JPH0713622B2 - Gas-free electrophoresis device - Google Patents

Gas-free electrophoresis device

Info

Publication number
JPH0713622B2
JPH0713622B2 JP62138171A JP13817187A JPH0713622B2 JP H0713622 B2 JPH0713622 B2 JP H0713622B2 JP 62138171 A JP62138171 A JP 62138171A JP 13817187 A JP13817187 A JP 13817187A JP H0713622 B2 JPH0713622 B2 JP H0713622B2
Authority
JP
Japan
Prior art keywords
chamber
cathode
anode
electrophoretic
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62138171A
Other languages
Japanese (ja)
Other versions
JPS63302352A (en
Inventor
剛志 増田
正人 小山
満 渡戸
均 宮本
徹 崎村
喜一郎 宮本
清次 泉沢
浩明 松本
厳 中安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62138171A priority Critical patent/JPH0713622B2/en
Publication of JPS63302352A publication Critical patent/JPS63302352A/en
Publication of JPH0713622B2 publication Critical patent/JPH0713622B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、加電によって無機材料や生体材料を精製分離
する電気泳動装置に関する。
TECHNICAL FIELD The present invention relates to an electrophoretic device for purifying and separating an inorganic material or a biomaterial by applying electricity.

[従来の技術] 従来の電気泳動装置は、泳動槽内に所定間隔を設けて陽
極と陰極を対設し、陽極及び陰極の対向面の前方に夫々
の隔膜を設け、これらの隔膜で仕切られた泳動槽の領域
にその上方から泳動バッファ液と被分離物質である泳動
物質を供給すると共に、陽極及び陰極に所定の加電を施
して被分離物質中の各種成分を泳動分離し、これを泳動
槽の床部に設けた分離チューブから分離回収するように
なっている。
[Prior Art] In a conventional electrophoresis apparatus, an anode and a cathode are provided in a pair in a migration tank at a predetermined interval, and a diaphragm is provided in front of the facing surface of the anode and the cathode, and the diaphragm is partitioned by these diaphragms. The migration buffer solution and the migrating substance that is the substance to be separated are supplied to the region of the migrating tank from above, and the anode and cathode are subjected to a predetermined voltage to separate the various components in the substance to be separated by phoresis. It is designed to be separated and collected from a separation tube provided on the floor of the electrophoresis tank.

而して、陽極及び陰極は、白金で形成されており、これ
らの両電極には、泳動バッファ液と同じ組成または濃度
を10倍程度高めに電極液が供給されている。また、陽極
の前に設けられた隔膜は、半透明膜または陽イオン交換
樹脂膜で形成されている。同様に陰極の前に設けられた
隔膜は、半透明膜または陰イオン交換樹脂膜で形成され
ている。半透明膜は例えばセルロース等の高分子多孔質
物質で形成されている。
Thus, the anode and the cathode are formed of platinum, and the electrode solution is supplied to both of these electrodes with the same composition or concentration as the migration buffer solution increased by about 10 times. The diaphragm provided in front of the anode is formed of a semitransparent film or a cation exchange resin film. Similarly, the diaphragm provided in front of the cathode is formed of a semitransparent film or an anion exchange resin film. The semi-transparent film is formed of a polymeric porous material such as cellulose.

このような従来の電気泳動装置では、両電極で次のよう
なガス発生反応が生じる。すなわち、陽極では、4OH-
→O2↑+2H2O+4eの反応が起きる。また、陰極では、2H
++2e →H2↑の反応が起きる。従って、宇宙空間のよ
うな有限な作業スペースしかない所では、本装置を稼働
させようとすると次のような問題が生じる。
In such a conventional electrophoretic device, the following gas generating reaction occurs at both electrodes. That is, in the anode, 4OH -
→ O 2 ↑ + 2H 2 O + 4e reaction occurs. Also, at the cathode, 2H
+ + 2e → H 2 ↑ reaction occurs. Therefore, in the place where there is a finite working space such as outer space, the following problems occur when trying to operate the device.

[発明が解決使用とする問題点] 可燃性ガスを処理するための装置(たとえば触媒式燃
焼装置)を必要とする。
[Problems to be Solved and Used by the Invention] An apparatus (for example, a catalytic combustion apparatus) for treating combustible gas is required.

陽極でpHが低下し、陰極でpHが上昇するため、時々運
転を停止し、両液を混合することによって中和し、再分
配する等の処理が必要である。
Since the pH drops at the anode and rises at the cathode, it is necessary to stop the operation from time to time, neutralize by mixing both solutions, and redistribute.

陽極液及び陰極液の成分が泳動バッファ液に流入す
る。このためバッファ液の電気伝導度が上昇し、ひいて
は泳動性能の低下を来たす。
The components of the anolyte and catholyte flow into the migration buffer solution. As a result, the electrical conductivity of the buffer solution increases, which in turn lowers the electrophoretic performance.

本発明は、かかる点に鑑みてなされたものであり、両電
極でのガスの発生を無くし、かつ、泳動バッファ液中に
流入した電極液による影響を最少限のものとすると共
に、拡散による電極液の透過を抑制することができる無
ガス化電気泳動装置を提供するものである。
The present invention has been made in view of the above points, eliminates the generation of gas at both electrodes, and minimizes the influence of the electrode liquid flowing into the migration buffer liquid, and the electrode due to diffusion. It is intended to provide a non-gasification electrophoretic device capable of suppressing liquid permeation.

[問題点を解決するための手段] 本発明は、対向壁を隔膜で形成して泳動槽内に所定間隔
で対設された陽極室と陰極室と、該陽極室および該陰極
室の各々に供給される夫々の電極液と、該陽極室と該陰
極室間の前記泳動槽内の領域に設けられた泳動処理部
と、該泳動処理部に供給される泳動バッファ液及び被分
離物質と、該泳動バッファ液を収容する容器及び該被分
離物質を収容する容器と、該容器から前記泳動バッファ
液及び被分離物質を前記泳動処理部に供給するための装
置とを具備し、陰極室内の陰極を可逆電極とし、陽極室
内の陽極を卑金属で形成し、陰極室の隔膜をアニオン交
換膜で形成し、陽極室の隔膜をカチオン交換膜で形成
し、かつ、陽極液として解離定数(pKa)が7〜9の範
囲にあり、移動度が25〜40×10-5cm2/V・Sの有機電解
質、例えばトリスヒドロキシアミノメタン、若しくは化
学便覧改訂第4版基礎編II「339頁から342頁に記載の表
10.11及び同456頁から457頁に記載の表12.8に示されて
いる化合物のうち、上記性質を有するものを、解離定数
が4〜6の範囲にあり、移動度が25〜40×10-5cm2/V・
Sの有機酸、例えば酢酸、若しくは化学便覧改訂第4版
基礎編II「339頁から342頁に記載の表10.11及び同456頁
から457頁に記載の表12.8に示されている化合物のう
ち、上記性質を有するもので中和した溶液に0.01〜0.05
Mのハロゲン塩を添加したものとすると共に、陰極液と
して解離定数(pKa)が7〜9の範囲にあり、移動度が2
5〜40×10-5cm2/V・Sの有機電解質を、解離定数が4〜
6の範囲にあり、移動度が25〜40×10-5cm2/V・Sの有
機酸で中和した溶液としたことを特徴とする無ガス化電
気泳動装置である。
[Means for Solving the Problems] The present invention provides an anode chamber and a cathode chamber, which are opposed to each other at a predetermined interval in a migration tank by forming a facing wall with a diaphragm, and each of the anode chamber and the cathode chamber. Each electrode liquid to be supplied, an electrophoretic processing unit provided in a region in the electrophoretic chamber between the anode chamber and the cathode chamber, an electrophoretic buffer liquid and a substance to be separated supplied to the electrophoretic processing unit, A cathode in a cathode chamber, comprising: a container for containing the migration buffer solution and a container for containing the substance to be separated; and a device for supplying the migration buffer solution and the substance to be separated from the container to the migration processing section. As a reversible electrode, the anode in the anode chamber is formed of a base metal, the diaphragm of the cathode chamber is formed of an anion exchange membrane, the diaphragm of the anode chamber is formed of a cation exchange membrane, and the dissociation constant (pKa) of the anolyte is in the range of 7-9, chromatic mobility 25~40 × 10 -5 cm 2 / V · S Table according to page 342 electrolytes, such as tris hydroxymethyl amino methane, or from Chemical Handbook revised 4th edition Fundamentals II "339 pp
Of the compounds shown in Table 12.8 on pages 10.11 and 456 to 457, the compounds having the above-mentioned properties have a dissociation constant in the range of 4 to 6 and a mobility of 25 to 40 × 10 −5. cm 2 / V
Organic acids of S, such as acetic acid, or the chemical manual revised fourth edition, basic edition II, “Table 10.11 described on pages 339 to 342 and compounds shown on Table 12.8 described on pages 456 to 457, 0.01-0.05 in a solution neutralized with one having the above properties
In addition to adding M halogen salt, the catholyte has a dissociation constant (pKa) in the range of 7 to 9 and a mobility of 2
5-40 × 10 -5 cm 2 / V · S organic electrolyte with a dissociation constant of 4-
A non-gasifying electrophoretic device characterized in that the solution is neutralized with an organic acid having a mobility of 25 to 40 × 10 −5 cm 2 / V · S in the range of 6 and 6.

[作用] 本発明にかかる無ガス化電気泳動装置によれば、電極と
して例えば陽極はFe、陰極はAgclのように消耗電極で形
成したので、両電極でのガスの発生を無くすことができ
る。また、電解液として低い移動度を持つ有機電解質を
使用しているので、バッファ液中に電極液が流入しても
その影響を最少限のものとすることができる。また、陽
極隔膜及び陰極隔膜にイオン交換膜を採用しているの
で、拡散による電極液の透過を抑制することができる。
[Operation] In the non-gasification electrophoretic device according to the present invention, the electrodes are formed of consumable electrodes such as Fe and the cathode of Agcl, for example, so that the generation of gas at both electrodes can be eliminated. Further, since the organic electrolyte having a low mobility is used as the electrolytic solution, even if the electrode solution flows into the buffer solution, its influence can be minimized. Further, since the ion exchange membrane is adopted for the anode diaphragm and the cathode diaphragm, the permeation of the electrode liquid due to diffusion can be suppressed.

[実施例] 以下、本発明の実施例について面を参照して説明する。
第1図は、本発明の一実施例の概略構成を示す説明図で
ある。図中1は、長さ100mm、幅60mm、厚さ1.2mmの壁体
で形成された泳動槽である。泳動槽1内には、対向壁を
隔膜2a、3aで形成して所定間隔で対設された陽極室2と
陰極室3が設けられている。陽極室2側の隔膜2aは、ポ
リテトラフルオロエチレン(以下、PTFEと記す)を基体
とし、カルボン酸を交換基として重合させた輸率が0.95
のカチオン交換膜で形成されている。陰極室3側の隔膜
3aは、PTFEを基体とし、第4級アンモニウム基を交換基
として重合させた輸率が0.95のアニオン交換膜で形成さ
れている。陽極室2内には、Fe等の卑金属で形成された
陽極4をが設けられている。陰極室3内には、Agcl等で
形成された可逆電極からなる陰極5が設けられている。
陽極室2および陰極室3の各々には、電極液として陽極
液6、陰極液7の夫々が供給されるようになっている。
陽極液6としては、解離定数(pKa)が7〜9の範囲に
あり、移動度が25〜40×10-5cm2/V・Sの有機電解質
を、解離定数が4〜6の範囲にあり、移動度が25〜40×
10-5cm2/V・Sの有機酸で中和した溶液に0.01〜0.05Mの
ハロゲン塩を添加したものが使用されている。すなわ
ち、例えばトリスヒドロキシアミノメタン0.5M溶液(有
機電解質)を酢酸(有機酸)で中和し、PHを7.5とした
ものにハロゲンとしてNaclを0.03M添加したものが陽極
液6として使用されている。また、陰極液7としては、
解離定数(pKa)が7〜9の範囲にあり、移動度が25〜4
0×10-5cm2/V・Sの有機電解質を、解離定数が4〜6の
範囲にあり、移動度が25〜40×10-5cm2/V・Sの有機酸
で中和した溶液が使用されている。すなわち、陽極液6
に0.01〜0.05Mのハロゲン塩を添加していないものが陰
極液7と使用されている。陽極室2と陰極室3間の泳動
槽1内の領域には、泳動バッファ液8及び被分離物質9
が供給される泳動処理部10が設けられている。本発明で
は、前記泳動バッファ液8及び被分離物質9を納める収
容容器が設けられ、また、これらを泳動処理部10に供給
するための装置が該容器と泳動処理部10の間にそれぞれ
設けられているが、これらは特別なものではなく、上記
の泳動バッファ液8及び被分離物質9を収容しうる当分
野で公知の容器、並びに上記の泳動バッファ液8及び被
分離物質9をそれぞれ泳動処理部10に供給できる当分野
で公知の装置であればよい。泳動バッファ液8として
は、トリエタノールアミン7mM溶液を酢酸でPH7.4に中和
したものが使用されている。泳動処理部10の床部には、
分取チューブ11が設けられており、陽極4及び陰極5に
加電して泳動分離した被分離物質9中の各種成分が分取
回収されるようになっている。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory diagram showing a schematic configuration of one embodiment of the present invention. In the figure, 1 is an electrophoretic tank formed of a wall body having a length of 100 mm, a width of 60 mm and a thickness of 1.2 mm. Inside the migration tank 1, there are provided an anode chamber 2 and a cathode chamber 3 whose opposing walls are formed by diaphragms 2a and 3a and are opposed to each other at a predetermined interval. The diaphragm 2a on the side of the anode chamber 2 is made of polytetrafluoroethylene (hereinafter referred to as PTFE) as a base material, and has a transport number of 0.95 obtained by polymerizing carboxylic acid as an exchange group.
It is formed of a cation exchange membrane. Diaphragm on the cathode chamber 3 side
3a is formed of an anion exchange membrane having a transfer number of 0.95, which is obtained by polymerizing PTFE as a base material and using a quaternary ammonium group as an exchange group. An anode 4 made of a base metal such as Fe is provided in the anode chamber 2. Inside the cathode chamber 3, a cathode 5 made of a reversible electrode made of Agcl or the like is provided.
The anolyte liquid 6 and the catholyte liquid 7 are supplied to the anode chamber 2 and the cathode chamber 3, respectively, as an electrode liquid.
As the anolyte 6, an organic electrolyte having a dissociation constant (pKa) of 7 to 9 and a mobility of 25 to 40 × 10 −5 cm 2 / V · S, and a dissociation constant of 4 to 6 are used. Yes, mobility is 25-40 ×
A solution obtained by adding 0.01 to 0.05 M halogen salt to a solution neutralized with 10 −5 cm 2 / V · S organic acid is used. That is, for example, a solution obtained by neutralizing a 0.5 M solution of trishydroxyaminomethane (organic electrolyte) with acetic acid (organic acid), adding PH to 7.5 and adding 0.03 M of NaCl as halogen is used as the anolyte 6. . Further, as the catholyte 7,
Dissociation constant (pKa) is in the range of 7-9 and mobility is 25-4.
An organic electrolyte of 0 × 10 −5 cm 2 / V · S was neutralized with an organic acid having a dissociation constant of 4 to 6 and a mobility of 25 to 40 × 10 −5 cm 2 / V · S. Solution is used. That is, the anolyte 6
The solution containing no 0.01 to 0.05 M halogen salt is used as the catholyte 7. In the region inside the migration tank 1 between the anode chamber 2 and the cathode chamber 3, the migration buffer solution 8 and the substance to be separated 9 are separated.
An electrophoretic processing unit 10 is provided to supply the. In the present invention, a container for containing the migration buffer solution 8 and the substance to be separated 9 is provided, and devices for supplying these to the migration processing unit 10 are provided between the container and the migration processing unit 10, respectively. However, these are not special, and containers known in the art capable of containing the migration buffer solution 8 and the substance 9 to be separated, and the migration buffer solution 8 and the substance 9 to be separated are subjected to the migration treatment, respectively. Any device known in the art that can be supplied to the section 10 may be used. As the migration buffer solution 8, a solution in which a 7 mM triethanolamine solution is neutralized to pH 7.4 with acetic acid is used. On the floor of the migration processing unit 10,
A preparative tube 11 is provided so that various components in the substance 9 to be separated that have been electrophoretically separated by electrifying the anode 4 and the cathode 5 can be preparatively collected.

このように構成された無ガス化電気泳動装置20によれ
ば、以下のような作用の下で泳動処理部10での被分離物
質9の電気泳動による分離処理が行われる。
According to the non-gasification electrophoretic device 20 configured as described above, the separation process by electrophoresis of the substance 9 to be separated in the migration processing unit 10 is performed under the following actions.

消耗電極を使用しているので、第2図に示す如く、陽
極4と陰極5の間で次の反応が起きる。
Since the consumable electrode is used, the following reaction occurs between the anode 4 and the cathode 5 as shown in FIG.

陽極 Fe→Fe2++2e (1) 陰極 Agcl+e→Ag+cl- (2) これらの式から明らかなように実施例の装置では、O2
H2のようなガスは全く発生しない。
Anode Fe → Fe 2+ + 2e (1) Cathode Agcl + e → Ag + cl (2) As apparent from these equations, in the device of the embodiment, O 2 ,
No gas like H 2 is generated.

両電極液6、7に低い移動度を持つ有機電解質を使用
しているので、各々の隔膜2a、3aを透過して泳動バッフ
ァ液8に電極イオンが流入しても電導度の上昇は小さ
い。
Since the organic electrolyte having a low mobility is used for both the electrode solutions 6 and 7, even if the electrode ions flow into the migration buffer solution 8 through the respective diaphragms 2a and 3a, the increase in conductivity is small.

陽極4側にカチオン交換膜を使用しているので、第2
図に示したように通電時は、陽極液6のカチオン成分で
ある有機酸(例えばトリスイオン)が泳動処理部10に流
入する。無通電時には、カチオン膜の選択性のため、ほ
とんど拡散による透過はない。
Since a cation exchange membrane is used on the anode 4 side,
As shown in the figure, at the time of energization, an organic acid (for example, tris ion) which is a cation component of the anolyte 6 flows into the electrophoretic processing section 10. When the electric current is not applied, there is almost no permeation by diffusion due to the selectivity of the cation membrane.

陰極5側にアニオン交換膜を使用しているので、第2
図に示したように通電時は、陰極液7のアニオン成分で
ある有機酸(例えば酢酸イオン)が泳動処理部10に流入
する。無通電時には、アニオン膜の透過性のため、ほと
んど拡散による透過はない。
Since an anion exchange membrane is used on the cathode 5 side,
As shown in the figure, at the time of energization, an organic acid (for example, acetate ion) which is an anion component of the catholyte 7 flows into the electrophoretic processing section 10. When the electric current is not applied, there is almost no permeation by diffusion due to the permeability of the anion membrane.

陽極液7に0.01〜0.05Mのcl-、F-等のハロゲンを添加
することにより、消耗電極の不働態化(これが起きると
O2が発生する)を防止することができる。
Passivation of the consumable electrode by adding 0.01 to 0.05 M of halogen such as cl or F to the anolyte 7 (when this occurs
O 2 is generated) can be prevented.

この結果、第3図に示す如く、電流・電圧特性では、そ
の全領域に亘って直線的に電流が増加し、極めて良好な
結果であることが確認された。
As a result, as shown in FIG. 3, in the current-voltage characteristics, it was confirmed that the current increased linearly over the entire region, which was an extremely good result.

また、第4図に示す如く、コンゴーレッド(C32H22Na2O
6S2)液をサンプルとして泳動させた場合には、泳動距
離は直線的に変化し、極めて良好な結果であることが確
認された。
In addition, as shown in FIG. 4, Congo red (C 32 H 22 Na 2 O
When the 6 S 2 ) solution was run as a sample, the migration distance changed linearly, confirming that the results were extremely good.

[発明の効果〕 本発明にかかる無ガス化電気泳動装置によれば、両電極
でのガスの発生を無くし、かつ、泳動バッファ液中に流
入した電極液による影響を最少限のものとすると共に、
拡散による電極液の透過を抑制することができるもので
ある。
EFFECTS OF THE INVENTION According to the non-gasification electrophoretic device of the present invention, the generation of gas at both electrodes is eliminated, and the influence of the electrode liquid flowing into the migration buffer liquid is minimized. ,
It is possible to suppress the permeation of the electrode liquid due to diffusion.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例の概略構成を示す説明図、
第2図は、同実施例の作用を示す説明図、第3図は、同
実施例の無ガス化電気泳動装置の電流と電圧の関係を示
す特性図、第4図は、同装置の泳動距離と電圧の関係を
示す特性図である。 1……泳動槽、2……陽極室、2a、3a……隔膜、3……
陰極室、4……陽極、5……陰極、6……陽極液、7…
…陰極液、8……泳動バッファ液、9……被分離物質、
10……泳動処理部、11……分取チューブ、20……無ガス
化電気泳動装置。
FIG. 1 is an explanatory diagram showing a schematic configuration of one embodiment of the present invention,
FIG. 2 is an explanatory view showing the operation of the same embodiment, FIG. 3 is a characteristic diagram showing a relation between current and voltage of the non-gasification electrophoretic device of the same embodiment, and FIG. It is a characteristic view which shows the relationship between distance and voltage. 1 ... migration tank, 2 ... anode chamber, 2a, 3a ... diaphragm, 3 ...
Cathode chamber, 4 ... Anode, 5 ... Cathode, 6 ... Anolyte, 7 ...
… Catholyte, 8 …… Migration buffer, 9 …… Substance to be separated,
10 …… Electrophoresis processing section, 11 …… Preparation tube, 20 …… Gasification-free electrophoresis apparatus.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡戸 満 東京都港区浜松町2丁目4番1号 宇宙開 発事業団内 (72)発明者 宮本 均 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 崎村 徹 兵庫県神戸市兵庫区和田崎町1丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 宮本 喜一郎 兵庫県神戸市兵庫区和田崎町1丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 泉沢 清次 兵庫県神戸市兵庫区和田崎町1丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 松本 浩明 兵庫県神戸市兵庫区和田崎町1丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 中安 厳 兵庫県神戸市兵庫区和田崎町1丁目1番1 号 三菱重工業株式会社神戸造船所内 (56)参考文献 特開 昭63−79050(JP,A) 特開 昭63−79051(JP,A) 特開 昭63−79052(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuru Watado 2-4-1, Hamamatsucho, Minato-ku, Tokyo Within the space development business group (72) Inventor Hitoshi Miyamoto 2-1-1 Niihama, Arai-cho, Takasago, Hyogo Prefecture No. Mitsubishi Heavy Industries Ltd., Takasago Research Institute (72) Inventor Toru Sakimura 1-1-1, Wadasaki-cho, Hyogo-ku, Kobe, Hyogo Prefecture Mitsubishi Heavy Industries Ltd., Kobe Shipyard (72) Inventor, Kiichiro Miyamoto, Hyogo-ku, Kobe, Hyogo Prefecture 1-1-1 Wadazakicho Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (72) Inventor Kiyoji Izumisawa 1-1-1 Wadazakicho, Hyogo-ku, Hyogo Prefecture Mitsubishi Heavy Industries Ltd. Kobe Shipyard (72) Invention Hiroaki Matsumoto 1-1-1, Wadasaki-cho, Hyogo-ku, Kobe-shi, Hyogo Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (72) Inventor Nakayasu, Kobe Hyogo Prefecture 1-1-1 Wadazakicho, Hyogo-ku, Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (56) Reference JP 63-79050 (JP, A) JP 63-79051 (JP, A) JP 63- 79052 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】対向壁を隔膜で形成して泳動槽内に所定間
隔で対設された陽極室と陰極室と、該陽極室および該陰
極室の各々に供給される夫々の電極と、該陽極室と該陰
極室間の前記泳動槽内の領域に設けられた泳動処理部
と、泳動バッファ液及び被分離物質と、該泳動バッファ
液を収容する容器及び該被分離物質を収容する容器と、
該容器から前記泳動バッファ液及び被分離物質を前記泳
動処理部に供給するための装置とを具備し、陰極室内の
陰極を可逆電極とし、陽極室内の陽極を卑金属で形成
し、陰極室の隔膜を輸率が0.95のアニオン交換膜で形成
し、陽極室の隔膜の輸率を0.95のカチオン交換膜で形成
し、かつ、陰極液として解離定数(pKa)が7〜9の範
囲にあり、移動度が25〜40×10-5cm3/V・Sの有機電解
質を、解離定数が4〜6の範囲にあり、移動度が25〜40
×10-5cm3/V・Sの有機酸で中和した溶液に0.01〜0.05M
のハロゲン塩を添加したものとすると共に、陽極液とし
て解離定数(pKa)が7〜9の範囲にあり、移動度が25
〜40×10-5cm3/V・Sの有機電解質を、解離定数4〜6
の範囲にあり、移動度が25〜40×10-5cm3/V・Sを有機
酸で中和した溶液としたことを特徴とする無ガス化電気
泳動装置。
1. An anode chamber and a cathode chamber, which are opposed to each other at a predetermined interval in the electrophoretic chamber by forming opposing walls with a diaphragm, respective electrodes supplied to the anode chamber and the cathode chamber, and An electrophoretic processing unit provided in a region in the electrophoretic chamber between the anode chamber and the cathode chamber, an electrophoretic buffer solution and a substance to be separated, a container for containing the electrophoretic buffer liquid and a container for containing the substance to be separated. ,
A device for supplying the migration buffer solution and the substance to be separated from the container to the migration processing unit, the cathode in the cathode chamber is a reversible electrode, the anode in the anode chamber is formed of a base metal, and the diaphragm of the cathode chamber is provided. Is formed with an anion exchange membrane with a transfer number of 0.95, a cation exchange membrane with a transfer number of 0.95 for the diaphragm of the anode chamber, and the dissociation constant (pKa) of the catholyte is in the range of 7 to 9 An organic electrolyte with a degree of 25-40 × 10 -5 cm 3 / V · S, a dissociation constant of 4-6, and a mobility of 25-40
0.01 to 0.05M in a solution neutralized with an organic acid of × 10 -5 cm 3 / V ・ S
The anolyte has a dissociation constant (pKa) in the range of 7-9 and a mobility of 25
〜40 × 10 -5 cm 3 / V ・ S organic electrolyte, dissociation constant 4-6
And a mobility of 25 to 40 × 10 −5 cm 3 / V · S, which is neutralized with an organic acid.
JP62138171A 1987-06-03 1987-06-03 Gas-free electrophoresis device Expired - Lifetime JPH0713622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62138171A JPH0713622B2 (en) 1987-06-03 1987-06-03 Gas-free electrophoresis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62138171A JPH0713622B2 (en) 1987-06-03 1987-06-03 Gas-free electrophoresis device

Publications (2)

Publication Number Publication Date
JPS63302352A JPS63302352A (en) 1988-12-09
JPH0713622B2 true JPH0713622B2 (en) 1995-02-15

Family

ID=15215694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62138171A Expired - Lifetime JPH0713622B2 (en) 1987-06-03 1987-06-03 Gas-free electrophoresis device

Country Status (1)

Country Link
JP (1) JPH0713622B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890409B2 (en) * 2001-08-24 2005-05-10 Applera Corporation Bubble-free and pressure-generating electrodes for electrophoretic and electroosmotic devices
JP5304352B2 (en) * 2009-03-13 2013-10-02 凸版印刷株式会社 Transfer device that does not require filter paper
JP2012200666A (en) * 2011-03-25 2012-10-22 Dowa Eco-System Co Ltd Li SOLUTION RECOVERY APPARATUS AND Li SOLUTION RECOVERY METHOD

Also Published As

Publication number Publication date
JPS63302352A (en) 1988-12-09

Similar Documents

Publication Publication Date Title
Rusling Controlling electrochemical catalysis with surfactant microstructures
Hu et al. Surfactant-intercalated clay films for electrochemical catalysis. Reduction of trichloroacetic acid
Kihara et al. The transfer of anions at the aqueus/organic solutions interface studied by current-scan polarography with the electrolyte dropping electrode
Liu et al. Ion Transporting Composite Membranes: II. Ion Transport Mechanism in Nafion‐Impregnated Gore‐Tex Membranes
Smejtek et al. Electrical conductivity in lipid bilayer membranes induced by pentachlorophenol
Kakiuchi et al. Divalent cation-induced phase transition of phosphatidylserine monolayer at the polarized oil–water interface and its influence on the ion-transfer processes
US4217193A (en) Method and apparatus for isoelectric focusing without use of carrier ampholytes
JPH0713622B2 (en) Gas-free electrophoresis device
Eliseeva et al. Effects of circulation and facilitated electromigration of amino acids in electrodialysis with ion-exchange membranes
Ulrich et al. Ligand bridging by halide in the electrochemical oxidation of chromium (II) at mercury electrodes
Andersen et al. A rapid electrochemical method for measuring the concentration of active glue in copper refinery electrolyte which contains thiourea
Shahi et al. Chronopotentiometric studies on dialytic properties of glycine across ion-exchange membranes
Yang et al. Determination of hydrazine compounds by capillary electrophoresis with a poly (glutamic acid) modified microdisk carbon fiber electrode
Vanýsek et al. Properties of the interface of two immiscible electrolytes mediated by molecules of biological importance: a literature review
US4273624A (en) Thin platinum films on tin oxide substrates
Rilbe Steady‐state rheoelectrolysis—a method for isoelectric focusing without carrier ampholytes. I. The pH course to be excepted on rheoelectrolysis of a buffer solution composed of a weak acid and its salt with a strong base
Shaidarova et al. Selective voltammetric and flow-injection determination of guanine and adenine on a glassy carbon electrode modified by a ruthenium hexachloroplatinate film
Šnejdárková et al. Stability of bilayer lipid membranes on different metallic supports
Raoult et al. Use of ion exchange membranes in preparative organic electrochemistry. IV. Electroreduction of dibromo compounds and solvent effects
Ogumi et al. Application of the SPE Method to Organic Electrochemistry. VIII. The Incorporation of an Iron Redox Couple into Pt–Nafion and Its Behavior as a Mediator
KR920003086B1 (en) On sensor
Fang et al. Nafion membrane electrophoresis with direct and simplified end‐column pulse electrochemical detection of amino acids
Senda Theory of the double-layer effect on the rate of ion transfer across an oil-water interface
Pergola et al. Potentiostatic study of heterogeneous chemical reactions. ClO2--ClO2-Cl-system on platinized platinum
Kornienko et al. Indirect electrocatalytic oxidation of glycerin on platinum electrode in acidic electrolyte involving active oxygen forms