JPH0715454B2 - Method and apparatus for separating and purifying charged substances - Google Patents

Method and apparatus for separating and purifying charged substances

Info

Publication number
JPH0715454B2
JPH0715454B2 JP59158724A JP15872484A JPH0715454B2 JP H0715454 B2 JPH0715454 B2 JP H0715454B2 JP 59158724 A JP59158724 A JP 59158724A JP 15872484 A JP15872484 A JP 15872484A JP H0715454 B2 JPH0715454 B2 JP H0715454B2
Authority
JP
Japan
Prior art keywords
charged substance
separation
separation chamber
chamber
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59158724A
Other languages
Japanese (ja)
Other versions
JPS6138457A (en
Inventor
克美 室井
幸哉 平塚
正二 吉永
藤次 中対
親生 小田
清志 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59158724A priority Critical patent/JPH0715454B2/en
Priority to EP85109302A priority patent/EP0171676B1/en
Priority to DE8585109302T priority patent/DE3580418D1/en
Priority to US06/760,940 priority patent/US4698142A/en
Publication of JPS6138457A publication Critical patent/JPS6138457A/en
Priority to US07/020,773 priority patent/US4749458A/en
Publication of JPH0715454B2 publication Critical patent/JPH0715454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D57/00Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C
    • B01D57/02Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C by electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44769Continuous electrophoresis, i.e. the sample being continuously introduced, e.g. free flow electrophoresis [FFE]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Peptides Or Proteins (AREA)
  • Electrostatic Separation (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、たんぱく質、核酸、細胞等の荷電物質の電気
泳動法による分離精製技術に係り、特に高分離性能を有
し、かつ、大量処理が可能な荷電物質の分離精製法およ
びその装置に関するものである。
TECHNICAL FIELD The present invention relates to a technique for separating and purifying charged substances such as proteins, nucleic acids, cells, etc. by an electrophoretic method, which has a particularly high separation performance and is suitable for large-scale processing. The present invention relates to a method for separating and purifying possible charged substances and an apparatus therefor.

〔発明の背景〕[Background of the Invention]

従来のたんぱく質、核酸、細胞等の荷電物質(以下、代
表してたんぱく質と呼ぶ)の分離精製法として、電気泳
動法、膜分離法、液体クロマトグラフィ等がある。膜分
離法は、膜の孔の大きさによりたんぱく質を分離する方
法で、連続処理ができるが、たんぱく質の分離能が劣る
という欠点があり、液体クロマトグラフィは、たんぱく
質を担体充填カラム中を通して分離する方法で、分離能
はすぐれているが、バッチ操作のため工業規模の大量処
理には不適当である。また、電気泳動法は、たんぱく質
の荷電量の差を利用して、電場中にて分離精製する方法
である。この電気泳動法には、ゲル等の担体を用いる担
体電気泳動法と、担体を用いず自由流動液中にて行なう
無担体電気泳動法がある。担体電気泳動法はバッチ式で
あり、大量処理を行なうような工業化には無担体電気泳
動法が適している。
Conventional methods for separating and purifying charged substances such as proteins, nucleic acids, and cells (hereinafter, typically referred to as proteins) include electrophoresis, membrane separation, and liquid chromatography. Membrane separation is a method of separating proteins according to the size of the pores of the membrane, and continuous treatment is possible, but it has the disadvantage of poor protein separation performance.Liquid chromatography is a method of separating proteins through a carrier-filled column. Although it has excellent separation ability, it is not suitable for industrial-scale large-scale processing because it is a batch operation. The electrophoresis method is a method of separating and purifying in an electric field by utilizing the difference in the charge amount of proteins. This electrophoresis method includes a carrier electrophoresis method using a carrier such as a gel and a carrier-free electrophoresis method performed in a free flowing liquid without using a carrier. The carrier electrophoresis method is a batch method, and the carrier-free electrophoresis method is suitable for industrialization in which a large amount of treatment is performed.

無担体電気泳動法については、Electrophores-is 1982,
3,235-243におけるKurt Hannigによる“New aspccts in
praparative and analytical continuous free-flow c
ell Clectrophoresis"と題する文献において論じられて
いる。また、この原理に基づいた装置が、西独Hirshman
n社ですでに製造されている。この無担体電気泳動法に
よるたんばく質の分離精製方法について説明する。分離
用チャンバ内で電場を横切って一定速度で流下する分離
バッファー液中に、注入口から連続的に分離すべきたん
ぱく質の混合物を注入する。各たんぱく質はそれぞれ荷
電量が異なるため、電場中での移動速度が異なる。その
ため、分離バッファー液中を流下中に、分離バッファー
液流速との兼合いで、それぞれに偏向されて分離され
る。このように、本方法は連続的に分離することができ
るため、工業規模のたんぱく質の分離精製に対して有効
である。
For carrier-free electrophoresis, see Electrophores-is 1982,
Kurt Hannig on “New aspccts in 3,235-243”
praparative and analytical continuous free-flow c
ell Clectrophoresis ", and a device based on this principle was found in Hirshman, West Germany.
Already manufactured by n companies. A method for separating and purifying a protein by the carrier-free electrophoresis method will be described. A mixture of proteins to be separated is continuously injected from an injection port into a separation buffer solution that flows at a constant rate across an electric field in a separation chamber. Since each protein has a different charge amount, the moving speed in an electric field is different. Therefore, while flowing in the separation buffer solution, it is deflected and separated depending on the flow rate of the separation buffer solution. As described above, the present method allows continuous separation, and thus is effective for industrial-scale protein separation and purification.

本方法で分離性能を高めるためには、分離用チャンバ内
の分離バッファー液の流速を常に一定に保つことが重要
であるが、分離バッファー液には電流を流すため、ジュ
ール熱が必ず発生し、この熱により分離バッファー液に
対流現象を生じ、分離バッファー液の流れが乱れるた
め、たんぱく質の分離性能が低下する。この問題を解決
するため、従来の無担体電気泳動法では、分離バッファ
ー液の温度や流速を±0.2%と極めて高精度にコントロ
ールし、また、装置を小型化してジュール熱に対応させ
ているが、たんぱく質の分離性能はあまりよくなってい
ない。
In order to improve the separation performance with this method, it is important to always keep the flow rate of the separation buffer solution in the separation chamber constant, but since an electric current is passed through the separation buffer solution, Joule heat is always generated, This heat causes a convection phenomenon in the separation buffer solution, and the flow of the separation buffer solution is disturbed, so that the protein separation performance deteriorates. In order to solve this problem, in the conventional carrier-free electrophoresis method, the temperature and flow rate of the separation buffer solution are controlled with extremely high accuracy of ± 0.2%, and the device is downsized to support Joule heat. , Protein separation performance is not so good.

さらにまた、この熱対流の影響をなくするため電気泳動
装置を宇宙空間に持って行き、無重力状態下で電気泳動
を行なわせる計画もあり、この対流がいかに大きな問題
かがうかがえる。
Furthermore, there is a plan to bring the electrophoretic device to outer space to eliminate the influence of this thermal convection, and to perform electrophoresis in a weightless state, and you can see how serious this convection is.

〔発明の目的〕[Object of the Invention]

本発明の目的は、高分離性能を有し、かつ、大量処理が
可能な荷電物質の分離精製法およびその装置を提供する
ことにある。
An object of the present invention is to provide a method for separating and purifying a charged substance having high separation performance and capable of large-scale processing, and an apparatus therefor.

〔発明の概要〕[Outline of Invention]

従来の無担体電気泳動装置においては、分離性能を高め
るため、ジュール熱の発生による分離バッファー液の対
流をいかにしてなくして、一定流速に保つかが重要な技
術課題である。そのため、従来より分離バッファー液の
温度、流速を厳密にコントロールすると共に、装置の小
型化を計ってきた。
In the conventional carrier-free electrophoresis apparatus, in order to improve the separation performance, how to prevent convection of the separation buffer solution due to generation of Joule heat and maintain a constant flow rate is an important technical issue. Therefore, conventionally, the temperature and flow velocity of the separation buffer solution have been strictly controlled and the device has been downsized.

本発明者らは、電気泳動法においては避けられないジュ
ール熱の発生による分離バッファー液の対流を、逆に利
用することに着目して実験、研究を重ねた結果、本発明
に至ったものである。
The present inventors have conducted experiments and research focusing on the converse use of convection of the separation buffer solution due to the generation of Joule heat, which is unavoidable in the electrophoresis method, and as a result, have reached the present invention. is there.

本発明は、荷電物質を含む液を電気泳動法により処理し
て荷電物質を分離精製するものにおいて、分離用チャン
バ内で分離バッファー液の循環流を形成させ、該液の循
環流に対して直角方向に電圧をかけ、分離用チャンバ内
に荷電物質溶液を供給して荷電物質を分離精製するよう
にしたものである。
The present invention relates to a method in which a liquid containing a charged substance is treated by an electrophoretic method to separate and purify a charged substance. In the separation chamber, a circulating flow of a separation buffer liquid is formed, and the circulating flow of the liquid is perpendicular to the liquid. A voltage is applied in the direction, and a charged substance solution is supplied into the separation chamber to separate and purify the charged substance.

〔発明の実施例〕Example of Invention

第1図は本発明の原理を示したもので、分離用チャンバ
1内の分離バッファー液2に一定方向の循環流を生じさ
せ、陰電極3,陽電極4に電圧をかけて電場を形成させ
る。つぎに、分離すべき荷電物質を含む液(以下たんぱ
く質液と呼ぶ)5を注入口6より分離用チャンバ1内に
供給する。ここで、たんぱく質液5中のたんぱく質は、
たんぱく質A,Bから構成されているものとし、たんぱく
質Aはマイナスに帯電し、たんぱく質Bはプラスに帯電
しているものと仮定する。また、分離バッファー液2の
循環流は、図示矢印方向の流れとする。分離用チャンバ
1内に供給されたたんぱく質液5中のたんぱく質液A,B
の挙動は、たんぱく質Aは陽電極4に吸引されると同時
に、分離バッファー液2の流れとの兼合いから、上部取
出口7付近に蓄積される。また、たんぱく質Bは陰電極
3に吸引されながら、分離バッファー液2の流れとの兼
合いから、下部取出口8付近に蓄積される。
FIG. 1 shows the principle of the present invention, in which a circulating flow in a certain direction is generated in a separation buffer solution 2 in a separation chamber 1, and a voltage is applied to a negative electrode 3 and a positive electrode 4 to form an electric field. . Next, a liquid 5 containing a charged substance to be separated (hereinafter referred to as a protein liquid) 5 is supplied into the separation chamber 1 through an injection port 6. Here, the protein in protein liquid 5 is
It is assumed that it is composed of proteins A and B, protein A is negatively charged, and protein B is positively charged. Further, the circulation flow of the separation buffer solution 2 is a flow in the direction of the arrow shown. Protein solutions A and B in the protein solution 5 supplied into the separation chamber 1
In the behavior of, the protein A is attracted to the positive electrode 4 and, at the same time, is accumulated in the vicinity of the upper outlet 7 in consideration of the flow of the separation buffer solution 2. Further, the protein B is accumulated in the vicinity of the lower outlet 8 while being attracted to the negative electrode 3 in consideration of the flow of the separation buffer solution 2.

このようにして、分離バッファー液2の循環流を利用し
て、たんぱく質を精度よく分離精製することができる。
In this way, the circulating flow of the separation buffer solution 2 can be utilized to accurately separate and purify proteins.

以下、本発明の一実施例を第2図により詳細に説明す
る。第2図において、1は垂直に設置された分離用チャ
ンバ、2は分離バッファー液、3および4は分離用チャ
ンバ1の両側に形成された陰電極室9および陽電極室10
内に平行に設けられた陰電極および陽電極、6は分離用
チャンバ1の中央部に設けられたたんばく質液5を供給
するための注入口、7は分離用チャンバ1の陽電極室10
側上部に設けられた上部取出口、8は分離用チャンバ1
の陰電極室9側下部に設けられた下部取出口、11は分離
用チャンバ1と陰電極室9、陽電極室10とを隔離した電
流を通す部材よりなる隔離膜、12はそれぞれ陰電極室9
および陽電極室10内の温度を調節するための温度調整
器、13は各温度調整器12で温度調整された分離バッファ
ー液をそれぞれ陰電極室9および陽電極室10に循環させ
る循環ポンプである。
An embodiment of the present invention will be described in detail below with reference to FIG. In FIG. 2, 1 is a vertical separation chamber, 2 is a separation buffer solution, and 3 and 4 are negative electrode chambers 9 and positive electrode chambers 10 formed on both sides of the separation chamber 1.
A negative electrode and a positive electrode provided in parallel in the inside, 6 is an injection port provided in the central portion of the separation chamber 1 for supplying the protein liquid 5, and 7 is a positive electrode chamber 10 of the separation chamber 1.
An upper outlet provided on the upper side, 8 is a separation chamber 1
A lower outlet provided on the lower side of the negative electrode chamber 9 side, 11 is an isolation membrane made of a member that separates the separation chamber 1 from the negative electrode chamber 9 and the positive electrode chamber 10 and passes a current, and 12 is the negative electrode chamber, respectively. 9
And a temperature controller for adjusting the temperature in the positive electrode chamber 10, and 13 is a circulation pump for circulating the separation buffer solution whose temperature is adjusted by each temperature controller 12 to the negative electrode chamber 9 and the positive electrode chamber 10, respectively. .

分離用チャンバ1内および陰電極室9,陽電極室10内に分
離バッファー液を満たした後、陰電極室9内温度T9と陽
電極室10内温度T10がT9<T10になるように、それぞれの
温度調整器12を設定して、循環ポンプ13により温度調整
された分離バッファー液を陰電極室9および陰電極室10
に循環させると、分離用チャンバ1内の分離バッファー
液2は、陰電極室9と陽電極室10の温度差により図示矢
印方向の循環流を生じる。つぎに、陰電極3と陽電極4
間に電圧をかけながら、たんぱく質液5を注入口6より
分離用チャンバ1内に注入することにより、たんぱく質
液5は分離バッファー液2の流れと共に流動し、たんぱ
く質はその帯電に応じて陰電極3あるいは陽電極4に吸
引され、上部取出口7側および下部取出口8側に分離さ
れる。
Separation chamber 1 and in the cathode chamber 9, after filling the separation buffer solution into the anode chamber 10, cathode chamber 9 in the temperature T 9 and anode chamber 10 inside the temperature T 10 is T 9 <T 10 As described above, the respective temperature adjusters 12 are set so that the separation buffer solution whose temperature is adjusted by the circulation pump 13 is supplied to the negative electrode chamber 9 and the negative electrode chamber 10.
When it is circulated, the separation buffer solution 2 in the separation chamber 1 produces a circulating flow in the direction of the arrow in the figure due to the temperature difference between the negative electrode chamber 9 and the positive electrode chamber 10. Next, the negative electrode 3 and the positive electrode 4
By injecting the protein solution 5 into the separation chamber 1 through the inlet 6 while applying a voltage between them, the protein solution 5 flows together with the flow of the separation buffer solution 2, and the protein is charged by the negative electrode 3 depending on its charge. Alternatively, it is sucked by the positive electrode 4 and separated into the upper outlet 7 side and the lower outlet 8 side.

実施例1 たんぱく質試料として ミオグロビン(ウマ)等電点 7.1〜7.3 卵白リゾチーム 等電点 11.0〜11.4 を用い、分離バッファー液のPHを9.0として分離用チャ
ンバ1内を循環させながら、陰電極3と陽電極4間に電
圧をかけ、上記2種類のたんぱく質を溶解した液(PH=
9.0)を注入口6より連続的に分離用チャンバ1内に供
給して電気泳動を行なわせた。その結果、上部取出口7
よりミオグロビン溶液が回収され、下部取出口8より卵
白リゾチーム溶液が回収され、たんぱく質の分離精製が
行なわれることが確認された。
Example 1 Using a myoglobin (horse) isoelectric point of 7.1 to 7.3 egg white lysozyme and an isoelectric point of 11.0 to 11.4 as a protein sample, the pH of the separation buffer solution was set to 9.0, and the negative electrode 3 and positive electrode were circulated in the separation chamber 1. A liquid in which the above two types of proteins are dissolved by applying a voltage between the electrodes 4 (PH =
9.0) was continuously supplied from the inlet 6 into the separation chamber 1 for electrophoresis. As a result, the upper outlet 7
It was confirmed that the myoglobin solution was recovered, the egg white lysozyme solution was recovered from the lower outlet 8, and the protein was separated and purified.

第3図は本発明の他の実施例を示したもので、第2図と
同一部分は同一符号で示し、説明を省略する。第3図に
おいて、16および17は第2図に示した電気泳動装置と同
一構造の第1段電気泳動装置および第2段電気泳動装置
で、第1段電気泳動装置16の下部取出口8と第2段電気
泳動装置17の注入口6とは、PH調整槽14,供給ポンプ15
を介して連結されており、第1段電気泳動装置16の下部
取出口8より取出されたたんぱく質の溶液は、PH調整槽
14でPH調整された後、供給ポンプ15により第2段電気泳
動装置17の注入口6に供給されるようになっている。
FIG. 3 shows another embodiment of the present invention. The same parts as those in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted. In FIG. 3, 16 and 17 are a first-stage electrophoresis device and a second-stage electrophoresis device having the same structure as the electrophoresis device shown in FIG. The injection port 6 of the second-stage electrophoresis device 17 is the PH adjusting tank 14 and the supply pump 15.
The protein solution extracted from the lower outlet 8 of the first-stage electrophoresis device 16 is connected to the pH adjusting tank.
The pH is adjusted in 14 and then supplied to the inlet 6 of the second-stage electrophoresis device 17 by the supply pump 15.

実施例2 たんぱく質試料として アルブミン(ウシ血清)等電点4.9 ミオグロビン(ウマ) 等電点7.1〜7.3 卵白リゾチーム 等電点11.0〜11.4 を用い、分離バッファー液のPH値は 第1段電気泳動装置16用 6.0 第2段電気泳動装置17用 9.0 として、それぞれ分離用チャンバ1内を循環させなが
ら、陰電極3と陽電極4間に電圧をかけ、上記3種類の
たんぱく質を溶解した液(PH6.0)を第1段電気泳動装
置16の注入口6より連続的に分離用チャンバ1内に供給
して電気泳動を行なわせた。その結果、上部取出口7よ
りアルブミン溶液が回収され、下部取出口8よりミオグ
ロビン溶液と卵白リゾチーム溶液の混合溶液が回収され
た。この混合溶液をPH調整槽14でPHを9.0に調整した
後、供給ポンプ15により第2段電気泳動装置17の注入口
6より連続的に分離用チャンバ1内に供給して再度電気
泳動を行なわせた。その結果、上部取出口7よりミオグ
ロビン溶液が回収され、下部取出口8より卵白リゾチー
ム溶液が回収された。
Example 2 An albumin (bovine serum) isoelectric point 4.9 myoglobin (horse) isoelectric point 7.1 to 7.3 egg white lysozyme isoelectric point 11.0 to 11.4 was used as a protein sample, and the PH value of the separation buffer solution was the first stage electrophoresis apparatus 16 6.0 For the second-stage electrophoresis apparatus 17, 9.0 is a solution in which the above three kinds of proteins are dissolved by applying a voltage between the negative electrode 3 and the positive electrode 4 while circulating in the separation chamber 1 (PH6.0). ) Was continuously supplied from the inlet 6 of the first-stage electrophoresis device 16 into the separation chamber 1 for electrophoresis. As a result, the albumin solution was recovered from the upper outlet 7, and the mixed solution of the myoglobin solution and egg white lysozyme solution was recovered from the lower outlet 8. The pH of the mixed solution is adjusted to 9.0 by the PH adjusting tank 14, and then the supply pump 15 continuously supplies the mixed solution into the separation chamber 1 through the inlet 6 of the second-stage electrophoresis apparatus 17 to perform electrophoresis again. Let As a result, the myoglobin solution was recovered from the upper outlet 7, and the egg white lysozyme solution was recovered from the lower outlet 8.

実施例3 第2図に示した電気泳動装置に使用し、たんぱく質試料
として希釈チトクロムC(ウシ)等電点10.6の溶液を用
い、分離バッファー液のPHを8.0として分離用チャンバ
1内を循環させながら、陰電極3と陽電極4間に電圧を
かけ、上記希釈チトクロムC溶液(PH=8.0)を注入口
6より断続的に分離用チャンバ1内に供給して電気泳動
を行なわせた。その結果、下部取出口8より高濃度のチ
トクロムC溶液が回収された。
Example 3 Used in the electrophoresis apparatus shown in FIG. 2, a diluted cytochrome C (bovine) solution having an isoelectric point of 10.6 was used as a protein sample, and the pH of the separation buffer solution was set to 8.0 and circulated in the separation chamber 1. Meanwhile, a voltage was applied between the negative electrode 3 and the positive electrode 4, and the diluted cytochrome C solution (PH = 8.0) was intermittently supplied from the injection port 6 into the separation chamber 1 for electrophoresis. As a result, a high concentration cytochrome C solution was recovered from the lower outlet 8.

上述の実施例では、分離用チャンバを垂直に設置し、陰
電極室9と陽電極室10間に温度差を設けて分離用チャン
バ1内の分離バッファー液の循環流を形成させるものに
ついて説明したが、分離用チャンバを垂直または水平に
設置し、ポンプ、撹拌機等を用いて機械的に分離バッフ
ァー液の循環流を形成させて電気泳動を行なわせても、
上述と同様に高性能でたんぱく質を分離精製することが
できる。
In the above-described embodiment, the separation chamber is installed vertically, and the temperature difference is provided between the negative electrode chamber 9 and the positive electrode chamber 10 to form the circulation flow of the separation buffer solution in the separation chamber 1. However, even if the separation chamber is installed vertically or horizontally, and a circulation flow of the separation buffer solution is mechanically formed using a pump, a stirrer or the like to perform electrophoresis,
Similar to the above, the protein can be separated and purified with high performance.

〔発明の効果〕〔The invention's effect〕

本発明は以上述べたように、分離用チャンバ内で分離バ
ッファー液の循環流を形成させ、該液の循環流に対して
直角方向に電圧をかけ、分離用チャンバ内に荷電物質溶
液を供給して電気泳動により荷電物質を分離精製するよ
うにしたものであるから、分離バッファー液中に電流を
流すことにより発生するジュール熱による分離バッファ
ー液の対流を無視することができ、かつ、分離バッファ
ー液の流速を常に一定に保持することができるため、荷
電物質の分離性能を向上させることができると共に、荷
電物質の大量処理が可能となり、経済的にすぐれた効果
がある。
As described above, the present invention forms a circulation flow of the separation buffer solution in the separation chamber, applies a voltage in a direction perpendicular to the circulation flow of the separation solution, and supplies the charged substance solution into the separation chamber. Since the charged substance is separated and purified by electrophoresis, the convection of the separation buffer solution due to Joule heat generated by passing an electric current through the separation buffer solution can be ignored, and the separation buffer solution can be ignored. Since it is possible to always keep the flow rate constant, the performance of separating charged substances can be improved, and a large amount of charged substances can be processed, which is economically advantageous.

【図面の簡単な説明】[Brief description of drawings]

第1図は無担体電気泳動法による本発明の原理を示した
略図、第2図は本発明の一実施例を示す電気泳動装置の
略図、第3図は本発明の他の実施例を示す2段式電気泳
動装置の略図である。 1……分離用チャンバ、2……分離バッファー液、3…
…陰電極、4……陽電極、5……たんぱく質(荷電物
質)液、6……注入口、7……上部取出口、8……下部
取出口、9……陰電極室、10……陽電極室、11……隔離
膜、12……温度調整器、13……循環ポンプ、14……PH調
整槽、15……供給ポンプ、16……第1段電気泳動装置、
17……第2段電気泳動装置
FIG. 1 is a schematic diagram showing the principle of the present invention by a carrier-free electrophoresis method, FIG. 2 is a schematic diagram of an electrophoresis apparatus showing one embodiment of the present invention, and FIG. 3 is another embodiment of the present invention. 1 is a schematic diagram of a two-stage electrophoresis device. 1 ... Separation chamber, 2 ... Separation buffer solution, 3 ...
… Negative electrode, 4 …… Positive electrode, 5 …… Protein (charged substance) liquid, 6 …… Injection port, 7 …… Upper outlet, 8 …… Lower outlet, 9 …… Negative electrode chamber, 10 …… Positive electrode chamber, 11 …… Separator membrane, 12 …… Temperature controller, 13 …… Circulation pump, 14 …… PH adjusting tank, 15 …… Supply pump, 16 …… First stage electrophoresis device,
17 …… Second-stage electrophoresis device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中対 藤次 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 小田 親生 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 藤原 清志 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nakatsu Fujitsuji, 502 Jinritsucho, Tsuchiura-shi, Ibaraki Prefecture, Hiritsu Seisakusho Co., Ltd. (72) Inventor, Kiyoshi Fujiwara, Higashi-Toyoi, Daimo, Shimomatsu, Yamaguchi Prefecture, Ltd., Kasado Plant, Hitachi, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】荷電物質を含む液を電気泳動法により処理
して荷電物質を分離精製する荷電物質の分離精製法にお
いて、分離用チャンバ内で分離バッファー液を循環させ
ながら、該液の循環流に対して直角方向に電圧をかけ、
分離用チャンバ内に荷電物質溶液を供給して荷電物質を
分離精製することを特徴とする荷電物質の分離精製法。
1. A method of separating and purifying a charged substance, which comprises treating a liquid containing a charged substance by an electrophoresis method to separate and purify the charged substance, while circulating a separation buffer solution in a separation chamber while circulating the liquid. Apply a voltage at a right angle to
A method for separating and purifying a charged substance, comprising supplying a charged substance solution into a separation chamber to separate and purify the charged substance.
【請求項2】分離用チャンバ内の分離バッファー液に温
度差を持たせて循環流を形成させた特許請求の範囲第1
項記載の荷電物質の分離精製法。
2. The method according to claim 1, wherein the separation buffer solution in the separation chamber has a temperature difference to form a circulating flow.
A method for separating and purifying a charged substance according to the item.
【請求項3】荷電物質を含む液を電気泳動法により処理
して荷電物質を分離精製する荷電物質の分離精製装置に
おいて、分離用チャンバの両側に陰電極と陽電極を設
け、前記分離用チャンバに荷電物質溶液の注入口を設
け、前記分離用チャンバの陰電極の一端側および陽電極
の他端側に荷電物質の取出口を設け、前記分離用チャン
バ内の分離バッファー液を循環させる手段を備えたこと
を特徴とする荷電物質の分離精製装置。
3. An apparatus for separating and purifying a charged substance, wherein a liquid containing a charged substance is treated by electrophoresis to separate and purify the charged substance, wherein a negative electrode and a positive electrode are provided on both sides of the separation chamber, and the separation chamber is provided. An inlet for the charged substance solution is provided on one side, an outlet for the charged substance is provided on one end side of the negative electrode and the other end side of the positive electrode of the separation chamber, and means for circulating the separation buffer solution in the separation chamber is provided. An apparatus for separating and purifying a charged substance, comprising:
【請求項4】前記分離用チャンバを垂直に設置し、前記
分離バッファー液を循環させる手段として、前記分離用
チャンバの両側に隔離膜を介して陰電極室および陽電極
室を設け、該陰極電室および陽電極室にそれぞれ分離バ
ッファー液を循環させる温度調整器と循環ポンプを設け
た特許請求の範囲第3項記載の荷電物質の分離精製装
置。
4. The negative electrode chamber and the positive electrode chamber are provided on both sides of the separation chamber via a separating film as means for circulating the separation buffer solution by vertically installing the separation chamber, The apparatus for separating and purifying a charged substance according to claim 3, wherein a temperature controller and a circulation pump for circulating the separation buffer solution are provided in the chamber and the positive electrode chamber, respectively.
【請求項5】荷電物質を含む液を電気泳動法により処理
して荷電物質を分離精製する荷電物質の分離精製装置に
おいて、分離用チャンバの両側に陰電極と陽電極を設
け、前記分離用チャンバの中央部分に荷電物質溶液の注
入口を設け、前記分離用チャンバの陰電極の一端側およ
び陽電極の他端側に荷電物質の取出口を設け、前記分離
用チャンバ内の分離バッファー液を循環させる手段を備
えた電気泳動装置を複数個設け、前記各電気泳動装置の
荷電物質の取出口を順次他の電気泳動装置の荷電物質溶
液の注入口に連結して多段電気泳動装置を構成したこと
を特徴とする荷電物質の分離精製装置。
5. An apparatus for separating and purifying a charged substance, wherein a liquid containing a charged substance is treated by electrophoresis to separate and purify the charged substance, wherein a negative electrode and a positive electrode are provided on both sides of the separation chamber, and the separation chamber is provided. An inlet for the charged substance solution is provided at the center of the separation chamber, an outlet for the charged substance is provided at one end side of the negative electrode and the other end side of the positive electrode of the separation chamber, and the separation buffer solution in the separation chamber is circulated. A plurality of electrophoretic devices provided with a means for allowing the electrophoretic devices to be provided, and the outlet for the charged substance of each of the electrophoretic devices is sequentially connected to the inlet for the charged substance solution of another electrophoretic device to form a multi-stage electrophoretic device An apparatus for separating and purifying charged substances, characterized in that.
JP59158724A 1984-07-31 1984-07-31 Method and apparatus for separating and purifying charged substances Expired - Lifetime JPH0715454B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59158724A JPH0715454B2 (en) 1984-07-31 1984-07-31 Method and apparatus for separating and purifying charged substances
EP85109302A EP0171676B1 (en) 1984-07-31 1985-07-24 Free-flow electrophoretic separation method and apparatus therefor
DE8585109302T DE3580418D1 (en) 1984-07-31 1985-07-24 ELECTROPHORETIC SEPARATION PROCESS WITH FREE FLOW AND APPARATUS FOR THIS.
US06/760,940 US4698142A (en) 1984-07-31 1985-07-31 Free-flow electrophoretic separation method and apparatus therefor
US07/020,773 US4749458A (en) 1984-07-31 1987-03-02 Free-flow electrophoretic separation method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59158724A JPH0715454B2 (en) 1984-07-31 1984-07-31 Method and apparatus for separating and purifying charged substances

Publications (2)

Publication Number Publication Date
JPS6138457A JPS6138457A (en) 1986-02-24
JPH0715454B2 true JPH0715454B2 (en) 1995-02-22

Family

ID=15677950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59158724A Expired - Lifetime JPH0715454B2 (en) 1984-07-31 1984-07-31 Method and apparatus for separating and purifying charged substances

Country Status (1)

Country Link
JP (1) JPH0715454B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101535800B (en) * 2006-08-29 2013-07-17 贝克顿迪肯森公司 Method and apparatus for carrier-free deflection electrophoresis

Also Published As

Publication number Publication date
JPS6138457A (en) 1986-02-24

Similar Documents

Publication Publication Date Title
JP4754759B2 (en) Electrophoretic separation of compounds
US5336387A (en) Electrical separator apparatus and method of counterflow gradient focusing
JP3115338B2 (en) Multi-modality electrophoresis separation apparatus and method
US2878178A (en) Continuous free-boundary flow electrophoresis
EP0171676A2 (en) Free-flow electrophoretic separation method and apparatus therefor
Horvath et al. Multifunctional apparatus for electrokinetic processing of proteins
JP4860693B2 (en) Electrophoretic method with parallel and simultaneous separation
AU2001267455A1 (en) Electrophoretic separation of compounds
US7169275B2 (en) Method for separating particles in free flow electrophoresis
DK170186B1 (en) Method and apparatus for electrophoretic separation, purification and enrichment of charged or polarizable macromolecules
US4834862A (en) Ampholyte separation method and apparatus
JPH0715454B2 (en) Method and apparatus for separating and purifying charged substances
CN109270153A (en) A kind of no ampholytes free flow isoelectric focusing electrophoresis separation method
Kuhn et al. Free flow electrophoresis as a method for the purification of enzymes from E. coli cell extract
JPH0625750B2 (en) Charged substance separator
US6800184B2 (en) Electrophoresis separation and treatment of samples
JPS61290352A (en) Separation of charged substance
JPH0625749B2 (en) Carrier-free continuous electrophoresis method and apparatus
JPS6270748A (en) Method for separating charged substance
Wagner et al. Free-flow electrophoresis for the separation and purification of biopolymers
CN1164940C (en) Electrophoresis focusing concentrator
JPS6195241A (en) Portionwise sampling carrier-free electrophoretic method
JPH0599899A (en) Method for separately purifying bio-substance
Thomson et al. VELOCITY GRADIENT STABILISED CONTINUOUS ELECTROPHORESIS
AU764950B2 (en) Electrophoresis separation and treatment of samples