオン濃度を示すグラフ。The graph which shows the lithium ion density | concentration of each chamber of the comparative example 2. FIG. 比較例2の各室のフッ素イオン濃度を示すグラフ。The graph which shows the fluorine ion density | concentration of each chamber of the comparative example 2. FIG. 比較例2の各室の硫酸イオン濃度を示すグラフ。The graph which shows the sulfate ion density | concentration of each chamber of the comparative example 2. FIG. 比較例3の試験方法と装置の概要を示す模式図(縦断面図)。The schematic diagram (longitudinal sectional view) which shows the outline of the test method and apparatus of Comparative Example 3. 比較例3の各室のリチウムイオン濃度を示すグラフ。The graph which shows the lithium ion density | concentration of each chamber of the comparative example 3. 比較例3の各室のフッ素イオン濃度を示すグラフ。10 is a graph showing the fluorine ion concentration in each chamber of Comparative Example 3. 比較例3の各室の硫酸イオン濃度を示すグラフ。10 is a graph showing the sulfate ion concentration in each chamber of Comparative Example 3. 比較例4の試験方法と装置の概要を示す模式図(縦断面図)。The schematic diagram (longitudinal sectional view) which shows the outline of the test method and apparatus of Comparative Example 4. 比較例4の各室のリチウムイオン濃度を示すグラフ。The graph which shows the lithium ion density | concentration of each chamber of the comparative example 4. 比較例4の各室のフッ素イオン濃度を示すグラフ。10 is a graph showing the fluorine ion concentration in each chamber of Comparative Example 4. 比較例4の各室の硫酸イオン濃度を示すグラフ。10 is a graph showing the sulfate ion concentration in each chamber of Comparative Example 4.

本発明のLi溶液回収装置には、リチウムイオン二次電池の正極材料を含む焼成物からリチウムを水で浸出したリチウムイオン溶解液をLi溶解原液として用いることができる。   In the Li solution recovery apparatus of the present invention, a lithium ion solution obtained by leaching lithium with water from a fired product containing a positive electrode material of a lithium ion secondary battery can be used as a Li solution solution.

リチウムの精製と濃縮を同時に、連続的に行う方法としては、通液性隔壁により前述のように3室以上に仕切られ陰極と陽極を設けた電解槽を用いて、電極に直流電流を通電することによりリチウムが溶解した溶液中からリチウムの精製と濃縮を同時に、連続的に行うことができれば、特に制限はなく、目的に応じて適宜選択することができる。
例えば、陽極及び陰極を有するリチウムの精製及び濃縮槽が前記陽極及び前記陰極間を3室以上に通液性隔壁で仕切られた槽を用い、前記陽極及び前記陰極間に通電しながら、前記陰極が存在する陰極室でリチウムイオンを濃縮させることが好ましい。
連続的にリチウムの精製と濃縮を行う際の、Li溶解原液の供給は、3室以上に隔壁で仕切られた各室の陽極室、陰極室以外のどこの室に供給しても良いが、通液性隔壁により仕切られた各室のうち、Li溶解原液のリチウムイオン濃度に近い槽へLi溶解原液を供給することが好ましい。
また濃縮、精製された液の抜き出しはリチウムイオン濃度の高い陰極室から抜き出し、不純物であるフッ素イオン、硫酸イオン濃度の高い陽極室から不純物濃縮液を排出していくことが好ましい。これにより、連続的にリチウムの精製と濃縮行い、不純物濃度が低いリチウム濃縮液を回収できる。
As a method of continuously purifying and concentrating lithium, a direct current is applied to the electrode using an electrolytic cell that is divided into three or more chambers by a liquid-permeable partition and provided with a cathode and an anode as described above. As long as the lithium can be purified and concentrated simultaneously and continuously from the solution in which lithium is dissolved, there is no particular limitation, and it can be appropriately selected according to the purpose.
For example, a lithium refining and concentrating tank having an anode and a cathode uses a tank in which the anode and the cathode are partitioned by a liquid-permeable partition in three or more chambers, and the cathode and the cathode are energized between the anode and the cathode. It is preferable to concentrate the lithium ions in the cathode chamber in which is present.
When refining and concentrating lithium continuously, the Li dissolution stock solution may be supplied to any chamber other than the anode chamber and the cathode chamber of each chamber partitioned by a partition into three or more chambers, Of each chamber partitioned by the liquid-permeable partition, it is preferable to supply the Li-dissolved stock solution to a tank close to the lithium ion concentration of the Li-dissolved stock solution.
The concentrated and purified liquid is preferably extracted from the cathode chamber having a high lithium ion concentration, and the impurity concentrated solution is preferably discharged from the anode chamber having a high fluorine ion and sulfate ion concentration. Thereby, it is possible to continuously purify and concentrate lithium and recover a lithium concentrate having a low impurity concentration.

前記陽極室と前記陰極室とを隔てるのに使用する通液性隔壁の種類は液中のリチウムイオンを通過可能であれば特に制限はなく、目的に応じて適宣選択することができる。陽極側はF-、SO4 2-が通過可能であることが好ましい。例えば、ろ布、イオン交換膜、RO膜、NF膜、限外ろ過膜、精密ろ過膜、イオン交換樹脂などが挙げられ、ろ布であることが安価な点で好ましい。 The kind of the liquid-permeable partition used for separating the anode chamber and the cathode chamber is not particularly limited as long as it can pass lithium ions in the liquid, and can be appropriately selected according to the purpose. It is preferable that F and SO 4 2− can pass through on the anode side. For example, a filter cloth, an ion exchange membrane, an RO membrane, an NF membrane, an ultrafiltration membrane, a microfiltration membrane, an ion exchange resin, and the like can be mentioned. A filter cloth is preferable from the viewpoint of low cost.

ろ布の材質は、特に制限はなく、例えばポリプロピレン製、ポリエチレン製などが挙げられるが、液性が酸性、アルカリ性の両方に耐性を持つポリプロピレン製であることが好ましい。
ろ布の織り方は特に制限はなく、例えば二重織、朱子織、綾織などが挙げられる。織り方と繊維の材質、厚さによりろ布の通気度が変化するため、通気度が適切であればよい。
通液性隔壁の好ましい通気度は10〜1000cm3/cm2・分であり、より好ましくは、20〜600cm3/cm2・分である。通気度が10cm3/cm2・分より低いと電解電圧が上昇して精製のコストが増大し、1000cm3/cm2・分より高いと水中のイオンが拡散しやすくなり各室間の濃度差の維持が困難になる。
The material of the filter cloth is not particularly limited, and examples thereof include polypropylene and polyethylene, but it is preferable that the liquid is made of polypropylene having resistance to both acidity and alkalinity.
The weaving method of the filter cloth is not particularly limited, and examples thereof include double weave, satin weave and twill weave. Since the air permeability of the filter cloth varies depending on the weaving method, fiber material, and thickness, the air permeability may be appropriate.
The air permeability of the liquid-permeable partition wall is preferably 10 to 1000 cm 3 / cm 2 · min, more preferably 20 to 600 cm 3 / cm 2 · min. If the air permeability is lower than 10 cm 3 / cm 2 · min, the electrolysis voltage increases and the cost of purification increases. If the air permeability is higher than 1000 cm 3 / cm 2 · min, ions in water easily diffuse and the concentration difference between the chambers It becomes difficult to maintain.

前記リチウムの精製と濃縮を同時に行う装置の形状としては、特に制限はなく、目的に応じて適宣選択することができる。例えば、図1に示すように電解槽に陰極と陽極を有し、陽極と陰極の間を隔壁で分離し、陽極室、陰極室を更に通気性隔壁で仕切ることが好ましい。
また、図2に示すように、陽極又は陰極を槽の中心に位置し、同心円上に通気性隔壁を配置し、槽の内側又は槽そのものが対極となる構造においても実施することができる。
There is no restriction | limiting in particular as a shape of the apparatus which refine | purifies and concentrates the said lithium simultaneously, According to the objective, it can select suitably. For example, as shown in FIG. 1, it is preferable to have a cathode and an anode in an electrolytic cell, separate the anode and the cathode with a partition, and further partition the anode chamber and the cathode chamber with a gas-permeable partition.
Moreover, as shown in FIG. 2, it can implement also in the structure where an anode or a cathode is located in the center of a tank, an air permeable partition is arrange | positioned on a concentric circle, and the inside of a tank or the tank itself becomes a counter electrode.

電解槽は、前述のように通気性隔壁により3室以上に仕切る。好ましくは3室〜100室、より好ましくは5室〜10室に仕切ることがよい。3室未満となると、連続的に給液と排出を繰り返した場合に、陽イオン、陰イオンの濃度勾配を保つことができずに分離ができなくなる。そのため、連続的に精製と濃縮を実施することができないことがある。100室以上となると、電解電圧が上昇し、精製のコストが増大することがある。   As described above, the electrolytic cell is divided into three or more chambers by the air-permeable partition. It is preferable to partition into 3 to 100 rooms, more preferably 5 to 10 rooms. If the number of chambers is less than three, when the liquid supply and discharge are repeated continuously, the concentration gradient of cations and anions cannot be maintained and separation becomes impossible. Therefore, it may not be possible to carry out purification and concentration continuously. When the number of chambers is 100 or more, the electrolysis voltage increases and the purification cost may increase.

前記リチウムの精製と濃縮を同時に行う際の、リチウム及びフッ素、硫酸が溶解した溶液の液性はpH5〜14であることが好ましく、より好ましくはアルカリ性であり、より一層好ましくはpH8〜13.5である。pHが5より低い場合、不純物としてアルミニウムが存在する場合に、アルミニウムは陽イオンとして存在してしまうことから、リチウムイオンと同様に陰極へ泳動されて分離が不十分となることがある。一方、pHが14より高い場合は装置を腐食する可能性がある。   When the lithium is purified and concentrated at the same time, the liquidity of the solution in which lithium, fluorine, and sulfuric acid are dissolved is preferably pH 5 to 14, more preferably alkaline, and even more preferably pH 8 to 13.5. It is. When the pH is lower than 5, when aluminum is present as an impurity, aluminum is present as a cation, so that it may migrate to the cathode in the same manner as lithium ions and separation may be insufficient. On the other hand, if the pH is higher than 14, the device may be corroded.

−リチウムイオン二次電池の正極材料−
前記リチウムイオン二次電池の正極材料としては、特に制限はなく、目的に応じて適宜選択できるが、例えばコバルト酸リチウム(LiCoO2)、及びマンガン酸リチウム(LiMn24)などを用いることができる。
前記正極材料としては、使用済リチウムイオン二次電池より得られたものを用いることが、リチウムをリサイクルできる点から好ましい。
-Positive electrode material for lithium ion secondary battery-
As the positive electrode material of a lithium ion secondary battery is not particularly limited, can be appropriately selected depending on the purpose, for example, lithium cobalt oxide (LiCoO 2), and lithium manganate (LiMn 2 O 4) be used as the it can.
As the positive electrode material, it is preferable to use a material obtained from a used lithium ion secondary battery because lithium can be recycled.

−原料として使用するリチウムイオン二次電池の正極材料を含む焼成物−
本発明の精製及び濃縮方法を用いたリチウムイオン二次電池のリチウムリサイクル原料にはリチウムイオン二次電池の正極材を含む焼成物を用いることが好ましい。該焼成物を焼成する雰囲気としては、特に制限はなく、焼成条件などに応じて適宜選択することができ、例えば大気雰囲気、酸化雰囲気、不活性雰囲気、還元性雰囲気、などが挙げられる。なお、前記雰囲気は、焼成中は、通気させておくことが好ましい。
ここで、前記大気雰囲気とは、酸素が21vol%、窒素78vol%の大気(空気)を用いた雰囲気を意味する。
前記酸化雰囲気とは、窒素又はアルゴン等の不活性雰囲気中に酸素を1vol%〜21vol%含む雰囲気を意味し、酸素を1vol%〜5vol%含む雰囲気が好ましい。
前記不活性雰囲気とは、窒素又はアルゴンからなる雰囲気を意味する。
前記還元性雰囲気とは、例えば、窒素又はアルゴン等の不活性雰囲気中にCO、H2、H2S、SO2などを含む雰囲気を意味する。
-Firing product containing positive electrode material for lithium ion secondary battery used as raw material-
It is preferable to use a fired product containing a positive electrode material of a lithium ion secondary battery as a lithium recycling raw material of the lithium ion secondary battery using the purification and concentration method of the present invention. There is no restriction | limiting in particular as an atmosphere which bakes this baked material, According to baking conditions etc., it can select suitably, For example, an air atmosphere, an oxidizing atmosphere, an inert atmosphere, a reducing atmosphere etc. are mentioned. The atmosphere is preferably aerated during firing.
Here, the air atmosphere means an atmosphere using air (air) of 21 vol% oxygen and 78 vol% nitrogen.
The oxidizing atmosphere means an atmosphere containing 1 vol% to 21 vol% of oxygen in an inert atmosphere such as nitrogen or argon, and an atmosphere containing 1 vol% to 5 vol% of oxygen is preferable.
The inert atmosphere means an atmosphere made of nitrogen or argon.
The reducing atmosphere means an atmosphere containing CO, H 2 , H 2 S, SO 2 and the like in an inert atmosphere such as nitrogen or argon.

前記焼成は、焼成炉を用いて行うことが好ましい。前記焼成炉としては、特に制限はなく、目的に応じて適宜選択することができ、例えばロータリーキルン、流動床炉、トンネル炉、マッフル等のバッチ式炉、キュウポラ、ストーカー炉などが挙げられる。大気雰囲気下でも焼成できるので、例えばロータリーキルン炉等の普通に用いられている焼成炉を使用することができ、焼成炉の選択幅が広くなる。
前記焼成温度は、特に制限はなく、目的に応じて適宜選択できるが、大気雰囲気下では400℃以上、不活性雰囲気下では600℃以上、酸化雰囲気下では400℃以上であることがより好ましく、上限温度は1200℃以下であることが好ましい。
前記焼成温度が、400℃未満であると、例えばリチウムイオン二次電池の正極の結晶構造を破壊できないために、リチウムを溶出できないことがあり、1,200℃を超えると、多大なエネルギーを必要とすると共に、焼成物が焼結するため、粉砕工程が必要となることがある。
The firing is preferably performed using a firing furnace. There is no restriction | limiting in particular as said baking furnace, According to the objective, it can select suitably, For example, batch type furnaces, such as a rotary kiln, a fluidized bed furnace, a tunnel furnace, a muffle, a cupola, a stalker furnace, etc. are mentioned. Since firing can be performed even in an air atmosphere, a commonly used firing furnace such as a rotary kiln furnace can be used, and the selection range of the firing furnace is widened.
The firing temperature is not particularly limited and may be appropriately selected depending on the purpose. It is more preferably 400 ° C. or higher in an air atmosphere, 600 ° C. or higher in an inert atmosphere, and 400 ° C. or higher in an oxidizing atmosphere. The upper limit temperature is preferably 1200 ° C. or lower.
If the firing temperature is less than 400 ° C., for example, the crystal structure of the positive electrode of the lithium ion secondary battery cannot be destroyed, so lithium may not be eluted. If it exceeds 1,200 ° C., a large amount of energy is required. In addition, since the fired product is sintered, a pulverization step may be required.

前記リチウムの精製と濃縮を同時に行う際の電極間に印加する電流密度は、5A/m2から500A/m2が好ましく、10A/m2から300A/m2がより好ましい。5A/m2より低くなると、リチウムイオンの泳動に時間がかかることがあり、500A/m2以上となると、水素や酸素の発生に多くのエネルギーが使用されてしまうため効率が低下する。 The current density applied between the electrodes when the lithium is simultaneously purified and concentrated is preferably 5 A / m 2 to 500 A / m 2, more preferably 10 A / m 2 to 300 A / m 2 . If it is lower than 5 A / m 2, it may take a long time to migrate lithium ions, and if it is 500 A / m 2 or more, a large amount of energy is used for generation of hydrogen and oxygen, so that efficiency is lowered.

前記リチウムの精製と濃縮を同時に行う際の陽極と陰極の電極間の距離は、0.5cmから100cmの間隔であれば任意に設置できる。1cmから50cmがより好ましい。0.5cmより短いと短絡によるショートが起こる危険性があり、100cmより長いと電圧が上昇し、消費電力が高くなることから経済的でない。   The distance between the anode and the cathode when the lithium is purified and concentrated at the same time can be arbitrarily set as long as the distance is from 0.5 cm to 100 cm. 1 cm to 50 cm is more preferable. If the length is shorter than 0.5 cm, there is a risk of short-circuiting due to a short circuit. If the length is longer than 100 cm, the voltage increases and the power consumption increases, which is not economical.

(炭酸リチウムの回収方法)
炭酸リチウムを回収する際には、本発明の前記リチウムの精製および濃縮を同時に行う方法にて濃縮、精製した液を用いることができる。
前記炭酸リチウムの回収方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば(1)液を自然乾燥する方法、(2)加熱により乾燥固化する方法、(3)炭酸を吹き込みながら晶析させる方法、(4)炭酸塩により沈殿分離する方法、などが挙げられ、炭酸リチウムとして回収できる。
特に、(3)の方法が好ましく、本発明の方法で精製濃縮した液をpHが5〜9の範囲まで炭酸を吹き込み、炭酸リチウムとして析出させることができる。pHが5未満となると析出する炭酸リチウムの量が減少する可能性があり、pH9を超えると、炭酸が不足している可能性がある。また、炭酸リチウムは高温であるほど水への溶解度が低いため、加温することが望ましい。加温の温度は80℃から100℃が好ましい。80℃未満であると炭酸リチウムの収量が低下する。
(Recovery method of lithium carbonate)
When recovering lithium carbonate, a liquid concentrated and purified by the method of simultaneously purifying and concentrating the lithium of the present invention can be used.
There is no restriction | limiting in particular as the collection method of the said lithium carbonate, According to the objective, it can select suitably, For example, (1) The method of drying naturally, (2) The method of drying and solidifying by heating, (3) Carbonic acid And (4) precipitation and separation with carbonate, and the like can be recovered as lithium carbonate.
In particular, the method (3) is preferred, and the liquid purified and concentrated by the method of the present invention can be precipitated as lithium carbonate by blowing carbonic acid into a pH range of 5-9. When the pH is less than 5, the amount of precipitated lithium carbonate may decrease, and when the pH exceeds 9, carbonic acid may be insufficient. Moreover, since lithium carbonate has lower solubility in water at higher temperatures, it is desirable to heat the lithium carbonate. The heating temperature is preferably from 80 ° C to 100 ° C. If the temperature is lower than 80 ° C., the yield of lithium carbonate decreases.

前記リチウムの回収方法は、リチウムイオン二次電池の正極材料を含む焼成物からリチウムを浸出させた液を原液とし、本発明の精製および濃縮方法を用いて溶液中の不純物を分離しつつ、リチウムを濃縮させ、得られた濃縮液を上述の炭酸リチウムを晶析する工程にて効率よくリチウムを回収することができ、リチウムイオン二次電池のリサイクルを図ることができる。   The lithium recovery method uses a solution obtained by leaching lithium from a fired product containing a positive electrode material of a lithium ion secondary battery as a stock solution, and separates impurities in the solution using the purification and concentration method of the present invention. In the step of crystallizing lithium carbonate from the concentrated liquid obtained, lithium can be efficiently recovered, and the lithium ion secondary battery can be recycled.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

<リチウム電池正極材料の分離>
市販のパソコン用リチウムイオン二次電池(正極がコバルト、マンガン、ニッケルの酸化物から成る三元系正極材、負極に黒鉛を使用)を、700℃、空気雰囲気で一時間焼成し、得られた焼成物をハンマークラッシャーで破砕した。破砕物を試験用篩にて篩分けを行い。篩目開き1mm以下の正極材粉を得た。焼成はボックス炉(KOYO LINDBERG社製)にて行った。
<Separation of lithium battery positive electrode material>
Obtained by firing a commercially available lithium ion secondary battery for personal computers (a ternary positive electrode material using a positive electrode made of cobalt, manganese, nickel oxide and graphite for the negative electrode) at 700 ° C. in an air atmosphere for 1 hour. The fired product was crushed with a hammer crusher. The crushed material is screened with a test sieve. A positive electrode material powder having a sieve opening of 1 mm or less was obtained. Firing was performed in a box furnace (manufactured by KOYO LINDBERG).

<リチウム溶解液の作成>
得られた正極材料30kgを100Lの水に浸漬させ、リチウムイオンが溶解した溶液を得た。溶解液の組成を表1に示す。
<Preparation of lithium solution>
30 kg of the obtained positive electrode material was immersed in 100 L of water to obtain a solution in which lithium ions were dissolved. The composition of the solution is shown in Table 1.

Figure 2012200666
Figure 2012200666

<溶液中のリチウムの分析>
溶液中のリチウム濃度については、高周波プラズマ発光分光分析装置(日本ジャーレル・アッシュ株式会社製、iCAP−6300)により分析し、リチウム濃度を算出した。
<Analysis of lithium in solution>
About the lithium density | concentration in a solution, it analyzed with the high frequency plasma emission spectroscopic analyzer (Nippon Jarrell-Ash Co., Ltd. product, iCAP-6300), and computed lithium density | concentration.

<溶液中のフッ素、硫酸の分析>
溶液中のフッ素、硫酸濃度については、イオンクロマトグラフィー(ダイオネクス社製、)により分析し、濃度を算出した。
<Analysis of fluorine and sulfuric acid in solution>
The concentration of fluorine and sulfuric acid in the solution was analyzed by ion chromatography (manufactured by Dionex) and the concentration was calculated.

[実施例1]
図3に示すようなリチウムの精製、濃縮用の試験電解槽を用いて、以下のようにして精製、濃縮を行う連続系の試験を行った。
通液性隔壁として陽極と陰極間を隔てる膜はポリプロピレン製のろ布(敷島カンバス株式会社製、P91C)を用いた。膜4枚を用いて、電解槽を5室に仕切り、両端の室をそれぞれ陰極室、陽極室とし、それぞれの電極を配置した。陽極は酸化チタンに白金をコーティングした電極、陰極はチタン電極を用いた。電極間距離は24cmであった。
まず、電解槽のLi溶解原液供給室に25リットル(lと表す。)の原液を注入し、両極間に5Aの直流電流(電圧は8ボルト)を16時間通電し、隔膜で仕切られた各室にリチウムイオンの濃度勾配をつくった。その後、5Aの電流を保持したまま、原液を図3に示すNo.3室に26ml/minで供給し、陰極室であるNo.5室からリチウム濃縮液を13ml/minで回収し、陽極室であるNo.1室からフッ素、硫酸イオンの濃縮液を13ml/minで系外へ排出する操作を連続的に行った。このときの槽内の液滞留時間は16時間であった。
時間経過に伴う各室のリチウム、フッ素、硫酸イオン濃度を記録した。その結果を表2に示す。また、各室のNo.は図3に示したNo.で表記した。
[Example 1]
Using a test electrolytic cell for refining and concentrating lithium as shown in FIG. 3, a continuous system test for refining and concentrating was performed as follows.
A polypropylene filter cloth (Shikishima Canvas Co., Ltd., P91C) was used as the liquid-permeable partition wall for separating the anode and the cathode. Using four membranes, the electrolytic cell was divided into five chambers, and the chambers at both ends were made the cathode chamber and the anode chamber, respectively, and the respective electrodes were arranged. The anode was an electrode in which titanium oxide was coated with platinum, and the cathode was a titanium electrode. The distance between the electrodes was 24 cm.
First, 25 liters (referred to as 1) of stock solution was poured into the Li dissolution stock solution supply chamber of the electrolytic cell, and a 5 A direct current (voltage was 8 volts) was passed between the electrodes for 16 hours, and each of the compartments separated by a diaphragm was used. A lithium ion concentration gradient was created in the chamber. Thereafter, the stock solution was changed to No. 1 shown in FIG. No. 3 in the cathode chamber was supplied to the third chamber at 26 ml / min. The lithium concentrate was collected from chamber 5 at 13 ml / min. The operation of discharging a concentrated solution of fluorine and sulfate ions from one chamber out of the system at 13 ml / min was continuously performed. The liquid residence time in the tank at this time was 16 hours.
The lithium, fluorine, and sulfate ion concentrations in each chamber over time were recorded. The results are shown in Table 2. In addition, the No. of each room. No. shown in FIG. The notation.

Figure 2012200666
Figure 2012200666

表2の結果について、時間経過に伴う各室のリチウム、フッ素、硫酸の各イオン濃度をそれぞれ図4から図6に示した。連続通液開始から48時間が経過しても、陽極側のNo.1室と陰極側のNo.5室のイオンの濃度差は維持されていた。このことから、濃縮液を一定の液質で得ることができ、液の供給と抜き出しを連続的に実施できることを示している。   Regarding the results in Table 2, the ion concentrations of lithium, fluorine, and sulfuric acid in each chamber over time are shown in FIGS. 4 to 6, respectively. No. on the anode side even after 48 hours had passed since the start of continuous flow. No. 1 on the room and cathode side. The difference in ion concentration in the five chambers was maintained. This indicates that the concentrated liquid can be obtained with a constant liquid quality, and the liquid can be continuously supplied and extracted.

[実施例2]
図7に示すリチウムの精製、濃縮用の試験電解槽を用いて、以下のようにして精製、濃縮を行う連続系の試験を行った。通液性隔壁として隔膜を図7のように略平行に6枚用い、隔膜により仕切られた部屋を7つとし、原液供給をNo.4室、リチウム濃縮液の回収をNo.7室(陰極室)とした以外は、実施例1と同様の条件で試験を行った。
その結果を表3に示す。また、各室のNo.は図7に示したNo.で表記した。
[Example 2]
Using a test electrolytic cell for purification and concentration of lithium shown in FIG. 7, a continuous system test for purification and concentration was performed as follows. As shown in FIG. 7, six diaphragms were used as the liquid-permeable partition walls, and seven chambers partitioned by the diaphragm were used. No. 4 for recovery of lithium concentrate. The test was performed under the same conditions as in Example 1 except that the number of chambers was 7 (cathode chamber).
The results are shown in Table 3. In addition, the No. of each room. No. shown in FIG. The notation.

Figure 2012200666
Figure 2012200666

表3の結果について、時間経過に伴う各室のリチウム、フッ素、硫酸の各イオン濃度をそれぞれ図8から図10に示した。連続通液開始から48時間が経過しても、陰極と陽極のイオンの濃度勾配は維持されていた。このことから、濃縮液を一定の液質で得ることができ、液の供給と抜き出しを連続的に実施できることを示している。   Regarding the results in Table 3, the ion concentrations of lithium, fluorine, and sulfuric acid in each chamber over time are shown in FIGS. Even when 48 hours passed from the start of continuous flow, the ion and anode ion concentration gradient was maintained. This indicates that the concentrated liquid can be obtained with a constant liquid quality, and the liquid can be continuously supplied and extracted.

[実施例3]
図11に示すリチウムの精製、濃縮用の試験電解槽を用いて、以下のようにして精製、濃縮を行う連続系の試験を行った。電解槽の仕切りを通液性隔壁の膜2枚を用いて、電解槽を3室に仕切って行った以外は実施例1と同様の条件で試験した。時間経過に伴う各室のリチウム、フッ素、硫酸の各イオン濃度を記録した。その結果を表4に示す。また、各室のNo.は図11に示したNo.で表記した。
[Example 3]
Using a test electrolytic cell for purification and concentration of lithium shown in FIG. 11, a continuous system test for purification and concentration was performed as follows. The electrolytic cell partition was tested under the same conditions as in Example 1 except that the electrolytic cell was divided into three chambers using two liquid-permeable partition membranes. The ion concentration of lithium, fluorine and sulfuric acid in each chamber over time was recorded. The results are shown in Table 4. In addition, the No. of each room. No. shown in FIG. The notation.

Figure 2012200666
Figure 2012200666

表4の結果について、時間経過に伴う各室のリチウム、フッ素、硫酸の各イオン濃度を図12から図14に示した。通液初期である8時間通水時点では、No.3室(陰極室)にリチウムが濃縮され、No.1室(陽極室)にフッ素、硫酸イオンが濃縮された状態ではあったが、実施例1および2と比較して濃度差は小さかった。さらに連続通液を継続したところ、形成されていた濃度勾配が時間経過に伴って無くなり、各室ともに原液に近い濃度に徐々に近づく結果となった。これより、濃縮液を一定の液質で得る効果はあるが、実施例1、2よりは効果が少ないことがわかる。   Regarding the results of Table 4, the ion concentrations of lithium, fluorine, and sulfuric acid in each chamber over time are shown in FIGS. At the time of water flow for 8 hours, which is the initial stage of liquid flow, No. Although the lithium was concentrated in the third chamber (cathode chamber) and the fluorine and sulfate ions were concentrated in the No. 1 chamber (anode chamber), the concentration difference was small compared to Examples 1 and 2. Furthermore, when the continuous liquid flow was continued, the concentration gradient that had been formed disappeared with time, and each chamber gradually approached the concentration close to the stock solution. From this, it can be seen that there is an effect of obtaining the concentrated liquid with a constant liquid quality, but the effect is less than in Examples 1 and 2.

[比較例1]
図15に示すリチウムの精製、濃縮用の試験電解槽を用いて、以下のようにして精製、濃縮を行う連続系の試験を行った。通液性隔壁は用いず、隔膜により陰極室と陽極室を仕切らなかった以外は、実施例1と同様の条件で試験を行った。
その結果を表5に示す。
[Comparative Example 1]
Using a test electrolytic cell for refining and concentrating lithium shown in FIG. 15, a continuous system test for refining and concentrating was performed as follows. The test was performed under the same conditions as in Example 1 except that the liquid-permeable partition was not used and the cathode chamber and the anode chamber were not partitioned by the diaphragm.
The results are shown in Table 5.

Figure 2012200666
Figure 2012200666

表5の結果から、通液性隔壁により陰極室と陽極室を仕切らなかった場合には、濃度の勾配ができず、濃縮と精製ができないことが確認された。   From the results in Table 5, it was confirmed that when the cathode chamber and the anode chamber were not partitioned by the liquid-permeable partition wall, the concentration gradient could not be made and concentration and purification could not be performed.

[比較例2]
図16に示すリチウムの精製、濃縮用の試験電解槽を用いて、以下のようにして精製、濃縮を行う連続系の試験を行った。通液性隔壁として隔膜を図16のように1枚用い、隔膜により仕切られた部屋を2つとし、原液供給をNo.1室、リチウム濃縮液の回収をNo.2室(陰極室)とした以外は、実施例1と同様の条件で試験を行った。
その結果を表6に示す。また、各室のNo.は図16に示したNo.で表記した。
[Comparative Example 2]
Using a test electrolytic cell for purification and concentration of lithium shown in FIG. 16, a continuous system test for purification and concentration was performed as follows. As shown in FIG. 16, one diaphragm is used as the liquid-permeable partition, and two rooms are separated by the diaphragm. No. 1, no recovery of lithium concentrate. The test was performed under the same conditions as in Example 1 except that the number of chambers was 2 (cathode chamber).
The results are shown in Table 6. In addition, the No. of each room. No. shown in FIG. The notation.

Figure 2012200666
Figure 2012200666

表6の結果について、時間経過に伴う各室のリチウム、フッ素、硫酸の各イオン濃度をそれぞれ図17から図19に示した。連続通液開始から時間が経過するに伴って、陰極室と陽極室のイオンの濃度勾配は減少していた。特に回収対象であるリチウムについては連続通液開始から48時間の時点では陰極室と陽極室の濃度勾配は実施例1から3と比較して大きく減少していた。このことは、濃縮液を連続的に一定の液質で得ることができないことを示している。   As for the results in Table 6, the ion concentrations of lithium, fluorine, and sulfuric acid in each chamber over time are shown in FIGS. As time elapses from the start of continuous flow, the ion concentration gradient in the cathode chamber and the anode chamber decreases. In particular, with regard to lithium as a recovery target, the concentration gradient between the cathode chamber and the anode chamber was greatly reduced as compared with Examples 1 to 3 at 48 hours after the start of continuous flow. This indicates that the concentrated solution cannot be obtained continuously with a constant liquid quality.

[比較例3]
図20に示すリチウムの精製、濃縮用の試験電解槽を用いて、以下のようにして精製、濃縮を行う連続系の試験を行った。原液供給をNo.2室とした以外は、比較例2と同様の条件で試験を行った。
その結果を表7に示す。また、各室のNo.は図20に示したNo.で表記した。
[Comparative Example 3]
Using a test electrolytic cell for purification and concentration of lithium shown in FIG. 20, a continuous system test for purification and concentration was performed as follows. No. of stock solution supply. The test was performed under the same conditions as in Comparative Example 2 except that the number of rooms was two.
The results are shown in Table 7. In addition, the No. of each room. No. shown in FIG. The notation.

Figure 2012200666
Figure 2012200666

表7の結果について、時間経過に伴う各室のリチウム、フッ素、硫酸の各イオン濃度をそれぞれ図21から図23に示した。連続通液開始から時間が経過するに伴って、陰極室と陽極室のイオンの濃度勾配は減少していた。特に回収対象であるリチウムについては連続通液開始から48時間の時点では陰極室と陽極室の濃度勾配は実施例1から3と比較して大きく減少していた。このことは、濃縮液を連続的に一定の液質で得ることができないことを示している。   With respect to the results in Table 7, the ion concentrations of lithium, fluorine, and sulfuric acid in each chamber over time are shown in FIGS. As time elapses from the start of continuous flow, the ion concentration gradient in the cathode chamber and the anode chamber decreases. In particular, with regard to lithium as a recovery target, the concentration gradient between the cathode chamber and the anode chamber was greatly reduced as compared with Examples 1 to 3 at 48 hours after the start of continuous flow. This indicates that the concentrated solution cannot be obtained continuously with a constant liquid quality.

[比較例4]
図24に示すリチウムの精製、濃縮用の試験電解槽を用いて、以下のようにして精製、濃縮を行う連続系の試験を行った。まず、比較例2、3で用いたものと同様の構造で、容量が半分である電解槽を二槽準備し、直列に配置して連続通水を行える仕様とした。各電解槽のLi溶解原液供給室にそれぞれ12.5lの原液を注入し、両極間に2.5Aの直流電流(電圧は8ボルト)を16時間通電し、隔膜で仕切られた各室にリチウムイオンの濃度勾配をつくった。その後、各電極間で2.5Aの電流を保持したまま、原液を図24に示すNo.1室に26ml/minで供給し、陰極室であるNo.2室からリチウム濃縮液を19.5ml/minで回収した濃縮液を2槽目の陽極室であるNo.3室へ供給し、1槽目の陽極室であるNo.1室からフッ素、硫酸イオンの濃縮液を6.5ml/minで、2槽目の陽極室であるNo.4室からフッ素、硫酸イオンの濃縮液を13ml/min系外へ排出する操作を連続的に行った。このときの槽内の液滞留時間は各槽で8時間であった。この比較例4の装置にかかる消費電力は実施例1とほぼ同じであり、濃縮液の回収量も同じとなるようにした。
時間経過に伴う各室のリチウム、フッ素、硫酸イオン濃度を記録した。その結果を表8に示す。また、各室のNo.は図24に示したNo.で表記した。
[Comparative Example 4]
Using a test electrolytic cell for purification and concentration of lithium shown in FIG. 24, a continuous system test for purification and concentration was performed as follows. First, two electrolytic tanks having the same structure as that used in Comparative Examples 2 and 3 and having a half capacity were prepared and arranged in series so as to allow continuous water flow. Inject 12.5 liters of stock solution into the Li dissolution stock solution supply chamber of each electrolytic cell, energize a 2.5 A direct current (voltage is 8 volts) between the two electrodes for 16 hours, and put lithium in each chamber partitioned by a diaphragm. An ion concentration gradient was created. Thereafter, the stock solution was changed to No. 1 shown in FIG. No. 1 which is a cathode chamber is supplied to one chamber at 26 ml / min. The concentrated solution obtained by recovering the lithium concentrated solution from the second chamber at 19.5 ml / min was used as the No. 2 anode chamber in the second tank. No. 3 which is supplied to the third chamber and is the anode chamber of the first tank. The concentrated solution of fluorine and sulfate ions from the first chamber was 6.5 ml / min. The operation of discharging the concentrated liquid of fluorine and sulfate ions from the four chambers out of the 13 ml / min system was continuously performed. The liquid residence time in the tank at this time was 8 hours in each tank. The power consumption of the apparatus of Comparative Example 4 was almost the same as in Example 1, and the recovered amount of the concentrated liquid was also the same.
The lithium, fluorine, and sulfate ion concentrations in each chamber over time were recorded. The results are shown in Table 8. In addition, the No. of each room. No. shown in FIG. The notation.

Figure 2012200666
Figure 2012200666

表8の結果について、時間経過に伴う各室のリチウム、フッ素、硫酸の各イオン濃度をそれぞれ図25から図27に示した。連続通液開始から時間が経過するに伴って、陰極室と陽極室のイオンの濃度勾配はともに減少していた。特に回収対象であるリチウムについては連続通液開始から48時間の時点ではNo.1室(陰極室)とNo.4室(陽極室)の濃度勾配は実施例1から3と比較して大きく減少していた。この比較例4で示す装置は、原液を供給する槽とリチウム濃縮液を回収する槽間を仕切る隔壁の数が実施例1と同数であり、消費電力も同じであるが、実施例1の方が、濃縮効率が良いことが分かる。さらに比較例4のような構造では電流を流すための整流器や送液のためのポンプ、電極等の装置が複数必要となることから、経済的でない。   As for the results in Table 8, the ion concentrations of lithium, fluorine, and sulfuric acid in each chamber over time are shown in FIGS. 25 to 27, respectively. As time elapses from the start of continuous liquid flow, both the ion concentration gradients in the cathode chamber and the anode chamber decrease. In particular, with respect to lithium that is the object of recovery, No. was obtained at 48 hours after the start of continuous liquid flow. 1 chamber (cathode chamber) and The concentration gradient in the four chambers (anode chamber) was greatly reduced as compared with Examples 1 to 3. In the apparatus shown in Comparative Example 4, the number of partition walls separating the tank for supplying the stock solution and the tank for recovering the lithium concentrate is the same as in Example 1, and the power consumption is the same. However, it turns out that the concentration efficiency is good. Furthermore, the structure as in Comparative Example 4 is not economical because it requires a plurality of devices such as a rectifier for flowing current, a pump for feeding liquid, and electrodes.

本発明のリチウムの精製および濃縮を連続的に行う回収方法は、従来と比較して効率的にリチウムを精製、濃縮でき、従来実現できていなかった連続的な処理を可能とするため、低コストかつ効率的な回収方法でリチウムイオン二次電池の再利用を図ることができる。   The recovery method for continuously purifying and concentrating lithium according to the present invention is capable of purifying and concentrating lithium more efficiently than conventional methods, and enables continuous treatment that could not be realized in the past. In addition, the lithium ion secondary battery can be reused by an efficient recovery method.

1 陽極
2 陰極
3 隔膜(通液性隔壁)
4 電解槽本体
5 直流電源
1 anode 2 cathode 3 diaphragm (liquid-permeable partition)
4 Electrolyzer body 5 DC power supply

Claims (9)

電解槽に供給されるLi溶解原液中の陽イオン、陰イオンを該電解槽への直流電流の通電によりそれぞれ陰極側、陽極側へ泳動させてLi濃度の異なる溶液を回収するLi溶液回収装置であって、
前記電解槽は、通液性隔壁により仕切られてLi溶解原液供給室、陽極室及び陰極室を有し、該Li溶解原液供給室は該陽極室と該陰極室の間に位置し、該陽極室、該陰極室にはそれぞれ不溶性陽極、陰極が配置され、
前記Li溶解原液を前記Li溶解原液供給室に供給する供給手段と、前記陽極室、前記陰極室からそれぞれLi濃度の異なる溶液を回収する回収手段と、を有するLi溶液回収装置。
A Li solution recovery device that recovers solutions with different Li concentrations by causing the cations and anions in the Li dissolution stock solution supplied to the electrolytic cell to migrate to the cathode side and the anode side by direct current flow to the electrolytic cell, respectively. There,
The electrolytic cell is partitioned by a liquid-permeable partition and has a Li-dissolved stock solution supply chamber, an anode chamber, and a cathode chamber, and the Li-dissolved stock solution supply chamber is located between the anode chamber and the cathode chamber, An insoluble anode and a cathode are disposed in the chamber and the cathode chamber, respectively.
A Li solution recovery apparatus comprising: a supply unit that supplies the Li dissolution stock solution to the Li dissolution stock solution supply chamber; and a recovery unit that recovers solutions having different Li concentrations from the anode chamber and the cathode chamber, respectively.
前記電解槽は前記通液性隔壁により5室〜10室に仕切られている、請求項1に記載のLi溶液回収装置。   The Li solution recovery apparatus according to claim 1, wherein the electrolytic cell is partitioned into 5 to 10 chambers by the liquid-permeable partition wall. 前記陰極室が前記Li溶解原液供給室と該陰極室とを仕切る前記通液性隔壁に略平行な通液性隔壁により複数の陰極室に仕切られる、請求項1または2に記載のLi溶液回収装置。   3. The Li solution recovery according to claim 1, wherein the cathode chamber is partitioned into a plurality of cathode chambers by a liquid-permeable partition that is substantially parallel to the liquid-permeable partition that partitions the Li-dissolved stock solution supply chamber and the cathode chamber. apparatus. 前記陽極室が前記Li溶解原液供給室と該陽極室とを仕切る前記通液性隔壁に略平行な通液性隔壁により複数の陽極室に仕切られる、請求項1〜3のいずれかに記載のLi溶液回収装置。   4. The anode chamber according to claim 1, wherein the anode chamber is partitioned into a plurality of anode chambers by a liquid-permeable partition that is substantially parallel to the liquid-permeable partition that partitions the Li-dissolved stock solution supply chamber and the anode chamber. Li solution recovery device. 前記陰イオンが、フッ素イオン、硫酸イオンの少なくとも一種を含む、請求項1〜4のいずれかに記載のLi溶液回収装置。   The Li solution collection | recovery apparatus in any one of Claims 1-4 in which the said anion contains at least 1 type of a fluorine ion and a sulfate ion. 前記Li溶解原液が、廃リチウムイオン電池を焼成し、リチウムをリチウム陽イオンとして溶解させた液である、請求項1〜5のいずれかに記載のLi溶液回収装置。   The Li solution recovery apparatus according to any one of claims 1 to 5, wherein the Li dissolution stock solution is a solution obtained by firing a waste lithium ion battery and dissolving lithium as a lithium cation. 前記通液性隔壁の通気度が10〜1000cm3/cm2・分である、請求項1〜6のいずれかに記載のLi溶液回収装置。 The Li solution collection | recovery apparatus in any one of Claims 1-6 whose air permeability of the said liquid-permeable partition is 10-1000 cm < 3 > / cm < 2 > * min. 請求項1〜7のいずれかに記載のLi溶液回収装置を用いて、前記Li溶解原液供給室にLi溶解原液を供給し、前記電解槽へ直流電流を通電して、前記陽極室、前記陰極室からそれぞれLi濃度の異なる溶液を回収するLi溶液回収方法。   Using the Li solution recovery apparatus according to any one of claims 1 to 7, a Li-dissolved stock solution is supplied to the Li-dissolved stock solution supply chamber, a direct current is passed through the electrolytic cell, and the anode chamber and the cathode Li solution recovery method for recovering solutions having different Li concentrations from the chamber. 請求項1〜7のいずれかに記載のLi溶液回収装置を用いて、前記Li溶解原液供給室にLi溶解原液を連続的に供給し、前記電解槽へ直流電流を通電して、前記陽極室、前記陰極室からそれぞれLi濃度の異なる溶液を連続的に回収するLi溶液回収方法。   Using the Li solution recovery apparatus according to any one of claims 1 to 7, the Li dissolution stock solution is continuously supplied to the Li dissolution stock solution supply chamber, a direct current is supplied to the electrolytic cell, and the anode chamber A Li solution recovery method for continuously recovering solutions having different Li concentrations from the cathode chamber.
JP2011067060A 2011-03-25 2011-03-25 Li SOLUTION RECOVERY APPARATUS AND Li SOLUTION RECOVERY METHOD Pending JP2012200666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011067060A JP2012200666A (en) 2011-03-25 2011-03-25 Li SOLUTION RECOVERY APPARATUS AND Li SOLUTION RECOVERY METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011067060A JP2012200666A (en) 2011-03-25 2011-03-25 Li SOLUTION RECOVERY APPARATUS AND Li SOLUTION RECOVERY METHOD

Publications (1)

Publication Number Publication Date
JP2012200666A true JP2012200666A (en) 2012-10-22

Family

ID=47182192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011067060A Pending JP2012200666A (en) 2011-03-25 2011-03-25 Li SOLUTION RECOVERY APPARATUS AND Li SOLUTION RECOVERY METHOD

Country Status (1)

Country Link
JP (1) JP2012200666A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102965508A (en) * 2012-11-02 2013-03-13 中南大学 Electrolytic treatment method for positive pole materials of waste lithium batteries
CN111092274A (en) * 2020-01-07 2020-05-01 袁自兰 High-safety lithium battery integral material separation equipment
CN113764763A (en) * 2021-08-17 2021-12-07 卢志强 Lithium battery cell pole piece crushing and separating equipment
WO2022097715A1 (en) * 2020-11-06 2022-05-12 出光興産株式会社 Method for producing lithium hydroxide
WO2023027190A1 (en) * 2021-08-27 2023-03-02 国立大学法人弘前大学 Lithium recovery device and lithium recovery method
WO2023190990A1 (en) * 2022-03-31 2023-10-05 国立大学法人弘前大学 Lithium recovery device and lithium recovery method
WO2023210604A1 (en) * 2022-04-27 2023-11-02 Agc株式会社 Method for producing a sulfide-based solid electrolyte, lithium halide-containing composition, and a lithium sulfide-containing composition
WO2023228084A3 (en) * 2022-05-23 2024-02-08 King Abdullah University Of Science And Technology A lithium extraction process through decoupled electrochemical processes

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5579010A (en) * 1978-11-06 1980-06-14 Innova Inc Laminated film and its use
JPS56108868A (en) * 1979-03-05 1981-08-28 Electrochem Int Inc Regeneration of electroless plating electrodialitically by removing at least part of reaction product
JPS58147639A (en) * 1982-02-26 1983-09-02 Hideyuki Nishizawa Separation by continuous electric migration and its device
JPS6098348A (en) * 1983-10-17 1985-06-01 カ−ル シユライヒヤ− ウント シユ−ル ゲ−エムベ−ハ− ウント コンパニ カ−ゲ− Method and device for electrically eluting electrically charged giant molecule
JPS61163281A (en) * 1985-01-14 1986-07-23 モートン チオコール インコーポレーテツド Electrodyalytic cell for chemical maintenance of electrolesscopper plating bath
JPS6259853A (en) * 1985-09-11 1987-03-16 Hitachi Ltd Separator for electric charge material
JPS63256104A (en) * 1987-04-11 1988-10-24 Yuasa Battery Co Ltd Method and device for electrodialyzing ultrafiltrate
JPS63302352A (en) * 1987-06-03 1988-12-09 Natl Space Dev Agency Japan<Nasda> Gas-free electrophoretic apparatus
JP2001508925A (en) * 1997-06-23 2001-07-03 パシフィック・リシアム・リミテッド Lithium recovery and purification
JP2003530988A (en) * 2000-04-18 2003-10-21 グラディポア リミテッド Small amount separation device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5579010A (en) * 1978-11-06 1980-06-14 Innova Inc Laminated film and its use
JPS56108868A (en) * 1979-03-05 1981-08-28 Electrochem Int Inc Regeneration of electroless plating electrodialitically by removing at least part of reaction product
JPS58147639A (en) * 1982-02-26 1983-09-02 Hideyuki Nishizawa Separation by continuous electric migration and its device
JPS6098348A (en) * 1983-10-17 1985-06-01 カ−ル シユライヒヤ− ウント シユ−ル ゲ−エムベ−ハ− ウント コンパニ カ−ゲ− Method and device for electrically eluting electrically charged giant molecule
JPS61163281A (en) * 1985-01-14 1986-07-23 モートン チオコール インコーポレーテツド Electrodyalytic cell for chemical maintenance of electrolesscopper plating bath
JPS6259853A (en) * 1985-09-11 1987-03-16 Hitachi Ltd Separator for electric charge material
JPS63256104A (en) * 1987-04-11 1988-10-24 Yuasa Battery Co Ltd Method and device for electrodialyzing ultrafiltrate
JPS63302352A (en) * 1987-06-03 1988-12-09 Natl Space Dev Agency Japan<Nasda> Gas-free electrophoretic apparatus
JP2001508925A (en) * 1997-06-23 2001-07-03 パシフィック・リシアム・リミテッド Lithium recovery and purification
JP2003530988A (en) * 2000-04-18 2003-10-21 グラディポア リミテッド Small amount separation device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102965508A (en) * 2012-11-02 2013-03-13 中南大学 Electrolytic treatment method for positive pole materials of waste lithium batteries
CN111092274A (en) * 2020-01-07 2020-05-01 袁自兰 High-safety lithium battery integral material separation equipment
CN111092274B (en) * 2020-01-07 2020-12-08 五莲县计量检测服务中心 High-safety lithium battery integral material separation equipment
WO2022097715A1 (en) * 2020-11-06 2022-05-12 出光興産株式会社 Method for producing lithium hydroxide
CN113764763A (en) * 2021-08-17 2021-12-07 卢志强 Lithium battery cell pole piece crushing and separating equipment
CN113764763B (en) * 2021-08-17 2024-01-05 江苏赛朗热能技术有限公司 Broken splitter of lithium cell electricity core pole piece
WO2023027190A1 (en) * 2021-08-27 2023-03-02 国立大学法人弘前大学 Lithium recovery device and lithium recovery method
WO2023190990A1 (en) * 2022-03-31 2023-10-05 国立大学法人弘前大学 Lithium recovery device and lithium recovery method
WO2023210604A1 (en) * 2022-04-27 2023-11-02 Agc株式会社 Method for producing a sulfide-based solid electrolyte, lithium halide-containing composition, and a lithium sulfide-containing composition
WO2023228084A3 (en) * 2022-05-23 2024-02-08 King Abdullah University Of Science And Technology A lithium extraction process through decoupled electrochemical processes

Similar Documents

Publication Publication Date Title
JP2012200666A (en) Li SOLUTION RECOVERY APPARATUS AND Li SOLUTION RECOVERY METHOD
CN109207730B (en) Method and system for recovering lithium from waste lithium iron phosphate batteries
CN106823816B (en) Electrochemical recovery method of lithium in anode material of waste lithium battery
JP7030049B2 (en) Methods for processing lithium-containing materials
CN109234524B (en) Method and system for comprehensively recovering valuable metals from waste ternary lithium batteries
CN104577243B (en) Method for recovering lithium resource from lithium-ion-containing solution by using lithium ion carrier
CA2985579C (en) Method of producing lithium carbonate from lithium chloride with gas-liquid-solid separator
CN109256597A (en) A kind of method and system recycling lithium and cobalt from waste and old cobalt acid lithium battery
CN108470951A (en) The recovery method of valuable metal in a kind of waste and old nickel-cobalt-manganese ternary lithium ion battery
CN101346851B (en) Reclamation plant and method for reclaiming precious substance from lithium secondary battery
CN109207725A (en) A kind of method and system recycling lithium and manganese from waste lithium manganese oxide battery
CN109256596B (en) Method and system for reversely preparing aluminum-doped ternary precursor
US20210091426A1 (en) Lithium-ion battery recycling processes and systems
CA3113941A1 (en) Battery recycling with electrolysis of the leach to remove copper impurities
CN103695961B (en) Method for recovering rhenium, arsenic and copper from sulfuric acid wastewater of copper smelting flue gas purification system
WO2020038383A1 (en) Method and device for purifying electrolyte solution of flow battery
JP5872788B2 (en) Lithium carbonate manufacturing method and lithium carbonate manufacturing apparatus
CN107699918A (en) A kind of production technology of L cysteine hydrochlorides
CN109524735A (en) A kind of recovery method of waste lithium iron phosphate-lithium titanate battery
WO2023051017A1 (en) Method and electrochemical system for recycling retired lithium-ion battery
WO2024066184A1 (en) Method for recycling lithium iron phosphate battery
CN117043365A (en) Ceramic membrane electrolytic tank for extracting lithium from electrodecladding salt lake and electrolytic device and method for extracting lithium from electrodecladding salt lake
CN113373461B (en) Process and equipment for producing battery-grade manganese dioxide by same-bath electrolysis
CN114204152B (en) Recycling process of waste ternary lithium ion battery anode material
CN115472948A (en) Method for regenerating sodium-electricity positive electrode material by using waste lithium manganate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151201