JP2012197630A - Method for processing foam soil - Google Patents

Method for processing foam soil Download PDF

Info

Publication number
JP2012197630A
JP2012197630A JP2011063364A JP2011063364A JP2012197630A JP 2012197630 A JP2012197630 A JP 2012197630A JP 2011063364 A JP2011063364 A JP 2011063364A JP 2011063364 A JP2011063364 A JP 2011063364A JP 2012197630 A JP2012197630 A JP 2012197630A
Authority
JP
Japan
Prior art keywords
soil
cellular
foam
impact
cylindrical casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011063364A
Other languages
Japanese (ja)
Other versions
JP5959040B2 (en
Inventor
Tsutomu Kimura
勉 木村
Yoshihiro Tanaka
善広 田中
Tsutomu Yashiro
勉 屋代
Hisateru Ueda
尚輝 上田
Hiroyuki Chino
裕之 千野
Toshihiko Miura
俊彦 三浦
Yuki Yamada
祐樹 山田
Masaaki Sakamoto
公明 阪本
Mario Fujimoto
真理緒 藤本
Kenta Matsubara
健太 松原
Seitaku Hayashi
成卓 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2011063364A priority Critical patent/JP5959040B2/en
Publication of JP2012197630A publication Critical patent/JP2012197630A/en
Application granted granted Critical
Publication of JP5959040B2 publication Critical patent/JP5959040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for rapidly reducing flowability of foam soil without using a defoaming agent.SOLUTION: A method for processing foam soil comprises an initial step 102 and a subsequent step 104. In the step 102, the excavation soil produced by a foam shield construction is fed into a fracturing and foam breaking facility 11, so that the excavation soil is fractured and the foam in the excavation soil is broken. The bearing effect of the foam is thus eliminated, and the size of clod is reduced by the fracture of the excavation soil in the case of viscous soil. Consequently, a surfactant as a raw material of the foam can easily adsorb to soil particles. In the step 104, activated carbon is fed into the processed soil with broken foam. The activated carbon is uniformly dispersed in the processed soil of sandy soil and even of viscous soil due to the markedly-reduced size of the clod constituting the processed soil. The surfactant in the processed soil is thus efficiently adsorbed to the activated carbon. Disposal of waste soil including transportation and loading is more easily performed.

Description

本発明は、土木建築工事で発生した気泡土、特に気泡シールド工事で発生した気泡土の処理方法に関する。   The present invention relates to a method for treating cellular soil generated in civil engineering construction work, particularly cellular soil generated in cellular shield construction.

密閉型シールドのうち、土圧式シールド工法は、シールドマシンの先端に設けられたカッターヘッドにより地盤を掘削し、該掘削で生じた土をいったんチャンバー内に取り込んだ後、該チャンバーに連通接続されたスクリューコンベアで後方に排出するとともに、チャンバー内の土圧を適正に保つことでカッターヘッド前方に拡がる切羽の安定を図る工法であり、泥水式シールド工法に比べて小規模な設備で足りることから、都心部における地下トンネル工事等に広く採用されている。   Among the sealed shields, the earth pressure shield method was excavated by the cutter head provided at the tip of the shield machine, and once the soil generated by the excavation was taken into the chamber, it was connected to the chamber. It is a construction method that stabilizes the face that spreads forward in front of the cutter head by keeping the earth pressure in the chamber properly while discharging with the screw conveyor, and because it requires less equipment than the muddy water type shield construction method, Widely used for underground tunnel construction in the city center.

特に、気泡シールド工法は、界面活性剤からなる特殊気泡材で形成されたクリーム状の気泡をチャンバー内に注入し、あるいは切羽に向けて噴出させるようになっており、かかる気泡によって掘削土の流動性と止水性を向上させることができる。   In particular, the bubble shield method is designed to inject cream-like air bubbles made of a special foam material made of a surfactant into the chamber, or to eject the air bubbles toward the face. Property and water stoppage can be improved.

そのため、チャンバー内での土粒子の付着やスクリューコンベアからの地下水の噴出が防止されることとなり、粘性地盤や砂礫地盤にも土圧式シールド工法を適用することが可能となる。   Therefore, adhesion of soil particles in the chamber and ejection of groundwater from the screw conveyor are prevented, and the earth pressure shield method can be applied to viscous ground and gravel ground.

一方、スクリューコンベアを介してチャンバー内から排出された掘削土については、これに消泡剤を添加することにより、該掘削土に含まれる気泡を速やかに消滅させて流動性を元に戻し、残土処理の迅速化を図ることも行われている。   On the other hand, for the excavated soil discharged from the chamber via the screw conveyor, by adding an antifoaming agent to the excavated soil, the bubbles contained in the excavated soil are quickly extinguished to restore the fluidity, and the remaining soil Speeding up of processing is also performed.

特開2005−021888号公報JP 2005-021888 A

しかしながら、消泡剤は、鉱物油を主成分としたものが一般的であるところ、鉱物油の地下水系への流入や河川あるいは海域への滲出による環境負荷が懸念される。   However, the antifoaming agent is generally composed mainly of mineral oil, and there is a concern about the environmental load due to the inflow of mineral oil into the groundwater system or leaching into rivers or sea areas.

そのため、鉱物油を主成分とした消泡剤が添加された掘削土は、生態系に直接的な影響を及ぼす海洋投棄や、盛土や埋立土として再利用する際にこれらの成分が問題視され、産業廃棄物として扱わざるを得ない場合がある。   For this reason, excavated soil to which an antifoaming agent composed mainly of mineral oil has been added is regarded as a problem when it is used as ocean dumping that directly affects the ecosystem, or when it is reused as embankment or landfill. In some cases, it must be treated as industrial waste.

これに対し、消泡剤を用いずに掘削土内の気泡を自然に消滅させれば、上述した問題は解決されるが、そのためには、掘削土を一定期間静置しておく必要があるところ、大量の掘削土が発生する気泡シールド工事では、残土処理のために広大な処理ヤードの確保が必要となり、都心部における対策としては経済性に欠ける。   On the other hand, if the bubbles in the excavated soil are naturally extinguished without using an antifoaming agent, the above-described problem can be solved, but for that purpose, the excavated soil needs to be left standing for a certain period of time. However, in the bubble shield construction in which a large amount of excavated soil is generated, it is necessary to secure a large processing yard for the remaining soil treatment, and it is not economical as a measure in the city center.

また、流動性が高い気泡混合土に固化剤を混合して、運搬性能を高めた上で処理する方法もあるが、処理費用が高価な上に場所を選ばずに処分できるものではないため、汎用性の高い対処方法とは言えない。   In addition, there is also a method of processing after improving the transport performance by mixing a solidifying agent with foam mixed soil with high fluidity, but because the processing cost is expensive and it can not be disposed of anywhere, It cannot be said that it is a highly versatile countermeasure.

上記のような点があるため、特に近年の大断面シールドのような場合、排出される掘削土の量が莫大であることから、素早く安価に気泡混合土の処理を行う方法が求められている。   Because of the above points, especially in the case of recent large-section shields, since the amount of excavated soil discharged is enormous, a method for quickly and inexpensively treating bubble mixed soil is required. .

また、界面活性剤自体、最近では生分解性を有するものが用いられているものの、生分解には時間を要するため、掘削土内の界面活性剤が溶出しないようにすることで、地下水系や海域といった環境への負荷を可能な限り低減することが望ましい。特に、界面活性剤の濃度が一時的に高くなることが懸念される場合には、溶出防止の必要性はより高くなる。   In addition, although the surfactant itself has recently been biodegradable, biodegradation takes time, so by preventing the surfactant in the excavated soil from eluting, It is desirable to reduce the load on the environment such as the sea area as much as possible. In particular, when there is a concern that the surfactant concentration temporarily increases, the necessity of preventing elution becomes higher.

ここで、掘削土に界面活性剤が混入している場合、該掘削土の含水比をいったん高めることで界面活性剤を水に遊離させた上、その水を集水し、活性汚泥を利用した生物処理や酸化処理を行った後、掘削土の含水比を元に戻す手法も考えられるが、処理土量が多い場合には経済的な負担が大きく、現場で実施するのは難しい状況であった。   Here, when the surface active agent is mixed in the excavated soil, the water content ratio of the excavated soil is once increased to release the surfactant into water, and then the water is collected and activated sludge is used. A method to restore the moisture content of excavated soil after biological treatment or oxidation treatment can be considered, but if the amount of treated soil is large, the economic burden is large and it is difficult to implement on site. It was.

本発明は、上述した事情を考慮してなされたもので、気泡シールド工事で生じた掘削土のように気泡によって流動性が高くなっている気泡土に対し、消泡剤や固化剤を用いることなくかつ速やかに流動性を低下させることが可能な気泡土の処理方法を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and an antifoaming agent or a solidifying agent is used for cellular soil in which fluidity is high due to air bubbles, such as excavated soil generated in the bubble shield construction. An object of the present invention is to provide a method for treating cellular soil, which is capable of reducing fluidity quickly and without any problems.

また、本発明は、気泡の元になっていた界面活性剤の溶出を防止することが可能な気泡土の処理方法を提供することを目的とする。   Another object of the present invention is to provide a method for treating cellular soil that can prevent elution of a surfactant that has been the source of bubbles.

上記目的を達成するため、本発明に係る気泡土の処理方法は請求項1に記載したように、気泡土を該気泡土に対して相対移動する衝撃付与部材に接触させることにより、前記気泡土を破砕しつつ該気泡土中の気泡を破泡するものである。   In order to achieve the above object, according to the method for treating cellular soil according to the present invention, the cellular soil is brought into contact with an impact-applying member that moves relative to the cellular soil, as described in claim 1. The bubbles in the cellular soil are broken while crushing.

また、本発明に係る気泡土の処理方法は、材軸がほぼ鉛直になるようにかつ該材軸廻りに回転自在となるように保持されたシャフトの周面に前記衝撃付与部材をその基端側で取付け、前記シャフトを回転させつつ、その回転に伴う前記衝撃付与部材の旋回範囲に前記気泡土を自然落下させることで、前記気泡土を前記衝撃付与部材に接触させるものである。   Also, the method for treating cellular soil according to the present invention is characterized in that the impact applying member is disposed at the base end of the shaft on the peripheral surface of the shaft held so that the material axis is substantially vertical and rotatable about the material axis. It is attached on the side, and while rotating the shaft, the cellular soil is brought into contact with the impact imparting member by naturally dropping the cellular soil into a swiveling range of the impact imparting member accompanying the rotation.

また、本発明に係る気泡土の処理方法は、前記シャフトを円筒状ケーシングの内部空間であってその材軸に沿うように配置するとともに前記衝撃付与部材を鎖部材で構成したものである。   Moreover, the processing method of the cellular soil which concerns on this invention arrange | positions the said shaft in the internal space of a cylindrical casing along the material axis | shaft, and comprised the said impact provision member with the chain member.

また、本発明に係る気泡土の処理方法は、前記シャフト、前記衝撃付与部材及び前記円筒状ケーシングからなる破砕破泡設備を土砂搬送方向に沿って列状に複数設置するとともに、それらの円筒状ケーシングのうち、上流側の円筒状ケーシングの下方に機首が位置し下流側の円筒状ケーシングの上方に尾端が位置するように該2つの円筒状ケーシングの間にベルトコンベヤを配置したものである。   Further, in the method for treating cellular soil according to the present invention, a plurality of crushing and foam breaking facilities composed of the shaft, the impact imparting member, and the cylindrical casing are installed in a row along the sediment transport direction, and the cylindrical shape Among the casings, a belt conveyor is disposed between the two cylindrical casings such that the nose is positioned below the upstream cylindrical casing and the tail end is positioned above the downstream cylindrical casing. is there.

また、本発明に係る気泡土の処理方法は、前記衝撃付与部材による破砕破泡処理を行うとともに、該破砕破泡処理と同時に又は相前後して、その処理土に活性炭を添加するものである。   In addition, the method for treating cellular soil according to the present invention performs the crushing and foaming treatment by the impact applying member, and adding activated carbon to the treated soil at the same time as or after the crushing and foaming treatment. .

また、本発明に係る気泡土の処理方法は、前記気泡土を自然落下させる際、下方から上方に向かう空気流を前記円筒状ケーシングの内部空間で発生させるものである。   In the method for treating cellular soil according to the present invention, when the cellular soil is naturally dropped, an air flow directed from below to above is generated in the internal space of the cylindrical casing.

また、本発明に係る気泡土の処理方法は、前記気泡土を気泡シールドのチャンバーから排出される掘削土としたものである。   In the method for treating cellular soil according to the present invention, the cellular soil is excavated soil discharged from the chamber of the bubble shield.

本発明に係る気泡土の処理方法においては、気泡土を衝撃付与部材に接触させることにより、該気泡土を破砕しつつ、該気泡土中の気泡を破泡しあるいは消泡する。   In the method for treating cellular soil according to the present invention, the cellular soil is brought into contact with the impact imparting member, whereby the cellular soil is broken or defoamed while the cellular soil is crushed.

このようにすると、気泡の消滅に伴い、気泡によるベアリング効果も消滅するとともに、粘性土の場合には、気泡土の破砕によって気泡土全体の表面積が増加するので、気泡の原材料である界面活性剤が土粒子に吸着保持されやすくなる。   This eliminates the bearing effect due to the bubbles as the bubbles disappear, and in the case of viscous soil, the surface area of the entire foam soil increases due to the crushing of the foam soil. Is easily adsorbed and retained by the soil particles.

そのため、衝撃付与部材に接触させた後の処理土は、接触前の気泡土よりも流動性が大幅に低下することとなり、かくして搬送や積込みといった残土処理を容易に行うことが可能になる。   Therefore, the treated soil after being brought into contact with the impact imparting member has a significantly lower fluidity than the cellular soil before contact, and thus it is possible to easily perform the remaining soil treatment such as transportation and loading.

衝撃付与部材は、気泡土に対して相対移動することにより、該気泡土に接触して衝撃を付与し得るものであれば、その構成は任意であって、例えば、材軸がほぼ鉛直になるようにかつ該材軸廻りに回転自在となるように保持されたシャフトの周面に衝撃付与部材をその基端側で取付け、シャフトを回転させつつ、その回転に伴う衝撃付与部材の旋回範囲に気泡土を自然落下させるようにすることができる。   The impact imparting member may be any configuration as long as it can move relative to the cellular soil to contact the cellular soil and impart an impact. For example, the material axis is substantially vertical. The impact imparting member is attached to the peripheral surface of the shaft held so as to be rotatable around the material axis at the base end side, and the impact imparting member rotates within the swivel range as the shaft rotates. A cellular soil can be allowed to fall naturally.

衝撃付与部材は、シャフトの回転に伴って該シャフトの材軸回りに旋回することにより、自然落下する気泡土に衝撃を付与し得るものであれば、その構造や形状は任意であって、全体を剛体で形成する、全体を可撓性材料で形成する、複数の鋼製ピースを長尺状に連結するといった構成が可能であり、具体的には鋼製のロッド材で衝撃付与部材を構成したり、鋼製の鎖部材、すなわち鋼製チェーンで構成することが可能である。ちなみに、鋼製の鎖部材で構成した場合、鎖部材は、シャフト静止時には該シャフトから垂れ下がった状態であるが、シャフト回転時には該シャフトの材軸廻りに旋回し、その旋回力によって、気泡土を粉砕しつつ、該気泡土内の気泡を破泡する。   As long as the impact imparting member is capable of imparting impact to the cellular soil that naturally falls by turning around the shaft of the shaft as the shaft rotates, its structure and shape are arbitrary, and the whole Can be configured such that the entire body is formed of a flexible material, a plurality of steel pieces are connected in a long shape, and specifically, an impact applying member is configured by a steel rod material. Or a steel chain member, that is, a steel chain. By the way, when it is composed of a steel chain member, the chain member hangs down from the shaft when the shaft is stationary. While crushing, bubbles in the cellular soil are broken.

ここで、円筒状ケーシングの内部空間であってその材軸に沿うようにシャフトを配置するようにすれば、衝撃付与部材の旋回による気泡土への衝撃の際、該気泡土が周囲に飛散するのを防止することができる。   Here, if the shaft is arranged so as to be along the material axis of the inner space of the cylindrical casing, the cellular soil scatters around when the impact is applied to the cellular soil by turning of the impact applying member. Can be prevented.

衝撃付与部材は、旋回の際、所定角度ごとに放射方向に延びるよう、複数設置することができるとともに、自然落下する気泡土が次々に衝撃力を受けることができるよう、鉛直方向に沿って複数段に配置することが可能である。   When turning, a plurality of impact imparting members can be installed so as to extend in the radial direction at every predetermined angle, and a plurality of impact applying members can be installed along the vertical direction so that the naturally falling foam soil can receive an impact force one after another. It is possible to arrange in steps.

気泡土は、円筒状ケーシングの上部開口から投入し、シャフトの回転によって衝撃付与部材を旋回させながら、円筒状ケーシング内を自然落下させ、しかる後、円筒状ケーシングの下方から気泡が破泡された処理土を回収すればよく、気泡土を連続的に投入するのか、間欠的に投入するのか、あるいは、ベルトコンベヤの尾端を円筒状ケーシングの上方に位置決めすることで気泡土を投入するのか、ホッパーを用いて円筒状ケーシングの上方から自然落下させるのかといった選択も任意である。   The cellular soil was introduced from the upper opening of the cylindrical casing, and the impact imparting member was swung by the rotation of the shaft, so that it naturally dropped inside the cylindrical casing, and then the bubbles were broken from below the cylindrical casing. What is necessary is just to collect the treated soil, whether the foamed soil is thrown in continuously, intermittently, or whether the foamed soil is thrown by positioning the tail end of the belt conveyor above the cylindrical casing, The choice of whether to drop naturally from above the cylindrical casing using a hopper is also arbitrary.

ここで、シャフト、衝撃付与部材及び円筒状ケーシングからなる破砕破泡設備を土砂搬送方向に沿って列状に複数設置するとともに、それらの円筒状ケーシングのうち、上流側の円筒状ケーシングの下方に機首が位置し下流側の円筒状ケーシングの上方に尾端が位置するように該2つの円筒状ケーシングの間にベルトコンベヤを配置するようにすれば、気泡土を搬送しながら、その破砕破泡処理を並行してかつ繰り返し行うことが可能となる。   Here, a plurality of crushing and foam breaking facilities comprising a shaft, an impact applying member and a cylindrical casing are installed in a row along the earth and sand transport direction, and among those cylindrical casings, below the upstream cylindrical casing. If a belt conveyor is arranged between the two cylindrical casings so that the nose is positioned and the tail end is positioned above the cylindrical casing on the downstream side, the crushing breakage is carried out while carrying the cellular soil. It is possible to repeat the foam treatment in parallel.

上述したように、衝撃付与部材による破砕破泡処理によって処理土の流動性を低下させ、気泡が加わる前の状態に戻すことができるが、衝撃付与部材による破砕破泡処理を行うとともに、該破砕破泡処理と同時に又は相前後して、その処理土に活性炭を添加するようにすれば、処理土内の界面活性剤が活性炭に吸着保持されることにより、搬送や積込みといった残土処理がさらに容易になる。   As described above, the fluidity of the treated soil can be reduced by the crushing and foaming treatment with the impact imparting member and returned to the state before the bubbles are added. If activated carbon is added to the treated soil at the same time as the foam breaking treatment, the surfactant in the treated soil is adsorbed and retained by the activated carbon, making it easier to handle residual soil such as transportation and loading. become.

また、界面活性剤自体が処理土から溶出しなくなるため、海洋投棄した場合や盛土あるいは埋立土として再利用した場合において、界面活性剤の海域への滲出や地下水系への流入が確実に防止される。特に、生分解可能な界面活性剤を用いるようにすれば、溶出防止作用と相俟って、環境への影響をより確実に回避することが可能となる。   In addition, since the surfactant itself does not elute from the treated soil, it can be reliably prevented that the surfactant is exuded into the sea area or flowed into the groundwater system when dumped into the ocean or reused as embankment or landfill. The In particular, if a biodegradable surfactant is used, it is possible to more reliably avoid the influence on the environment in combination with the elution preventing action.

界面活性剤は、活性炭によって吸着され得るものであれば、その種類は任意であり、例えば、アルファオレフィンスルホン酸ナトリウム(以下、AOS)も含まれる。AOSは、魚の生息する水域に高濃度で溶け出すと、魚のエラに付着して呼吸困難を起こさせることで魚毒性を示す性質があるが、本発明によれば、活性炭に吸着されることでその溶出が防止されるため、生分解性が良好であることとも相俟って、埋立土としての再利用や海中投棄が可能となる。   The surfactant is not particularly limited as long as it can be adsorbed by activated carbon, and includes, for example, sodium alpha olefin sulfonate (hereinafter referred to as AOS). AOS, when dissolved at high concentrations in the waters where fish live, has the property of showing fish toxicity by adhering to the gills of the fish and causing dyspnea, but according to the present invention, it is adsorbed by activated carbon. Since the elution is prevented, combined with the good biodegradability, it can be reused as landfill or dumped in the sea.

活性炭は、処理土に含まれる界面活性剤が確実に吸着保持されるように、原材料の種類や粉末や粒体といった形態を適宜選択すればよい。例えば、おがくず由来の粉末活性炭を用いることが可能であり、活性炭を粉末状とすることで、処理土内への均一な添加混合が容易となる。   The activated carbon may be appropriately selected from the types of raw materials and the form of powder and granules so that the surfactant contained in the treated soil is reliably adsorbed and held. For example, powdered activated carbon derived from sawdust can be used, and uniform addition and mixing into the treated soil is facilitated by making the activated carbon powder.

ここで、衝撃付与部材による破砕破泡処理において気泡土を自然落下させる際、下方から上方に向かう空気流を円筒状ケーシングの内部空間で発生させることにより、処理土の流動性がさらに低下することがわかった。   Here, when the cellular soil is naturally dropped in the crushing and foam breaking treatment by the impact applying member, the fluidity of the treated soil is further lowered by generating an air flow from the lower side to the upper side in the internal space of the cylindrical casing. I understood.

これは、衝撃付与部材による衝撃力に加えて、空気流による空気圧が気泡土に作用することにより、該気泡土中に存在していた気泡がより確実に破泡しあるいは消泡するからであると思われる。   This is because, in addition to the impact force by the impact imparting member, the air pressure caused by the air flow acts on the cellular soil, so that the bubbles existing in the cellular soil are more reliably broken or defoamed. I think that the.

上述した衝撃付与部材による破砕破泡処理は、建築土木工事において発生するすべての気泡土に適用することが可能であるが、気泡シールド工事で発生する掘削土に適用するようにすれば、大量に発生する掘削土の運搬を効率よく行うことができるとともに、活性炭を添加する場合においては、界面活性剤の溶出が防止されるため、その大量の処理土を海中投棄したり、盛土や埋立土として再利用することも可能となる。   The crushing and foam breaking treatment using the impact applying member described above can be applied to all the cellular soil generated in the construction civil engineering work, but if applied to the excavated soil generated in the bubble shield construction, a large amount The excavated soil that is generated can be transported efficiently, and when activated carbon is added, the surfactant is prevented from elution, so that a large amount of treated soil can be dumped into the sea or used as embankment or landfill. It can be reused.

本実施形態に係る気泡土の処理方法の実施手順を示したフローチャート。The flowchart which showed the implementation procedure of the processing method of the cellular soil which concerns on this embodiment. 本実施形態に係る気泡土の処理方法を実施するための処理システムを示した概略図。Schematic which showed the processing system for enforcing the processing method of the cellular soil which concerns on this embodiment. 変形例に係る気泡土の処理方法を実施するための処理システムを示した概略図。Schematic which showed the processing system for enforcing the processing method of the cellular soil which concerns on a modification. 円筒状ケーシング12内に下方から上方に向かう空気流を発生させる様子を示した概略図。Schematic which showed a mode that the air flow which goes upwards from the downward direction in the cylindrical casing 12 was generated. 変形例に係る気泡土の処理方法を実施するための処理システムを示した概略図。Schematic which showed the processing system for enforcing the processing method of the cellular soil which concerns on a modification. 実証試験の結果を示したグラフ。The graph which showed the result of the verification test.

以下、本発明に係る気泡土の処理方法の実施の形態について、添付図面を参照して説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a cellular soil treatment method according to the present invention will be described below with reference to the accompanying drawings.

図1は、本実施形態に係る気泡土の処理方法の実施手順を示したフローチャート、図2は同処理方法を実施するための処理システムを示した概略図である。これらの図でわかるように、本実施形態に係る気泡土の処理方法においては、まず、シールドマシン5のチャンバー6から該チャンバーに連通接続されたスクリューコンベア1を介して気泡土としての掘削土を排出する(ステップ101)。   FIG. 1 is a flowchart showing an implementation procedure of the cellular soil treatment method according to the present embodiment, and FIG. 2 is a schematic diagram showing a treatment system for carrying out the treatment method. As can be seen from these drawings, in the method for treating cellular soil according to the present embodiment, first, excavated soil as cellular soil is removed from the chamber 6 of the shield machine 5 via the screw conveyor 1 connected to the chamber. Discharge (step 101).

ここで、シールドマシン5には、界面活性剤からなる特殊気泡材で形成されたクリーム状の気泡8を切羽に向けて噴出させる気泡供給ライン7を設けてあり、かかる気泡によってチャンバー6内の掘削土の流動性及び止水性が向上する。   Here, the shield machine 5 is provided with a bubble supply line 7 for ejecting cream-like bubbles 8 formed of a special bubble material made of a surfactant toward the face, and excavation in the chamber 6 by the bubbles. Improves soil fluidity and water stoppage.

そのため、チャンバー6内での土粒子の付着やスクリューコンベア1からの地下水の噴出が防止されるが、チャンバー6から排出された掘削土には多くの気泡が含まれているため、そのままでは流動性が高くて残土処理が行いにくい。   Therefore, the adhesion of soil particles in the chamber 6 and the ejection of groundwater from the screw conveyor 1 are prevented, but the excavated soil discharged from the chamber 6 contains many bubbles, so that it is fluid as it is. It is so expensive that it is difficult to treat the remaining soil.

そのため、本実施形態では、スクリューコンベア1の吐出側に設置された破砕破泡設備11に該スクリューコンベアから吐出された掘削土を投入することにより、該掘削土を破砕しつつ該掘削土中の気泡を破泡する(ステップ102)。   Therefore, in this embodiment, by putting the excavated soil discharged from the screw conveyor into the crushing and foam breaking equipment 11 installed on the discharge side of the screw conveyor 1, the excavated soil in the excavated soil is crushed. Bubbles are broken (step 102).

破砕破泡設備11は、円筒状ケーシング12と、その材軸に沿ってほぼ鉛直になるようにかつ回転自在となるように配置されたシャフト13と、該シャフトの周面に基端側が取り付けられた衝撃付与部材としての鎖部材14とからなり、シャフト13は、図示しないモータによってその材軸回りに回転できるようになっているとともに、鎖部材14は、リング状をなす複数の鋼製ピースを列状に相互に連結した、いわゆるチェーンであり、シャフト13の回転に伴って円筒状ケーシング12の内部空間をほぼ旋回範囲とした旋回運動をするようになっており、かかる円筒状ケーシング12の上部開口から掘削土を投入すると、掘削土は、円筒状ケーシング12内を自然落下しながら、旋回する鎖部材14によって衝撃が付与されて破砕され、掘削土内の気泡が破泡する。   The crushing and foam breaking equipment 11 has a cylindrical casing 12, a shaft 13 arranged so as to be substantially vertical along its material axis and rotatable, and a base end side attached to the peripheral surface of the shaft. The shaft 13 can be rotated around its axis by a motor (not shown), and the chain member 14 includes a plurality of ring-shaped steel pieces. These are so-called chains that are connected to each other in a row, and as the shaft 13 rotates, the inner space of the cylindrical casing 12 is swung within the swirl range. When the excavated soil is thrown through the opening, the excavated soil is crushed by being impacted by the swirling chain member 14 while naturally falling in the cylindrical casing 12, Air bubbles in the Kezudo to foam breaking.

このようにすると、気泡の消滅に伴い、気泡によるベアリング効果も消滅するとともに、粘性土の場合には、掘削土の破砕によって土塊が小さくなり、掘削土全体の表面積が増加するので、気泡の原材料である界面活性剤が土粒子に吸着保持されやすくなる。   In this way, the bearing effect due to the bubbles disappears with the disappearance of the bubbles, and in the case of viscous soil, the clots of the excavated soil become smaller and the surface area of the entire excavated soil increases, so the raw material of the bubbles It becomes easy to be adsorbed and held on the soil particles.

そのため、鎖部材14に接触させた後の処理土は、接触前の掘削土よりも流動性が大幅に低下し、搬送や積込みといった残土処理を容易に行うことが可能になる。   Therefore, the treated soil after being brought into contact with the chain member 14 has a significantly lower fluidity than the excavated soil before the contact, and it is possible to easily perform the remaining soil treatment such as conveyance and loading.

鎖部材14は、所定角度ごとに放射方向に延びるよう、90゜ごとであれば4本、120゜ごとであれば3本というように複数設置することができる。また、鎖部材14は、十分な衝撃力を掘削土に与えることができるよう、その先端に錘を適宜取り付けるとともに、自然落下する掘削土に次々に衝撃力を与えることができるよう、鉛直方向に沿って複数段に配置するのが望ましい。   A plurality of chain members 14 can be installed so as to extend in the radial direction at every predetermined angle, such as four at 90 ° and three at 120 °. In addition, the chain member 14 is attached with a weight to its tip so that a sufficient impact force can be applied to the excavated soil, and in the vertical direction so that an impact force can be applied to the excavated soil that falls naturally. It is desirable to arrange in multiple stages along.

次に、破砕破泡設備11によって気泡が破泡された処理土を、円筒状ケーシング12の下方に機首側が位置決めされたベルトコンベヤ15に落として後方に搬送し、その尾端側でラインミキサー2に送り込む(ステップ103)。   Next, the treated soil in which bubbles are broken by the crushing and foam breaking equipment 11 is dropped on the belt conveyor 15 positioned at the nose side below the cylindrical casing 12 and conveyed backward, and a line mixer at the tail end side. 2 (step 103).

次に、ラインミキサー2内に活性炭を投入し、該ラインミキサー内の処理土と攪拌混合することで活性炭を処理土に均一に分散させる(ステップ104)。   Next, activated carbon is put into the line mixer 2, and the activated carbon is uniformly dispersed in the treated soil by stirring and mixing with the treated soil in the line mixer (step 104).

活性炭は、ラインミキサー2に連通接続された活性炭供給ライン3を介して、地上に設置された活性炭貯留タンク(図示せず)から供給するようにすればよく、例えばおがくず由来の粉末活性炭を用いることが可能である。   The activated carbon may be supplied from an activated carbon storage tank (not shown) installed on the ground via an activated carbon supply line 3 connected to the line mixer 2. For example, powdered activated carbon derived from sawdust is used. Is possible.

このように、破砕処理及び破泡処理が終わった処理土に活性炭を添加すると、砂質土はもちろん、粘性土の場合であっても、処理土を構成する土塊の大きさが格段に小さくなっているため、活性炭が処理土内に均一に分散することとなり、処理土内の界面活性剤が活性炭に効率よく吸着保持されるとともに、搬送や積込みといった残土処理がさらに容易になる。   In this way, when activated carbon is added to the treated soil after the crushing treatment and foam breaking treatment, the size of the soil mass constituting the treated soil is remarkably reduced even in the case of sandy soil as well as viscous soil. Therefore, the activated carbon is uniformly dispersed in the treated soil, the surfactant in the treated soil is efficiently adsorbed and held on the activated carbon, and the remaining soil treatment such as transportation and loading is further facilitated.

次に、活性炭処理が終わった土をラインミキサー2の下流側に配置されたベルトコンベヤ4でトンネル後方へと搬出する(ステップ105)。   Next, the soil after the activated carbon treatment is carried out to the rear of the tunnel by the belt conveyor 4 arranged on the downstream side of the line mixer 2 (step 105).

以上説明したように、本実施形態に係る気泡土の処理方法によれば、シールドマシン5のチャンバー6内から排出される気泡土としての掘削土を破砕破泡設備11に投入することにより、シャフト13の回転に伴って旋回する鎖部材14に接触させて掘削土を破砕し、該掘削土中の気泡を破泡しあるいは消泡するようにしたので、砂質土か粘性土かといった土質性状にかかわらず、気泡によるベアリング効果が消滅するとともに、粘性土の場合には、細かく破砕された掘削土の土塊に界面活性剤が吸着保持される。   As described above, according to the method for treating cellular soil according to the present embodiment, the excavated soil as the cellular soil discharged from the chamber 6 of the shield machine 5 is put into the crushing and foam breaking equipment 11 so that the shaft Since the excavated soil is crushed by bringing it into contact with the chain member 14 that rotates with the rotation of 13 and the bubbles in the excavated soil are broken or defoamed, the soil properties such as sandy soil or viscous soil Regardless of this, the bearing effect due to the bubbles disappears, and in the case of cohesive soil, the surfactant is adsorbed and held by the finely crushed excavated soil mass.

そのため、鎖部材14に接触した後の処理土は、接触前の掘削土よりも流動性が大幅に低下することとなり、かくして従来使われていた油性の消泡剤を使用せずとも、大量の掘削土を元の流動性に戻した上、搬送や積込みといった残土処理を容易に行うことが可能になる。加えて、自然消泡では必要不可欠となる広大な処理ヤードも不要となる。   Therefore, the treated soil after coming into contact with the chain member 14 has a significantly lower fluidity than the excavated soil before the contact, and thus a large amount of oil can be used without using an oil-based antifoaming agent that has been conventionally used. In addition to returning the excavated soil to its original fluidity, it is possible to easily perform residual soil processing such as transportation and loading. In addition, a vast processing yard that is essential for natural defoaming is not required.

また、本実施形態に係る気泡土の処理方法によれば、破砕破泡処理が終わった処理土に活性炭を添加するようにしたので、処理土内の界面活性剤が活性炭に吸着保持され、搬送や積込みといった残土処理がさらに容易になる。   Further, according to the method for treating cellular soil according to the present embodiment, since activated carbon is added to the treated soil after the crushing and foam breaking treatment, the surfactant in the treated soil is adsorbed and held by the activated carbon, and is transported. And the remaining soil processing such as loading becomes even easier.

また、破砕処理によって格段に小さくなった土塊や活性炭に界面活性剤が確実に吸着するため、界面活性剤は処理土から溶出しなくなる。そのため、海洋投棄した場合や盛土あるいは埋立土として再利用した場合において、界面活性剤の海域への滲出や地下水系への流入が確実に防止される。特に、生分解可能な界面活性剤を用いるようにすれば、溶出防止作用と相俟って、環境への影響をより確実に回避することが可能となる。   Further, since the surfactant is surely adsorbed on the clot or activated carbon that has been remarkably reduced by the crushing treatment, the surfactant does not elute from the treated soil. Therefore, in the case of ocean dumping or reuse as embankment or landfill, surfactant exudation into the sea area and inflow into the groundwater system are reliably prevented. In particular, if a biodegradable surfactant is used, it is possible to more reliably avoid the influence on the environment in combination with the elution preventing action.

本実施形態では、本発明に係る気泡土の処理方法を気泡シールド工事に適用した例で説明したが、本発明はかかる工事に限定されるものではなく、気泡混入によって流動性が高くなった土を元の流動性に戻す必要がある全ての場合に適用することが可能である。   In the present embodiment, the example in which the method for treating cellular soil according to the present invention is applied to the bubble shield construction has been described. However, the present invention is not limited to such construction, and the soil has improved fluidity due to the incorporation of bubbles. It is possible to apply to all cases where it is necessary to restore the original liquidity.

また、本実施形態では、破砕破泡処理が終わった後の処理土に活性炭を添加するようにしたが、処理土が砂質土であればもちろんのこと、粘性土の場合でも破砕処理によって土塊寸法が格段に小さくなるので、全体表面積は掘削土よりもはるかに大きくなる。そのため、活性炭を添加せずとも、処理土を構成する土塊あるいは土粒子への吸着だけで界面活性剤の溶出が防止できるのであれば、活性炭添加工程を省略してもかまわない。   Further, in this embodiment, activated carbon is added to the treated soil after the crushing and foam breaking treatment is finished. Because the dimensions are much smaller, the total surface area is much larger than the excavated soil. Therefore, without adding activated carbon, the activated carbon addition step may be omitted as long as the surfactant can be prevented from being eluted only by adsorption to the soil blocks or soil particles constituting the treated soil.

特に、掘削土が砂質土の場合、所要の流動性を得るための気泡添加量は本来的に少量で足りる。そのため、上述した破砕破泡処理によって界面活性剤を液体として挙動し得る状態(破泡によって空気が追い出された状態)にしてやれば、砂質土の透水係数の高さとも相俟って、処理土中の界面活性剤は、該処理土をベルトコンベヤで搬送する途中やストックヤードで積置きしている間に処理土から容易に排出されることとなり、かくして、より確実に処理土を締まった状態にすることができるのみならず、活性炭添加による界面活性剤の溶出防止が不要になることが期待できる。   In particular, when the excavated soil is sandy soil, the amount of bubbles added to obtain the required fluidity is essentially small. For this reason, if the surfactant can behave as a liquid by the crushing and foaming treatment described above (the state in which air is expelled by the foaming), the treatment is combined with the high permeability coefficient of sandy soil. The surfactant in the soil is easily discharged from the treated soil while the treated soil is being transported by a belt conveyor or loaded in the stock yard, and thus the treated soil is more securely tightened. It can be expected that not only it can be brought into a state, but also prevention of surfactant elution by adding activated carbon becomes unnecessary.

また、本実施形態では、鎖部材14で衝撃付与部材を構成するとともに、該鎖部材を、円筒状ケーシングの内部空間であってその材軸に沿うように配置されたシャフトに取り付けるようにしたが、鎖部材に代えて、例えばロッド材、鋼線、プロペラ状の羽根材等でもかまわないし、自然落下する気泡土に物理的な衝撃を加えることができるのであれば、衝撃付与部材の構成や形態は任意である。   Further, in this embodiment, the chain member 14 constitutes an impact applying member, and the chain member is attached to a shaft disposed in the internal space of the cylindrical casing and along the material axis thereof. In place of the chain member, for example, a rod material, a steel wire, a propeller-like blade material, etc. may be used, and if a physical impact can be applied to the naturally falling cellular soil, the configuration and form of the impact applying member Is optional.

さらに言えば、本発明に係る気泡土の処理方法は、気泡土を該気泡土に対して相対移動する衝撃付与部材に接触させることにより、気泡土を破砕しつつ該気泡土中の気泡を破泡させることができるのであれば、衝撃付与部材を気泡土に対してどのように相対移動させるかは、公知の相対移動手段から任意に選択し得るものであり、例えば衝撃付与部材を回転運動させる代わりに、水平面内で往復動させ、その往復動範囲に気泡土を自然落下させる構成を採用することが可能である。   Furthermore, in the method for treating cellular soil according to the present invention, the cellular soil is brought into contact with an impact applying member that moves relative to the cellular soil, whereby the cellular soil is broken while breaking the cellular soil. If foaming can be performed, the relative movement of the impact applying member with respect to the cellular soil can be arbitrarily selected from known relative moving means. For example, the impact applying member is rotated. Instead, it is possible to adopt a configuration in which reciprocating motion is performed in a horizontal plane, and the cellular soil is naturally dropped into the reciprocating motion range.

また、本実施形態では、破砕破泡設備11を単体で用いる例を説明したが、図3に示すように破砕破泡設備11を土砂搬送方向に沿って列状に複数設置するとともに、それらの間にベルトコンベヤ21をそれぞれ配置するようにしてもよい。   Moreover, in this embodiment, although the example which uses the crushing bubble breaking equipment 11 single-piece | unit was demonstrated, as shown in FIG. 3, while installing the crushing bubble breaking equipment 11 in a row along the earth and sand conveyance direction, those You may make it arrange | position the belt conveyor 21 respectively.

各ベルトコンベヤ21は、それらの機首が上流側の破砕破泡設備11を構成する円筒状ケーシング12の下方に位置するように、かつそれらの尾端が下流側の破砕破泡設備11を構成する円筒状ケーシング12の上方に位置するようにそれぞれ配置してある。   Each belt conveyor 21 is configured such that the nose thereof is positioned below the cylindrical casing 12 constituting the upstream crushing and foaming equipment 11, and the tail end thereof constitutes the downstream crushing and foaming equipment 11. It arrange | positions so that it may be located above the cylindrical casing 12 to perform.

このようにすると、シールドマシン5のチャンバー6内から排出される気泡土としての掘削土を後方に搬送しつつ、破砕破泡処理を繰り返し行うことが可能となる。   If it does in this way, it will become possible to repeat crushing foam breaking processing, conveying excavated soil as cellular soil discharged from the inside of chamber 6 of shield machine 5 back.

なお、このように破砕破泡処理を繰り返し行う場合には、最下流側の破砕破泡設備11の下流側にラインミキサー2を設置することにより、該最下流の破砕破泡設備を構成する円筒状ケーシング12に投入される処理土に予め活性炭を添加し、あるいは該円筒状ケーシングから排出された処理土に活性炭を添加する。   In the case where the crushing and foaming treatment is repeatedly performed as described above, the line mixer 2 is installed on the downstream side of the crushing and foaming equipment 11 on the most downstream side, whereby the cylinder constituting the crushing and foaming equipment on the most downstream side. Activated carbon is added to the treated soil put into the cylindrical casing 12 in advance, or activated carbon is added to the treated soil discharged from the cylindrical casing.

かかる構成においては、破砕処理と衝撃付与による破泡処理が十分に行なわれた後で、界面活性剤を活性炭に確実に吸着させることが可能となる。   In such a configuration, the surfactant can be reliably adsorbed on the activated carbon after the crushing treatment and the bubble breaking treatment by impact application are sufficiently performed.

また、本実施形態では特に言及しなかったが、図4に示すように、円筒状ケーシング12の内部空間に連通する給気管41を該円筒状ケーシングの下端近傍に接続するとともに該給気管の基端側に給気ブロワ42を接続し、同じく円筒状ケーシング12の内部空間に連通する排気管43を該円筒状ケーシングの上端近傍に接続するとともに該排気管の先端側に排気ブロワ44を接続するようにしてもよい。   Although not particularly mentioned in the present embodiment, as shown in FIG. 4, an air supply pipe 41 communicating with the internal space of the cylindrical casing 12 is connected to the vicinity of the lower end of the cylindrical casing and the base of the air supply pipe is provided. An air supply blower 42 is connected to the end side, and an exhaust pipe 43 that communicates with the internal space of the cylindrical casing 12 is connected to the vicinity of the upper end of the cylindrical casing, and an exhaust blower 44 is connected to the front end side of the exhaust pipe. You may do it.

かかる構成において給気ブロワ42及び排気ブロワ44を作動させると、下方から上方に向かう空気流が円筒状ケーシング12の内部空間で発生し、かかる空気流は、円筒状ケーシング12内で自然落下する掘削土にぶつかって該掘削土に空気圧を作用させる。   In such a configuration, when the air supply blower 42 and the exhaust blower 44 are operated, an air flow directed upward from below is generated in the internal space of the cylindrical casing 12, and the air flow is naturally excavated in the cylindrical casing 12. The air is applied to the excavated soil by hitting the soil.

そのため、掘削土には、鎖部材14による衝撃力に加えて、空気流による空気圧が作用することとなり、かくして掘削土中に存在する気泡をより確実に破泡させあるいは消泡させ、ひいては、掘削土の流動性をさらに低下させることが可能となる。   Therefore, in addition to the impact force of the chain member 14, the air pressure due to the air flow acts on the excavated soil, and thus bubbles existing in the excavated soil are more reliably broken or defoamed. It becomes possible to further reduce the fluidity of the soil.

また、本実施形態では、気泡シールド工事への適用において、掘削土の破砕破泡処理や活性炭の添加及び攪拌混合処理をシールドマシン5で掘削されたトンネル内で行う例を説明したが、破砕破泡設備11がトンネル内に収まらない場合には、掘削土の破砕破泡処理や活性炭の添加及び攪拌混合処理を地上で行うようにしてもかまわない。   Further, in the present embodiment, in the application to the bubble shield construction, the example in which the excavated soil crushing and foaming processing, the addition of activated carbon and the stirring and mixing processing are performed in the tunnel excavated by the shield machine 5 has been described. When the foam facility 11 does not fit in the tunnel, the excavated soil may be subjected to crushing and breaking processing, addition of activated carbon, and stirring and mixing processing on the ground.

図5は、かかる変形例を示したものであり、同変形例においても上述した実施形態と同様、シールドマシン5のチャンバー6から該チャンバーに連通接続されたスクリューコンベア1を介して気泡土としての掘削土を排出するが、本変形例においては、かかる掘削土をベルトコンベヤやスラリーポンプ等を介して坑外に搬出した後、地上に設置された3台の破砕破泡設備11に順次投入することにより、該掘削土を破砕しつつ該掘削土中の気泡を破泡する。   FIG. 5 shows such a modified example, and also in the modified example, as in the above-described embodiment, the foamed soil as the cellular soil is connected via the screw conveyor 1 connected to the chamber from the chamber 6 of the shield machine 5. The excavated soil is discharged. In this modification, after excavating the excavated soil to the outside of the mine via a belt conveyor or a slurry pump, the excavated soil is sequentially put into the three crushing and foam breaking facilities 11 installed on the ground. As a result, bubbles in the excavated soil are broken while the excavated soil is crushed.

このような地上処理であってもその作用効果は上述の実施形態と同様であって、破泡によるベアリング効果の消滅作用と、粘性土の場合における破砕による界面活性剤の土粒子への吸着保持作用により、処理土の流動性が掘削土よりも大幅に低下し、搬送や積込みといった残土処理が容易になる。   Even if it is such ground treatment, the effect is the same as that of the above-mentioned embodiment, the disappearance effect of the bearing effect by bubble breakage, and the adsorption retention of the surfactant on the soil particles by crushing in the case of viscous soil Due to the action, the fluidity of the treated soil is significantly lower than that of the excavated soil, and the remaining soil treatment such as transportation and loading becomes easy.

また、3台の破砕破泡設備11は図3と同様、土砂搬送方向に沿って列状に複数設置するとともに、それらの間にベルトコンベヤ21をそれぞれ配置してあり、チャンバー6からの掘削土に対し、破砕破泡処理を繰り返し行うことができるようになっているが、最下流側の破砕破泡設備11を構成する円筒状ケーシング12に投入される処理土に活性炭を添加するように構成すれば、上述した破泡によるベアリング効果の消滅作用と、破砕による界面活性剤の土粒子への吸着保持作用が十分に発揮された後で、界面活性剤を活性炭に確実に吸着させることが可能となる。   In addition, as in FIG. 3, a plurality of crushing and foam breaking equipments 11 are installed in a row along the sediment transport direction, and belt conveyors 21 are respectively arranged between them, and excavated soil from the chamber 6 is provided. On the other hand, the crushing and foaming treatment can be repeatedly performed, but the activated carbon is added to the treated soil put into the cylindrical casing 12 constituting the crushing and foaming equipment 11 on the most downstream side. Then, after the effect of extinguishing the bearing effect due to the above-mentioned bubble breakage and the effect of adsorbing and retaining the surfactant to the soil particles due to crushing are fully exhibited, the surfactant can be surely adsorbed to the activated carbon. It becomes.

活性炭処理が終わった土については、掘削現場から搬出した後、海洋投棄処分し、あるいは盛土や埋立土として適宜再利用すればよい。   After the activated carbon treatment is completed, the soil may be discarded from the excavation site and then dumped into the ocean, or may be reused appropriately as embankment or landfill.

[実証試験]
次に、本発明による気泡土の流動性変化について実証試験を行った。
[Verification test]
Next, a demonstration test was conducted on the change in fluidity of the cellular soil according to the present invention.

実証試験においては、まず、粘性土(土丹)からなる掘削土に、アルファオレフィンスルホン酸ナトリウム(以下、AOS)を起泡剤とし、その1.5%溶液を15倍発泡させた気泡を50%添加し、ミキサーで混合することで気泡混合土を作製した。   In the verification test, first, 50 bubbles were produced by foaming 15% of a 1.5% solution of sodium alpha olefin sulfonate (hereinafter referred to as AOS) into a drilling soil made of clay soil (Dotan). % Was added and mixed with a mixer to prepare a bubble-mixed soil.

次に、かかる気泡混合土を破砕破泡設備11に投入した場合のコーン指数の変化を調べた。結果を表1及び図6に示す。

Figure 2012197630
Next, the change of the cone index when such bubble mixed soil was put into the crushing and foam breaking equipment 11 was examined. The results are shown in Table 1 and FIG.
Figure 2012197630

これらの図表でわかるように、鎖部材14を旋回させることなく、単に破砕破泡設備11に投入した場合(ケース1)、投入を5回繰り返しても、コーン指数は、20〜30kN/m2にとどまり、目標値である200kN/m2を大幅に下回った。また、上記条件に加え、送風(常温)を併せて行った場合についても(ケース2)、概ね同様の結果にとどまった。ここで、目標値の200kN/m2は、一般残土としてダンプトラックで運搬できる点を目安とした。 As can be seen from these charts, when the chain member 14 is simply thrown into the crushing and foam breaking equipment 11 without turning (case 1), the cone index is 20 to 30 kN / m 2 even if the throwing is repeated five times. However, it was far below the target value of 200 kN / m 2 . Further, in addition to the above conditions, the case where air blowing (room temperature) was also performed (case 2), the results were almost the same. Here, the target value of 200 kN / m 2 is based on the point that it can be transported by dump truck as general residual soil.

一方、鎖部材14の旋回速度を500rpmとした場合(ケース3〜4)、送風しないケース3では、コーン指数が100kN/m2程度にとどまったが、送風を行ったケース3では、3回の繰り返しで、ほぼ目標値である200kN/m2をクリアすることができた。 On the other hand, when the turning speed of the chain member 14 is 500 rpm (cases 3 to 4), in the case 3 where the air is not blown, the cone index is about 100 kN / m 2 , but in the case 3 where the air is blown, the cone index is 3 times. By repetition, the target value of 200 kN / m 2 could be cleared.

以上の結果から、破砕破泡設備11による衝撃力付与によって、気泡土の流動性を改善することが可能であり、特に、送風を加えた場合には、数度の繰り返しだけで、気泡土の流動性を十分に改善できることがわかった。   From the above results, it is possible to improve the fluidity of the cellular soil by applying an impact force by the crushing and foam breaking equipment 11. It was found that the fluidity can be sufficiently improved.

なお、送風しないケースでは、コーン指数が100kN/m2程度にとどまったものの、例えば粘性土ではなく砂質土の場合には、目標値である200kN/m2を確実にクリアできるであろうと推測できる。 In the case where the air is not blown, the cone index is only about 100 kN / m 2 , but it is estimated that the target value of 200 kN / m 2 can be surely cleared in the case of sandy soil instead of viscous soil, for example. it can.

1 スクリューコンベア
2 ラインミキサー
3 活性炭供給ライン
4 ベルトコンベヤ
5 シールドマシン
6 チャンバー
7 気泡供給ライン
11 破砕破泡設備
12 円筒状ケーシング
13 シャフト
14 鎖部材(衝撃付与部材)
15,21 ベルトコンベヤ
DESCRIPTION OF SYMBOLS 1 Screw conveyor 2 Line mixer 3 Activated carbon supply line 4 Belt conveyor 5 Shield machine 6 Chamber 7 Bubble supply line 11 Crushing bubble breaking equipment 12 Cylindrical casing 13 Shaft 14 Chain member (impact imparting member)
15, 21 Belt conveyor

Claims (7)

気泡土を該気泡土に対して相対移動する衝撃付与部材に接触させることにより、前記気泡土を破砕しつつ該気泡土中の気泡を破泡することを特徴とする気泡土の処理方法。 A method for treating cellular soil, comprising bringing the cellular soil into contact with an impact applying member that moves relative to the cellular soil to break the bubbles in the cellular soil while breaking the cellular soil. 材軸がほぼ鉛直になるようにかつ該材軸廻りに回転自在となるように保持されたシャフトの周面に前記衝撃付与部材をその基端側で取付け、前記シャフトを回転させつつ、その回転に伴う前記衝撃付与部材の旋回範囲に前記気泡土を自然落下させることで、前記気泡土を前記衝撃付与部材に接触させる請求項1記載の気泡土の処理方法。 The impact applying member is attached to the peripheral surface of the shaft that is held so that the material axis is substantially vertical and rotatable around the material axis, and the shaft rotates while rotating the shaft. The method for treating cellular soil according to claim 1, wherein the cellular soil is brought into contact with the impact imparting member by allowing the cellular soil to naturally fall into a swiveling range of the impact imparting member associated with the impact imparting member. 前記シャフトを円筒状ケーシングの内部空間であってその材軸に沿うように配置するとともに前記衝撃付与部材を鎖部材で構成した請求項2記載の気泡土の処理方法。 The method for treating cellular soil according to claim 2, wherein the shaft is disposed so as to be along the material axis of the internal space of the cylindrical casing, and the impact applying member is constituted by a chain member. 前記シャフト、前記衝撃付与部材及び前記円筒状ケーシングからなる破砕破泡設備を土砂搬送方向に沿って列状に複数設置するとともに、それらの円筒状ケーシングのうち、上流側の円筒状ケーシングの下方に機首が位置し下流側の円筒状ケーシングの上方に尾端が位置するように該2つの円筒状ケーシングの間にベルトコンベヤを配置した請求項3記載の気泡土の処理方法。 A plurality of crushing and foam breaking facilities comprising the shaft, the impact applying member, and the cylindrical casing are installed in a row along the earth and sand transport direction, and among those cylindrical casings, below the upstream cylindrical casing. The method for treating cellular soil according to claim 3, wherein a belt conveyor is disposed between the two cylindrical casings so that the nose is positioned and the tail end is positioned above the downstream cylindrical casing. 前記衝撃付与部材による破砕破泡処理を行うとともに、該破砕破泡処理と同時に又は相前後して、その処理土に活性炭を添加する請求項1乃至請求項4のいずれか一記載の気泡土の処理方法。 The foamed soil according to any one of claims 1 to 4, wherein activated carbon is added to the treated soil simultaneously with or before or after the fractured foaming treatment while performing the fractured foaming treatment with the impact imparting member. Processing method. 前記気泡土を自然落下させる際、下方から上方に向かう空気流を前記円筒状ケーシングの内部空間で発生させる請求項1乃至請求項4のいずれか一記載の気泡土の処理方法。 The method for treating cellular soil according to any one of claims 1 to 4, wherein when the cellular soil is naturally dropped, an air flow directed from below to above is generated in an internal space of the cylindrical casing. 前記気泡土を気泡シールドのチャンバーから排出される掘削土とした請求項1乃至請求項6のいずれか一記載の気泡土の処理方法。 The method for treating cellular soil according to any one of claims 1 to 6, wherein the cellular soil is excavated soil discharged from a chamber of a bubble shield.
JP2011063364A 2011-03-22 2011-03-22 How to treat aerated soil Active JP5959040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011063364A JP5959040B2 (en) 2011-03-22 2011-03-22 How to treat aerated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011063364A JP5959040B2 (en) 2011-03-22 2011-03-22 How to treat aerated soil

Publications (2)

Publication Number Publication Date
JP2012197630A true JP2012197630A (en) 2012-10-18
JP5959040B2 JP5959040B2 (en) 2016-08-02

Family

ID=47180119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011063364A Active JP5959040B2 (en) 2011-03-22 2011-03-22 How to treat aerated soil

Country Status (1)

Country Link
JP (1) JP5959040B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017326A (en) * 2014-07-09 2016-02-01 株式会社フジタ Foam shield method
JP2016017328A (en) * 2014-07-09 2016-02-01 株式会社フジタ Foam shield method
CN108005662A (en) * 2017-12-08 2018-05-08 福州大学 A kind of processing method of underground water seal cave depot bank area geology crushed zone
CN109323930A (en) * 2018-10-25 2019-02-12 浙江大学 A kind of soft clay fracture toughness measuring device and method
CN113118203A (en) * 2021-04-20 2021-07-16 江苏伟恒土壤治理科技有限公司 Soil ecological remediation equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5729792A (en) * 1980-07-25 1982-02-17 Kumagai Gumi Co Ltd Disposal of air-bubble-mixed sludge
JPS6224999U (en) * 1985-07-29 1987-02-16
JP2005021888A (en) * 2003-06-10 2005-01-27 Jdc Corp Method and system for cleaning contaminated solid substance
JP2005279423A (en) * 2004-03-29 2005-10-13 Daido Gakuen Method for in situ purification of contaminated soil
JP2006075782A (en) * 2004-09-13 2006-03-23 Shin Meiwa Ind Co Ltd Foam suppressing unit of aeration tank and garbage treatment apparatus having the unit
JP2007090323A (en) * 2005-09-05 2007-04-12 Nakaken:Kk Pulverizing apparatus and pulverizing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5729792A (en) * 1980-07-25 1982-02-17 Kumagai Gumi Co Ltd Disposal of air-bubble-mixed sludge
JPS6224999U (en) * 1985-07-29 1987-02-16
JP2005021888A (en) * 2003-06-10 2005-01-27 Jdc Corp Method and system for cleaning contaminated solid substance
JP2005279423A (en) * 2004-03-29 2005-10-13 Daido Gakuen Method for in situ purification of contaminated soil
JP2006075782A (en) * 2004-09-13 2006-03-23 Shin Meiwa Ind Co Ltd Foam suppressing unit of aeration tank and garbage treatment apparatus having the unit
JP2007090323A (en) * 2005-09-05 2007-04-12 Nakaken:Kk Pulverizing apparatus and pulverizing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017326A (en) * 2014-07-09 2016-02-01 株式会社フジタ Foam shield method
JP2016017328A (en) * 2014-07-09 2016-02-01 株式会社フジタ Foam shield method
CN108005662A (en) * 2017-12-08 2018-05-08 福州大学 A kind of processing method of underground water seal cave depot bank area geology crushed zone
CN109323930A (en) * 2018-10-25 2019-02-12 浙江大学 A kind of soft clay fracture toughness measuring device and method
CN113118203A (en) * 2021-04-20 2021-07-16 江苏伟恒土壤治理科技有限公司 Soil ecological remediation equipment

Also Published As

Publication number Publication date
JP5959040B2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
JP5959040B2 (en) How to treat aerated soil
CN203886928U (en) Restoration equipment suitable for polluted soil containing hard hybrid materials
CN103962371B (en) A kind of harmless restorative procedure of contaminated soil
CN103962370B (en) The soil remediation method that a kind of absorption and Magneto separate combine
JP2008173611A (en) Soil cleaning method and crushing apparatus used therefor
CN203526195U (en) Complete equipment for restoring polluted soil
CN206689196U (en) A kind of heavy-metal contaminated soil repair system
CN203830397U (en) Double roller hitting type contaminated soil breaking and mixing remediation equipment
JP2006289307A (en) Fine granulation apparatus of earth and sand, and mud
JP5534597B2 (en) Excavation soil treatment method in bubble shield construction
CN203886929U (en) Restoration equipment suitable for polluted silty soil
JP2012120987A (en) Method for purifying excavated soil when shield construction is performed in contaminated soil and shield excavator
CN203886924U (en) Vertical non-clogging breaking and mixing restoration equipment for polluted soil
JP3776378B2 (en) Contaminated soil treatment system and contaminated soil treatment method
JP2008144026A (en) Additive for shield tunneling
JP5545441B2 (en) Method for treating surfactant in excavated soil
JP6376943B2 (en) Rubble treatment composition and rubble treatment method
TWI283704B (en) Method of boring hard rock by means of a tunnel boring machine
JP6502812B2 (en) Bubble shield method
JP5739793B2 (en) Decontamination of contaminated materials and recovery of decontaminated chips
JP3626876B2 (en) Crushing and granulating device and generated soil treatment device
JP5654170B1 (en) Foaming agent for bubble shield method and bubble shield method
JP2018538466A (en) Foam generating additive for soil conditioning in tunnel construction excavators.
JP3758912B2 (en) Crushing and granulating device and generated soil treatment device
CN206373146U (en) A kind of portable danger residue stabilization emergency car

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160617

R150 Certificate of patent or registration of utility model

Ref document number: 5959040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150