JPS6138457A - Method and apparatus for separating and purifying charged substance - Google Patents

Method and apparatus for separating and purifying charged substance

Info

Publication number
JPS6138457A
JPS6138457A JP15872484A JP15872484A JPS6138457A JP S6138457 A JPS6138457 A JP S6138457A JP 15872484 A JP15872484 A JP 15872484A JP 15872484 A JP15872484 A JP 15872484A JP S6138457 A JPS6138457 A JP S6138457A
Authority
JP
Japan
Prior art keywords
separation
charged substance
chamber
solution
electrophoresis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15872484A
Other languages
Japanese (ja)
Other versions
JPH0715454B2 (en
Inventor
Katsumi Muroi
室井 克美
Yukiya Hiratsuka
平塚 幸哉
Shoji Yoshinaga
吉永 正二
Fujitsugu Nakatsui
中対 藤次
Chikao Oda
親生 小田
Kiyoshi Fujiwara
清志 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59158724A priority Critical patent/JPH0715454B2/en
Priority to EP85109302A priority patent/EP0171676B1/en
Priority to DE8585109302T priority patent/DE3580418D1/en
Priority to US06/760,940 priority patent/US4698142A/en
Publication of JPS6138457A publication Critical patent/JPS6138457A/en
Priority to US07/020,773 priority patent/US4749458A/en
Publication of JPH0715454B2 publication Critical patent/JPH0715454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D57/00Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C
    • B01D57/02Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C by electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44769Continuous electrophoresis, i.e. the sample being continuously introduced, e.g. free flow electrophoresis [FFE]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Peptides Or Proteins (AREA)
  • Electrostatic Separation (AREA)

Abstract

PURPOSE:To attain to enhance separation capacity, by recirculating a separation buffer solution in a separation chamber provided with a distribution plate and applying voltage toward the direction at a right angle to a recirculation stream while separating and purifying a charged substance from a charged substance solution by electrophoresis. CONSTITUTION:A cathode chamber 9 having a cathode 3 and an anode chamber 10 having an anode 4 are arranged to both sides of a separation chamber 1 in parallel and a distribution plate 18 having a large number of openings 20 provided to the central part thereof is arranged in parallel to the electrodes 3, 4 and an injection port 6 for supplying a protein solution 5 is provided to the upper of the central part. subsequently when the chamber 1 and both electrode chambers 9, 10 are filled with a separation buffer solution 2 and the temps. of the electrode chambers are set by temp. controllers. The buffer solution 2 is recirculated by a recirculation pump and the protein solution 5 is injected while voltage is applied between the electrodes 3, 4, protein is separated to either one of upper and lower takeout ports 7, 8 corresponding to the charge thereof.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、たんばく質、核酸、細胞等の荷電物質の電気
泳動法による分離精製技術に係り、特に高分離性能を有
し、かつ、大量処理が可能な荷電物質の分FIB精製法
およびその装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a technology for separating and purifying charged substances such as proteins, nucleic acids, and cells by electrophoresis, and in particular has high separation performance and can be used in large quantities. The present invention relates to a FIB purification method for charged substances that can be processed and an apparatus therefor.

〔発明のt!景〕[T of invention! Scenery]

従来のたんぼ<質、核酸、細胞等の荷電物質(以下、代
表してたんぼ<質と呼ぶ)の分軌精製法として、電気泳
動法、膜分離法、液体クロマトグラフィ等がある。膜分
離法は、膜の孔の大きさによりたんぼ(質を分離する方
法で、連続処理ができるが、たんば吸質の分離能が劣る
という欠点があり、液体クロマトグラフィは、たんば吸
質を担体充填カラム中を通して分離する方法で、分離能
はすく゛れているが、バッチ操作のため工業規模の大量
処理には不適当である。また、電気泳動法は、たんばく
質の荷電量の差を利用して、電場中にて分離精製する方
法である。この電気泳動法には、ゲル等の担体を用いる
担体電気泳動法と、担体を用いず自由流動液中にて行な
う無担体電気泳動法がある。担体電気泳動法はパブチ式
であり、大量処理を行なうような工業化には無担体電気
泳動法が適している。
Conventional methods for purifying charged substances such as rice grains, nucleic acids, and cells (hereinafter referred to as rice grains) include electrophoresis, membrane separation, liquid chromatography, and the like. Membrane separation is a method that separates rice grains by the size of the membrane's pores, and allows for continuous processing, but it has the disadvantage of poor separation ability for grains, while liquid chromatography is This method involves separation through a carrier-packed column, and although it has low separation performance, it is a batch operation and is therefore unsuitable for large-scale processing on an industrial scale.Also, electrophoresis is a method that separates proteins by passing them through a column packed with carriers. This electrophoresis method uses carriers such as gel to perform separation and purification in an electric field.This electrophoresis method includes carrier electrophoresis method that uses a carrier such as gel, and carrier-free electrophoresis method that is performed in a free-flowing liquid without using a carrier. The carrier electrophoresis method is the Pauch method, and the carrier-free electrophoresis method is suitable for industrialization where large-scale processing is performed.

無担体電気泳動法については、Electrophor
esis1982.3,235−243におけるKur
t Hannigによる” New aspects 
in preparative and analyt
ical continuous free−flow
 cell clectropboresis ”と題
する文献において論じられている。また、この原理に基
づいた装置が、西独Hirshmann社ですでに製造
されている。この無担体電気泳動法によるたんば<質の
分離精製方法について説明する。分離用チャンバ内で電
場を横切って一定速度で流下する分離バッファー液中に
、注入口から連続的に分離すべきたんぼ<質の混合物を
注入する。各たんばく質はそれぞれ荷電量が異なるため
、電場中での移動速度が異なる。そのため、分離パブフ
ァー液中を流下中に、分離バッファー液流速との兼合い
で、それぞれに偏向されて分離される。
For carrier-free electrophoresis, Electrophor
Kur in esis1982.3, 235-243
“New aspects” by T Hannig
in preliminary and analytical
ical continuous free-flow
In addition, an apparatus based on this principle has already been manufactured by Hirshmann in West Germany.This method for separating and purifying proteins using carrier-free electrophoresis is explained below. A mixture of proteins to be separated is continuously injected from an injection port into a separation buffer solution flowing at a constant speed across an electric field in a separation chamber. Each protein has a different amount of charge. As a result, their moving speeds in the electric field are different.Therefore, while flowing down the separation Puffer solution, they are deflected and separated depending on the flow rate of the separation buffer solution.

このように、本方法は連続的に分離することができるた
め、工業規模のたんぼ<質の分離精製に対して有効であ
る。
As described above, this method allows continuous separation and is therefore effective for industrial-scale separation and purification of rice grains.

本方法で分離性能を高めるためには、分離用チャンバ内
の分離バッファー液の流速を常に一定に保つことが重要
であるが、分離バッファー液には電流を流すため、ジュ
ール熱が必ず発生し、この熱により分離バッファー液に
対流現象を生じ、分離バッファー液の流れが乱れるため
、たんぼ<質の分離性能が低下する。この問題を解決す
るため、従来の無担体電気泳動法では、分離パブファー
液の温度や流速を±0.2%と極めて高精度にコントロ
ールし、また、装置を小型化してジュール熱に対応させ
ているが、たんぼ<質の分離性能はあまりよくなってい
ない。
In order to improve the separation performance with this method, it is important to keep the flow rate of the separation buffer solution in the separation chamber constant at all times, but since a current is passed through the separation buffer solution, Joule heat is always generated. This heat causes a convection phenomenon in the separation buffer solution, which disrupts the flow of the separation buffer solution, resulting in a decrease in the separation performance of rice grains. In order to solve this problem, in the conventional carrier-free electrophoresis method, the temperature and flow rate of the separated Päffer's solution are controlled with extremely high precision of ±0.2%, and the equipment is downsized and made compatible with Joule heat. However, the separation performance of rice grains is not very good.

さらにまた、この熱対流の影響をな4するため電気泳動
装置を宇宙空間に持って行き、無重力状態下で電気泳動
を行なわせる計画もあり、この対流がいかに大きな問題
かがうかがえる。
Furthermore, in order to eliminate the effects of this thermal convection, there are plans to take an electrophoresis device into space and perform electrophoresis in zero gravity, which shows how big a problem this convection is.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高分離性能を有し、かつ、大量処理が
可能な荷電物質の分離精製法およびその装置を提供する
ことにある。
An object of the present invention is to provide a method for separating and purifying a charged substance, which has high separation performance and is capable of mass processing, and an apparatus therefor.

〔発明の概要〕[Summary of the invention]

従来の無担体電気泳動装置においては、分離性能を高め
るため、ジュール熱の発生による分離バッファー液の対
流をいかにしてな々して、一定流速に保つかが重要な技
術課題である。そのため、従来より分離バッファー液の
温度、流速を厳密にコントロールすると共に、装置の小
型化を計ってきた。
In conventional carrier-free electrophoresis devices, in order to improve separation performance, an important technical issue is how to control the convection of the separation buffer solution due to the generation of Joule heat and maintain a constant flow rate. For this reason, efforts have been made to strictly control the temperature and flow rate of the separation buffer solution, and to downsize the device.

本発明者らは、電気泳動法においては避けられないジュ
ール熱の発生による分離パブファー液の対流を、逆に利
用することに着目して実験、研究を重ねた結果、本発明
に至ったものである。
The present inventors have conducted repeated experiments and research, focusing on the reverse use of the convection of separated Päffer's liquid due to the generation of Joule heat, which is unavoidable in electrophoresis, and as a result, they have arrived at the present invention. be.

本発明は、荷電物質を含む液を電気泳動法により処理し
て荷電物質を分離精製するものにおいて、分離用チャン
バ内で分離バッファー液の循環流を形成させ、核酸の循
環流に対して直角方向に電圧をかけ、分離用チャンバ内
に荷電物質溶液を供給して荷電物質を分離精製するよう
にしたものである。
The present invention is for separating and purifying a charged substance by treating a liquid containing a charged substance by electrophoresis, in which a circulating flow of a separation buffer solution is formed in a separation chamber in a direction perpendicular to the circulating flow of nucleic acids. The charged substance is separated and purified by applying a voltage to the separation chamber and supplying a charged substance solution into the separation chamber.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の原理を示したもので、分離用チャンバ
l内の分1’1fflバッファー液2に一定方向の循環
流を生じさせ、陰型Mi!3.陽電極4に電圧をかけて
電場を形成させる。つぎに、分離すべき荷電物質を含む
液(以下たんば鳴質液と呼ぶ)5を注入口6より骨部用
チャンバ1内に供給する。ここで、たんば吸質液5中の
たんば<質は、たんば(TIA、Bから構成されている
ものとし、たんば<’J!rAはマイナスに帯電し、た
んばく質Bはプラスに帯電しているものと仮定する。ま
た、分離パブファー液2の循環流は、図示矢印方向の流
れとする。分1’llt用チャンバl内に供給されたた
んばく質液5中のたんば炙質液A、 Hの挙動は、たん
ぼく質Aは陽電極4に吸引されると同時に、分離バッフ
ァー液2の流れとの兼合いから、上部取出ロア付近に蓄
積される。また、たんばく質Bは陰電極3に吸引されな
がら、分離バッファー液2の流れとの兼合いから、下部
取出口8付近に蓄積される。
FIG. 1 shows the principle of the present invention, in which a circular flow is generated in a fixed direction in the buffer solution 2 in the separation chamber 1, and the negative type Mi! 3. A voltage is applied to the positive electrode 4 to form an electric field. Next, a liquid 5 containing the charged substance to be separated (hereinafter referred to as phlegm liquid) is supplied into the bone chamber 1 through the injection port 6. Here, it is assumed that the protein substance in the protein absorption liquid 5 is composed of protein substance (TIA, B), and protein substance B is negatively charged, and protein substance B is positively charged. The circulating flow of the separated Päffer's solution 2 is assumed to be in the direction of the arrow shown in the figure. The behavior of the roasting solutions A and H is that protein A is attracted to the positive electrode 4, and at the same time, due to the flow of the separation buffer solution 2, it is accumulated near the upper extraction lower. While being attracted to the negative electrode 3, the substance B is accumulated near the lower outlet 8 due to the flow of the separation buffer solution 2.

このようにして、分離バッファー液2の循環流を利用し
て、たんぼ(質を精度よく分離精製することができる。
In this way, by utilizing the circulating flow of the separation buffer solution 2, it is possible to accurately separate and purify the rice grains (quality).

以下、本発明の一実施例を茅2図により詳細に説明する
。第2図において、lは垂直に設置された分離用チャン
バ、2は分離バッファー液、3およq4は分勉用チャン
バ1の両側に形成された陰電極室9および陽電極室10
内に平行に設けられた陰電極および陽電極、6は分離量
チャンバ1の中央部に設けられたたんば<TI液5を供
給するための注入口、7は分離用チャンバlの陽電極室
io側上部に設けられた上部取出口、8は分離用チャン
バlの陰電極室9何丁部に設けられた下部取出口、■は
分離用チャンバlと陰電極室9.陽電極室10とを隔−
トした電iAうを通す「19材よりなる陥離膜、[はそ
れぞれ陰型J・r!室9および陽電極室10内の温度を
調節するための温度調整器、13は各温度調整器12で
温度調整された分離バッファー液をそれぞれ陰電極室9
および陽電極室10に循環させる循環ポンプである。
Hereinafter, one embodiment of the present invention will be described in detail with reference to FIG. In FIG. 2, l is a vertically installed separation chamber, 2 is a separation buffer solution, and 3 and q4 are a negative electrode chamber 9 and a positive electrode chamber 10 formed on both sides of the separation chamber 1.
A negative electrode and a positive electrode are provided in parallel within the separation chamber 1, 6 is an injection port for supplying the TI liquid 5 provided in the center of the separation chamber 1, and 7 is an anode chamber of the separation chamber 1. 8 is the upper outlet provided in the upper part of the IO side, 8 is the lower outlet provided in the cathode chamber 9 of the separation chamber 1, and 2 is the connection between the separation chamber 1 and the cathode chamber 9. Separated from the anode chamber 10
19 are temperature regulators for regulating the temperature in the negative J.r! chamber 9 and the positive electrode chamber 10, and 13 are temperature regulators for each temperature regulator. The separation buffer solution whose temperature was adjusted in step 12 is transferred to the cathode chamber 9.
and a circulation pump that circulates to the anode chamber 10.

分離用チャンバ1内および陰電極室9.陽電極室10内
に分1’+ltバッファー液を満たした後、陰電極室9
内温度T、と陽?[極室lO内湿温度1゜がT、 < 
T、。
Separation chamber 1 and cathode chamber 9. After filling the positive electrode chamber 10 with 1'+lt buffer solution, the negative electrode chamber 9
Internal temperature T, and positive? [The humidity temperature in the polar chamber IO is T, <
T.

看 になるように、それぞれの温度調整針−丘を設定して、
循環ポンプ13により温度調整された分離バッファー液
を治屯倣宝9および陰電極室1Gに循環させると1分離
用チャンバl内の分離バッファー液2は、陰電極室9と
陽は極室10の温度差により図示矢印方向の循環流を生
じる。つぎに、陰電極3と陽11117!4間に電圧を
かけながら、たんば吸質液5を注入口6より分離用チャ
ンバl内に注入することにより、たんぼ<質液5は分離
バッファー液2の淀、れと共に流動し、たんばく質はそ
の帯電に応じて陰電極3.1?)るいは陽電極4に吸引
され、上部取出ロア側および下部取出口8側に分離され
る。
Set each temperature adjustment needle-hill as desired.
When the separation buffer solution whose temperature has been adjusted by the circulation pump 13 is circulated to the Jitun Imitation Treasure 9 and the cathode chamber 1G, the separation buffer solution 2 in the separation chamber 1 is divided into the cathode chamber 9 and the anode electrode chamber 10. The temperature difference causes a circulating flow in the direction of the arrow in the figure. Next, while applying a voltage between the negative electrode 3 and the positive electrode 11117!4, the protein absorbent liquid 5 is injected into the separation chamber l from the injection port 6. 3.1? ) is attracted to the positive electrode 4 and separated into the upper extraction lower side and the lower extraction port 8 side.

実施例ま たんばく質試料として ミオグロビン(ウマ) 等重点 7.1〜7.3卵白リ
ゾチーム    等電点 11.0〜11,4を用い1
分離バッファー液のP Hを9.0として分離用チャン
バl内を循環させながら、陰電極3と陽電極4間に電圧
をかけ、上記2種類のたんば4質を溶解した液(PH=
9.0)を注入口6より連続的に分離用チャンバ1内に
供給して電気泳動を行なわせた。その結果、上部取出ロ
アよりミオグロビン溶液が回収され、下部取出口8より
卵白リゾチーム溶液が回収され、たんぼ<質の分離精製
が行なわれることが確認された。
Examples also used myoglobin (horse) as a protein sample with an isoelectric point of 7.1 to 7.3 and egg white lysozyme with an isoelectric point of 11.0 to 11.4.
While circulating the separation buffer solution in the separation chamber 1 with pH 9.0, a voltage was applied between the negative electrode 3 and the positive electrode 4 to form a solution in which the above two types of proteins were dissolved (PH=
9.0) was continuously supplied into the separation chamber 1 from the injection port 6 to perform electrophoresis. As a result, it was confirmed that the myoglobin solution was recovered from the upper extraction lower and the egg white lysozyme solution was recovered from the lower extraction port 8, and that the separation and purification of rice grains was carried out.

v53図は本発明の他の実施例を示したもので、第2図
と同一部分は同一符号で示し、説明を省略する。第3図
において、16および17は第2図に示した電気泳動装
置と同一イ、′4造の第1段電気泳動装置および第2段
電気泳動装置で、茅1段電気泳動装置16の下部取出口
8と第2段電気泳動装置17の注入口6とは、PH:J
!I2槽14.供給ポンプ15を介して連結されており
、第1段電気泳動装a 16の下部取出口8より取出さ
れたたんばく質の溶液は。
Figure v53 shows another embodiment of the present invention, and the same parts as in Figure 2 are designated by the same reference numerals, and their explanation will be omitted. In FIG. 3, 16 and 17 are the same as the electrophoresis device shown in FIG. The extraction port 8 and the injection port 6 of the second stage electrophoresis device 17 are PH:J.
! I2 tank 14. The protein solution is connected via a supply pump 15 and taken out from the lower outlet 8 of the first stage electrophoresis device a 16.

P H調整槽14でPH調整された後、供給ポンプ15
により第2段電気泳動装置17の注入口6に供給される
ようになっている。
After the pH is adjusted in the pH adjustment tank 14, the supply pump 15
This allows the liquid to be supplied to the injection port 6 of the second stage electrophoresis device 17.

実施例ま たんばく質試料として アルブミン(ウシ血清) 等電点 4.9ミオグロビン
(ウマ)  等重点 7.1〜7.3卵白リゾチーム 
    等電点 11.0〜11.4を用い1分離バッ
ファー液のPH値は 第1段電気泳動装社16用 6.0 第2段電気泳動装置17用 9.0 として、それぞれ分離用ヂャンパ!内を循環させながら
、防電[i3と陽電[!4間に電圧をかけ、上記3種類
のたんぼ<質を溶解した液(PH6,0)を第1段電気
泳動装置7.16の注入口6より連続的に分屋用チャン
バl内に供給して電気泳動を行なわせた。その結果、上
部取出ロアよりアルブミン溶液が回収され、下部取出口
8よりミオグロビン溶液と卵白リゾチーム溶液の温合溶
液が回収された。
Examples and protein samples include albumin (bovine serum), isoelectric point 4.9 myoglobin (horse), isoelectric point 7.1-7.3 egg white lysozyme
Using an isoelectric point of 11.0 to 11.4, the pH value of one separation buffer solution is 6.0 for the first-stage electrophoresis apparatus 16 and 9.0 for the second-stage electrophoresis apparatus 17, respectively. While circulating the inside, the electricity protection [i3 and Yoden [! A voltage was applied between 4 and 4, and a solution (PH 6, 0) in which the three types of rice grains were dissolved was continuously supplied into the chamber 1 from the injection port 6 of the first stage electrophoresis device 7.16. Electrophoresis was performed. As a result, an albumin solution was recovered from the upper extraction lower, and a heated solution of a myoglobin solution and an egg white lysozyme solution was recovered from the lower extraction port 8.

この混合溶液をPH調整槽14でP Hを9.0に調整
した後、供給ポンプ15により第2段電気泳動装置17
の注入口6より連続的に分け用チャンバl内に供給して
再度電気泳動を行なわせた。その結果、上部取出ロアよ
りミオグロビン溶液が回収され、下部取出口8より卵白
リゾデーム溶液が回収され−た。
After adjusting the pH of this mixed solution to 9.0 in the pH adjustment tank 14, it is transferred to the second stage electrophoresis device 17 by the supply pump 15.
The solution was continuously supplied into the separation chamber 1 from the injection port 6 of the cell, and electrophoresis was performed again. As a result, the myoglobin solution was recovered from the upper extraction lower, and the egg white lysodeme solution was recovered from the lower extraction port 8.

実施例3 第2図に示した電気泳動装面に使用し、たんばく質試料
として希釈チトクロムC(ウシ)等電点10.6の溶液
を用い、分離バッファー液のPHを8.0として分離用
チャンバl内を循環させながら、防電Mr!3と陽電W
34間に電圧をかけ、上記希釈チトクロムC溶液(PH
=8.0)を注入口6より断続的に分離用チャンバl内
に供給して電気泳動を行なわせた。その結果、下部取出
口8より高濃度のチトクロムC溶液が回収された。
Example 3 Using the electrophoresis device shown in Figure 2, a diluted cytochrome C (bovine) solution with an isoelectric point of 10.6 was used as a protein sample, and the pH of the separation buffer solution was set to 8.0. While circulating the inside of the chamber l, the electrically-proof Mr! 3 and Yoden W
34, and the diluted cytochrome C solution (PH
= 8.0) was intermittently supplied into the separation chamber 1 from the injection port 6 to perform electrophoresis. As a result, a highly concentrated cytochrome C solution was recovered from the lower outlet port 8.

上述の実施例では、分離用チャンバを垂直に設直し、陰
電極室9と陽711極室10間に温度差を設けて分離用
チャンバl内の分子1バ、ファー液の循環流を形成させ
るものについて説明したが、分離用チャンバを垂直また
は水平に設置し、ポンプ、攪拌槻等を用いて機械的に分
カシバッファー液の循環流を形成させて電気泳動を行な
わせても、上述と同様に高性能でたんばく賞を分離精製
することができる。
In the above embodiment, the separation chamber is reinstalled vertically, and a temperature difference is created between the negative electrode chamber 9 and the anode electrode chamber 10 to form a circulating flow of molecules and fur liquid in the separation chamber 1. However, even if the separation chamber is installed vertically or horizontally and electrophoresis is performed by mechanically forming a circulating flow of the separating buffer solution using a pump, a stirrer, etc., the same result as described above can be achieved. It is possible to separate and purify proteins with high performance.

〔発明の効果〕〔Effect of the invention〕

本発明は以上述べたように、分離用チャンバ内で分1戦
バッファー液の循環流を形成させ、練液の循環流に対し
て直角方向に電圧をかけ、分離用チーンバ内に荷電物質
溶液を供給して電気泳動により荷電物lτを分離精製す
るようにしたものであるから、分離バッファー液中に電
流を流すことにより発生するジュール熱による分離パブ
ファー液の対流を無視することができ、かつ、分離バッ
ファー液の流速を常に一定に保持することができるため
、荷電物質の分l!lIt性能を向上させることができ
ると共に、荷電物質の大flt処理が可能となり、経済
的にすく゛れた効果がある。
As described above, the present invention forms a circulating flow of buffer solution in a separation chamber, applies a voltage in a direction perpendicular to the circulating flow of concentrated solution, and supplies a charged substance solution to the separation chamber. Since the charged substance lτ is supplied and separated and purified by electrophoresis, it is possible to ignore the convection of the separated Puffer solution due to Joule heat generated by passing an electric current through the separation buffer solution, and Since the flow rate of the separation buffer solution can always be kept constant, the amount of charged substances can be reduced by 1! In addition to improving the lIt performance, it also becomes possible to process charged substances with a large flt, which has great economical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は無担体電気泳動法による本発明の原理を示した
略図、第2図は本発明の一実施例を示す電気泳IIl!
I!I装置の略図、第3図は本発明の他の実施例を示す
2段式電気泳動装置の略図でゐる。 1・・・・・・分離用チャンバ、2・・・・・・分1’
llIバッファー液、3・・・・・・陰電極、4・・・
・・・陽電極、5・・・・・・たんば(’ff(荷電物
質)液、6・・曲性入口、7・曲・上部取出口、8・・
・・・・下部取出口、9・・曲陰電極室、10:・・・
・・陽電極室、11・・・・・・隔離膜、12・・四温
度調整器。 13・・・・・・循環ポンプ、14・・・・・・PHW
3!i槽、15・・曲供給ポンプ、16・・・・・・第
1段電気泳動装置7l、17・・・・・・第才I図 下七V、枢、出口 千2図 手続補正書(自発) 事件の表示 昭和59 年特許願第 158724  号発明の名称 荷電物質の分離精製法およびその装■ 補正をする者 餠と帳係 特許出願人 名  称   rshot4式会トF  口  立  
製  作  所代   理   人 補正の対象 明細魯の特許請求の範囲の欄、発明の詳細な説明の柵、
補正 の 内 容    図面の簡単な説明の欄および
図面1、特許請求の範囲を別紙のとおりに補正する。 2.明細書第13頁上から第9行と第10行の間に「第
4図は本発明の更に他の実施例を示したもので、第2図
と同一部分は同一符号で示し、説明を省略する。第4図
において、18は分離用チャンバl内申央部に陰電極3
.陽電4Ir44と平行に配置された整流板で、その全
面に電気泳動の障害とならないように多数の開口加が設
けられており、両端には分離バブファ液2の循環流を阻
害しないように切欠部19が設けられている。 したがって、整流板18はフィルター用の膜などのよう
な多孔性材料を用い、その両端に切欠部19を設けたも
のを用いてもよい。 しかして、整流板18を設けたことにより、図示点線矢
印の如く分離バッフ1液2に安定した循環流を生じさせ
ることができ、分離性能を向上させることができる。」
を追加する。 3、明細q!) 第14頁上から第7行の「略図である
。」を「略図、第4図は本発明の更に他の実施例を示す
電気泳動* Fa+の略図である。」に補正する。 4、 明細碧第14買上から第15行目以降に「18・
・・・・・整流板、19・・・・・・切欠部、加・・・
・・・開口、」を追加する。 5、 図面、添付第4図を特徴する 特許請求の範囲 1、荷電物質を含む液を電気泳動法により処理して荷電
物質を分離精製する荷電物質の分離精製法において、分
離用チャンバ内で分離パフファー液を循環させながら、
核酸の循環流に対して直角方向に電圧をかけ、分離用チ
ャンバ内に荷電物質溶液を供給して荷電物質を分離精製
することを特徴とする荷電物質の分離精製法。 2、分離用チャンバ内の分離lくブファー液に温度差を
持たせて循環流を形成させた特許請求の範囲′iA1項
記載の荷電物質の分離精製法。 3 荷電物質を含む液を電気泳動法により処理して荷電
物質を分離精製する荷電物質の分離精製装置において、
分離用チャンバの両側に陰電極と陽電極を設け、旧記分
陣用チャンバに荷電物質溶液の注入口を設け、前記分離
用チャンバの陰電極の一端側および陽電極の他端側に荷
電物質の取出口を設け、前記分離用チャンバ内の分離バ
ブファー液を循環させる手段を備えたことを特徴とする
荷電物質の分離精製装置。 4、 前記分離用チャンバを垂直に設置71、前記分離
バブファー液を循環させる手段として、前記分離用チャ
ンバの両側に隔離膜を介して陰電極室および陽電極室を
設け、該陰電極室および陽i’[ii室にそれぞれ分I
t!Ifバッファー液を循環させる温度調整器と循環ポ
ンプを設けた特許請求の範囲第3項記載の荷電物質の分
1111j tZl製装置。 5、 荷電物質を含む液を電気泳動法により処理して荷
電物質を分離精製する荷電物質の分離t+’l製装置に
おいて1分離用チャンバの両側に陰電極と陽1!極を設
け、前記分離用チャン)<に荷電物質溶液の注入口を設
け、前記分離用チャンバの陰電極の一端側および陽電極
の他端側に荷電物質の取出口を設け、前記分離用チャン
バ内中央部に陰電極、陽電極と平行に両端に切欠部を設
けた整流板を配置し、前記分?11F用チャンバ内の分
離バブファー液を循環させる手段を備えたことを特徴と
する荷電物質の分離精製装j?。 6、 荷電物質を含む液を電気泳動法により処理して荷
電物質を分離精製する荷電物質の分1lIII精製装置
において、分離用チャツバの両側に陰電極と陽電極を設
け、前記弁111[用チャンバの中央部分に荷電物質溶
液の注入口を設け、@記分離用チャンバの陰電極の一端
側および陽電極の他端側に荷電物質の取出口を設け、前
記分離用チャンバ内の分離バヴファー液を循環させる手
段を備えた電気泳動装置を複数個設け、前記各電気泳動
装置の荷電物質の取出口を順次他の電気泳動装置の荷電
物質溶液の注入口に連結して多段電気泳動4fi :、
’qを構成したことを特徴とする荷電物質の分離精製装
置。 才4[21
FIG. 1 is a schematic diagram showing the principle of the present invention using carrier-free electrophoresis, and FIG. 2 is an electrophoresis IIl! diagram showing an embodiment of the present invention.
I! FIG. 3 is a schematic diagram of a two-stage electrophoresis device showing another embodiment of the present invention. 1... Separation chamber, 2... Minute 1'
llI buffer solution, 3... cathode, 4...
・・・Positive electrode, 5...Tanba ('ff (charged substance) liquid, 6...Bending inlet, 7...Bending/upper outlet, 8...
...Lower outlet, 9...Curved negative electrode chamber, 10:...
...Positive electrode chamber, 11... Separation membrane, 12... Four temperature regulators. 13... Circulation pump, 14... PHW
3! i tank, 15... bend supply pump, 16... 1st stage electrophoresis device 7l, 17...... Figure I bottom 7 V, central, exit Figure 12, procedure amendment ( (Spontaneous) Indication of the case Patent Application No. 158724 of 1982 Name of the invention Method for separation and purification of charged substances and its equipment ■ Person making the amendment and bookkeeper Name of the patent applicant Name Rshot4ShikikaiToF Kuchi Tate
Manufacturer, agent, person's amendment subject matter scope of claim column, detailed description of invention fence,
Contents of the amendment The column for the brief description of the drawings, Drawing 1, and the claims are amended as shown in the attached sheet. 2. Between the 9th and 10th lines from the top of page 13 of the specification, it says: ``Figure 4 shows yet another embodiment of the present invention, and the same parts as in Figure 2 are designated by the same reference numerals, and explanations will be given below. The description is omitted.
.. It is a rectifying plate placed parallel to Yoden 4Ir44, and has many openings on its entire surface so as not to obstruct electrophoresis, and cutouts at both ends so as not to obstruct the circulating flow of separated Babufa liquid 2. 19 are provided. Therefore, the current plate 18 may be made of a porous material such as a filter membrane, and may have cutouts 19 at both ends thereof. By providing the rectifying plate 18, it is possible to generate a stable circulation flow in the separation buffer 1 liquid 2 as indicated by the dotted line arrow in the figure, and the separation performance can be improved. ”
Add. 3. Details q! ) In the seventh line from the top of page 14, "Schematic diagram." is corrected to "Schematic diagram. FIG. 4 is a schematic diagram of electrophoresis*Fa+ showing still another embodiment of the present invention." 4. From the 14th purchase to the 15th line onwards, "18.
...Rectifier plate, 19...Notch, addition...
...opening," is added. 5. Claim 1, which is characterized by drawings and attached FIG. While circulating the puffer liquid,
A method for separating and purifying a charged substance, which comprises applying a voltage in a direction perpendicular to the circulating flow of nucleic acids and supplying a charged substance solution into a separation chamber to separate and purify the charged substance. 2. A method for separating and purifying a charged substance according to claim 1A1, wherein a circulating flow is formed by creating a temperature difference in the separation liquid in the separation chamber. 3. In a charged substance separation and purification device that processes a liquid containing a charged substance by electrophoresis to separate and purify the charged substance,
A negative electrode and a positive electrode are provided on both sides of the separation chamber, an injection port for a charged substance solution is provided in the separation chamber, and a charged substance solution is provided at one end of the negative electrode and the other end of the positive electrode of the separation chamber. An apparatus for separating and purifying a charged substance, characterized in that it is provided with an outlet and means for circulating the separated Babufur liquid in the separation chamber. 4. The separation chamber is vertically installed 71, and a negative electrode chamber and a positive electrode chamber are provided on both sides of the separation chamber with isolation membranes interposed therebetween as a means for circulating the separation Babfur liquid, and the negative electrode chamber and the positive electrode chamber i' [each in room ii
T! 1111j tZl-made apparatus for charged substances according to claim 3, which is provided with a temperature regulator and a circulation pump for circulating the If buffer solution. 5. In a charged substance separation device manufactured by t+'l, which processes a liquid containing a charged substance by electrophoresis to separate and purify the charged substance, there is a negative electrode and a positive electrode on both sides of the separation chamber. an inlet for a charged substance solution is provided in the separation chamber; an outlet for the charged substance is provided in one end of the negative electrode and the other end of the anode of the separation chamber; A rectifying plate with cutouts at both ends is arranged parallel to the negative electrode and the positive electrode in the center of the inside, and An apparatus for separating and purifying a charged substance, characterized by comprising a means for circulating a separated Babufur liquid in a 11F chamber. . 6. In a charged substance purification apparatus for separating and purifying charged substances by treating a liquid containing a charged substance by electrophoresis, a negative electrode and a positive electrode are provided on both sides of the separation chamber, and a chamber for the valve 111 is provided. An inlet for a charged substance solution is provided in the center of the separation chamber, and an outlet for the charged substance is provided at one end of the negative electrode and the other end of the anode of the separation chamber, and the separated Bavfer solution in the separation chamber is Multi-stage electrophoresis 4fi is performed by providing a plurality of electrophoresis apparatuses equipped with circulation means, and sequentially connecting the charged substance outlet of each electrophoresis apparatus to the charged substance solution injection port of the other electrophoresis apparatus.
A charged substance separation and purification device characterized by comprising a 'q. Age 4 [21]

Claims (1)

【特許請求の範囲】 1、荷電物質を含む液を電気泳動法により処理して荷電
物質を分離精製する荷電物質の分離精製法において、分
離用チャンバ内で分離バッファー液を循環させながら、
該液の循環流に対して直角方向に電圧をかけ、分離用チ
ャンバ内に荷電物質溶液を供給して荷電物質を分離精製
することを特徴とする荷電物質の分離精製法。 2、分離用チャンバ内の分離バッファー液に温度差を持
たせて循環流を形成させた特許請求の範囲第1項記載の
荷電物質の分離精製法。 3、荷電物質を含む液を電気泳動法により処理して荷電
物質を分離精製する荷電物質の分離精製装置において、
分離用チャンバの両側に陰電極と陽電極を設け、前記分
離用チャンバの中央部分に荷電物質溶液の注入口を設け
、前記分離用チャンバの陰電極の一端側および陽電極の
他端側に荷電物質の取出口を設け、前記分離用チャンバ
内の分離バッファー液を循環させる手段を備えたことを
特徴とする荷電物質の分離精製装置。 4、前記分離用チャンバを垂直に設置し、前記分離バッ
ファー液を循環させる手段として、前記分離用チャンバ
の両側に隔離膜を介して陰電極室および陽電極室を設け
、該陰電極室および陽電極室にそれぞれ分離バッファー
液を循環させる温度調整器と循環ポンプを設けた特許請
求の範囲第3項記載の荷電物質の分離精製装置。 5、荷電物質を含む液を電気泳動法により処理して荷電
物質を分離精製する荷電物質の分離精製装置において、
分離用チャンバの両側に陰電極と陽電極を設け、前記分
離用チャンバの中央部分に荷電物質溶液の注入口を設け
、前記分離用チャンバの陰電極の一端側および陽電極の
他端側に荷電物質の取出口を設け、前記分離用チャンバ
内の分離バッファー液を循環させる手段を備えた電気泳
動装置を複数個設け、前記各電気泳動装置の荷電物質の
取出口を順次他の電気泳動装置の荷電物質溶液の注入口
に連結して多段電気泳動装置を構成したことを特徴とす
る荷電物質の分離精製装置。
[Claims] 1. In a charged substance separation and purification method in which a liquid containing a charged substance is treated by electrophoresis to separate and purify the charged substance, while circulating a separation buffer solution in a separation chamber,
A method for separating and purifying a charged substance, which comprises applying a voltage in a direction perpendicular to the circulating flow of the liquid and supplying a charged substance solution into a separation chamber to separate and purify the charged substance. 2. The method for separating and purifying a charged substance according to claim 1, wherein a temperature difference is given to the separation buffer solution in the separation chamber to form a circulating flow. 3. In a charged substance separation and purification device that processes a liquid containing a charged substance by electrophoresis to separate and purify the charged substance,
A negative electrode and a positive electrode are provided on both sides of the separation chamber, an inlet for a charged substance solution is provided in the center of the separation chamber, and a charged substance solution is provided at one end of the negative electrode and the other end of the positive electrode of the separation chamber. An apparatus for separating and purifying a charged substance, characterized in that it is provided with a substance extraction port and means for circulating a separation buffer solution in the separation chamber. 4. The separation chamber is installed vertically, and as a means for circulating the separation buffer, a negative electrode chamber and a positive electrode chamber are provided on both sides of the separation chamber with a separation membrane interposed therebetween. 4. The apparatus for separating and purifying charged substances according to claim 3, further comprising a temperature regulator and a circulation pump for circulating a separation buffer solution in each electrode chamber. 5. In a charged substance separation and purification device that processes a liquid containing a charged substance by electrophoresis to separate and purify the charged substance,
A negative electrode and a positive electrode are provided on both sides of the separation chamber, an inlet for a charged substance solution is provided in the center of the separation chamber, and a charged substance solution is provided at one end of the negative electrode and the other end of the positive electrode of the separation chamber. A plurality of electrophoresis devices each having a substance outlet and a means for circulating the separation buffer solution in the separation chamber are provided, and the charged substance outlet of each electrophoresis device is sequentially connected to the other electrophoresis device. 1. A charged substance separation and purification device, characterized in that it is connected to an injection port for a charged substance solution to constitute a multistage electrophoresis device.
JP59158724A 1984-07-31 1984-07-31 Method and apparatus for separating and purifying charged substances Expired - Lifetime JPH0715454B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59158724A JPH0715454B2 (en) 1984-07-31 1984-07-31 Method and apparatus for separating and purifying charged substances
EP85109302A EP0171676B1 (en) 1984-07-31 1985-07-24 Free-flow electrophoretic separation method and apparatus therefor
DE8585109302T DE3580418D1 (en) 1984-07-31 1985-07-24 ELECTROPHORETIC SEPARATION PROCESS WITH FREE FLOW AND APPARATUS FOR THIS.
US06/760,940 US4698142A (en) 1984-07-31 1985-07-31 Free-flow electrophoretic separation method and apparatus therefor
US07/020,773 US4749458A (en) 1984-07-31 1987-03-02 Free-flow electrophoretic separation method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59158724A JPH0715454B2 (en) 1984-07-31 1984-07-31 Method and apparatus for separating and purifying charged substances

Publications (2)

Publication Number Publication Date
JPS6138457A true JPS6138457A (en) 1986-02-24
JPH0715454B2 JPH0715454B2 (en) 1995-02-22

Family

ID=15677950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59158724A Expired - Lifetime JPH0715454B2 (en) 1984-07-31 1984-07-31 Method and apparatus for separating and purifying charged substances

Country Status (1)

Country Link
JP (1) JPH0715454B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008025806A1 (en) * 2006-08-29 2008-03-06 Becton, Dickinson & Company Method and apparatus for carrier-free deflection electrophoresis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008025806A1 (en) * 2006-08-29 2008-03-06 Becton, Dickinson & Company Method and apparatus for carrier-free deflection electrophoresis
AU2007291260B2 (en) * 2006-08-29 2013-09-05 Becton, Dickinson And Company Method and apparatus for carrier-free deflection electrophoresis

Also Published As

Publication number Publication date
JPH0715454B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
US4698142A (en) Free-flow electrophoretic separation method and apparatus therefor
US3989613A (en) Continuous balanced flow fixed boundary electrophoresis
US4396477A (en) Separation of proteins using electrodialysis-isoelectric focusing combination
US5080770A (en) Apparatus and method for separating particles
AU2006224893B2 (en) Electrofiltration method
US4043895A (en) Electrophoresis apparatus
US4362612A (en) Isoelectric focusing apparatus
JP4426457B2 (en) Apparatus and method for performing electrophoresis as a preparative method
US4441978A (en) Separation of proteins using electrodialysis - isoelectric focusing combination
US2878178A (en) Continuous free-boundary flow electrophoresis
EP0018375A4 (en) Apparatus and process for continuous flow isoelectric focusing.
WO1994011728A1 (en) Electrical separator apparatus and method of counterflow gradient focusing
US3240692A (en) Electrophoretic fractionation of ampholytes
JPS6138457A (en) Method and apparatus for separating and purifying charged substance
JPS6259853A (en) Separator for electric charge material
JPS62175498A (en) Method for separating protein
JPS61290352A (en) Separation of charged substance
EP0031565B1 (en) Method and apparatus of segregating at least one species of desired ions
JPS6183952A (en) Carrierless continuous electro-phoresis and apparatus therefor
JPS6270748A (en) Method for separating charged substance
JPS63196845A (en) Separation of charged substance
Chao et al. Alkaline Phosphatase Purification: A Comparison of Prep-PAGE with Cyclic Processes
JPS6195241A (en) Portionwise sampling carrier-free electrophoretic method
POLSON et al. MULTI-MEMBRANE ELECTRODECANTATION
Chao et al. ENZYME PURIFICATION