JPS6259853A - Separator for electric charge material - Google Patents

Separator for electric charge material

Info

Publication number
JPS6259853A
JPS6259853A JP60199433A JP19943385A JPS6259853A JP S6259853 A JPS6259853 A JP S6259853A JP 60199433 A JP60199433 A JP 60199433A JP 19943385 A JP19943385 A JP 19943385A JP S6259853 A JPS6259853 A JP S6259853A
Authority
JP
Japan
Prior art keywords
chamber
migration
fractionation
mol
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60199433A
Other languages
Japanese (ja)
Other versions
JPH0625750B2 (en
Inventor
Chikao Oda
親生 小田
Shoji Yoshinaga
吉永 正二
Katsumi Muroi
室井 克美
Nobuyuki Hosomi
細見 信行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60199433A priority Critical patent/JPH0625750B2/en
Publication of JPS6259853A publication Critical patent/JPS6259853A/en
Publication of JPH0625750B2 publication Critical patent/JPH0625750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To continuously separate electric charge materials having specific isoelectric points and mol.wt. by disposing fractionation membranes having different pore sizes to the inside of a migration chamber in the direction where a DC voltage is impressed and providing outlet nozzles to chamber units at the bottom end of the liquid flow of the migration chamber. CONSTITUTION:The migration chamber 2 of a flow device body 1 is segmented to three chambers 2a, 2b, 2c by the fractionation membranes 5a, 5b which make fractionation according to the mol.wt. Electrodes 6a, 6b are respectively installed in electrode chambers 3a, 3b partitioned by a semipermeable membrane 4. The inlet and outlet nozzles 7a, 7b, 7c, 8a, 8b, 8c are respectively provided to the top and bottom ends of the migration chambers 2a, 2b, 2c. The mol.wt. to be held by the respective fractionation membranes is set at a prescribed value and the pH of a buffer soln. is adjusted to a prescribed value in the case of separating the specific protein from a mixture composed of proteins having respectively specific isoelectric points and mol.wt., then the specific protein moves to the specific electrode side with the relation between the isoelectric points and pH and is taken out of any of the nozzles 8a-8c.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、たんば吸質、核酸、細胞等の荷電物質の分離
精製技術に係り、特に電気泳動法を利用して荷電物質の
分離を行なう荷電物質の分離装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a technology for separating and purifying charged substances such as protein absorbent, nucleic acids, cells, etc., and in particular, separation of charged substances using electrophoresis. This invention relates to a device for separating charged substances.

〔発明の背景〕[Background of the invention]

従来のたんぼ<質、核酸、細胞等の荷電物質の分離精製
法として、電気泳動法、膜分離法、液体クロマトグラフ
ィ等がある。膜分離法は、膜の孔の大きさによりたんぼ
(質を分離する方法で、連続処理ができるが、たんば(
質の分離能が劣るという欠点があり、液体クロマトグラ
フィは、たんば吸質を担体充填カラムを通して分離する
方法で、分離能はすく゛れているが、バッチ操作のため
工業規模の大量処理は不適当である。また、電気泳動法
は、たんばく質の荷電量の差を利用して、電場中にて分
離精製する方法である。この゛電気泳動法には、ゲル等
の担体を用いる担体電気泳動法と、担体を用いず自由流
動液中にぞ行なう無担体電気泳動法がある。担体電気泳
動法はバッチ方式であり、大荒処理を行なうような工業
化には無担体電気泳動法が適している。
Conventional methods for separating and purifying charged substances such as grains, nucleic acids, and cells include electrophoresis, membrane separation, and liquid chromatography. Membrane separation is a method that separates rice grains by the size of the membrane's pores, and allows for continuous treatment;
Liquid chromatography has the disadvantage of poor quality separation ability, and liquid chromatography is a method of separating protein absorbent through a column packed with a carrier, and although the separation ability is low, it is a batch operation that is unsuitable for industrial-scale mass processing. be. Furthermore, electrophoresis is a method of separating and purifying proteins in an electric field by utilizing differences in the amount of charge of proteins. This electrophoresis method includes a carrier electrophoresis method that uses a carrier such as a gel, and a carrier-free electrophoresis method that is carried out in a free-flowing liquid without using a carrier. The carrier electrophoresis method is a batch method, and the carrier-free electrophoresis method is suitable for industrialization where large-scale processing is performed.

無担体電気泳動法については、西独のカート・ハニツヒ
(Kurt Hanning )氏が文献「エレクトロ
ホレシス、3.P235−243,1982J(Ele
ctrophoresis、 3. P235−243
.1982)Iこ発表している。その方法を以下に示す
Regarding the carrier-free electrophoresis method, Mr. Kurt Hanning of West Germany has published the document "Electrophoresis, 3. P235-243, 1982J (Ele
ctrophoresis, 3. P235-243
.. 1982) I have published this. The method is shown below.

泳動室内で電場を横切って一定速度で流下する分離バッ
ファー中に注入口から連続的に分離すべきたんぼ(質混
合物を注入する。各たんぼ(質は、それぞれ荷電量が異
なるため電場中での移動速度は異なる。そのため分離バ
ッファー中を流下中に分離バッファーの流速とのかねあ
いでそれぞれに偏向されて分離される。このように本方
法は連続的に分離することができるため、工業規模のた
んぼ(質の分離精製に対して有効であることがわかる。
The mixture to be separated is continuously injected from the injection port into the separation buffer flowing at a constant speed across the electric field in the electrophoresis chamber. The speeds are different.Therefore, while flowing through the separation buffer, they are deflected and separated depending on the flow rate of the separation buffer.In this way, this method can perform continuous separation, so it can be used in industrial-scale rice fields ( It can be seen that this method is effective for the separation and purification of quality.

本方法で分離性能を高めるためには分離用チャンバ内の
分離バッファーの流速を常に一定に保つことが重要であ
る。ところが、分離バッファーには電流を流すためジュ
ール熱が必ず発生し、その熱により分離バッファーに対
流現象が生じ、分離バッファーの流れが乱れる。そのた
めたんばく質の分離能は低下する。そこで、この点を改
善するため従来、無担体電気泳動装置は分離バッファー
の温度や流速を±0.2チと極めて精度良くコントロー
ルする必要があり、そのために、分離チャンバーを薄い
平板形で極力小さ鳴ぜざるを得す、処理量が少なく、工
業規模に大型化する場合の問題となっている。
In order to improve the separation performance in this method, it is important to always keep the flow rate of the separation buffer in the separation chamber constant. However, Joule heat is inevitably generated due to the current flowing through the separation buffer, and this heat causes a convection phenomenon in the separation buffer, disrupting the flow of the separation buffer. Therefore, the ability to separate proteins decreases. To improve this point, conventional carrier-free electrophoresis devices require extremely precise control of the temperature and flow rate of the separation buffer within ±0.2 inches. Unfortunately, the throughput is small, which is a problem when scaling up to an industrial scale.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、等電点分画と分子量分画とを一つの装
置で行ない、特定の等電点と分子量とを有する荷電物質
を連続して分離することのできる荷電物質の分離装置を
提供することである。
An object of the present invention is to provide a charged substance separation device that can perform isoelectric point fractionation and molecular weight fractionation in one device, and can continuously separate charged substances having a specific isoelectric point and molecular weight. It is to provide.

〔発明のJIA要〕[JIA key points for invention]

本発明は、泳動室を横切って直流電圧を印加し、泳動室
内に複数の荷電物質を含む被処理液を流入させ、電気泳
動法によって荷電物質を分離する分4装置において、泳
動室内の直流電圧印加方法にそれぞれ孔径が異なる分画
膜を該孔径の順に複数配設すると共に、該泳動室の液流
下端に該半透膜で仕切られた室単位にそれぞれ出口ノズ
ルを設けたことを特徴とする。
The present invention applies a DC voltage across the electrophoresis chamber, causes a liquid to be processed containing a plurality of charged substances to flow into the electrophoresis chamber, and separates the charged substances by electrophoresis. A plurality of fractionation membranes each having a different pore size are arranged in the order of the pore size for the application method, and an outlet nozzle is provided for each chamber partitioned by the semipermeable membrane at the lower end of the liquid flow of the migration chamber. do.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を■1,2図により説明する。 An embodiment of the present invention will be described below with reference to Figures 1 and 2.

第1図は本発明による荷電物質の連続分離装置の正面断
面図、第2図は第1図のl−11矢視断面図である。図
において、lは流、動装置本体、2は泳動室、aa、3
bは電極室である。泳動室2と電極室3a、3bは、孔
径の小さい分画膜である半透膜4で仕切られている。泳
動室2内は分子量に応じて分画する分画g5a、5bに
より3室2a、2b、2cに区分されている。一方電極
室3a、3b内にはそれぞれ直流電圧を印加するための
tai6a、6bが設置されている。泳動室2Cの上端
には荷電物質を含む被処理液の入口ノズル7Cがあり、
泳動室2a、2bの上端には分離液の入口ノズル7a、
7bがある。そして、泳動室2a、2b、2cの下端に
は被処理液の出口ノズル8a、8b、8cがある。また
、電極室3a、3bのそれぞれの下部および上部には、
電極液の入口ノズル9a、9bおよび出口ノズル10a
FIG. 1 is a front sectional view of a continuous separation device for charged substances according to the present invention, and FIG. 2 is a sectional view taken along the line 1-11 in FIG. In the figure, l is the flow, the movement device main body, 2 is the migration chamber, aa, 3
b is an electrode chamber. The migration chamber 2 and the electrode chambers 3a, 3b are separated by a semipermeable membrane 4, which is a fractionation membrane with a small pore size. The inside of the electrophoresis chamber 2 is divided into three chambers 2a, 2b, and 2c by fractions g5a and 5b, which are fractionated according to molecular weight. On the other hand, insides of the electrode chambers 3a and 3b are installed 6a and 6b for applying a DC voltage, respectively. At the upper end of the migration chamber 2C, there is an inlet nozzle 7C for a liquid to be processed containing a charged substance.
Separation liquid inlet nozzles 7a are provided at the upper ends of the migration chambers 2a and 2b,
There is 7b. At the lower ends of the migration chambers 2a, 2b, 2c are outlet nozzles 8a, 8b, 8c for the liquid to be processed. In addition, in the lower and upper parts of each of the electrode chambers 3a and 3b,
Electrode liquid inlet nozzles 9a, 9b and outlet nozzle 10a
.

10 bが設けられている。10b is provided.

ここで、電極室3a、3bと泳動室2とを仕切る半透膜
4には、たんばく質などの被処理荷電物質を通さない孔
径を持つ逆浸透膜などが用いられる。また、流動室2内
を区分する分子量分画膜5aには、被処理荷電物質中の
目的成分の分子量を保持する膜を用い、分子1分画膜5
bには、目的成分の分子量を透過させ、目的成分より大
きい分子量を持つ物質を透過させない膜を用いる。
Here, as the semipermeable membrane 4 that partitions the electrode chambers 3a, 3b and the migration chamber 2, a reverse osmosis membrane or the like having a pore size that does not allow the passage of charged substances such as proteins is used. In addition, a membrane that maintains the molecular weight of the target component in the charged substance to be treated is used as the molecular weight fractionation membrane 5a that divides the inside of the flow chamber 2, and a molecule 1 fractionation membrane 5a is used.
For b, a membrane is used that allows the molecular weight of the target component to pass through, but does not allow a substance with a molecular weight larger than the target component to pass through.

このような泳動装置1の電極室3a、3bに電極液(緩
衝液)を流し、泳動室za、2bの上部から分離用緩衝
液を流入させ、泳動室2cの上部からたんばく質などの
被処理荷電物質を含む緩衝液を流入させて電極棒6a、
6bに直流電圧をかける。ここで、緩衝液のPHを目的
成分の等電点より高い値に調整し、電極6aを正、  
6bを負として荷電すると緩衝液のPHより高い等重点
の荷電物質は、図中11 dの軌跡で示すように、負の
電極6bの方向に泳動移動し、泳動室2cの負の電極側
(図の右側)を下降し、出口ノズル8cから取り出され
る。一方、目的成分を含む緩衝液のPHより低い等電点
の荷電物質は、11 a 、 11 b 、 11Cの
軌跡で示すように、いずれも正の電極6aの方向に泳動
移動するが、分子量分画膜5a、5bが設置しであるた
め、目的成分より大きい分子量の荷電物質は、11 c
の軌跡で示すように、分子量分画膜5bにさえぎられて
泳動室2C内にとどまったままで下降し、出口ノズル8
Cから流出する。
The electrode solution (buffer) is poured into the electrode chambers 3a and 3b of the electrophoresis apparatus 1, the separation buffer is introduced from the upper part of the electrophoresis chamber za and 2b, and the protein and other substances are introduced from the upper part of the electrophoresis chamber 2c. A buffer solution containing a charged substance to be treated is introduced into the electrode rod 6a,
Apply DC voltage to 6b. Here, the pH of the buffer solution is adjusted to a value higher than the isoelectric point of the target component, and the electrode 6a is
When charged with 6b as negative, the charged substance with an isocenter higher than the pH of the buffer migrates in the direction of the negative electrode 6b, as shown by the locus 11d in the figure, and is transferred to the negative electrode side of the migration chamber 2c ( (on the right side of the figure) and is taken out from the outlet nozzle 8c. On the other hand, charged substances with isoelectric points lower than the pH of the buffer solution containing the target component migrate electrophoretically in the direction of the positive electrode 6a, as shown by trajectories 11 a , 11 b , and 11 C; Since the film films 5a and 5b are installed, a charged substance with a molecular weight larger than the target component is 11 c
As shown by the trajectory, it descends while remaining in the migration chamber 2C blocked by the molecular weight separation membrane 5b, and passes through the exit nozzle 8.
It flows out from C.

また目的成分は、11 bの軌跡で示すように、分子量
分画膜5bを透過し、次の分画膜5aにさえぎられて泳
動室2b内を下降し、出口ノズル8bから取り出される
。そして、緩衝液のP Hより低い等電点を持ち、目的
成分より小さい分子】の荷電物質は11 aの軌跡で示
すように分画膜sb、saの両方を透過して図の左側の
泳動室2ajこ違し、出口ノズル8aから取り出される
Further, as shown by the trajectory 11b, the target component passes through the molecular weight separation membrane 5b, is blocked by the next separation membrane 5a, descends in the migration chamber 2b, and is taken out from the exit nozzle 8b. Then, the charged substance, which has an isoelectric point lower than the pH of the buffer solution and is smaller than the target component, passes through both the separation membranes sb and sa and migrates to the left side of the figure, as shown by the trajectory 11a. The liquid is passed through the chamber 2aj and taken out from the outlet nozzle 8a.

このようにして、分子量および等電点に分布を持った荷
電物質中から目的成分を連続して取り出すことができる
In this way, the target component can be continuously extracted from a charged substance having a distribution in molecular weight and isoelectric point.

本装置を用いて市販たんばく質の混合物を分離する場合
について説明する。ミオキナーゼ(My。
A case will be explained in which a mixture of commercially available proteins is separated using this apparatus. Myokinase (My.

kinase−=−・等電点4.31分分子21,00
0)を人。
kinase-=-・isoelectric point 4.31 minutes molecule 21,00
0) is a person.

オバルブミン(Ova Ibum in・・・・・・等
電点469分子B4s、ooo)をB、オバイン・セラ
ム・アルブミン(Bovine serum albu
min−・−・−等電点4.7.分子fi57,000
)をC,トリオセホスフェイト・イソメラーゼ(Tri
osephosphate isomerase 8゛
−・・等電点581分子量43,000)をDとして、
これらの混合溶液からBを連続分離しようとする場合、
分子量分画膜5aに保持分子ff140.OOOの膜を
用い、分画膜5bに保持分子量60. OOOの膜を用
いて、緩衝液のPHを52に調整する。このようにして
、たんば<’FTA、B、C,Dを含む混合溶液を本装
置Iに連続供給すると、緩衝液のP Hより高い等重点
を持つたんぼ(質りは負の電極側に泳動するため、軌跡
11 dに沿って泳動室2Cを下降する。また、たんぼ
(質Cは等電点が緩衝液のPHより低いため、正の電極
側に泳動するが、分画膜5bにさえぎられて、図中の軌
跡11 cに沿って泳動室2Cを下降し、たんばく質り
と共に出口ノズル8Cから取り出される。そして、たん
ばく質Bは、等電点とPHの関係から正の1極側に移動
し、分画膜5bを透過し、分画@5aにさえぎられて軌
跡11 bに沿って泳動室2 +)を降下し、出口ノズ
ル8bから連続して取り出される。
Ova Ibum in...Isoelectric point 469 molecules B4s, ooo)
min-・-・-isoelectric point 4.7. Molecule fi57,000
) is C, triocephosphate isomerase (Tri
osephosphate isomerase 8゛-...isoelectric point 581 molecular weight 43,000) as D,
When trying to continuously separate B from these mixed solutions,
The molecular weight fractionation membrane 5a retains molecules ff140. Using an OOO membrane, the retention membrane 5b has a retention molecular weight of 60. Adjust the pH of the buffer to 52 using an OOO membrane. In this way, when a mixed solution containing Tanba<'FTA, B, C, and D is continuously supplied to this device I, a tank with an isofocus higher than the pH of the buffer solution (the mass is on the negative electrode side) is produced. In order to migrate, it descends through the migration chamber 2C along the trajectory 11d.Also, because the isoelectric point of the cell C is lower than the pH of the buffer solution, it migrates toward the positive electrode, but it does not reach the fractionation membrane 5b. The protein B is obstructed, moves down the migration chamber 2C along the trajectory 11c in the figure, and is taken out from the exit nozzle 8C together with the protein.The protein B has a positive polarity due to the relationship between the isoelectric point and the pH. It moves to the one-pole side, passes through the fractionation membrane 5b, is intercepted by the fraction @5a, moves down the migration chamber 2+) along the trajectory 11b, and is continuously taken out from the exit nozzle 8b.

一方、たんぼ<WAは、正の電極側に移動し、分画膜5
bおよび5aを透過して、軌跡11 aで示すように、
泳動室2a内を降下し、出口ノズル8aから取り出され
る。このようにして、等重点および分子量に分布を持つ
、たんばく質A、  B、  C。
On the other hand, when the rice field <WA moves to the positive electrode side, the fractionation membrane 5
b and 5a, as shown by locus 11a,
It descends within the migration chamber 2a and is taken out from the outlet nozzle 8a. In this way, proteins A, B, and C have equal distributions of points and molecular weights.

Dの混合溶液から、特定の等電点2分子14の目的たん
ぽ(質Bを連続分離できる。
From the mixed solution of D, it is possible to continuously separate the target substance (quality B) of two molecules 14 with specific isoelectric points.

本発明の他の実施例を第3図に示す。この実施例は、第
1図にあるような分離用緩衝液の入口ノズルを使用せず
、装「を簡略化したものであり、処理1が少なく小型装
S7の場合には十分性能を発揮できる。
Another embodiment of the invention is shown in FIG. This example does not use the separation buffer inlet nozzle as shown in Fig. 1, and simplifies the device, and can exhibit sufficient performance in the case of a small device S7 with less processing 1. .

本分明の推奨される実施例においては、第4図に示すよ
うに、緩衝液のPHを荷電方向iこ分布を持たせたもの
で、M衝液入ロノズル7a、7a’。
In the preferred embodiment of the present invention, as shown in FIG. 4, the pH of the buffer solution has a distribution in the charge direction, and the M buffer solution-filled nozzles 7a and 7a' are used.

7bから入る液のP I−fに差をつけたものである。This is a difference in P If of the liquid entering from 7b.

本実施例では入口ノズル7Cから入った被処理液はまず
、分子量分画膜5bで目的たんばく質より大きいたんば
く質の透過がさえぎられ、分画膜5bを透過したたんば
く質は荷電方向のPH分布に応じたそれぞれのたんばく
質の等重点のところまで泳動して下降し、出口ノズル8
 a、 8 a’、 8bから取り出される。このとき
、分画11i5a、5a’の孔径は、目的たんぼ(質の
分子量に応じてノブにより調節する。この結果、分子量
の大きいものを除いた目的等重点を持つたんばく質が連
続分離できる。
In this embodiment, the liquid to be treated that enters from the inlet nozzle 7C is first blocked by the molecular weight separation membrane 5b from passing through proteins larger than the target protein, and the proteins that have passed through the separation membrane 5b are charged in the charged direction. It migrates and descends to the equal point of each protein according to the pH distribution of
a, 8 a', 8b. At this time, the pore size of the fractions 11i5a and 5a' is adjusted by a knob according to the molecular weight of the target protein. As a result, proteins with a high molecular weight can be continuously separated, excluding proteins with large molecular weights.

さらに本発明の推奨される実施例においては、@1因に
示す分離用緩衝液の41!率を荷電方向に変え、入口ノ
ズル7aから入るam液の導電率を高くし、入口ノズル
7bから入る緩衝液の導電率を低くしたものである。こ
れ壷こより分画膜5a。
Furthermore, in a preferred embodiment of the present invention, 41! of the separation buffer shown in factor @1! By changing the rate in the charging direction, the conductivity of the am liquid entering through the inlet nozzle 7a is increased, and the conductivity of the buffer solution entering through the inlet nozzle 7b is decreased. This is the fractionation membrane 5a from the jar.

5bで仕切られた泳動室2bでのたんばく質の泳動速度
を高めることができ、処3!I!旦が増加できる。
The migration speed of protein in the migration chamber 2b partitioned by 5b can be increased, and the process 3! I! can be increased.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、特定の等電点と分子■とを持つ荷電物
質を連続して分離できるので、たんばく質などの大ta
連続分離が可能となる。
According to the present invention, charged substances having a specific isoelectric point and molecules
Continuous separation becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の縦断面図、第2図は第1図
のll−H線断面図である。第3図、第4図はそれぞれ
本発明の他の実施例を示す。 1・・・・・・泳動装置本体、2・・−・・・泳動室、
3a、3b・・・・・・電極室、4・・・・・・半透膜
、5a、5b・・四分子伍分画膜
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention, and FIG. 2 is a sectional view taken along line 11--H in FIG. FIGS. 3 and 4 each show other embodiments of the present invention. 1...Migration apparatus main body, 2...Migration chamber,
3a, 3b...electrode chamber, 4...semipermeable membrane, 5a, 5b...tetradome fractionation membrane

Claims (1)

【特許請求の範囲】[Claims] 1、複数の荷電物質を含む被処理液を、該被処理液の流
下方向と直角方向に直流電圧が印加された泳動室内に供
給し、前記荷電物質の分離を行なう荷電物質の分離装置
において、前記泳動室内の該直流電圧印加方向にそれぞ
れ孔径が異なる分画膜を該孔径の順に複数配設すると共
に、該泳動室の液流下端に該半透膜で仕切られた室単位
にそれぞれ出口ノズルを設けたことを特徴とする荷電物
質の分離装置。
1. A charged substance separation device that separates the charged substances by supplying a liquid to be processed containing a plurality of charged substances into a migration chamber to which a DC voltage is applied in a direction perpendicular to the flowing direction of the liquid to be processed, A plurality of fractionation membranes each having a different pore size are arranged in the direction of application of the DC voltage in the electrophoresis chamber in the order of the pore size, and an outlet nozzle is provided for each chamber partitioned by the semipermeable membrane at the lower end of the liquid flow of the electrophoresis chamber. A charged substance separation device characterized by being provided with:
JP60199433A 1985-09-11 1985-09-11 Charged substance separator Expired - Lifetime JPH0625750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60199433A JPH0625750B2 (en) 1985-09-11 1985-09-11 Charged substance separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60199433A JPH0625750B2 (en) 1985-09-11 1985-09-11 Charged substance separator

Publications (2)

Publication Number Publication Date
JPS6259853A true JPS6259853A (en) 1987-03-16
JPH0625750B2 JPH0625750B2 (en) 1994-04-06

Family

ID=16407736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60199433A Expired - Lifetime JPH0625750B2 (en) 1985-09-11 1985-09-11 Charged substance separator

Country Status (1)

Country Link
JP (1) JPH0625750B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410162A (en) * 1987-07-03 1989-01-13 Hitachi Ltd Method and device for separating charged material
US5128043A (en) * 1991-02-13 1992-07-07 Wildermuth Glen W Method and apparatus for purifying liquids
JPH06139875A (en) * 1992-10-26 1994-05-20 Mitsubishi Electric Corp Fitting device for microswitch
WO2003008958A1 (en) * 2001-07-11 2003-01-30 Olympus Corporation Free flow electrophoresis element and free flow electrophoresis method
JP2009541726A (en) * 2006-06-20 2009-11-26 ベクトン・ディキンソン・アンド・カンパニー Method and apparatus for separating and depleting certain proteins and particles using electrophoresis
JP4755652B2 (en) * 2005-10-25 2011-08-24 株式会社日立製作所 Nuclear magnetic resonance probe and nuclear magnetic resonance apparatus
JP2012200666A (en) * 2011-03-25 2012-10-22 Dowa Eco-System Co Ltd Li SOLUTION RECOVERY APPARATUS AND Li SOLUTION RECOVERY METHOD

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147639A (en) * 1982-02-26 1983-09-02 Hideyuki Nishizawa Separation by continuous electric migration and its device
JPS59171850A (en) * 1983-03-19 1984-09-28 Nitto Electric Ind Co Ltd Separation of protein

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147639A (en) * 1982-02-26 1983-09-02 Hideyuki Nishizawa Separation by continuous electric migration and its device
JPS59171850A (en) * 1983-03-19 1984-09-28 Nitto Electric Ind Co Ltd Separation of protein

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410162A (en) * 1987-07-03 1989-01-13 Hitachi Ltd Method and device for separating charged material
US5128043A (en) * 1991-02-13 1992-07-07 Wildermuth Glen W Method and apparatus for purifying liquids
JPH06139875A (en) * 1992-10-26 1994-05-20 Mitsubishi Electric Corp Fitting device for microswitch
WO2003008958A1 (en) * 2001-07-11 2003-01-30 Olympus Corporation Free flow electrophoresis element and free flow electrophoresis method
JP4755652B2 (en) * 2005-10-25 2011-08-24 株式会社日立製作所 Nuclear magnetic resonance probe and nuclear magnetic resonance apparatus
JP2009541726A (en) * 2006-06-20 2009-11-26 ベクトン・ディキンソン・アンド・カンパニー Method and apparatus for separating and depleting certain proteins and particles using electrophoresis
JP2012200666A (en) * 2011-03-25 2012-10-22 Dowa Eco-System Co Ltd Li SOLUTION RECOVERY APPARATUS AND Li SOLUTION RECOVERY METHOD

Also Published As

Publication number Publication date
JPH0625750B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
EP0171676B1 (en) Free-flow electrophoretic separation method and apparatus therefor
US5173164A (en) Multi-modality electrical separator apparatus and method
US5080770A (en) Apparatus and method for separating particles
US5336387A (en) Electrical separator apparatus and method of counterflow gradient focusing
US20050167270A1 (en) Electrophoresis apparatus and method
Horvath et al. Multifunctional apparatus for electrokinetic processing of proteins
Ivory The prospects for large-scale electrophoresis
US4834862A (en) Ampholyte separation method and apparatus
JPS6259853A (en) Separator for electric charge material
US5071536A (en) High resolution continuous flow electrophoresis
US5032247A (en) Method and apparatus for electrophoretic separations
JPS62175498A (en) Method for separating protein
JPS5962319A (en) Electric focusing apparatus for separating amphoteric ion
JPS6183952A (en) Carrierless continuous electro-phoresis and apparatus therefor
CN1035471C (en) Preparation-type high voltage electrophoretic separating device of difference speed counter-current
AU2001291491B2 (en) Electrophoresis apparatus and method
JPH0715454B2 (en) Method and apparatus for separating and purifying charged substances
JPS6177751A (en) Continuous electrophoresis apparatus
JPS59171850A (en) Separation of protein
JPH0599899A (en) Method for separately purifying bio-substance
JPS61290352A (en) Separation of charged substance
Evans Immunophysical methods in parasitic infections: A continuous electrophoresis apparatus for preparative fractionation of protein systems
Bier Effective Principles for Scaleup of Electrophoresis
GB832202A (en) Continuous flow electrophoresis
CA2421450A1 (en) Electrophoresis apparatus and method