JP2012198990A - Electrode material and fuel battery cell including the same - Google Patents

Electrode material and fuel battery cell including the same Download PDF

Info

Publication number
JP2012198990A
JP2012198990A JP2011058052A JP2011058052A JP2012198990A JP 2012198990 A JP2012198990 A JP 2012198990A JP 2011058052 A JP2011058052 A JP 2011058052A JP 2011058052 A JP2011058052 A JP 2011058052A JP 2012198990 A JP2012198990 A JP 2012198990A
Authority
JP
Japan
Prior art keywords
electrode material
conductivity
electrode
thermal expansion
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011058052A
Other languages
Japanese (ja)
Other versions
JP4995328B1 (en
Inventor
Masaharu Nanba
匡玄 難波
Naomi Teratani
直美 寺谷
Yoshihiko Yamamura
嘉彦 山村
Kazuyuki Matsuda
和幸 松田
Naomi Fukui
直美 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2011058052A priority Critical patent/JP4995328B1/en
Application granted granted Critical
Publication of JP4995328B1 publication Critical patent/JP4995328B1/en
Publication of JP2012198990A publication Critical patent/JP2012198990A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/70Nickelates containing rare earth, e.g. LaNiO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel electrode material that can be used at high temperature atmosphere, a fuel battery cell manufactured utilizing the electrode material, and a method for manufacturing the fuel battery cell.SOLUTION: The novel electrode material contains a component expressed by LaANiCuFeBO(where, A and B independently represent at least one element selected from the group consisting of alkaline earth metal elements, transition metal elements excluding Fe, Ni and Cu, and rare earth elements excluding La, and x>0, y>0, x+y+z<1, 0≤s≤0.05 and 0≤z≤0.05 are satisfied). The material exhibits relatively high conductivity at high temperature, and has the advantage of combination with other materials in relation to coefficient of thermal expansion.

Description

本発明は、電極材料及びそれを含む燃料電池セルに関する。   The present invention relates to an electrode material and a fuel cell including the same.

固体酸化物型燃料電池(Solid Oxide Fuel Cell:SOFC)は、燃料極、電解質層、空気極、集電層を含む複数のセルを有する。SOFCにおいて、セルはセパレータ及びインターコネクタを介して積層される。集電層は、空気極とセパレータ又はインターコネクタとの接続における電気抵抗を低減するために設けられる。   A solid oxide fuel cell (SOFC) has a plurality of cells including a fuel electrode, an electrolyte layer, an air electrode, and a current collecting layer. In SOFC, cells are stacked via separators and interconnectors. The current collecting layer is provided in order to reduce electrical resistance in connection between the air electrode and the separator or the interconnector.

特許文献1に記載のSOFCは、空気極とセパレータとの間に配置される接続層を有する。特許文献1では、この接続層の材料として、Ptペースト及び導電性金属酸化物粉末が挙げられている。特許文献1には、導電性金属酸化物粉末として、LaNi1−xFe、La1−xSrCoO等が挙げられている。 The SOFC described in Patent Document 1 has a connection layer disposed between the air electrode and the separator. In Patent Document 1, Pt paste and conductive metal oxide powder are cited as materials for the connection layer. Patent Document 1, as the conductive metal oxide powder, LaNi 1-x Fe x O 3, La 1-x Sr x CoO 3 , etc. are mentioned.

特許文献2には、空気極材料として、LaNi1−xFeが挙げられている。 Patent Document 2, as an air electrode material, LaNi 1-x Fe x O 3 are cited.

特開2009−277411号公報JP 2009-277411 A 特許第3414657号公報Japanese Patent No. 3414657

Ptは高価なので、汎用品の材料としては不向きである。   Since Pt is expensive, it is not suitable as a general-purpose material.

また、集電層材料としてLa1−xSrCoOを用いたとすると、集電層材料の熱膨張率(熱膨張係数)が18〜20ppm/Kであるので、例えば空気極材料がLa1−ySrCo1−zFeである場合、空気極材料の熱膨張率12.5ppm/Kに比べて非常に大きい。このように空気極材料と集電層材料との熱膨張率の差が大きい場合、空気極からの集電層の剥離及び集電層におけるクラックの発生等の問題が生じる。 Also, if using the La 1-x Sr x CoO 3 as the current collector layer material, the thermal expansion coefficient of the current collecting layer material (thermal expansion coefficient) is 18~20ppm / K, for example, the air electrode material is La 1 If a -y Sr y Co 1-z Fe z O 3, much larger than the thermal expansion coefficient 12.5 ppm / K of cathode material. As described above, when the difference in coefficient of thermal expansion between the air electrode material and the current collecting layer material is large, problems such as separation of the current collecting layer from the air electrode and generation of cracks in the current collecting layer occur.

また、LaNi1−xFeは、熱膨張率が13.4〜9.8ppm/K程度であるものの、大気中かつ600〜1000℃の導電率が700S/cm以下と低い。よって、高温大気下で使用可能な新たな電極材料が求められている。 LaNi 1-x Fe x O 3 has a thermal expansion coefficient of about 13.4 to 9.8 ppm / K, but has a low conductivity of 700 S / cm or less in the atmosphere and 600 to 1000 ° C. Therefore, a new electrode material that can be used in a high-temperature atmosphere is demanded.

本発明の課題は、燃料電池等の電極に用いることができる材料として、熱膨張率及び導電率の両面において好適な材料等を提供することである。   An object of the present invention is to provide a material suitable for both the thermal expansion coefficient and the conductivity as a material that can be used for an electrode of a fuel cell or the like.

本発明の第1観点に係る電極材料は、La1−sNi1−x−y−zCuFe3−δ(ただし、A及びBは、それぞれ独立して、アルカリ土類金属元素、Fe、Ni及びCuを除く遷移金属元素、並びにLaを除く希土類元素からなる群より選択される少なくとも1種の元素であり、x>0、y>0、x+y+z<1、0≦s≦0.05及び0≦z≦0.05である)で表される成分を含有する。 Electrode material according to the first aspect of the present invention, La 1-s A s Ni 1-x-y-z Cu x Fe y B z O 3-δ ( However, A and B are each independently an alkali It is at least one element selected from the group consisting of earth metal elements, transition metal elements excluding Fe, Ni and Cu, and rare earth elements excluding La, and x> 0, y> 0, x + y + z <1, 0 ≦ s ≦ 0.05 and 0 ≦ z ≦ 0.05).

この電極材料によると、熱膨張率が比較的小さく抑えられると共に、高温下においても高い導電率が得られる。   According to this electrode material, the coefficient of thermal expansion can be kept relatively small, and high conductivity can be obtained even at high temperatures.

この電極材料は、燃料電池セルの電極材料として好適であり、特に集電層の材料として好適である。この電極材料は導電率が高いので、集電層に適用された場合、空気極とセパレータ又はインターコネクタとの接続における電気抵抗を低減することができる。また、空気極と集電層との間で熱膨張率の差が小さく抑えられるので、空気極と集電層との間で剥離又はクラックの発生が起きにくい。   This electrode material is suitable as an electrode material for fuel cells, and particularly suitable as a material for the current collecting layer. Since this electrode material has high conductivity, when applied to the current collecting layer, the electrical resistance in the connection between the air electrode and the separator or interconnector can be reduced. In addition, since the difference in the coefficient of thermal expansion between the air electrode and the current collecting layer is kept small, peeling or cracking is unlikely to occur between the air electrode and the current collecting layer.

本発明に係る電極材料は、高温かつ大気下で用いられる電極に用いることのできる材料として適した導電性と熱膨張率を示す。   The electrode material according to the present invention exhibits conductivity and a coefficient of thermal expansion suitable as a material that can be used for an electrode used at high temperature and in the atmosphere.

燃料電池セルの一例の断面図である。It is sectional drawing of an example of a fuel cell. 実施例E1で得られた試料のXRD結果である。It is an XRD result of the sample obtained in Example E1. 実施例E1〜E12及び比較例A1〜A6の組成図であり、図中には、各例における試料の熱膨張率及び750℃での導電率が併せて示される。It is a composition figure of Examples E1-E12 and Comparative Examples A1-A6, and the thermal expansion coefficient of the sample in each example and the electrical conductivity in 750 degreeC are shown collectively in the figure. 実施例F1〜F9及び比較例D1〜D6の組成図であり、図中には、各例における試料の熱膨張率及び750℃での導電率が併せて示される。It is a composition figure of Examples F1-F9 and Comparative Examples D1-D6, and the thermal expansion coefficient of the sample in each example and the electrical conductivity in 750 degreeC are shown collectively in the figure.

<1.電極材料>
本発明の電極材料は、La1−sNi1−x−y−zCuFe3−δで表される成分を含有する。
<1. Electrode material>
Electrode material of the present invention contains a component represented by La 1-s A s Ni 1 -x-y-z Cu x Fe y B z O 3-δ.

ただし、A及びBは、それぞれ独立して、アルカリ土類金属元素、Fe、Ni及びCuを除く遷移金属元素、並びにLaを除く希土類元素からなる群より選択される少なくとも1種の元素であり、s、x、y、及びzは、x>0、y>0、x+y+z<1、0≦s≦0.05及び0≦z≦0.05を満たす。アルカリ土類金属元素の例としては、Ca及びSr等が挙げられる。遷移金属元素の例としては、Sc,Ti,Cr,Mn,Co,Y,Zr等が挙げられる。希土類元素の例としては、Ce,Pr,Gd等が挙げられる。   However, A and B are each independently at least one element selected from the group consisting of alkaline earth metal elements, transition metal elements excluding Fe, Ni and Cu, and rare earth elements excluding La, s, x, y, and z satisfy x> 0, y> 0, x + y + z <1, 0 ≦ s ≦ 0.05, and 0 ≦ z ≦ 0.05. Examples of alkaline earth metal elements include Ca and Sr. Examples of the transition metal element include Sc, Ti, Cr, Mn, Co, Y, Zr and the like. Examples of rare earth elements include Ce, Pr, Gd and the like.

なお、Aが、アルカリ土類金属元素及びLaを除く希土類元素からなる群より選択される少なくとも1種の元素であり、Bが、Fe、Ni及びCuを除く遷移金属元素から選択される少なくとも1種の元素であってもよい。   A is at least one element selected from the group consisting of alkaline earth metal elements and rare earth elements excluding La, and B is at least one element selected from transition metal elements excluding Fe, Ni, and Cu. It may be a seed element.

電極材料は、La1−sNi1−x−y−zCuFe3−δ以外の化合物として、元素A及び/又はBを含有してもよい。そのとき、電極材料中で、A、B、La,Ni,Cu及びFeの比率が、La:A:Ni:Cu:Fe:B=1−s:s:1−x−y−z:x:y:zであり、s、z、x、及びyが、本明細書に記載する範囲を満たすことで、良好な導電率及び熱膨張係数が実現される。 The electrode material as La 1-s A s Ni 1 -x-y-z Cu x Fe y B z O 3-δ other than compounds may contain elements A and / or B. At that time, the ratio of A, B, La, Ni, Cu and Fe in the electrode material is La: A: Ni: Cu: Fe: B = 1-s: s: 1-xyz: x : Y: z, and when s, z, x, and y satisfy the ranges described in this specification, good conductivity and thermal expansion coefficient are realized.

この材料は、高い導電率及び低い熱膨張率の両方を実現することができる。具体的には、酸素雰囲気中で焼成された場合の材料の導電率は、750℃において、800S/cm以上であってもよく、850S/cm以上であってもよく、880S/cm以上であってもよい。酸素雰囲気中で焼成された場合の材料の熱膨張率は、14.0以下であってもよく、13.5ppm/K以下であってもよい。また、大気雰囲気中で焼成した場合、この材料の導電率は、750℃において、800S/cm以上であってもよく、850S/cm以上であってもよく、880S/cm以上であってもよい。また、大気雰囲気中で焼成した場合の材料の熱膨張率は、好ましくは14.5ppm/K以下である。   This material can achieve both high conductivity and low coefficient of thermal expansion. Specifically, the electrical conductivity of the material when fired in an oxygen atmosphere may be 800 S / cm or more, 850 S / cm or more, or 880 S / cm or more at 750 ° C. May be. The coefficient of thermal expansion of the material when fired in an oxygen atmosphere may be 14.0 or less, or 13.5 ppm / K or less. Further, when baked in an air atmosphere, the conductivity of this material at 750 ° C. may be 800 S / cm or more, 850 S / cm or more, or 880 S / cm or more. . Further, the coefficient of thermal expansion of the material when fired in an air atmosphere is preferably 14.5 ppm / K or less.

このような導電率及び熱膨張率を実現するために、x≧0.05であってもよく、x≦0.5であってもよく、0.05≦x≦0.5であってもよく、0.1≦x≦0.5であってもよい。また、y≧0.03であってもよく、y≦0.3であってもよく、0.03≦y≦0.3であってもよく、0.03≦y≦0.2であってもよい。また、δ≦0.4であることが好ましく、δ≧0.0であることが好ましく、0.0≦δ≦0.4であることがさらに好ましい。   In order to realize such conductivity and coefficient of thermal expansion, x ≧ 0.05, x ≦ 0.5, 0.05 ≦ x ≦ 0.5 may be satisfied. It may be 0.1 ≦ x ≦ 0.5. Further, y ≧ 0.03, y ≦ 0.3, 0.03 ≦ y ≦ 0.3, or 0.03 ≦ y ≦ 0.2 may be satisfied. May be. Further, δ ≦ 0.4 is preferable, δ ≧ 0.0 is preferable, and 0.0 ≦ δ ≦ 0.4 is more preferable.

x≧0.05であることで、より高い導電率が得られる。x≦0.5であることで、さらに高い導電率が得られる。   When x ≧ 0.05, higher conductivity can be obtained. When x ≦ 0.5, higher conductivity can be obtained.

また、y≧0.03であることで、熱膨張率が低く抑えられる。y≦0.3であることで、高い導電率が得られる。   Moreover, it is y> = 0.03, and a thermal expansion coefficient is restrained low. When y ≦ 0.3, high conductivity can be obtained.

また、δ≦0.4であることで、より高い導電率が得られる。δ<0.0であっても良いが、作製時の酸素分圧を高圧する必要がありコストがかかるため、δ≧0.0であることがより好ましい。   Further, when δ ≦ 0.4, higher conductivity can be obtained. Although δ <0.0 may be sufficient, it is more preferable that δ ≧ 0.0 because it is necessary to increase the oxygen partial pressure at the time of production and cost is increased.

また、s及びzが上述の範囲であることで、良好な導電率及び熱膨張率が実現される。さらに、s>0及びz>0の少なくとも一方が満たされてもよいし、s≧0.005及びz≧0.005の少なくとも一方が満たされてもよいし、s≧0.01及びz≧0.01の少なくとも一方が満たされてもよい。   Moreover, favorable electrical conductivity and a thermal expansion coefficient are implement | achieved because s and z are the above-mentioned ranges. Furthermore, at least one of s> 0 and z> 0 may be satisfied, at least one of s ≧ 0.005 and z ≧ 0.005 may be satisfied, or s ≧ 0.01 and z ≧ At least one of 0.01 may be satisfied.

高い導電率及び低い熱膨張率の両方を有するので、この材料は、燃料電池に用いられる材料として好適であり、特に燃料電池の電極を形成する材料として好適である。なお、“電極”とは、空気極、燃料極だけでなく、集電層を含む概念である。   Since it has both a high conductivity and a low coefficient of thermal expansion, this material is suitable as a material used for fuel cells, and particularly as a material for forming electrodes of fuel cells. The “electrode” is a concept including a current collecting layer as well as an air electrode and a fuel electrode.

さらに、この材料はPt等の高価な原料を必須成分として含まない。そのため、安価な電極材料として利用可能である。   Further, this material does not contain an expensive raw material such as Pt as an essential component. Therefore, it can be used as an inexpensive electrode material.

また、この材料の結晶相は、ペロブスカイト型結晶相を含有することが好ましく、ペロブスカイト単相であることが好ましい。これによって、より高い導電率が実現される。   Further, the crystal phase of this material preferably contains a perovskite crystal phase, and is preferably a perovskite single phase. This achieves higher conductivity.

通常、LaNiOにおけるNiは全て3価である。しかし、一部のNiが2価となる場合がある。2価のNiに由来する異相は、一般式Lan+1Ni3n+1(ただし、nは1、2又は3)で表される。例えばn=3であれば、異相はLaNi10で表され、4個のLa3++2個のNi3++1個のNi2+を含む。電極材料中に異相が存在しない、または存在比が小さい方が、高い導電率が得られる。異相は、XRD(X線回折)において、31.2°〜32.3°にピークを示す。よって、この位置のピークが見られないか、ピークが小さいことが、高い導電率を実現するには好ましい。 Usually, all the Ni in LaNiO 3 is trivalent. However, some Ni may be divalent. The heterogeneous phase derived from divalent Ni is represented by the general formula La n + 1 Ni n O 3n + 1 (where n is 1, 2 or 3). For example, if n = 3, the heterogeneous phase is represented by La 4 Ni 3 O 10 and includes 4 La 3+ +2 Ni 3+ +1 Ni 2+ . Higher conductivity can be obtained when there is no heterogeneous phase in the electrode material or when the abundance ratio is smaller. The heterogeneous phase shows a peak at 31.2 ° to 32.3 ° in XRD (X-ray diffraction). Therefore, it is preferable for realizing high conductivity that the peak at this position is not observed or the peak is small.

x>0かつy>0であるので、電極材料において、LaNiOは、Cu及びFeで同時置換されている。この同時置換によって、高い導電率と低い熱膨張率とが両立されるので、さらなる元素添加が許容される。また、元素の添加量によって導電率及び熱膨張係数をさらに制御することも可能である。また、この電極材料が燃料電池の電極に適用された場合、電極材料の層に接する層に含有される元素が電極材料の層中に含まれることで,層間の界面の接合性が向上する。 Since x> 0 and y> 0, LaNiO 3 is simultaneously substituted with Cu and Fe in the electrode material. By this simultaneous substitution, both high conductivity and low coefficient of thermal expansion are compatible, so that further element addition is permitted. Further, the conductivity and the thermal expansion coefficient can be further controlled by the amount of the element added. In addition, when this electrode material is applied to an electrode of a fuel cell, the element contained in the layer in contact with the electrode material layer is contained in the electrode material layer, so that the interface interface between the layers is improved.

空気極に適用される場合、電極材料は、Ce0.9Gd0.12(GDC)のような希土類添加セリアと混合されてもよい。固体電解質材料の一つでもある希土類添加セリアはペロブスカイト系酸化物と反応しにくいことが知られており、焼成時等に高温に曝されても高抵抗な化合物が形成されない。12ppm/Kというあまり大きくない熱膨張率を有する希土類添加セリアを、LaNi1−x−yCuFe3―δと混合することで、その混合量に応じて混合層の熱膨張係数を更に低減できる。希土類添加セリアと固体電解質との密着性は良好であるため、この混合層とすることで固体電解質との密着性も向上し、熱サイクルによる剥がれの抑制効果を増すことが期待できる。 When applied to the air electrode, the electrode material may be mixed with rare earth doped ceria such as Ce 0.9 Gd 0.1 O 2 (GDC). It is known that rare earth-added ceria, which is also one of solid electrolyte materials, hardly reacts with perovskite-based oxides, and a high-resistance compound is not formed even when exposed to high temperatures during firing. By mixing rare earth-doped ceria having a thermal expansion coefficient of not so large of 12 ppm / K with LaNi 1-xy Cu x Fe y O 3 -δ , the thermal expansion coefficient of the mixed layer can be increased according to the amount of the mixture. Further reduction can be achieved. Since the adhesion between the rare earth-added ceria and the solid electrolyte is good, it can be expected that by using this mixed layer, the adhesion with the solid electrolyte is improved and the effect of suppressing peeling due to thermal cycling is increased.

<2.燃料電池セル>
上記<1.>欄の材料は、電極の形成に用いられる。以下、この材料が集電層として利用されている燃料電池について説明する。
<2. Fuel cell>
<1. The material in the> column is used for forming the electrode. Hereinafter, a fuel cell in which this material is used as a current collecting layer will be described.

本実施形態に係る燃料電池は、図1に示す燃料電池セル1(以下、単に「セル」と称される)と、図示しないインターコネクタとを備える。複数のセル1は積層され、インターコネクタはセル1間に配置される。セル1は、インターコネクタによって、互いに電気的に接続される。   The fuel cell according to the present embodiment includes the fuel cell 1 shown in FIG. 1 (hereinafter simply referred to as “cell”) and an interconnector (not shown). The plurality of cells 1 are stacked, and the interconnector is disposed between the cells 1. The cells 1 are electrically connected to each other by an interconnector.

セル1は、厚みが0.5〜5mm程度のセラミック薄板である。図1に示すように、本実施形態に係る燃料電池セル1は、燃料極11、電解質層(固体電解質層)12、空気極13、集電層14を備える。   The cell 1 is a ceramic thin plate having a thickness of about 0.5 to 5 mm. As shown in FIG. 1, the fuel cell 1 according to this embodiment includes a fuel electrode 11, an electrolyte layer (solid electrolyte layer) 12, an air electrode 13, and a current collection layer 14.

燃料極11の材料としては、例えばNiO−YSZが挙げられる。燃料極11の厚みは、具体的には0.5〜5mm程度である。なお、NiOを含む燃料極11は、還元処理を受けることで導電性を獲得する。   Examples of the material of the fuel electrode 11 include NiO-YSZ. Specifically, the thickness of the fuel electrode 11 is about 0.5 to 5 mm. The fuel electrode 11 containing NiO acquires conductivity by being subjected to a reduction process.

電解質層12は、空気極13と燃料極11との間に設けられる。電解質層12の材料としては、例えば、セリア及びセリアに固溶した希土類元素で構成されるセリア系材料が挙げられる。セリア系材料として、例えば、GDC(ガドニウムドープセリア)、SDC(サマリウムドープセリア)等が挙げられる。セリア系材料における希土類元素の濃度は、好ましくは5〜20mol%である。また、希土類安定化ジルコニアも考えられる。   The electrolyte layer 12 is provided between the air electrode 13 and the fuel electrode 11. Examples of the material of the electrolyte layer 12 include ceria-based materials composed of ceria and rare earth elements dissolved in ceria. Examples of the ceria-based material include GDC (gadonium doped ceria), SDC (samarium doped ceria), and the like. The rare earth element concentration in the ceria-based material is preferably 5 to 20 mol%. Rare earth stabilized zirconia is also conceivable.

また、電解質層12の厚みは、例えば20μm以下である。   Moreover, the thickness of the electrolyte layer 12 is 20 micrometers or less, for example.

空気極13の材料としては、例えば、LSCF(ランタンストロンチウムコバルトフェライト)が挙げられる。空気極13の厚みは、例えば5〜50μm程度である。   Examples of the material of the air electrode 13 include LSCF (lanthanum strontium cobalt ferrite). The thickness of the air electrode 13 is, for example, about 5 to 50 μm.

集電層14は、上述の電極材料を含む。集電層14の厚みは、例えば5〜200μm程度である。集電層14は、例えば、シート状に加工された上述の電極材料を空気極13上に圧着して得られた成形体を焼成することによって作製される。   The current collecting layer 14 includes the electrode material described above. The thickness of the current collection layer 14 is, for example, about 5 to 200 μm. The current collecting layer 14 is produced, for example, by firing a molded body obtained by pressure-bonding the above-described electrode material processed into a sheet shape onto the air electrode 13.

なお、セル1は、さらに他の層等の構成要素を備えてもよいし、各構成要素の形状、材料、寸法等は、変更可能である。   The cell 1 may further include components such as other layers, and the shape, material, dimensions, and the like of each component can be changed.

<3.電極材料の製造方法>
上記<1.>欄の電極材料の製造方法は、La、Ni、Cu及びFeを含み、La、Ni、Cu及びFeのモル比がLa:Ni:Cu:Fe=1:(1−x−y):x:yである原料を1200℃以下の温度で焼成すること(焼成工程)を含んでもよい。この製造方法は、La、Ni、Cu,Feをこの比率で含有する原料を準備することを含んでいてもよい。
<3. Method for producing electrode material>
<1. The manufacturing method of the electrode material in the column> includes La, Ni, Cu and Fe, and the molar ratio of La, Ni, Cu and Fe is La: Ni: Cu: Fe = 1: (1-xy): x : The raw material which is y may be baked at the temperature of 1200 degrees C or less (baking process). This manufacturing method may include preparing a raw material containing La, Ni, Cu, and Fe in this ratio.

焼成工程において、La、Ni、Cu及びFeを上記比率で含有する混合物の成形体と、元素A及び/又は元素Bを含有する層とを隣接させて焼成することができる。これによって、元素A及び/又は元素Bを焼成体中に拡散させて、La1−sNi1−x−y−zCuFe3−δを得ることができる。 In the firing step, the molded body of the mixture containing La, Ni, Cu and Fe in the above ratio and the layer containing element A and / or element B can be fired adjacent to each other. This can by diffusing an element A and / or the element B in the fired body to obtain a La 1-s A s Ni 1 -x-y-z Cu x Fe y B z O 3-δ.

なお、元素A及び/又は元素Bを含有する層とは、SOFCの固体電解質、空気極、又はインターコネクタ等であってもよい。特に、アルカリ土類金属元素は、La1−xSrCoO及びLa1−xSrCo1−yFe等の空気極材料、La1−xCaCrO等のインターコネクタ材料に含まれる。また、希土類元素は、空気極材料、インターコネクタ材料、GDC(ガドリニウムドープセリア)等の電解質材料に含まれる。遷移金属元素は、空気極材料、インターコネクタ材料、YSZ(イットリア安定化ジルコニア)等の電解質材料、燃料極材料に含まれる。 The layer containing the element A and / or the element B may be a SOFC solid electrolyte, an air electrode, an interconnector, or the like. In particular, alkaline earth metal elements, La 1-x Sr x CoO 3 and La 1-x Sr x Co 1 -y Fe y O 3 or the like of the air electrode material, La 1-x Ca x interconnector material of CrO or the like include. The rare earth elements are contained in electrolyte materials such as air electrode materials, interconnector materials, and GDC (gadolinium doped ceria). Transition metal elements are included in air electrode materials, interconnector materials, electrolyte materials such as YSZ (yttria stabilized zirconia), and fuel electrode materials.

また、上記<1.>欄の電極材料の製造方法は、La、Ni、Cu、Fe、元素A及び元素Bを、La:Ni:Cu:Fe:A:B=1−s:(1−x−y−s):x:y:s:zのモル比で含有する原料を1200℃以下の温度で焼成する焼成工程を含んでいてもよい。   In addition, the above <1. The manufacturing method of the electrode material in the column> La, Ni, Cu, Fe, element A and element B, La: Ni: Cu: Fe: A: B = 1-s: (1-xys) It may include a firing step of firing the raw material containing at a molar ratio of: x: y: s: z at a temperature of 1200 ° C. or lower.

なお、焼成工程に用いられる原料は、上述の金属の酸化物粉末及び/又は水酸化物粉末を混合することによって得てもよいし、金属アルコキシド若しくは金属硝酸塩を出発材料とする共沈法又は液相合成法によって得てもよい。   The raw material used in the firing step may be obtained by mixing the above-described metal oxide powder and / or hydroxide powder, or a coprecipitation method or liquid using a metal alkoxide or metal nitrate as a starting material. It may be obtained by a phase synthesis method.

x、y及びδの好適な範囲については上述したとおりである。すなわち、原料は、La、Ni、Cu及びFeのモル比がLa:Ni:Cu:Fe=0.95〜1:0.15〜0.92:0.05〜0.5:0.03〜0.3となるように調製されることが好ましい。また、s及びzの範囲についても、上述した通りである。Ni及びCuは大気中及び高温下で還元されやすい。そのため、本物質の製造においては、δを好適な範囲に調整するために、焼成工程は1200℃以下で行われることが好ましく、焼成工程は、酸素雰囲気中かつ1200℃以下で行われることがより好ましい。   The preferred ranges of x, y and δ are as described above. That is, the raw material has a molar ratio of La, Ni, Cu and Fe of La: Ni: Cu: Fe = 0.95 to 1: 0.15 to 0.92: 0.05 to 0.5: 0.03. It is preferable to prepare so that it may become 0.3. The range of s and z is also as described above. Ni and Cu are likely to be reduced in the air and at high temperatures. Therefore, in the production of this substance, in order to adjust δ to a suitable range, the firing step is preferably performed at 1200 ° C. or lower, and the firing step is more preferably performed in an oxygen atmosphere and at 1200 ° C. or lower. preferable.

また、焼成工程は、1つの処理とみなされてもよいし、温度条件の異なる2つ以上の熱処理を含んでもよい。これらの処理のうちの少なくとも1つの処理において、上述の原料が1100℃以上の温度で熱処理されてもよい。焼成工程は、温度条件が1100℃未満に設定された熱処理を含んでいてもよい。なお、いずれの熱処理においても温度条件は1200℃以下に設定可能である。Feは反応性が比較的低いが、原料が1100℃以上で熱処理されることで、単相のペロブスカイト構造が得られやすい。   Moreover, a baking process may be regarded as one process and may include the 2 or more heat processing from which temperature conditions differ. In at least one of these processes, the above-mentioned raw material may be heat-treated at a temperature of 1100 ° C. or higher. The firing step may include a heat treatment in which the temperature condition is set to less than 1100 ° C. In any heat treatment, the temperature condition can be set to 1200 ° C. or less. Fe has a relatively low reactivity, but a single-phase perovskite structure is easily obtained by heat-treating the raw material at 1100 ° C. or higher.

また、焼成工程の前に、1100℃以上で原料を仮焼する仮焼工程が行われてもよい。仮焼処理が行われる場合に、焼成工程における温度は1100℃未満であってもよい。また、仮焼工程も1200℃以下で行われてもよい。   Moreover, the calcining process of calcining the raw material at 1100 ° C. or higher may be performed before the calcining process. When the calcination treatment is performed, the temperature in the firing step may be less than 1100 ° C. Further, the calcination step may be performed at 1200 ° C. or less.

なお、元素A及びBを含有する原料を焼成する場合も、La、Ni、Cu及びFeを含有する原料に元素A及びBを含有する原料を隣接させて焼成する場合も、焼成工程及び仮焼工程の温度条件は、上述の通りである。   In addition, when baking the raw material containing element A and B, also when baking the raw material containing element A and B adjacent to the raw material containing La, Ni, Cu, and Fe, a baking process and calcination The temperature conditions of the process are as described above.

ただし、原料の粒径及びその他の条件に応じて、焼成の温度条件、焼成にかかる時間等は、変更される。   However, depending on the particle size of the raw material and other conditions, the temperature condition of firing, the time taken for firing, and the like are changed.

[試料の作製及び特性の測定]
i.実施例E1〜E12(酸素雰囲気焼成)
LaNiO3―δにおいて、Fe及びCuを用いた同時置換を行った。Cu元素及びFe元素の比率を変えて、得られる試料の特性を調べた。
[Preparation of sample and measurement of properties]
i. Examples E1-E12 (oxygen atmosphere firing)
In LaNiO 3 -δ , simultaneous substitution using Fe and Cu was performed. The characteristics of the obtained samples were examined by changing the ratio of Cu element and Fe element.

(i-1)試料の作製
水酸化ランタン、酸化ニッケル、酸化銅、酸化鉄粉末を110℃で12時間乾燥させた後、表1に示す所定のモル比で秤量した。
(I-1) Preparation of Sample After drying lanthanum hydroxide, nickel oxide, copper oxide, and iron oxide powder at 110 ° C. for 12 hours, they were weighed at a predetermined molar ratio shown in Table 1.

これらを水媒体にて、湿式混合した後、乾燥させた。その後、篩を通すことにより混合粉体を作製した。   These were wet mixed in an aqueous medium and then dried. Then, mixed powder was produced by passing through a sieve.

次いで、混合粉体を蓋つきのアルミナ坩堝に入れた後、酸素雰囲気中かつ表1に示す所定の仮焼温度で12時間熱処理することにより、固相反応を行い、それぞれペロブスカイト相の仮焼粉末を得た。実施例1における仮焼粉末のXRDを、図2に示す。   Next, after the mixed powder is put in an alumina crucible with a lid, a solid phase reaction is performed by heat treatment in an oxygen atmosphere and at a predetermined calcining temperature shown in Table 1 for each of the perovskite phase calcined powders. Obtained. The XRD of the calcined powder in Example 1 is shown in FIG.

仮焼粉末を粉砕し、一軸プレスを行った後、CIP(Cold Isostatic Press)によって、成形体を得た。   After calcining the calcined powder and performing uniaxial pressing, a molded body was obtained by CIP (Cold Isostatic Press).

次いで、成形体を蓋つきのアルミナ鞘中に静置した後、酸素雰囲気中かつ表1に示す所定の焼成温度で12時間熱処理することにより、焼成体を得た(実施例E1〜E12)。   Next, after allowing the molded body to stand in an alumina sheath with a lid, a fired body was obtained by heat treatment in an oxygen atmosphere and at a predetermined firing temperature shown in Table 1 for 12 hours (Examples E1 to E12).

(i-2)特性の測定
(密度)
焼成体の密度を寸法と密度から算出した、結果は表1に示す通りであった。
(I-2) Measurement of characteristics (Density)
The density of the fired body was calculated from the dimensions and density. The results were as shown in Table 1.

(導電率)
焼成体から3×4×40mmの試験片を切り出し、直流四端子法にて、大気中で、600〜900℃における焼成体の導電率を測定した。なお、導電率は、焼成体の組成比だけでなく密度にも依存するので、Meredithらの式を元に、山田悦郎著「資源と素材」vol119, No1, p1-8 (2003)を参考にして導出した下記式(1)によって、測定値の密度に依存する部分を補正した。
式(1):λe=((2+0.5φv)×(2−0.5φv))/((2−φv)×(2−2φv))×λc
測定値=λc、
補正後の導電率=λe、
(1−密度)=φv
補正後の導電率は、表1に示す通りであった。
(conductivity)
A test piece of 3 × 4 × 40 mm was cut out from the fired body, and the electrical conductivity of the fired body at 600 to 900 ° C. was measured in the air by a direct current four-terminal method. The electrical conductivity depends not only on the composition ratio of the fired body but also on the density. Based on the equation of Meredith et al., Reference to “Resources and Materials” vol119, No1, p1-8 (2003) by Goro Yamada. The portion depending on the density of the measured value was corrected by the following formula (1) derived as described above.
Formula (1): λe = ((2 + 0.5φv) × (2-0.5φv)) / ((2-φv) × (2-2φv)) × λc
Measured value = λc,
Conductivity after correction = λe,
(1-density) = φv
The corrected conductivity was as shown in Table 1.

(熱膨張率)
焼成体から3×4×20mmの試験片を切り出し、熱膨張率測定装置により、大気中で、40〜1000℃における焼成体の熱膨張率を測定した。結果は表1に示す通りであった。
(Coefficient of thermal expansion)
A test piece of 3 × 4 × 20 mm was cut out from the fired body, and the thermal expansion coefficient of the fired body at 40 to 1000 ° C. was measured in the air using a thermal expansion coefficient measuring device. The results were as shown in Table 1.

(酸素不定比量)
一部の実施例については、焼成体の一部を乳鉢にて粉砕して化学分析を行った。得られた元素の重量比から構成元素のモル比及び酸素不定比量δを計算した。結果は表7に示すとおりであった。
(Oxygen non-stoichiometric amount)
In some examples, a part of the fired body was pulverized in a mortar and subjected to chemical analysis. The molar ratio of the constituent elements and the oxygen nonstoichiometric amount δ were calculated from the weight ratio of the obtained elements. The results were as shown in Table 7.

ii.比較例A1〜A6
LaNiO3―δに対して、Fe又はCuによる置換を行い、酸素雰囲気中での焼成を行った。つまり、Cu元素及びFe元素の比率は、実施例とは異なり、x又はyが0(ゼロ)になるように設定された。
ii. Comparative Examples A1 to A6
LaNiO 3 -δ was substituted with Fe or Cu and baked in an oxygen atmosphere. That is, the ratio of Cu element and Fe element was set so that x or y would be 0 (zero), unlike the example.

具体的には、原料比及びその他の条件を表2の通りとした以外は、上記i.欄(酸素雰囲気)と同様の操作を行って、試料を得ると共に、その特性を測定した。結果は表2の通りであった。   Specifically, the above-mentioned i., Except that the raw material ratio and other conditions were as shown in Table 2. The same operation as in the column (oxygen atmosphere) was performed to obtain a sample, and its characteristics were measured. The results are shown in Table 2.

iii.比較例B1〜B3
以下の比較例では、同時置換においてCo(コバルト)及びFeを用いて、焼成体を得た。本比較例において、試料の組成は、LaNi1−a−bFeCo3―δで表される。
iii. Comparative examples B1-B3
In the following comparative examples, a fired body was obtained using Co (cobalt) and Fe in simultaneous substitution. In this comparative example, the composition of the sample is represented by LaNi 1-ab Fe a Co b O 3 -δ .

具体的には、原料として水酸化ランタン、酸化ニッケル、酸化コバルト、酸化鉄粉末を用い、原料比及びその他の条件を表3の通りとした以外は、上記i.欄(酸素雰囲気焼成)と同様の操作によって、試料を得ると共に、その特性を測定した。結果は表3の通りであった。   Specifically, the above-mentioned i., Except that lanthanum hydroxide, nickel oxide, cobalt oxide and iron oxide powder were used as raw materials and the raw material ratio and other conditions were as shown in Table 3. By the same operation as the column (oxygen atmosphere firing), a sample was obtained and its characteristics were measured. The results are shown in Table 3.

iv.比較例C1〜C4
以下の比較例では、同時置換においてアルカリ土類金属元素であるSr(ストロンチウム)及びFeを用いて、焼成体を得た。得られた焼成体の組成は、La1−cSrNi1−a−bFeCo3―δで表される。
iv. Comparative Examples C1-C4
In the following comparative examples, fired bodies were obtained using Sr (strontium) and Fe, which are alkaline earth metal elements, in simultaneous substitution. The composition of the resulting fired body is represented by La 1-c Sr c Ni 1 -a-b Fe a Co b O 3-δ.

具体的には、水酸化ランタン、炭酸ストロンチウム、酸化ニッケル、酸化コバルト、酸化鉄粉末を用い、原料比及びその他の条件を表4の通りとした以外は、上記i.欄(酸素雰囲気焼成)と同様の操作によって、試料を得ると共に、その特性を測定した。結果は表4の通りであった。   Specifically, the above-mentioned i., Except that lanthanum hydroxide, strontium carbonate, nickel oxide, cobalt oxide and iron oxide powder were used and the raw material ratio and other conditions were as shown in Table 4. By the same operation as the column (oxygen atmosphere firing), a sample was obtained and its characteristics were measured. The results are shown in Table 4.

v.実施例F1〜F9(大気雰囲気焼成)
水酸化ランタン、酸化ニッケル、酸化銅、酸化鉄粉末を用い、原料比及びその他の条件を表5の通りとして、試料を得ると共に、その特性を測定した。特に、これらの実施例では、大気雰囲気中かつ表5に示す所定の焼成温度で1時間熱処理することで、焼成を実施した。表5に示す条件以外は、上記i.欄(酸素雰囲気焼成)と同様の操作を行った。結果は表5の通りであった。
v. Examples F1 to F9 (air atmosphere firing)
Using lanthanum hydroxide, nickel oxide, copper oxide, and iron oxide powder, the raw material ratio and other conditions were as shown in Table 5, and a sample was obtained and its characteristics were measured. In particular, in these examples, firing was performed by heat treatment in an air atmosphere at a predetermined firing temperature shown in Table 5 for 1 hour. Except for the conditions shown in Table 5, i. The same operation as in column (oxygen atmosphere firing) was performed. The results are shown in Table 5.

vi.比較例D1〜D6
実施例F1〜F9と同様に、LaNiO3―δに対して、Fe及びCuを用いた同時置換を行い、大気雰囲気中で焼成した。Cu元素及びFe元素の比率は、実施例とは異なり、x又はyが0(ゼロ)になるように設定された。具体的には、原料比及びその他の条件を表6の通りとした以外は、上記i.欄(酸素雰囲気焼成)と同様の操作を行って、試料を得ると共に、その特性を測定した。結果は表6の通りであった。
vi. Comparative Examples D1-D6
Similarly to Examples F1 to F9, LaNiO 3 -δ was subjected to simultaneous substitution using Fe and Cu and baked in the air atmosphere. Unlike the examples, the ratio of Cu element and Fe element was set so that x or y was 0 (zero). Specifically, the above-mentioned i., Except that the raw material ratio and other conditions were as shown in Table 6. The same operation as in the column (oxygen atmosphere firing) was performed to obtain a sample, and the characteristics thereof were measured. The results are shown in Table 6.

vii.実施例G1〜G3
(実施例G1)
実施例E1の操作によって、仮焼粉末を得た。仮焼粉末を粉砕した後に、200kgf/cmで一軸プレス成形を行うことで、成形体を得た。成形体を蓋つきのアルミナ鞘中に静置して、大気雰囲気中かつ1000℃で12時間熱処理することにより、焼成体を得た。
vii. Examples G1-G3
(Example G1)
A calcined powder was obtained by the operation of Example E1. After pulverizing the calcined powder, uniaxial press molding was performed at 200 kgf / cm 2 to obtain a molded body. The molded body was allowed to stand in an alumina sheath with a lid and heat-treated at 1000 ° C. for 12 hours in an air atmosphere to obtain a fired body.

(実施例G2及びG3)
原料として、水酸化ランタン,酸化ニッケル,酸化銅,酸化鉄,及び酸化コバルトの粉末を、表8に示す比で用いた以外は、実施例G1と同様の操作によって、焼成体を得た。
(Examples G2 and G3)
A fired body was obtained by the same operation as in Example G1 except that powders of lanthanum hydroxide, nickel oxide, copper oxide, iron oxide, and cobalt oxide were used as raw materials in the ratios shown in Table 8.

得られた焼成体について、上記i.欄と同様の操作によって特性を測定した。結果は表8の通りであった。   About the obtained sintered body, the above i. The characteristics were measured by the same operation as in the column. The results are shown in Table 8.

viii.実施例H1〜H5
(実施例H1)
原料として、水酸化ランタン,酸化ニッケル,酸化銅,酸化鉄,及び酸化ジルコニウムの粉末を表9に示す比で用いた以外は、実施例G1と同様の操作によって仮焼粉末を得た。仮焼粉末を粉砕した後に、溶剤としてテルピネオール、バインダとしてエチルセルロースを添加して混合することで、ペーストを得た。ペーストを用いて、SOFCの電解質層材料の1種であるYSZ焼成体上に、印刷によって層を形成した。こうして得られた積層体を乾燥させ、大気中、1000℃で1時間熱処理することによって、積層焼成体を得た。
viii. Examples H1-H5
(Example H1)
A calcined powder was obtained by the same operation as in Example G1, except that lanthanum hydroxide, nickel oxide, copper oxide, iron oxide, and zirconium oxide powders were used as raw materials in the ratios shown in Table 9. After the calcined powder was pulverized, terpineol as a solvent and ethyl cellulose as a binder were added and mixed to obtain a paste. A layer was formed by printing on a YSZ fired body, which is one type of SOFC electrolyte layer material, using a paste. The laminated body thus obtained was dried and heat-treated at 1000 ° C. for 1 hour in the air to obtain a laminated fired body.

得られた積層焼成体について、上記i.欄と同様の操作によって特性を測定した。結果は表9の通りであった。   About the obtained laminated fired body, the above i. The characteristics were measured by the same operation as in the column. The results are shown in Table 9.

(実施例H2)
原料として、水酸化ランタン,酸化ニッケル,酸化銅,酸化鉄,及び酸化マンガンの粉末を表9に示す比で用いた以外は、実施例G1と同様の操作によって仮焼粉末を得た。仮焼粉末から、実施例H1と同様に、ペーストを得た。ペーストを用いて、SOFCの空気極材料の1種であるLaSrMnO3焼成体上に、印刷によって層を形成した。こうして得られた積層体を、実施例H1と同様に、乾燥及び熱処理することで、積層焼成体を得た。
(Example H2)
A calcined powder was obtained by the same operation as in Example G1, except that lanthanum hydroxide, nickel oxide, copper oxide, iron oxide, and manganese oxide powders were used as raw materials in the ratios shown in Table 9. A paste was obtained from the calcined powder in the same manner as in Example H1. A layer was formed by printing on a LaSrMnO 3 fired body, which is one of SOFC air electrode materials, using a paste. The laminated body thus obtained was dried and heat-treated in the same manner as in Example H1 to obtain a laminated fired body.

得られた積層焼成体について、上記i.欄と同様の操作によって特性を測定した。結果は表9の通りであった。   About the obtained laminated fired body, the above i. The characteristics were measured by the same operation as in the column. The results are shown in Table 9.

ただし、導電率については、以下のようにして得た。基板であるLaSrMnO焼成体も、印刷で形成された層(以下、「LaNiCuFeO層」と称する)も、導電性を有する。よって、まず、積層焼成体全体の導電率を、上記i.欄と同様にして得た。この導電率を、LaSrMnOと印刷で形成されたLaNiCuFeO層との並列抵抗について得られた導電率であると仮定して、積層焼成体全体の導電率と、別途測定したLaSrMnO単独の導電率から、LaNiCuFeO層の導電率を算出した。 However, the conductivity was obtained as follows. Both the LaSrMnO 3 fired body as the substrate and the layer formed by printing (hereinafter referred to as “LaNiCuFeO 3 layer”) have conductivity. Therefore, first, the conductivity of the entire laminated fired body is determined by the above i. Obtained in the same manner as the column. The conductivity, assuming a conductivity obtained for the parallel resistance of LaSrMnO 3 and LaNiCuFeO 3 layer formed by printing, and conductivity of the whole laminated fired body, LaSrMnO 3 single conductive which is separately measured From the rate, the conductivity of the LaNiCuFeO 3 layer was calculated.

(実施例H3)
原料として酸化ランタン,酸化ニッケル,酸化銅,酸化鉄,酸化ガドリニウムの粉末を表9に示す比で用いた以外は、実施例G1と同様の操作によって仮焼粉末を得た。仮焼粉末から、実施例H1と同様に、ペーストを得た。ペーストを用いて、SOFCの電解質材料の1種であるGDC焼成体上に、印刷によって層を形成した。こうして得られた積層体を、実施例H1と同様に、乾燥及び熱処理することで、積層焼成体を得た。
(Example H3)
A calcined powder was obtained in the same manner as in Example G1, except that lanthanum oxide, nickel oxide, copper oxide, iron oxide, and gadolinium powder were used as raw materials in the ratios shown in Table 9. A paste was obtained from the calcined powder in the same manner as in Example H1. Using the paste, a layer was formed by printing on a GDC fired body, which is one of SOFC electrolyte materials. The laminated body thus obtained was dried and heat-treated in the same manner as in Example H1 to obtain a laminated fired body.

得られた積層焼成体について、上記i.欄と同様の操作によって特性を測定した。結果は表9の通りであった。   About the obtained laminated fired body, the above i. The characteristics were measured by the same operation as in the column. The results are shown in Table 9.

(実施例H4)
酸化ランタン,酸化ニッケル,酸化銅,酸化鉄,及び炭酸カルシウムの粉末を表9に示す比で用いた以外は、実施例G1と同様の操作によって仮焼粉末を得た。仮焼粉末を粉砕した後に、仮焼粉末から、実施例H1と同様に、ペーストを得た。ペーストを用いて、SOFCのインターコネクタ材料の1種であるLaCaCrO焼成体上に、印刷によって層を形成した。こうして得られた積層体を、実施例H1と同様に、乾燥及び熱処理することで、積層焼成体を得た。
(Example H4)
A calcined powder was obtained in the same manner as in Example G1 except that powders of lanthanum oxide, nickel oxide, copper oxide, iron oxide, and calcium carbonate were used in the ratios shown in Table 9. After pulverizing the calcined powder, a paste was obtained from the calcined powder in the same manner as in Example H1. Using the paste, a layer was formed by printing on a LaCaCrO 3 fired body, which is one type of SOFC interconnector material. The laminated body thus obtained was dried and heat-treated in the same manner as in Example H1 to obtain a laminated fired body.

得られた積層焼成体について、上記i.欄と同様の操作によって特性を測定した。結果は表9の通りであった。ただし、基板であるLaCaCrO焼成体も導電性を有するので、導電率の測定は、実施例H2と同様に行った。 About the obtained laminated fired body, the above i. The characteristics were measured by the same operation as in the column. The results are shown in Table 9. However, since the LaCaCrO 3 fired body, which is the substrate, also has conductivity, the measurement of conductivity was performed in the same manner as in Example H2.

(実施例H5)
水酸化ランタン,酸化ニッケル,酸化銅,酸化鉄,炭酸ストロンチウム,及び酸化ジルコニウムの粉末を表9に示す比で用いた以外は、実施例G1と同様の操作によって仮焼粉末を得た。仮焼粉末から、実施例H1と同様に、ペーストを得た。ペーストを用いて、SOFCの空気極材料であるLaSrCoFeO焼成体上に、印刷によって層を形成した。こうして得られた積層体を、実施例H1と同様に、乾燥及び熱処理することで、積層焼成体を得た。
(Example H5)
A calcined powder was obtained in the same manner as in Example G1, except that powders of lanthanum hydroxide, nickel oxide, copper oxide, iron oxide, strontium carbonate, and zirconium oxide were used in the ratios shown in Table 9. A paste was obtained from the calcined powder in the same manner as in Example H1. A layer was formed by printing on the LaSrCoFeO 3 fired body, which is the SOFC air electrode material, using the paste. The laminated body thus obtained was dried and heat-treated in the same manner as in Example H1 to obtain a laminated fired body.

得られた積層焼成体について、上記i.欄と同様の操作によって特性を測定した。結果は表9の通りであった。ただし、基板であるLaSrCoFeO焼成体も導電性を有するので、導電率の測定は、実施例H2と同様に行った。 About the obtained laminated fired body, the above i. The characteristics were measured by the same operation as in the column. The results are shown in Table 9. However, since the LaSrCoFeO 3 fired body as the substrate also has conductivity, the measurement of conductivity was performed in the same manner as in Example H2.

[結果]
図2に示す通り、実施例E1の焼成体の結晶相は、ペロブスカイト単相であった。また、図示しないが、いずれの実施例E1〜E12、及びF1〜F9、比較例A1〜A6、B1〜B3、C1〜C4、及びD1〜D6においても、結晶相はペロブスカイト単相であった。
[result]
As shown in FIG. 2, the crystal phase of the fired body of Example E1 was a perovskite single phase. Moreover, although not shown in figure, also in any Example E1-E12 and F1-F9, Comparative example A1-A6, B1-B3, C1-C4, and D1-D6, the crystal phase was a perovskite single phase.

表1に示す通り、酸素雰囲気中で焼成した実施例E1〜E12では、900℃という高温下でも、680S/cm以上の比較的大きな導電率が得られ、特に750℃では800S/cm以上の導電率が実現された。また、実施例E1〜E12では、13.5ppm/K以下、特に13.4ppm/K以下の熱膨張率が実現された。   As shown in Table 1, in Examples E1 to E12 fired in an oxygen atmosphere, a relatively large conductivity of 680 S / cm or more was obtained even at a high temperature of 900 ° C., and in particular, a conductivity of 800 S / cm or more was obtained at 750 ° C. The rate was realized. In Examples E1 to E12, a coefficient of thermal expansion of 13.5 ppm / K or less, particularly 13.4 ppm / K or less was realized.

次に、比較例A1〜A6、B1〜B3,及びC1〜C4の結果を参照する(表2〜表4)。これらの比較例は、実施例E1〜E12と同じく酸素雰囲気中で焼成された。ただし、実施例E1〜E12とは異なり、比較例A1〜A6はCu又はFeの単独置換であり、Cu及びFeの同時置換はされていない。   Next, the results of Comparative Examples A1 to A6, B1 to B3, and C1 to C4 are referred to (Tables 2 to 4). These comparative examples were fired in an oxygen atmosphere as in Examples E1 to E12. However, unlike Examples E1-E12, Comparative Examples A1-A6 are single substitutions of Cu or Fe, and no simultaneous substitution of Cu and Fe.

表2に示す通り、CuもFeも含まないLaNiO3―δは、導電性が低く、熱膨張率が高かった(比較例A1)。 As shown in Table 2, LaNiO 3-δ containing neither Cu nor Fe had low conductivity and a high coefficient of thermal expansion (Comparative Example A1).

また、Cu単独置換によると(比較例A4〜A6、図3)、表2に示す通り、0.05≦x≦0.2において、比較的高い導電率が得られたものの、熱膨張率が高かった。また、x=0.5において、導電率が著しく小さく、熱膨張率がさらに高くなった。この導電率の低下の原因は、酸素が試料中から抜けることで、キャリアの易動度(mobility)が低下すること、及び試料中の酸素が抜けることで多くのCuが2価になった結果、キャリア濃度が低下したこと、であると考えられる。熱膨張率が高くなったのは、高温で酸素が抜けて体積が増加したからであると考えられる。   Moreover, according to Cu substitution alone (Comparative Examples A4 to A6, FIG. 3), as shown in Table 2, a relatively high conductivity was obtained at 0.05 ≦ x ≦ 0.2, but the coefficient of thermal expansion was it was high. Further, at x = 0.5, the conductivity was remarkably small and the thermal expansion coefficient was further increased. The cause of this decrease in conductivity is that oxygen escapes from the sample, the mobility of the carrier decreases, and a lot of Cu becomes divalent due to the loss of oxygen in the sample. It is considered that the carrier concentration has decreased. The reason why the coefficient of thermal expansion has increased is considered to be that oxygen escaped at a high temperature and the volume increased.

Fe単独置換によると(比較例A2〜A3、図3)、表2に示す通り、0.3≦y≦0.5において、熱膨張率は低く抑えられた。しかしながら、置換量が多いほど導電率が小さかった。この導電率の低下は、Fe置換のみではCuが存在しないことからキャリア濃度が低下する、もしくはキャリアの易動度(mobility)が低下する、あるいは両方が起こるためと考えられる。   According to Fe substitution alone (Comparative Examples A2 to A3, FIG. 3), as shown in Table 2, the thermal expansion coefficient was kept low when 0.3 ≦ y ≦ 0.5. However, the greater the amount of substitution, the lower the conductivity. This decrease in conductivity is thought to be due to a decrease in carrier concentration due to the absence of Cu only by Fe substitution, or a decrease in carrier mobility, or both.

表3に示すように、Fe及びCoの同時置換(比較例B1〜B3)では、導電率の向上はほとんど見られなかった。また、これらの比較例では、熱膨張率が大きく、電極材料として好ましい特性は得られなかった。   As shown in Table 3, with the simultaneous substitution of Fe and Co (Comparative Examples B1 to B3), almost no improvement in conductivity was observed. Moreover, in these comparative examples, the coefficient of thermal expansion was large, and favorable characteristics as an electrode material were not obtained.

表4に示すように、Sr、Fe、及びCoの同時置換(比較例C1〜C4)では、導電率が非常に低く、熱膨張率は高かった。   As shown in Table 4, in the simultaneous substitution of Sr, Fe, and Co (Comparative Examples C1 to C4), the electrical conductivity was very low and the thermal expansion coefficient was high.

以上に述べたように、酸素雰囲気中で焼成した実施例E1〜E12では、Fe又はCuの単独置換(比較例A1〜A6)、Fe及びCo(比較例B1〜B3)、Fe、Co、及びSr(比較例C1〜C4)による同時置換と比較して、導電率及び熱膨張率の両面で電極材料として適した物質を得ることができた。   As described above, in Examples E1 to E12 fired in an oxygen atmosphere, single substitution of Fe or Cu (Comparative Examples A1 to A6), Fe and Co (Comparative Examples B1 to B3), Fe, Co, and Compared with simultaneous replacement with Sr (Comparative Examples C1 to C4), a substance suitable as an electrode material in terms of both conductivity and thermal expansion coefficient could be obtained.

次に、大気雰囲気中で焼成した試料について、検討する。   Next, a sample fired in an air atmosphere will be examined.

表5に示す通り、大気雰囲気中で焼成した実施例F1〜F9では、900℃という高温下でも、680S/cm以上の比較的大きな導電率が得られ、特に750℃では800S/cm以上の導電率が実現された。また、実施例F1〜F9では、熱膨張率は14.5ppm/K以下、特に14.4ppm/K以下の熱膨張率が実現された。   As shown in Table 5, in Examples F1 to F9 fired in the air atmosphere, a relatively large conductivity of 680 S / cm or more was obtained even at a high temperature of 900 ° C., and in particular, a conductivity of 800 S / cm or more was obtained at 750 ° C. The rate was realized. Further, in Examples F1 to F9, the thermal expansion coefficient was 14.5 ppm / K or less, particularly 14.4 ppm / K or less.

これに対して、表6に示す通り、CuもFeも含まないLaNiO3―δは、大気雰囲気で焼成されることで、導電性が低下した(比較例D1)。 On the other hand, as shown in Table 6, the conductivity of LaNiO 3 -δ containing neither Cu nor Fe was reduced by firing in an air atmosphere (Comparative Example D1).

また、Cu単独置換によると(比較例D4〜D6、図4)、大気雰囲気で焼成すると、表6に示す通り、導電率が著しく低下した。この導電率の低下は、Feを含まないために焼成中に試料の酸素が抜けてしまい、キャリア濃度とキャリアの易動度(mobility)が低下したためであると考えられる。   Further, according to Cu substitution alone (Comparative Examples D4 to D6, FIG. 4), as shown in Table 6, the conductivity was significantly lowered when fired in the air atmosphere. This decrease in conductivity is considered to be due to the fact that the sample oxygen escapes during firing because Fe is not contained, and the carrier concentration and carrier mobility are reduced.

なお、大気中で焼成した実施例F1〜F9は、Fe及びCo(比較例B1〜B3)、並びにFe、Co及びSr(比較例C1〜C4)による同時置換と比較しても、導電率又は熱膨張率、あるいは導電率及び熱膨張率の両面で、電極材料として優れた特性を示した。   It should be noted that Examples F1 to F9 baked in the atmosphere have conductivity or Fe or Co (Comparative Examples B1 to B3) and even if compared with simultaneous replacement with Fe, Co and Sr (Comparative Examples C1 to C4). It exhibited excellent characteristics as an electrode material in terms of both thermal expansion coefficient, conductivity and thermal expansion coefficient.

以上の説明から明らかであるように、組成がLa1−sNi1−x−y−zCuFe3−δである材料(実施例E1〜E12,F1〜F9,G1〜G3,H1〜H5)は、燃料電池に用いられる電極材料として良い特性を示した。つまり、Cu及びFeによる同時置換によって、熱膨張率及び導電率の両方で、燃料電池の電極材料として好ましい特性が得られた。 As is apparent from the above description, the composition is La 1-s A s Ni 1 -x-y-z Cu x Fe y B z O 3-δ material (Example E1 to E12, F1 to F9, G1 to G3, H1 to H5) showed good characteristics as electrode materials used in fuel cells. That is, by the simultaneous replacement with Cu and Fe, favorable characteristics as an electrode material of a fuel cell were obtained in both thermal expansion coefficient and conductivity.

このように優れた特性が得られた理由について、考察する。   The reason why such excellent characteristics are obtained will be discussed.

おそらく、La1−sNi1−x−y−zCuFe3−δでは、Niがより電子の多い3価のCuで置換されることによってキャリア濃度が増加し、導電率が向上していると考えられる。 Perhaps, the La 1-s A s Ni 1 -x-y-z Cu x Fe y B z O 3-δ, the carrier concentration by the Ni is replaced with a more electronic-rich trivalent Cu increases, It is thought that the conductivity is improved.

一般に、Cuで置換するのみでは、高温の大気中において試料中の酸素が抜けてCuが2価になるので、キャリア濃度が十分に増加することは難しいと考えられる。しかし、同時に置換したFeのギブスエネルギーは、NiやCuのギブスエネルギーより低いので、Feによる同時置換が、試料中から酸素が抜けることを抑制していると考えられる。このため、La1−sNi1−x−y−zCuFe3−δにおいてはNiを3価のCuでより多く置換することが可能になると考えられる。 In general, it is considered that it is difficult to sufficiently increase the carrier concentration by simply substituting with Cu because oxygen in the sample is released in a high temperature atmosphere and Cu becomes divalent. However, since the Gibbs energy of Fe substituted at the same time is lower than the Gibbs energy of Ni or Cu, it is considered that simultaneous substitution with Fe suppresses the escape of oxygen from the sample. Therefore, in La 1-s A s Ni 1 -x-y-z Cu x Fe y B z O 3-δ is considered to be possible to replace more trivalent Cu and Ni.

一般に、ペロブスカイト型結晶構造を持つ電極材料では、電子が酸素を介して移動するので、酸素が抜けることで欠損が生成されると、キャリアの易動度(mobility)が低下することが懸念される。実施例の材料系においては、おそらく、Feの同時置換により酸素が抜けることが抑制されることでキャリアの易動度(mobility)が維持されるので、大気中及び高温下という、特に酸素が抜け易い条件下における導電率の低下が抑制されていると考えられる。   In general, in an electrode material having a perovskite-type crystal structure, electrons move through oxygen. Therefore, there is a concern that if a defect is generated when oxygen is released, the mobility of carriers decreases. . In the material system of the examples, the mobility of carriers is probably maintained by suppressing the escape of oxygen by simultaneous substitution of Fe, so that oxygen escapes particularly in the atmosphere and at high temperatures. It is considered that the decrease in conductivity under easy conditions is suppressed.

また、ペロブスカイト型結晶構造を持つ材料は、酸素の欠損が生成すると、材料を構成する原子間の距離が広がることで、体積が膨張すると予想される。実施例の材料系においては、おそらく、Feによって、特に酸素が抜け易い大気中かつ高温条件下で酸素が抜けることが抑制されることで、試料と外界とで酸素の出入りが少なくなった結果、熱膨張率が低下すると考えられる。   A material having a perovskite crystal structure is expected to expand in volume due to an increase in the distance between atoms constituting the material when oxygen deficiency is generated. In the material system of the examples, the result of reducing the amount of oxygen entering / exiting between the sample and the outside world is probably due to the suppression of oxygen release under high-temperature conditions, particularly in the atmosphere where oxygen easily escapes, It is thought that the coefficient of thermal expansion decreases.

また、酸素不定比量を示すδが小さいほど、3価のCuが生成されることで、キャリア濃度が増し、導電率は上がると考えられる。また、ペロブスカイトを構成する原子の欠損がない完全結晶に近いほど試料中のキャリアの易動度(mobility)が増し、導電率は上がると考えられる。   In addition, it is considered that as δ representing the oxygen non-stoichiometric amount is smaller, trivalent Cu is generated, thereby increasing the carrier concentration and increasing the conductivity. In addition, it is considered that the mobility of carriers in the sample increases and the conductivity increases as the crystal becomes closer to a perfect crystal without the defects of the atoms constituting the perovskite.

1 燃料電池セル
11 燃料極
12 電解質層
13 空気極
DESCRIPTION OF SYMBOLS 1 Fuel cell 11 Fuel electrode 12 Electrolyte layer 13 Air electrode

本発明の第1観点に係る電極材料は、燃料電池の燃料極、空気極又は集電層の電極材料であって、La1-ssNi1-x-y-zCuxFeyz3-δ(ただし、A及びBは、それぞれ独立して、アルカリ土類金属元素、Fe、Ni及びCuを除く遷移金属元素、並びにLaを除く希土類元素からなる群より選択される少なくとも1種の元素であり、x>0、y>0、x+y+z<1、0.0≦δ≦0.4、0≦s≦0.05及び0≦z≦0.05である。但し、s>0及びz>0の少なくとも一方を満たす。)で表される成分を含有し、ペロブスカイト型結晶相を有する。 Electrode material according to the first aspect of the present invention, the fuel electrode of the fuel cell, an electrode material of the air electrode or collector layer, La 1-s A s Ni 1-xyz Cu x Fe y B z O 3- δ (where A and B are each independently at least one element selected from the group consisting of alkaline earth metal elements, transition metal elements excluding Fe, Ni and Cu, and rare earth elements excluding La) Yes, x> 0, y> 0, x + y + z <1, 0.0 ≦ δ ≦ 0.4, 0 ≦ s ≦ 0.05, and 0 ≦ z ≦ 0.05, provided that s> 0 and z> 0 satisfying at least one.) contains a component represented by, for have a perovskite-type crystal phase.

<1.電極材料>
本発明の電極材料は、燃料電池の燃料極、空気極又は集電層の電極材料であって、La1-ssNi1-x-y-zCuxFeyz3-δで表される成分を含有し、ペロブスカイト型結晶相を有する。
<1. Electrode material>
Electrode material of the present invention, the fuel electrode of the fuel cell, an electrode material of the air electrode or collector layer, represented by La 1-s A s Ni 1 -xyz Cu x Fe y B z O 3-δ It contains components, which have a perovskite-type crystal phase.

ただし、A及びBは、それぞれ独立して、アルカリ土類金属元素、Fe、Ni及びCuを除く遷移金属元素、並びにLaを除く希土類元素からなる群より選択される少なくとも1種の元素であり、s、x、y、z及びδは、x>0、y>0、x+y+z<1、0.0≦δ≦0.4、0≦s≦0.05及び0≦z≦0.05である。但し、s>0及びz>0の少なくとも一方を満たす。アルカリ土類金属元素の例としては、Ca及びSr等が挙げられる。遷移金属元素の例としては、Sc,Ti,Cr,Mn,Co,Y,Zr等が挙げられる。希土類元素の例としては、Ce,Pr,Gd等が挙げられる。 However, A and B are each independently at least one element selected from the group consisting of alkaline earth metal elements, transition metal elements excluding Fe, Ni and Cu, and rare earth elements excluding La, s, x, y, z and δ are x> 0, y> 0, x + y + z <1, 0.0 ≦ δ ≦ 0.4, 0 ≦ s ≦ 0.05 and 0 ≦ z ≦ 0.05 . . However, at least one of s> 0 and z> 0 is satisfied. Examples of alkaline earth metal elements include Ca and Sr. Examples of the transition metal element include Sc, Ti, Cr, Mn, Co, Y, Zr and the like. Examples of rare earth elements include Ce, Pr, Gd and the like.

このような導電率及び熱膨張率を実現するために、x≧0.05であってもよく、x≦0.5であってもよく、0.05≦x≦0.5であってもよく、0.1≦x≦0.5であってもよい。また、y≧0.03であってもよく、y≦0.3であってもよく、0.03≦y≦0.3であってもよく、0.03≦y≦0.2であってもよい。また、0.0≦δ≦0.4である。 In order to realize such conductivity and coefficient of thermal expansion, x ≧ 0.05, x ≦ 0.5, 0.05 ≦ x ≦ 0.5 may be satisfied. It may be 0.1 ≦ x ≦ 0.5. Further, y ≧ 0.03, y ≦ 0.3, 0.03 ≦ y ≦ 0.3, or 0.03 ≦ y ≦ 0.2 may be satisfied. May be. Also , 0 . 0 ≦ [delta] ≦ Ru 0.4 der.

また、δ≦0.4であることで、高い導電率が得られる。δ<0.0で、作製時の酸素分圧を高圧する必要がありコストがかかるため、δ≧0.0である。 Further, it is [delta] ≦ 0.4, high Ishirube conductivity is obtained. The [delta] <0.0, because it is expensive should the oxygen partial pressure at the time of producing the high pressure, Ru [delta] ≧ 0.0 der.

また、s及びzが上述の範囲であることで、良好な導電率及び熱膨張率が実現される。さらに、s≧0.005及びz≧0.005の少なくとも一方が満たされてもよいし、s≧0.01及びz≧0.01の少なくとも一方が満たされてもよい。 Moreover, favorable electrical conductivity and a thermal expansion coefficient are implement | achieved because s and z are the above-mentioned ranges. Furthermore , at least one of s ≧ 0.005 and z ≧ 0.005 may be satisfied, or at least one of s ≧ 0.01 and z ≧ 0.01 may be satisfied.

また、この材料の結晶相は、ペロブスカイト型結晶相を含有、ペロブスカイト単相であることが好ましい。これによって、より高い導電率が実現される。 The crystal phase of this material contains a perovskite-type crystal phase is preferably a perovskite single phase. This achieves higher conductivity.

本発明の第1観点に係る電極材料は、燃料電池の燃料極、空気極又は集電層の電極材料であって、ペロブスカイト型結晶相を有するLa1-ssNi1-x-y-zCuxFeyz3-δ(ただし、A及びBは、それぞれ独立して、アルカリ土類金属元素、Fe、Ni及びCuを除く遷移金属元素、並びにLaを除く希土類元素からなる群より選択される少なくとも1種の元素であり、x>0、y>0、x+y+z<1、0.0≦δ≦0.4、0≦s≦0.05及び0≦z≦0.05である。但し、s>0及びz>0の少なくとも一方を満たす。)で表される成分を含有する。 An electrode material according to a first aspect of the present invention is an electrode material of a fuel electrode, an air electrode, or a current collecting layer of a fuel cell, and has a perovskite-type crystal phase La 1- s As Ni 1-xyz Cu x Fe y B z O 3 -δ (where A and B are each independently selected from the group consisting of alkaline earth metal elements, transition metal elements excluding Fe, Ni and Cu, and rare earth elements excluding La) At least one element, x> 0, y> 0, x + y + z <1, 0.0 ≦ δ ≦ 0.4, 0 ≦ s ≦ 0.05, and 0 ≦ z ≦ 0.05, provided that s> 0 and z> 0 for satisfying at least one.) that Yusuke contains a component represented by.

<1.電極材料>
本発明の電極材料は、燃料電池の燃料極、空気極又は集電層の電極材料であって、ペロブスカイト型結晶相を有するLa1-ssNi1-x-y-zCuxFeyz3-δで表される成分を含有する。
<1. Electrode material>
The electrode material of the present invention is an electrode material of a fuel electrode, an air electrode, or a current collecting layer of a fuel cell, and has La 1- s As Ni 1-xyz Cu x Fe y B z O 3 having a perovskite crystal phase. - a component represented by δ that Yusuke free.

Claims (12)

La1−sNi1−x−y−zCuFe3−δ
(ただし、A及びBは、それぞれ独立して、アルカリ土類金属元素、Fe、Ni及びCuを除く遷移金属元素、並びにLaを除く希土類元素からなる群より選択される少なくとも1種の元素であり、x>0、y>0、x+y+z<1、0≦s≦0.05、0≦z≦0.05である)
で表される成分を含有する電極材料。
La 1-s A s Ni 1 -x-y-z Cu x Fe y B z O 3-δ
(However, A and B are each independently at least one element selected from the group consisting of alkaline earth metal elements, transition metal elements excluding Fe, Ni and Cu, and rare earth elements excluding La. X> 0, y> 0, x + y + z <1, 0 ≦ s ≦ 0.05, 0 ≦ z ≦ 0.05)
The electrode material containing the component represented by these.
Aは、アルカリ土類金属元素及びLaを除く希土類元素からなる群より選択される少なくとも1種の元素であり、
Bは、Fe、Ni及びCuを除く遷移金属元素より選択される少なくとも1種の元素である、
請求項1に記載の電極材料。
A is at least one element selected from the group consisting of alkaline earth metal elements and rare earth elements excluding La;
B is at least one element selected from transition metal elements other than Fe, Ni, and Cu.
The electrode material according to claim 1.
ペロブスカイト型結晶相を有する、請求項1又は2に記載の電極材料。   The electrode material according to claim 1, which has a perovskite crystal phase. x≧0.05である請求項1〜3のいずれか1項に記載の電極材料。   The electrode material according to claim 1, wherein x ≧ 0.05. x≦0.5である請求項1〜4のいずれか1項に記載の電極材料。   The electrode material according to claim 1, wherein x ≦ 0.5. y≧0.03である請求項1〜5のいずれか1項に記載の電極材料。   The electrode material according to claim 1, wherein y ≧ 0.03. y≦0.3である請求項1〜6のいずれか1項に記載の電極材料。   It is y <= 0.3, The electrode material of any one of Claims 1-6. δ≧0.0である請求項1〜7のいずれか1項に記載の電極材料。   The electrode material according to claim 1, wherein δ ≧ 0.0. δ≦0.4である請求項1〜8のいずれか1項に記載の電極材料。   The electrode material according to claim 1, wherein δ ≦ 0.4. 750℃における導電率が、800S/cm以上である請求項1〜9のいずれか1項に記載の電極材料。   The electrode material according to any one of claims 1 to 9, wherein the conductivity at 750 ° C is 800 S / cm or more. 熱膨張率が14.5ppm/K以下である請求項1〜10のいずれか1項に記載の電極材料。   The electrode material according to any one of claims 1 to 10, which has a coefficient of thermal expansion of 14.5 ppm / K or less. 燃料極と、
空気極と、
前記燃料極と前記空気極との間に設けられた固体電解質層と、
前記空気極上で前記固体電解質とは逆側に設けられ、請求項1〜11のいずれかに記載の電極材料を含む集電層と、
を備える燃料電池セル。
An anode,
The air electrode,
A solid electrolyte layer provided between the fuel electrode and the air electrode;
A current collecting layer provided on the opposite side of the solid electrolyte on the air electrode, and comprising the electrode material according to claim 1,
A fuel cell comprising:
JP2011058052A 2010-03-25 2011-03-16 Electrode material and fuel cell including the same Active JP4995328B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011058052A JP4995328B1 (en) 2010-03-25 2011-03-16 Electrode material and fuel cell including the same

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2010070793 2010-03-25
JP2010070793 2010-03-25
JP2011012852 2011-01-25
JP2011012852 2011-01-25
JP2011050538 2011-03-08
JP2011050538 2011-03-08
JP2011058052A JP4995328B1 (en) 2010-03-25 2011-03-16 Electrode material and fuel cell including the same

Publications (2)

Publication Number Publication Date
JP4995328B1 JP4995328B1 (en) 2012-08-08
JP2012198990A true JP2012198990A (en) 2012-10-18

Family

ID=46793884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011058052A Active JP4995328B1 (en) 2010-03-25 2011-03-16 Electrode material and fuel cell including the same

Country Status (2)

Country Link
JP (1) JP4995328B1 (en)
CN (1) CN105719723B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049115A (en) * 2010-07-28 2012-03-08 Kyocera Corp Conductor and solid oxide fuel battery cell, cell stack, and fuel battery
JP2014199807A (en) * 2013-03-13 2014-10-23 日本碍子株式会社 Solid oxide fuel cell
JP2014225434A (en) * 2013-04-19 2014-12-04 日本碍子株式会社 Fuel cell
JP2015118922A (en) * 2013-11-15 2015-06-25 日本碍子株式会社 Solid oxide type fuel battery and air electrode material
JP2015118741A (en) * 2013-12-16 2015-06-25 三菱日立パワーシステムズ株式会社 Solid electrolyte fuel battery
WO2016147720A1 (en) * 2015-03-13 2016-09-22 日本碍子株式会社 Air electrode, water electrolysis anode, metal air cell, and water electrolysis device
JP2018024560A (en) * 2016-08-12 2018-02-15 日本特殊陶業株式会社 Conductive oxide sintered body for gas sensors, conductive oxide sintered body, wiring board and gas sensor
JP2019153390A (en) * 2018-02-28 2019-09-12 株式会社ノリタケカンパニーリミテド Solid oxide fuel cell and electrode material for use therein
WO2022050356A1 (en) * 2020-09-02 2022-03-10 三菱ケミカル株式会社 Metal oxide, oxygen storage material, oxygen absorption and desorption apparatus, oxygen absorption and desorption method, oxygen concentrator and oxygen concentration method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257437A (en) * 2002-03-04 2003-09-12 Mitsubishi Materials Corp Electrode of solid oxide fuel cell and solid oxide fuel cell
CN1324740C (en) * 2005-08-19 2007-07-04 黑龙江大学 Solid oxide fuel cell cathode material
EP2183813A1 (en) * 2007-08-09 2010-05-12 President And Fellows Of Harvard College Micro-scale energy conversion devices and methods
JP5189405B2 (en) * 2008-05-13 2013-04-24 日本電信電話株式会社 Method for producing solid oxide fuel cell
JP5418975B2 (en) * 2008-10-16 2014-02-19 Toto株式会社 Solid oxide fuel cell and fuel cell module including the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049115A (en) * 2010-07-28 2012-03-08 Kyocera Corp Conductor and solid oxide fuel battery cell, cell stack, and fuel battery
JP2014199807A (en) * 2013-03-13 2014-10-23 日本碍子株式会社 Solid oxide fuel cell
JP2014225434A (en) * 2013-04-19 2014-12-04 日本碍子株式会社 Fuel cell
JP2015118922A (en) * 2013-11-15 2015-06-25 日本碍子株式会社 Solid oxide type fuel battery and air electrode material
JP2015118741A (en) * 2013-12-16 2015-06-25 三菱日立パワーシステムズ株式会社 Solid electrolyte fuel battery
JPWO2016147720A1 (en) * 2015-03-13 2018-01-25 日本碍子株式会社 Air electrode, water electrolysis anode, metal air battery and water electrolysis device
WO2016147720A1 (en) * 2015-03-13 2016-09-22 日本碍子株式会社 Air electrode, water electrolysis anode, metal air cell, and water electrolysis device
JP2018024560A (en) * 2016-08-12 2018-02-15 日本特殊陶業株式会社 Conductive oxide sintered body for gas sensors, conductive oxide sintered body, wiring board and gas sensor
DE102017214052A1 (en) 2016-08-12 2018-02-15 Ngk Spark Plug Co., Ltd. Gas sensor, electrically conductive oxide sintered body and printed circuit board
US10302589B2 (en) 2016-08-12 2019-05-28 Ngk Spark Plug Co., Ltd. Gas sensor, electrically conductive oxide sintered body, and wiring board
DE102017214052B4 (en) 2016-08-12 2022-07-28 Ngk Spark Plug Co., Ltd. Gas sensor, electrically conductive oxide sintered body and printed circuit board
JP2019153390A (en) * 2018-02-28 2019-09-12 株式会社ノリタケカンパニーリミテド Solid oxide fuel cell and electrode material for use therein
JP7134646B2 (en) 2018-02-28 2022-09-12 株式会社ノリタケカンパニーリミテド Solid oxide fuel cells and electrode materials used therefor
WO2022050356A1 (en) * 2020-09-02 2022-03-10 三菱ケミカル株式会社 Metal oxide, oxygen storage material, oxygen absorption and desorption apparatus, oxygen absorption and desorption method, oxygen concentrator and oxygen concentration method

Also Published As

Publication number Publication date
CN105719723A (en) 2016-06-29
JP4995328B1 (en) 2012-08-08
CN105719723B (en) 2018-03-20

Similar Documents

Publication Publication Date Title
JP4995328B1 (en) Electrode material and fuel cell including the same
Duan et al. Zr and Y co-doped perovskite as a stable, high performance cathode for solid oxide fuel cells operating below 500 C
Fan et al. Layer-structured LiNi0. 8Co0. 2O2: A new triple (H+/O2−/e−) conducting cathode for low temperature proton conducting solid oxide fuel cells
JP7294371B2 (en) Spinel material powder, interconnector protective film, and manufacturing method of spinel material powder
JP4995327B1 (en) Electrode material, fuel battery cell including the same, and method for manufacturing the same
US9853295B2 (en) Electrode material for fuel electrode, solid electrolyte-electrode laminate, method for producing solid electrolyte-electrode laminate, and fuel cell
JP2012227142A (en) Positive electrode material for fuel cell, positive electrode for fuel cell including the same, and solid oxide fuel cell
EP2369667B1 (en) Electrode material, fuel cell including the same, and method of manufacturing the same
EP2436072A1 (en) Cathode
Mohamed et al. The structural, thermal and electrochemical properties of MnFe1− x-yCuxNiyCoO4 spinel protective layers in interconnects of solid oxide fuel cells (SOFCs)
JP6100050B2 (en) Air electrode for fuel cell
JP5336207B2 (en) Solid oxide fuel cell
JP5748593B2 (en) Electrochemical cell
JP4332639B2 (en) Fuel cell and method for producing the same
JP6519001B2 (en) Solid oxide fuel cell air electrode, solid oxide fuel cell, and method of manufacturing solid oxide fuel cell air electrode
KR20120123639A (en) Cathode material for fuel cell, cathode for fuel cell and solid oxide fuel cell including the material
JP6836156B2 (en) Fuel cell
EP3211703B1 (en) Fuel cell
JPH09180731A (en) Solid electrolyte fuel cell
JP2009230929A (en) Current collector material of solid oxide fuel cell, air pole current collector, and solid oxide fuel cell
KR101100349B1 (en) Fabrication methods of solid electrolyte of solid oxide fuel cell and solid oxide fuel cell using the same
JP2013051043A (en) Fuel electrode for fuel battery, and method of manufacturing the same
JP6524434B2 (en) Solid oxide fuel cell air electrode, solid oxide fuel cell, and method of manufacturing solid oxide fuel cell air electrode
JP5597177B2 (en) Air electrode material for solid oxide fuel cell and solid oxide fuel cell
JP7114555B2 (en) Electrodes for water vapor electrolysis

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4995328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150