JPS63302352A - Gas-free electrophoretic apparatus - Google Patents

Gas-free electrophoretic apparatus

Info

Publication number
JPS63302352A
JPS63302352A JP62138171A JP13817187A JPS63302352A JP S63302352 A JPS63302352 A JP S63302352A JP 62138171 A JP62138171 A JP 62138171A JP 13817187 A JP13817187 A JP 13817187A JP S63302352 A JPS63302352 A JP S63302352A
Authority
JP
Japan
Prior art keywords
cathode
anode
chamber
electrophoresis
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62138171A
Other languages
Japanese (ja)
Other versions
JPH0713622B2 (en
Inventor
Tsuyoshi Masuda
剛志 増田
Masato Koyama
正人 小山
Mitsuru Watarido
渡戸 満
Hitoshi Miyamoto
均 宮本
Toru Sakimura
崎村 徹
Kiichiro Miyamoto
宮本 喜一郎
Seiji Izumisawa
泉沢 清次
Hiroaki Matsumoto
浩明 松本
Itsuki Nakayasu
中安 厳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Space Development Agency of Japan
Mitsubishi Heavy Industries Ltd
Original Assignee
National Space Development Agency of Japan
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Space Development Agency of Japan, Mitsubishi Heavy Industries Ltd filed Critical National Space Development Agency of Japan
Priority to JP62138171A priority Critical patent/JPH0713622B2/en
Publication of JPS63302352A publication Critical patent/JPS63302352A/en
Publication of JPH0713622B2 publication Critical patent/JPH0713622B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To eliminate the generation of gas and to suppers the penetration of an electrode liquid due to diffusion, by a method wherein an anode and a cathode are formed of a base metal and a reversible electrode respectively, an organic electrolyte having low mobility is used as the electrode liquid and an ion exchange membrane is adopted for diaphragms of the anode and the cathode. CONSTITUTION:In an electrophoretic tank 1, opposite walls are formed of diaphragms 2a and 3a, and an anode chamber 2 and a cathode chamber 3 are provided with a prescribed space between them. The diaphragm 2a is formed of a cation exchange membrane which is prepared by polymerization using polytetrafluoroethylene (PTFE) as a base and a carboxylic acid as an exchange group and has a transference number of 0.95. The diaphragm 3a is formed of an anion exchange membrane which is prepared by polymerization using PTFE as the base and a fourth-grade ammonium group as the exchange group and has a transference number of 0.95. Then, an anode 4 formed of a base metal such as Fe is provided in the anode chamber 2, while a cathode 5 constituted by a reversible electrode formed of AgCl or the like is provided in the cathode chamber 3. An anode liquid 6 and a cathode liquid 7 constituted by an organic electrolyte of low mobility and having prescribed properties are used for the anode chamber 2 and the cathode chamber 3 respectively.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、加電によって無償材料や生体材料を精製分離
する電気泳動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrophoresis device that purifies and separates free materials and biological materials by applying electricity.

「従来の技術] 従来の電気泳動装置は、泳動槽内に所定間隔を設けて陽
極と陰極を対設し、陽罎及び陰極の対向面の前方に夫々
の隔膜を設け、これらのrawで仕切られた泳vJ槽の
領域にその上方から′?AC勅バッファ液と被分離物質
である泳動物質を供給すると共に、陽極及び陰極に所定
の加電を絶して被分Fs1+勿質中の各種成分を泳動分
離し、これを泳8槽の床部に設けた分離チューブから分
離回収するようになっている。
"Prior Art" In a conventional electrophoresis device, an anode and a cathode are arranged opposite each other at a predetermined distance in a migration tank, and a diaphragm is provided in front of the opposing surfaces of the anode and cathode, and these raw materials are used to partition the electrophoresis device. At the same time, the '?AC buffer solution and the electrophoretic substance to be separated are supplied from above to the area of the electrolytic vJ tank where the electrolyte is separated. The components are electrophoretically separated and separated and recovered from separation tubes installed on the floor of the eight swimming tanks.

而して、陽極及び陰極は、白金で形成されており、これ
らの両電極には、泳動バッファ液と同じ組成または濃度
を10倍程度高めた電極液が供給されている。また、陽
極の前に設けられた隔膜は、半透明膜または陽イオン交
換樹脂膜で形成されている。同様に陰極の前に設けられ
た隔膜は、半透明膜または陰イオン交換樹脂膜で形成さ
れている。
The anode and cathode are made of platinum, and an electrode solution having the same composition or about 10 times higher concentration than the electrophoresis buffer solution is supplied to both electrodes. Further, the diaphragm provided in front of the anode is formed of a semitransparent membrane or a cation exchange resin membrane. Similarly, the diaphragm provided in front of the cathode is formed of a translucent membrane or an anion exchange resin membrane.

半透明膜は例えばセルロース等の高分子多孔質物質で形
成されている。
The semitransparent membrane is made of a porous polymer material such as cellulose.

このような従来の電気泳動装置では、両電極で次のよう
なガス発生反応が生じる。すなわち、陽極では、40H
−→02↑+2H20+4eの反応が起きる。また、陰
極では、2H”+2e→H2↑の反応が起きる。従って
、宇宙空間のような有限な作業スペースしかない所では
、本装置を稼動させようとすると次のような問題が生じ
る。
In such a conventional electrophoresis device, the following gas generation reaction occurs at both electrodes. That is, at the anode, 40H
-→02↑+2H20+4e reaction occurs. Furthermore, at the cathode, a reaction of 2H"+2e→H2↑ occurs. Therefore, when trying to operate this apparatus in a place where there is only a finite work space, such as in outer space, the following problem occurs.

[発明が解決使用とする問題点] ■可燃性ガスを処理するための装置(たとえば触媒式燃
焼装置)を必要とする。  “■[でpHが低下し、陰
極でpHが上昇するため、時々運転を停止し、両液を混
合することによって中和し、再分配する等の処理が必要
である。
[Problems to be Solved and Used by the Invention] (1) A device (for example, a catalytic combustion device) for processing flammable gas is required. Because the pH decreases at ■[ and the pH increases at the cathode, it is necessary to stop the operation from time to time, neutralize the two solutions by mixing them, and redistribute them.

■陽極液及び陰極液の成分が泳動バッファ液に流入する
。このためバッファ液の電気伝導度が上昇し、ひいては
泳動性能の低下を来たす。
(2) Components of the anolyte and catholyte flow into the running buffer. As a result, the electrical conductivity of the buffer solution increases, resulting in a decrease in migration performance.

本発明は、かかる点に鑑みてなされたものであり、両電
極でのガスの発生を無くし、かつ、泳動バッファ液中に
流入した電極液による影響を最少限のものとすると共に
、拡散による電極液の透過を抑制することができる無ガ
ス化電気泳!lJHMを提供するものである。
The present invention has been made in view of these points, and eliminates gas generation at both electrodes, minimizes the influence of the electrode solution flowing into the electrophoresis buffer solution, and eliminates the electrode solution caused by diffusion. Gas-free electrophoresis that can suppress liquid permeation! lJHM.

[問題点を解決するための手段コ 本発明は、対向壁を隔膜で形成して泳動槽内に所定間隔
で対設された陽極室と陰惨室と、該陽極室および該陰極
室の各々に供給される夫々の電極液と、該陰極室と該陰
極室間の前記泳動槽内の領域に設けられた泳動処理部と
、該泳動処理部に供給される泳動バッフ1液及び被分離
物質とを具備し、陽極室内の陰極を可逆電極とし、陽極
室内の陽極を卑金属で形成し、陰極室の隔膜を輸率が0
.95のアニオン交換膜で形成し、陽極室の隔膜を輸率
が0.95のカチオン交換膜で形成し、かつ、陽ル液と
して解離乗数(oKa)が7〜9の範囲にあり、(多動
度が25〜40X10′3ci/V−8の有機電解質を
、解離乗数が4〜6の範囲にあり、移動度が25〜40
X10ろci7/V−8の有機酸で中和した溶液に0.
01〜0.05Mのハロゲン塩を添加したものとすると
共に、陰極液として解離乗数(pKa)が7〜9の範囲
にあり、移動度が25〜40X10うcd/′V−8の
有償電解質を、解離乗数が4〜6の範囲にあり、移動度
が25〜40X10′5CIIi/V−8の有機酸で中
和した溶液としたことを特徴とする無ガス化電気泳動装
置である。
[Means for Solving the Problems] The present invention provides an anode chamber and a cathode chamber which are arranged oppositely at a predetermined interval in an electrophoresis tank with opposing walls formed of diaphragms, and an anode chamber and a cathode chamber, respectively. Each of the electrode solutions supplied, an electrophoresis processing section provided in a region in the electrophoresis tank between the cathode chamber and the cathode chamber, one electrophoresis buffer solution and a substance to be separated supplied to the electrophoresis processing section. The cathode in the anode chamber is made of a reversible electrode, the anode in the anode chamber is made of a base metal, and the diaphragm of the cathode chamber is made of a reversible electrode.
.. The membrane of the anode chamber is formed of a cation exchange membrane with a transport number of 0.95, and the anode solution has a dissociation multiplier (oKa) in the range of 7 to 9. An organic electrolyte with a mobility of 25-40X10'3ci/V-8 is used with a dissociation multiplier in the range of 4-6 and a mobility of 25-40
0.0% to a solution neutralized with an organic acid of X10 filter ci7/V-8.
01 to 0.05M of halogen salt is added, and a paid electrolyte with a dissociation multiplier (pKa) in the range of 7 to 9 and a mobility of 25 to 40X10cd/'V-8 is used as the catholyte. , a gas-free electrophoresis device characterized in that the solution is neutralized with an organic acid having a dissociation multiplier of 4 to 6 and a mobility of 25 to 40×10'5 CIIi/V-8.

[作用] 本発明にかかる無ガス化電気泳動装置によれば、電極と
して例えば陽極はFe1陰*はACICfiのように消
耗電極で形成したので、両電極でのガスの発生を無くす
ことができる。また、電極液として低い移動度を持つ有
様電解質を使用しているので、バッファ液中に電極液が
流入してもその影響を最少限のものとすることができる
。また、陽極隔膜及び陰極隔膜にイオン交換膜を採用し
ているので、拡散による電極液の透過を抑制することが
できる。
[Function] According to the gas-free electrophoresis device according to the present invention, since the electrodes, for example, the anode and Fe1 anode, are formed of consumable electrodes such as ACICfi, it is possible to eliminate gas generation at both electrodes. Furthermore, since a cyclic electrolyte with low mobility is used as the electrode solution, even if the electrode solution flows into the buffer solution, the influence thereof can be minimized. Furthermore, since ion exchange membranes are used for the anode diaphragm and the cathode diaphragm, permeation of the electrode solution due to diffusion can be suppressed.

[実施例] 以下、本発明の実施例について面を参照して説明する。[Example] Hereinafter, embodiments of the present invention will be described with reference to the plane.

第1図は、本発明の一実施例の概略構成を示す説明図で
ある。図中1は、長さ100mm、幅60m、厚さ1.
2s+の壁体で形成された泳動槽である。泳動槽1内に
は、対向壁を隔膜2a、3aで形成して所定間隔で対設
されたgA楊苗室2陰極室3が設けられている。陽極v
2側の隔膜2aは、ポリテトラフルオロエチレン(以下
、PTFEと記す)を基体とし、カルボン酸を交換基と
して重合させた輸率が0.95のカチオン交yA膜で形
成されている。陰極室3側の隔膜3aは、PTFEを基
体とし、第4mアンモニウム基を交換基として重合させ
た輸率が0.95のアニオン交換膜で形成されている。
FIG. 1 is an explanatory diagram showing a schematic configuration of an embodiment of the present invention. 1 in the figure has a length of 100 mm, a width of 60 m, and a thickness of 1.
This is a migration tank formed with a 2s+ wall. In the electrophoresis tank 1, there are provided a gA cylindrical chamber 2 and a cathode chamber 3 which are arranged opposite to each other at a predetermined interval with opposing walls formed by diaphragms 2a and 3a. anode v
The diaphragm 2a on the second side is formed of a cation exchanged YA film having a transport number of 0.95, which is made of polytetrafluoroethylene (hereinafter referred to as PTFE) as a base and polymerized using carboxylic acid as an exchange group. The diaphragm 3a on the side of the cathode chamber 3 is formed of an anion exchange membrane having a transport number of 0.95, which is made of PTFE and polymerized with a 4m-th ammonium group as an exchange group.

陽極室2内には、Fe等の卑金属で形成された隔成4を
か設けられている。陰極室3内には、Aacl、等で形
成された可逆電極からなる陰極5が設けられている。陽
極室2および陰極v3の各々には、電極液として陽極液
6、陰極液7の夫々が供給されるようになっている。陽
極液6としては、解離乗数(pKa)が7〜9の範囲に
あり、移動度が25〜40X10’1ffl/V−8の
有機電解質を、解離乗数が4〜6の範囲にあり、移動度
が25〜40x10’c!i/V−8の有様酸で中和し
た溶液に0.01〜0.05Mのハロゲン塩を添加した
ものが使用されている。すなわち、例えばトリスヒドロ
キシアミンメタン0.5M溶液(有は電解質)を酢酸(
有tllりで中和し、PHを7.5としたものにハロゲ
ンとしてNaCl2を0.03’M添加したものが陽(
〜液6として使用されている。また、陰極液7としては
、解離乗数(pKa)が7〜9の範囲にあり、移動度が
25〜40 X 10’ Cff1./V ・Sの有線
電解質を、解離乗数が4〜6の範囲にあり、移動度が2
5〜40x 10ろci / V・Sの有機酸で中和し
た溶液が使用されている。すなわち、陽極液6に01〜
0.05Mのハロゲン塩を添加していないものが陰極液
7として使用されている。
Inside the anode chamber 2, a separator 4 made of a base metal such as Fe is provided. Inside the cathode chamber 3, a cathode 5 made of a reversible electrode made of AaCl or the like is provided. The anode chamber 2 and the cathode v3 are each supplied with an anolyte 6 and a catholyte 7 as electrode solutions. As the anolyte 6, an organic electrolyte with a dissociation multiplier (pKa) in the range of 7 to 9 and a mobility of 25 to 40X10'1ffl/V-8 is used. is 25~40x10'c! A solution prepared by adding 0.01 to 0.05 M of a halogen salt to a solution neutralized with a specific acid of i/V-8 is used. That is, for example, a 0.5M solution of trishydroxyamine methane (with electrolyte) is mixed with acetic acid (
The product was neutralized to a pH of 7.5 and 0.03'M of NaCl2 was added as a halogen.
-Used as liquid 6. The catholyte 7 has a dissociation multiplier (pKa) of 7 to 9 and a mobility of 25 to 40 X 10' Cff1. /V ・S wired electrolyte with a dissociation multiplier in the range of 4 to 6 and a mobility of 2
A solution neutralized with an organic acid of 5 to 40 x 10 ci/VS is used. That is, 01 to 01 to the anolyte 6
The catholyte 7 is used without adding 0.05M of halogen salt.

ra極室2と陰極室3間の泳動槽1内の#4域には、泳
動バッフ?液8及び被分離物質9が供給される泳動処理
部10が設けられている。泳動バッファ液8としては、
トリエタノールアミン7mM溶液を酢酸でP)(7,4
に中和したものが使用されている。泳動処理部10の床
部には、分取チューブ11が設けられており、ra陰極
及び陰極5に加電して泳動分離した被分離物質9中の各
種成分が分取回収されるようになっている。
There is a migration buffer in area #4 in the migration tank 1 between the RA electrode chamber 2 and the cathode room 3. A migration processing section 10 is provided to which a liquid 8 and a substance to be separated 9 are supplied. As the running buffer solution 8,
Triethanolamine 7mM solution was diluted with acetic acid (P)(7,4
A neutralized version is used. A separation tube 11 is provided on the floor of the electrophoresis processing section 10, and various components in the substance to be separated 9 that has been electrophoretically separated by applying electricity to the RA cathode and the cathode 5 are separated and recovered. ing.

このように構成された無ガス化電気泳動装置20によれ
ば、以下のような作用の下で泳動処理部10での被分離
物質9の電気泳動による分離処理が行われる。
According to the degassed electrophoresis apparatus 20 configured in this way, separation processing of the substance 9 to be separated by electrophoresis is performed in the electrophoresis processing section 10 under the following effects.

■消耗電極を使用しているので、第2図に示す如く、陽
極4と陰極5の間で次の反応が起きる。
(2) Since a consumable electrode is used, the following reaction occurs between the anode 4 and the cathode 5, as shown in FIG.

陽m  Fe−+Fe2 ”+2e     (1)陰
t!i  Agcj2+e−+Aa+cn−(2)これ
らの式から明らかなように実施例の装置では、02、H
2のようなガスは全く発生しない。
Positive m Fe−+Fe2 ”+2e (1) Negative t!i Agcj2+e−+Aa+cn− (2) As is clear from these equations, in the device of the example, 02, H
Gases like 2 are not generated at all.

■両型極液6.7に低い移動度を持つ何夜電解質を使用
しているので、各々の隔膜2a、3aを透過して泳動バ
ッファ液8に電極イオンが流入しても電導度の上昇は小
さい。
■Since an electrolyte with low mobility is used in the bipolar electrolyte 6.7, conductivity increases even if electrode ions pass through each of the diaphragms 2a and 3a and flow into the electrophoresis buffer solution 8. is small.

■陽極4側にカチオン交換膜を使用しているので、第2
図に示したように通電時は、陽極液6のカチオン成分で
ある有機酸(例えばトリスイオン)が泳動処理部10に
流入する。無通電時には、カチオン膜の選択性のため、
はとんど拡散による透過はない。
■Since a cation exchange membrane is used on the anode 4 side, the second
As shown in the figure, when electricity is applied, an organic acid (for example, Tris ion), which is a cationic component of the anolyte 6, flows into the electrophoresis processing section 10. When no current is applied, due to the selectivity of the cation membrane,
There is almost no penetration by diffusion.

■陰極5側にアニオン交換膜を使用しているので、第2
図に示したように通電時は、陰[27のアニオン成分で
ある有機11!(例えば酢酸オン)が泳動処理部10に
流入する。無通電時には、アニオン膜の選択性のため、
はとんど拡散による透過はない。
■Since an anion exchange membrane is used on the cathode 5 side, the second
As shown in the figure, when electricity is applied, the anionic component of organic 11! (for example, acetic acid ion) flows into the electrophoresis processing section 10. When no current is applied, due to the selectivity of the anion membrane,
There is almost no penetration by diffusion.

■tlli′Fj、7に0.01〜0.05Mのcn−
1F−1のハロゲンを添加することにより、消耗電極の
不動態化(これが起きると02が発生する)を防止する
ことができる。
■tlli'Fj, cn- of 0.01 to 0.05M in 7
By adding 1F-1 halogen, passivation of the consumable electrode (when this occurs, 02 occurs) can be prevented.

この結果、第3図に示す如く、電流・電圧特性では、そ
の全領域に亘って直線的に電流が増加し、極めて良好な
結果であることが確認された。
As a result, as shown in FIG. 3, the current/voltage characteristics showed that the current increased linearly over the entire region, and it was confirmed that the results were extremely good.

また、第4図に示す如く、コンゴーレッド(C32H2
2Na20682 )液をサンプルとして泳動させた場
合には、泳動距離は直線的に変化し、極めて良好な結果
であることが確認された。
In addition, as shown in Figure 4, Congo Red (C32H2
2Na20682) solution as a sample, the migration distance changed linearly, which was confirmed to be an extremely good result.

[発明の効果] 本発明にかかる無ガス化電気泳動装置によれば、両型ル
でのガスの発生を無くし、かつ、泳動バッファ液中に流
入した電極液による影響を最少限のものとすると共に、
拡散による電極液の透過を抑制することができるもので
ある。
[Effects of the Invention] According to the gas-free electrophoresis apparatus according to the present invention, gas generation in both types is eliminated, and the influence of the electrode solution flowing into the electrophoresis buffer solution is minimized. With,
It is possible to suppress permeation of the electrode liquid due to diffusion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の概略構成を示す説明図、
第2図は、同実施例の作用を示す説明図、第3図は、同
実施例の無ガス化電気泳動装置の電流と電圧の関係を示
す特性図、第4図は、同装置の泳動距離と電圧の関係を
示す特性図である。 1・・・泳動槽、2・・・陽極室、2a、3a・・・隔
膜、3・・・陰極室、4・・・陽極、5・・・陰極、6
・・・陽極液、7・・・陰極液、8・・・泳動バッハア
液、9・・・被分離物質、10・・・泳動処理部、11
・・・分取チューブ、20−・・無ガス化電気泳動装置
。 出願人復代理人 弁理士 鈴江武彦 第1図 第2図
FIG. 1 is an explanatory diagram showing a schematic configuration of an embodiment of the present invention,
FIG. 2 is an explanatory diagram showing the operation of the same embodiment, FIG. 3 is a characteristic diagram showing the relationship between current and voltage of the non-gas electrophoresis device of the same embodiment, and FIG. 4 is a diagram showing the electrophoresis of the device. FIG. 3 is a characteristic diagram showing the relationship between distance and voltage. DESCRIPTION OF SYMBOLS 1...Migration tank, 2...Anode chamber, 2a, 3a...Diaphragm, 3...Cathode chamber, 4...Anode, 5...Cathode, 6
. . . Anolyte, 7. Catholyte, 8. Migration Bacher solution, 9. Substance to be separated, 10. Migration processing section, 11
...Preparation tube, 20-...Non-gas electrophoresis device. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 対向壁を隔膜で形成して泳動槽内に所定間隔で対設され
た陽極室と陰極室と、該陽極室および該陰極室の各々に
供給される夫々の電極液と、該陽極室と該陰極室間の前
記泳動槽内の領域に設けられた泳動処理部と、該泳動処
理部に供給される泳動バッファ液及び被分離物質とを具
備し、陰極室内の陰極を可逆電極とし、陽極室内の陽極
を卑金属で形成し、陰極室の隔膜を輸率が0.95のア
ニオン交換膜で形成し、陽極室の隔膜を輸率が0.95
のカチオン交換膜で形成し、かつ、陰極液として解離乗
数(pKa)が7〜9の範囲にあり、移動度が25〜4
0×10^■cm^2/V・Sの有機電解質を、解離乗
数が4〜6の範囲にあり、移動度が25〜40×10^
■cm^2/V・Sの有機酸で中和した溶液に0.01
〜0.05Mのハロゲン塩を添加したものとすると共に
、陽極液として解離乗数(pKa)が7〜9の範囲にあ
り、移動度が25〜40×10^■cm^2/V・Sの
有機電解質を、解離乗数が4〜6の範囲にあり、移動度
が25〜40×10^■cm^2/V・Sの有機酸で中
和した溶液としたことを特徴とする無ガス化電気泳動装
置。
An anode chamber and a cathode chamber are arranged opposite to each other at a predetermined interval in the electrophoresis tank with opposing walls formed by a diaphragm; each electrode solution is supplied to each of the anode chamber and the cathode chamber; The electrophoresis processing section is provided in a region in the electrophoresis tank between the cathode chambers, and a migration buffer solution and a substance to be separated are supplied to the electrophoresis processing section, and the cathode in the cathode chamber is used as a reversible electrode, and The anode of the anode is formed of a base metal, the diaphragm of the cathode chamber is formed of an anion exchange membrane with a transfer number of 0.95, and the diaphragm of the anode chamber is formed of an anion exchange membrane with a transfer number of 0.95.
The catholyte has a dissociation multiplier (pKa) of 7 to 9 and a mobility of 25 to 4.
An organic electrolyte of 0×10^cm^2/V・S has a dissociation multiplier in the range of 4 to 6 and a mobility of 25 to 40×10^
■0.01 in a solution neutralized with organic acid of cm^2/V・S
~0.05M of halogen salt is added, and the anolyte has a dissociation multiplier (pKa) in the range of 7 to 9 and a mobility of 25 to 40 x 10^cm^2/V S. A gas-free solution characterized in that the organic electrolyte is a solution neutralized with an organic acid having a dissociation multiplier in the range of 4 to 6 and a mobility of 25 to 40×10^cm^2/V・S. Electrophoresis device.
JP62138171A 1987-06-03 1987-06-03 Gas-free electrophoresis device Expired - Lifetime JPH0713622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62138171A JPH0713622B2 (en) 1987-06-03 1987-06-03 Gas-free electrophoresis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62138171A JPH0713622B2 (en) 1987-06-03 1987-06-03 Gas-free electrophoresis device

Publications (2)

Publication Number Publication Date
JPS63302352A true JPS63302352A (en) 1988-12-09
JPH0713622B2 JPH0713622B2 (en) 1995-02-15

Family

ID=15215694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62138171A Expired - Lifetime JPH0713622B2 (en) 1987-06-03 1987-06-03 Gas-free electrophoresis device

Country Status (1)

Country Link
JP (1) JPH0713622B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890409B2 (en) * 2001-08-24 2005-05-10 Applera Corporation Bubble-free and pressure-generating electrodes for electrophoretic and electroosmotic devices
JP2010216862A (en) * 2009-03-13 2010-09-30 National Institute Of Advanced Industrial Science & Technology Transfer device requiring no filter paper
JP2012200666A (en) * 2011-03-25 2012-10-22 Dowa Eco-System Co Ltd Li SOLUTION RECOVERY APPARATUS AND Li SOLUTION RECOVERY METHOD

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890409B2 (en) * 2001-08-24 2005-05-10 Applera Corporation Bubble-free and pressure-generating electrodes for electrophoretic and electroosmotic devices
JP2010216862A (en) * 2009-03-13 2010-09-30 National Institute Of Advanced Industrial Science & Technology Transfer device requiring no filter paper
JP2012200666A (en) * 2011-03-25 2012-10-22 Dowa Eco-System Co Ltd Li SOLUTION RECOVERY APPARATUS AND Li SOLUTION RECOVERY METHOD

Also Published As

Publication number Publication date
JPH0713622B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
US4312720A (en) Electrolytic cell and process for electrolytic oxidation
CN109136975B (en) Double-film type acid or alkali solution on-line generator
Gough et al. Rotated, membrane-covered oxygen electrode
JPH06288975A (en) Gas sensor
Sykut et al. The influence of thiourea on the electroreduction of Zn2+ ions in various supporting electrolytes in respect to the cap-pair effect
CN104215679B (en) A kind of measure the electrochemical method of free residual chlorine in water
US4213833A (en) Electrolytic oxidation in a cell having a separator support
JP2006171005A (en) METHOD OF REGULATING pH OF SAMPLE SOLUTION
US4217193A (en) Method and apparatus for isoelectric focusing without use of carrier ampholytes
JPS63302352A (en) Gas-free electrophoretic apparatus
WO1982001772A1 (en) Reference electrode
US4235689A (en) Apparatus for detecting traces of a gas
Ulrich et al. Ligand bridging by halide in the electrochemical oxidation of chromium (II) at mercury electrodes
US4018563A (en) Analysis of low ion contents
Pinnick et al. Direct mass spectrometric determination of silicone membrane permeable electrochemical products
JPH08246178A (en) Electrochemical recovering method of salts and device therefor
Anson et al. A chronocoulometric study of the adsorption of anthraquinone monosulfonate on mercury
Brockman et al. Permeable membrane mass spectrometry of products of electrochemical oxidation of carboxylate ions
Wang et al. Simultaneous determination of hydroquinone and catechol based on three-dimensionally ordered macroporous polycysteine film modified electrode
RU2067836C1 (en) Process of production of active water
Shaidarova et al. Selective voltammetric and flow-injection determination of guanine and adenine on a glassy carbon electrode modified by a ruthenium hexachloroplatinate film
Leest The coulometric determination of oxygen with the electrolytically generated viologen radical-cation
Pergola et al. Potentiostatic study of heterogeneous chemical reactions. ClO2--ClO2-Cl-system on platinized platinum
JPS6379052A (en) Electrophoretic apparatus
Koter et al. Current efficiency and transport phenomena in systems with charged membranes