JP2012120987A - Method for purifying excavated soil when shield construction is performed in contaminated soil and shield excavator - Google Patents

Method for purifying excavated soil when shield construction is performed in contaminated soil and shield excavator Download PDF

Info

Publication number
JP2012120987A
JP2012120987A JP2010274397A JP2010274397A JP2012120987A JP 2012120987 A JP2012120987 A JP 2012120987A JP 2010274397 A JP2010274397 A JP 2010274397A JP 2010274397 A JP2010274397 A JP 2010274397A JP 2012120987 A JP2012120987 A JP 2012120987A
Authority
JP
Japan
Prior art keywords
soil
shield
chamber
excavated
excavated soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010274397A
Other languages
Japanese (ja)
Inventor
Masanao Shibamoto
真尚 芝本
Koji Oka
孝治 岡
Masahiro Miyazawa
昌弘 宮澤
Masahide Sakai
雅英 酒井
Yasushi Hoga
康史 保賀
Kazuhiro Tamura
和広 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Konoike Construction Co Ltd
Original Assignee
Maeda Corp
Konoike Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp, Konoike Construction Co Ltd filed Critical Maeda Corp
Priority to JP2010274397A priority Critical patent/JP2012120987A/en
Publication of JP2012120987A publication Critical patent/JP2012120987A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Processing Of Solid Wastes (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique which realizes more efficient purification processing and which can maintain favorable tunneling environment by effectively utilizing a shield machine itself in excavated soil purification processing when shield construction is performed in a contaminated soil.SOLUTION: A method for purifying the excavated soil when performing shield construction in the contaminated soil, includes a step of adding a purifier for the contaminated soil to a ground by a shield face, a step of stirring and mixing the excavated soil D1 taken inside a chamber 13 of the shield machine by a stirring means 14, and a step of transferring the stirred excavated soil inside the chamber to the outside of the chamber. If the contaminated soil contains a volatile organic compound, an ultrafine iron powder solution and a fine powder activated carbon solution are used as the purifier.

Description

本発明は、揮発性有機化合物等による汚染土壌内をシールド掘進する際の掘削土浄化方法及びシールド掘削機に関する。   The present invention relates to a method for cleaning excavated soil and a shield excavator for shield excavation in soil contaminated with volatile organic compounds.

揮発性有機化合物(VOC)によって汚染された土壌の浄化技術として、鉄粉や活性炭等を汚染土壌に添加するものがある。鉄粉は化学的処理(還元分解による無害化)によりVOCを浄化し、活性炭は物理的処理(吸着による不溶化)によりVOCを吸着・固定化する。この鉄粉や活性炭は、地表面部の汚染土壌の原位置浄化に使用されている。   As a purification technique for soil contaminated with volatile organic compounds (VOC), there is a technique of adding iron powder, activated carbon or the like to contaminated soil. Iron powder purifies VOC by chemical treatment (detoxification by reductive decomposition), and activated carbon adsorbs and immobilizes VOC by physical treatment (insolubilization by adsorption). This iron powder and activated carbon are used for in-situ purification of contaminated soil on the ground surface.

シールド工事における掘削土がVOCに汚染されている場合は、地上の土砂ピット等で鉄粉を添加して浄化するか、温熱処理によってVOCを気化させて活性炭に吸着させていた。   When the excavated soil in the shield work is contaminated with VOC, it was purified by adding iron powder in a ground sediment pit or the like, or VOC was vaporized by thermal heat treatment and adsorbed on activated carbon.

なお、特許文献1には、金属系還元剤に添加する固化材の種類を問わず、VOC汚染地盤の浄化と地盤強度の回復を両立する技術が記載されている。   Patent Document 1 describes a technique that achieves both purification of VOC-contaminated ground and restoration of ground strength regardless of the type of solidifying material added to the metal-based reducing agent.

特開2006―88110号公報JP 2006-88110 A

上記のような従来の浄化技術においては、次のような課題がある。
(1)従来は土砂ピット等の地上部においてVOC処理を行うため、泥土圧式シールド工法ではベルトコンベアやズリ鋼車にて掘削土を運搬する時に、シールド坑内でVOCが気化し、坑内環境を悪化させる問題がある。(この点、泥水式シールド工法では掘削土が配管内を流体輸送されるのでシールド坑内でVOCが気化する恐れはない)
(2)浄化完了を確認した後に土砂を場外搬出する必要があるため、従来のように土砂ピット等で鉄粉等による浄化を行う場合、還元反応による無害化には数時間以上を要し、土砂搬出の待ち時間が生じる(土砂のストックヤードが必要となる)。
(3)坑内排気には、土砂搬送中および防音ハウス内での浄化の際に気化したVOCが含まれているため、大容量の活性炭付き換気装置が必要となる。
The conventional purification techniques as described above have the following problems.
(1) Conventionally, since VOC treatment is performed on the ground part such as earth and sand pits, when the excavated soil is transported by a belt conveyor or a scrap steel car in the mud pressure shield method, VOC is vaporized in the shield mine and the mine environment is deteriorated. There is a problem to make. (In this respect, in the muddy water type shield method, the excavated soil is fluid transported in the pipe, so there is no risk of VOC vaporizing in the shield mine)
(2) Since it is necessary to carry out the earth and sand after confirming the completion of purification, when performing purification with iron powder etc. in the earth and sand pit as in the past, detoxification by reduction reaction takes several hours or more, There will be a waiting time for unloading the earth and sand (the earth and sand stock yard is required).
(3) Since the underground exhaust contains VOCs vaporized during sediment transport and purification in the soundproof house, a large-capacity ventilator with activated carbon is required.

よって、本発明は、汚染土壌内をシールド掘進する際の掘削土浄化処理に、シールド掘削機自体を有効利用することで、浄化処理の効率化を図り、しかも良好な坑内環境を維持することができる、汚染土壌内をシールド掘進する際の掘削土浄化技術を提供しようとするものである。   Therefore, the present invention can effectively use the shield excavator itself for the excavation soil purification process when the shield excavation is performed in the contaminated soil, thereby improving the efficiency of the purification process and maintaining a good underground environment. It is intended to provide excavated soil purification technology for shield excavation in contaminated soil.

以上の課題を解決するため、本発明は、汚染土壌内をシールド掘進する際の掘削土浄化方法であって、シールド切羽にて汚染土壌の浄化剤を地山に添加する工程と、シールド掘削機のチャンバー内に取り込まれる浄化剤を含む掘削土を、攪拌手段で攪拌混合する工程と、前記チャンバー内の攪拌済み掘削土をチャンバー外に搬送する工程と、を有することを特徴とする。   In order to solve the above problems, the present invention is a method for purifying excavated soil when shielded in the contaminated soil, the step of adding a cleaner for contaminated soil to the natural ground at the shield face, and a shield excavator And a step of stirring and mixing the excavated soil containing the cleaning agent taken into the chamber by a stirring means, and a step of transporting the agitated excavated soil in the chamber to the outside of the chamber.

本発明によれば、シールド切羽にて汚染土壌の浄化剤を地山に添加する工程と、シールド掘削機のチャンバー内に取り込まれる浄化剤を含む掘削土を、攪拌手段で攪拌混合する工程と、チャンバー内の攪拌済み掘削土をチャンバー外に搬送する工程とを行うので、汚染土壌(汚染地山)の浄化作業をシールド掘削機の掘削作業と共に行うことができる。これにより、汚染土壌浄化処理の効率化を図ることができる。しかも、浄化剤を含む掘削土は密閉されたチャンバー内部で攪拌混合して処理するので、良好な坑内環境を維持することができる   According to the present invention, a step of adding a contaminated soil purification agent to the natural ground at the shield face, a step of stirring and mixing the excavated soil containing the purification agent taken into the chamber of the shield excavator with stirring means, Since the agitated excavated soil in the chamber is transported to the outside of the chamber, the contaminated soil (contaminated ground) can be purified together with the shield excavator. Thereby, efficiency improvement of a contaminated soil purification process can be achieved. Moreover, the excavated soil containing the purification agent is stirred and mixed inside the sealed chamber, so that a good underground environment can be maintained.

本発明において、前記汚染土壌が揮発性有機化合物(VOC)を含む場合、前記浄化剤は微細鉄粉と微粉末活性炭を含むことが望ましい。このようにすれば、微細鉄粉による化学的処理(還元分解による無害化)+微粉末活性炭による物理的処理(吸着・不要化)の併用により効率良く短時間で安全・確実なVOC処理を行うことができる。   In this invention, when the said contaminated soil contains a volatile organic compound (VOC), it is desirable that the said purification | cleaning agent contains fine iron powder and fine powder activated carbon. In this way, safe and reliable VOC treatment can be performed efficiently and in a short time by the combined use of chemical treatment with fine iron powder (detoxification by reductive decomposition) + physical treatment with fine powdered activated carbon (adsorption / no need). be able to.

本発明において、前記浄化剤を地山に添加する工程では、浄化剤を液状にして添加することが望ましい。本発明では、シールド切羽にて浄化剤を地山に添加し、チャンバー内で攪拌混合するので、浄化剤を液状にした方が効率的な攪拌混合を行うことができる。また、液状の浄化剤とした場合、その供給手段もポンプ等を利用した比較的簡易な設備の付加で対処することができる。   In the present invention, in the step of adding the purification agent to the natural ground, it is desirable to add the purification agent in a liquid state. In the present invention, the purifier is added to the ground at the shield face and stirred and mixed in the chamber. Therefore, it is possible to perform efficient stirring and mixing when the purifier is made liquid. Moreover, when it is set as a liquid purification agent, the supply means can also cope with addition of a comparatively simple installation using a pump etc.

本発明は、汚染土壌内をシールド掘進する際の掘削土浄化方法に用いるシールド掘削機であって、
地山を掘削するカッターを先端部に備える掘削機本体と、
掘削機本体前面の切羽に汚染土壌の浄化剤を添加する浄化剤添加手段と、を備え、
前記掘削機本体は、浄化剤を含む掘削土が取り込まれるチャンバーと、チャンバー内の掘削土を攪拌する攪拌手段と、攪拌された掘削土を搬送する搬送手段と、を備えることを特徴とする。
The present invention is a shield excavator used for excavation soil purification method when shield excavation in contaminated soil,
An excavator body equipped with a cutter for excavating natural ground at the tip,
A purification agent adding means for adding a contaminated soil purification agent to the face of the front surface of the excavator body,
The excavator body includes a chamber into which excavated soil containing a cleaning agent is taken in, a stirring unit that stirs the excavated soil in the chamber, and a transport unit that transports the stirred excavated soil.

本発明のシールド掘削機によれば、掘削機本体前面の切羽に汚染土壌の浄化剤を添加する浄化剤添加手段を備えているので、最も原位置に近い掘削機本体前面の密閉されたチャンバー内部での汚染土壌処理を行うことができる。また、原理的には既存のシールド掘削機に浄化剤添加手段を付設するだけで済むので、既存のシールド掘削機を有効利用する低コストな方法で対処することができる。   According to the shield excavator of the present invention, since the cleaning agent addition means for adding the cleaning agent for contaminated soil to the face of the excavator main body front is provided, the inside of the sealed chamber on the front surface of the excavator main body closest to the original position Contaminated soil treatment at can be performed. Further, in principle, it is only necessary to attach the purifier addition means to the existing shield excavator, and therefore, it is possible to cope with a low-cost method that effectively uses the existing shield excavator.

本発明において、前記攪拌手段は、カッター及び回転攪拌翼、固定攪拌翼、アジテータを含むことが好ましい。これにより、浄化剤を含む掘削土の攪拌効率を十分に高めることができる。   In the present invention, the stirring means preferably includes a cutter, a rotary stirring blade, a fixed stirring blade, and an agitator. Thereby, the stirring efficiency of the excavated soil containing the purification agent can be sufficiently increased.

本発明において、前記搬送手段はスクリューコンベアであることが望ましい。スクリューコンベアの場合、チャンバー内で攪拌した掘削土をこのスクリューコンベアによっても攪拌することができるからである。   In the present invention, the conveying means is preferably a screw conveyor. This is because in the case of a screw conveyor, the excavated soil stirred in the chamber can also be stirred by this screw conveyor.

本発明によれば、汚染土壌内をシールド掘進する際の掘削土浄化処理に、シールド掘削機自体を有効利用することで、浄化処理の効率化を図り、しかも良好な坑内環境を維持することができる、汚染土壌内をシールド掘進する際の掘削土浄化技術を提供することができる。   According to the present invention, the shield excavator itself can be effectively used for the excavation soil purification process when the shield is excavated in the contaminated soil, thereby improving the efficiency of the purification process and maintaining a good underground environment. It is possible to provide excavated soil purification technology for shield excavation in contaminated soil.

本発明の実施形態に係る掘削土浄化方法を示す概略説明図である。It is a schematic explanatory drawing which shows the excavation soil purification method which concerns on embodiment of this invention. 本発明の実施形態に係る微細鉄粉及び微粉末活性炭によるVOC処理のメカニズムを示す模式的な説明図である。It is typical explanatory drawing which shows the mechanism of the VOC process by the fine iron powder and fine powder activated carbon which concern on embodiment of this invention. 本発明の実施形態に係る掘削土浄化方法を示す概略工程図である。It is a schematic process drawing which shows the excavation soil purification method which concerns on embodiment of this invention. 本発明の実施形態に係る掘削土浄化方法を示す概略工程図である。It is a schematic process drawing which shows the excavation soil purification method which concerns on embodiment of this invention. 本発明の実施形態に係る掘削土浄化方法を示す概略工程図である。It is a schematic process drawing which shows the excavation soil purification method which concerns on embodiment of this invention. 本発明の実施形態に係る掘削土浄化方法を示す概略工程図である。It is a schematic process drawing which shows the excavation soil purification method which concerns on embodiment of this invention. 本発明の実施形態に係る掘削土浄化方法を示す概略工程図である。It is a schematic process drawing which shows the excavation soil purification method which concerns on embodiment of this invention. 本発明の実施形態に係るVOCガス濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the VOC gas concentration which concerns on embodiment of this invention. 本発明の実施形態に係るシールド掘削機の概略断面図である。1 is a schematic cross-sectional view of a shield excavator according to an embodiment of the present invention.

以下に、本発明を実施するための形態について図面を参照して説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲を以下の実施形態及び図示例に限定するものではない。   EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated with reference to drawings. However, although various technically preferable limitations for implementing the present invention are given to the embodiments described below, the scope of the invention is not limited to the following embodiments and illustrated examples.

図1は、本実施形態に係る汚染土壌内をシールド掘進する際の掘削土浄化方法を概略的に示した説明図であり、図2(a)、(b)は超微細鉄粉及び微粉末活性炭によるVOC処理のメカニズムを示す模式図、図3〜図7は汚染土壌内をシールド掘進する際の掘削土浄化方法の工程図である。これらの図において、10は泥土圧シールド掘削機であり、20は浄化剤添加手段(浄化剤供給装置)、30は土砂ピット、40は防音ハウス、50はシールドトンネル、51は立て坑である。   FIG. 1 is an explanatory diagram schematically showing a method for purifying excavated soil when shielded excavation is performed in a contaminated soil according to the present embodiment, and FIGS. 2 (a) and 2 (b) are ultrafine iron powder and fine powder. Schematic diagrams showing the mechanism of VOC treatment with activated carbon, FIGS. 3 to 7 are process diagrams of the excavated soil purification method when shield excavation is performed in the contaminated soil. In these drawings, 10 is a mud pressure shield excavator, 20 is a purifier addition means (purifier supply device), 30 is a sediment pit, 40 is a soundproof house, 50 is a shield tunnel, and 51 is a shaft.

泥土圧シールド掘削機10は、図1、図3等に示すように、地山を掘削するカッター11を先端部に備える掘削機本体12と、掘削機本体12の前面の切羽に汚染土壌の浄化剤を添加(噴射)する浄化剤添加手段20とを備えている。掘削機本体12は、浄化剤を含む掘削土Dが取り込まれるチャンバー13と、チャンバー13内の掘削土Dを攪拌する攪拌手段14と、攪拌された掘削土Dを搬送する搬送手段15とを備えている。そして、攪拌手段14は、カッター11及び攪拌翼16、固定撹拌翼17、アジテータ18等で攪拌する構成となっている。即ち、カッター11は攪拌手段を兼ねている。また、泥土圧シールド掘削機10を用いているため、搬送手段15はスクリューコンベアで構成されている。   The mud pressure shield excavator 10, as shown in FIG. 1, FIG. 3, etc., purifies contaminated soil on an excavator body 12 having a cutter 11 for excavating natural ground at the tip, and a face on the front surface of the excavator body 12. And a purifier addition means 20 for adding (injecting) the agent. The excavator main body 12 includes a chamber 13 into which the excavated soil D containing the cleaning agent is taken in, an agitating means 14 for agitating the excavated soil D in the chamber 13, and a conveying means 15 for conveying the agitated excavated soil D. ing. And the stirring means 14 becomes a structure stirred with the cutter 11, the stirring blade 16, the fixed stirring blade 17, the agitator 18, etc. FIG. That is, the cutter 11 also serves as a stirring means. Moreover, since the mud pressure shield excavator 10 is used, the conveyance means 15 is comprised with the screw conveyor.

浄化剤添加手段20は、いわゆる浄化剤溶液の供給装置であり、複数のタンクと、配管及び複数のポンプとを備えている。図1に示す例では、鉄粉溶液を収容するために地上に設置された地上タンク21及び坑内タンク22と、活性炭溶液を収容するために地上に設置された地上タンク23及び坑内タンク24と、それらの配管25、26と、配管を介して活性炭溶液及び鉄粉溶液をそれぞれ切羽の地山へ送り込むポンプPとを備えている。   The purifier addition means 20 is a so-called purifier solution supply device, and includes a plurality of tanks, pipes, and a plurality of pumps. In the example shown in FIG. 1, a ground tank 21 and a mine tank 22 installed on the ground to accommodate the iron powder solution, a ground tank 23 and a mine tank 24 installed on the ground to accommodate the activated carbon solution, The pipes 25 and 26 and a pump P for feeding the activated carbon solution and the iron powder solution to the ground of the face through the pipes are provided.

これらの浄化剤溶液を切羽の地山に添加(噴射)する方法としては、本実施形態では切羽の地山に向けて加泥材を吐出させる複数の吐出口(注入口)を利用して行えるように構成している。即ち、加泥材の供給管(図示せず)に配管25、26の先端を接続してある。なお、図においては、複数の吐出口のうち、後述する気泡材の吐出口をaで、鉄粉溶液の吐出口をbで、活性炭溶液の吐出口をcでそれぞれ示している。これらの吐出口はカッター11の切羽側前面に開口している。また、図3〜図7においては、凡例として、気泡材、超微細鉄粉、微粉末活性炭をそれぞれ異なる矢印で示している。図3〜図7において(a)はそれぞれ正面から見た状態を、(b)はそれぞれ中央縦断面として見た状態を示している。   As a method of adding (injecting) these purifying agent solutions to the ground of the face, in this embodiment, a plurality of discharge ports (injection ports) for discharging the mud material toward the face of the face can be used. It is configured as follows. That is, the ends of the pipes 25 and 26 are connected to a supply pipe (not shown) of the mud material. In the drawing, among the plurality of discharge ports, a bubble material discharge port to be described later is indicated by a, an iron powder solution discharge port is indicated by b, and an activated carbon solution discharge port is indicated by c. These discharge ports are opened on the front face side of the cutter 11. In addition, in FIGS. 3 to 7, as a legend, the bubble material, the ultrafine iron powder, and the finely powdered activated carbon are indicated by different arrows. 3 to 7, (a) shows a state viewed from the front, and (b) shows a state viewed as a central longitudinal section.

泥土圧シールド工法は、掘削土砂を加泥材の注入・攪拌混合により塑性流動性を持つ泥土状態にして、加圧させ、切羽の安定を保ちつつ連続して掘進する工法である。従って、本実施形態のVOC浄化処理方法では、この泥土圧シールド工法の機能を活用して、加泥材(ここでは気泡材)と同時に、かつ同様に粒子の小さい微細鉄粉(超微細鉄粉)及び微粉末活性炭を注入することで、超微細鉄粉及び微粉末活性炭を均一に攪拌混合する方法を採用している。   The mud pressure shield method is a method in which excavated soil is put into a mud state having plastic fluidity by pouring and mixing of mud materials and pressurized, and continuously excavated while maintaining the stability of the face. Therefore, in the VOC purification treatment method of the present embodiment, the function of the mud pressure shield method is utilized, and the fine iron powder (ultrafine iron powder) having a small particle size as well as the mud material (here, the bubble material) is used. ) And finely powdered activated carbon are used to uniformly stir and mix ultrafine iron powder and finely powdered activated carbon.

この泥土圧シールド掘進におけるVOC攪拌処理工程は次の通りである。
(1)図3に示すように切羽にてカッター11の回転により地山土塊を削り取る。
(2)その際、気泡材、超微細鉄粉及び微粉末活性炭を満遍なく切羽に速度に応じて一定量注入し、掘削土を塑性流動化させるとともに、VOC処理を開始する。
(3)図4に示すように、掘進が進むにつれ、塑性流動性をもつ掘削土砂D1が順次、先に掘削した土砂Dが充満したチャンバー13に移動する。
(4)図5、図6に示すように、チャンバー13内ではカッター11背面の攪拌翼16の回転、固定攪拌翼17、アジテータ18の回転により更に攪拌混合されVOC処理が進む(攪拌から数分で十分な効果が得られる)。
(5)図7に示すように、チャンバー13内は充満しているため、掘削した順にVOC処理を終えた状態でスクリューコンベアから排土される。
The VOC agitation treatment process in this mud pressure shield excavation is as follows.
(1) As shown in FIG. 3, the ground mass is scraped off by rotation of the cutter 11 at the face.
(2) At that time, a certain amount of foam material, ultrafine iron powder and finely powdered activated carbon are uniformly injected into the face according to the speed to plastically fluidize the excavated soil and start the VOC treatment.
(3) As shown in FIG. 4, as excavation progresses, excavated earth and sand D1 having plastic fluidity sequentially moves to chamber 13 filled with previously excavated earth and sand D.
(4) As shown in FIG. 5 and FIG. 6, in the chamber 13, further stirring and mixing are performed by rotation of the stirring blade 16 on the back of the cutter 11, rotation of the fixed stirring blade 17, and agitator 18, and the VOC process proceeds (several minutes after stirring). Will give you enough effect).
(5) As shown in FIG. 7, since the inside of the chamber 13 is full, the soil is discharged from the screw conveyor in a state where the VOC processing is finished in the order of excavation.

以上のように、掘削土は連続してチャンバー13内を回転により攪拌混合しつつ移動する構造であり、掘削から排土される平均で約70分後にスクリューコンベア15から排土された段階では、所要のVOC処理が完了し、坑内環境に悪影響を与えない。   As described above, excavated soil is a structure that continuously moves while stirring and mixing in the chamber 13, and at the stage of being excavated from the screw conveyor 15 after about 70 minutes on average after being excavated from excavation, The required VOC process is completed and does not adversely affect the underground environment.

このように、本実施形態では、鉄粉と活性炭をシールド掘削機10のカッター先端部で地山に添加して、掘進しながらチャンバー13内で撹拌混合を進めて、スクリューコンベア15から排出されるまでの時間(約70分)でVOCが気化しない状態にする。
また、短時間にVOCの揮発を抑えるために、鉄粉と同時に活性炭を添加し、活性炭の吸着効果により数分でVOCが気化しない状態にする。
さらに、シールド掘削機10のカッター先端部へ容易に注入できるように、特殊加工の超微粒子タイプ鉄粉・微粉末活性炭を水に溶かして溶液として使用する。
Thus, in this embodiment, iron powder and activated carbon are added to the ground at the tip of the cutter of the shield excavator 10, agitated and mixed in the chamber 13 while advancing, and discharged from the screw conveyor 15. The VOC is not vaporized in the time up to (about 70 minutes).
Moreover, in order to suppress the volatilization of VOC in a short time, activated carbon is added simultaneously with the iron powder, and the VOC is not vaporized in a few minutes due to the adsorption effect of the activated carbon.
Furthermore, specially processed ultrafine particle type iron powder / fine powder activated carbon is dissolved in water and used as a solution so that it can be easily injected into the cutter tip of the shield excavator 10.

<実施工における攪拌混合状態の確認と対応について>
実施工では切羽圧可視化システムにより、チャンバー内の塑性流動性を確認することができる。これにより、一部で固結する等の塑性流動性が悪く均一に攪拌混合されていないと判断される場合には、チャンバー内の注入孔から添加材を追加注入すること、掘進速度を遅くし攪拌時間を長くする等の対応を行うことも可能である。
<Confirmation and response of the stirring and mixing state in the construction work>
In the implementation, the plastic fluidity in the chamber can be confirmed by the face pressure visualization system. As a result, when it is judged that the plastic fluidity such as solidification is partially poor and the mixture is not uniformly stirred and mixed, the additive material is additionally injected from the injection hole in the chamber, and the digging speed is reduced. It is also possible to take measures such as increasing the stirring time.

(A)室内試験と実施工での条件の違いに関する処理効果の確実性について
室内試験(VOC汚染模擬土、φ0.3mホバートミキサーで攪拌混合)と実施工(原位置VOC汚染土壌、φ7.45m泥土圧シールド機のカッター回転(カッター及び背面攪拌翼)、固定攪拌翼、アジテータで攪拌混合)では、(1)VOC汚染土の溶出量、(2)攪拌混合の規模・時間、(3)攪拌される土の充満性、について違いがある。
これらの違いについて、(B)に示す室内試験によって、溶出量が土壌汚染対策法指定基準の100倍を超える高濃度VOC汚染土に対し、シールド機による攪拌混合(密閉されたチャンバー内に充満された土砂を長い時間、強力に攪拌)より短い攪拌混合時間(30秒)であっても、3分で確実に処理できることが確認されているため、実施工においても短時間で確実な処理効果があり問題ない。
(A) About the certainty of the treatment effect regarding the difference in conditions between the laboratory test and the construction work The laboratory test (simulated and mixed with VOC contamination, φ0.3m Hobart mixer) and the construction work (in-situ VOC contamination soil, φ7.45m) In the mud pressure shield machine cutter rotation (stirring blade and back stirring blade), fixed stirring blade and agitator), (1) elution amount of VOC contaminated soil, (2) scale and time of stirring and mixing, (3) stirring There is a difference in the soil fullness, which is done.
About these differences, by the laboratory test shown in (B), the high-concentration VOC contaminated soil whose elution amount exceeds 100 times the standard specified by the Soil Contamination Countermeasures Law is stirred and mixed by a shield machine (filled in a sealed chamber). Even if the mixing time is shorter (30 seconds) than for a long time, vigorous stirring), it has been confirmed that it can be reliably processed in 3 minutes, so that even in the construction work, a reliable treatment effect can be obtained in a short time. There is no problem.

(B)室内試験による確実な処理効果の確認
超微細鉄粉と微粉末活性炭によるVOC処理方法は、それぞれ実績があり確実な処理方法であるが、原位置VOC汚染土壌の多様性に対応でき、かつ短時間で確実に処理するために併用している。ただし、従来はシールド切羽で処理した実績がないため、室内試験を行い、その結果から次のように実施工で処理効果の確実性に問題がないことを確認した。
<室内試験と実施工の条件の違い>
室内試験では、溶出量が土壌汚染対策法指定基準の100倍を超える高濃度VOC汚染模擬土(トリクロロエチレン溶出量2.8mg/L)を使用。
室内試験とシールド機の攪拌混合の比較から、シールド機の攪拌機構では3.7分の攪拌混合で、室内試験の攪拌混合(30秒)と同程度の攪拌混合状態である(表1)。
(B) Confirmation of reliable treatment effect by laboratory test VOC treatment methods using ultra fine iron powder and fine powder activated carbon are proven and reliable treatment methods, respectively, but can cope with the diversity of in-situ VOC contaminated soil, In addition, they are used in combination to ensure reliable processing in a short time. However, since there was no track record of processing with shield face conventionally, an indoor test was conducted, and it was confirmed from the results that there was no problem in the reliability of the processing effect as follows.
<Differences in conditions between laboratory tests and construction work>
In laboratory tests, high-concentration VOC pollution simulated soil (elution amount of trichlorethylene 2.8 mg / L) exceeding 100 times the standard specified by the Soil Contamination Countermeasures Law is used.
From the comparison of the laboratory test and the stirring and mixing of the shield machine, the stirring mechanism of the shield machine is 3.7 minutes of stirring and mixing, which is the same as the mixing and mixing of the laboratory test (30 seconds) (Table 1).

Figure 2012120987
<室内試験結果(図8参照)>
超微細鉄粉と微粉末活性炭を添加・攪拌混合後3分でガス濃度はVOC作業環境管理濃度(10ppm)を満足する9ppmに低減する(鉄粉だけでは10ppmまで低減しない)。
その後も時間の経過に伴い、安定してガス濃度が低減する(添加・攪拌後50分で2.5ppm、活性炭だけでは濃度増減があり、安定して低減しない)。
公定法分析の結果、VOC処理後ではトリクロロエチレン溶出量は0.064mg/Lであり、VOC溶出量の低減率は97.7%である。
気泡材と併用しても、スランプロス、VOC処理効果には問題はない。
Figure 2012120987
<In-house test results (see Fig. 8)>
After 3 minutes after adding ultrafine iron powder and finely powdered activated carbon and mixing with stirring, the gas concentration is reduced to 9 ppm, which satisfies the VOC work environment management concentration (10 ppm) (not reduced to 10 ppm with iron powder alone).
After that, the gas concentration decreases stably over time (2.5 ppm in 50 minutes after addition / stirring, and the concentration increases and decreases only with activated carbon, and does not decrease stably).
As a result of official method analysis, after VOC treatment, the elution amount of trichlorethylene is 0.064 mg / L, and the reduction rate of the elution amount of VOC is 97.7%.
Even if it is used in combination with the foam material, there is no problem in the slump loss and the VOC treatment effect.

<室内試験の結果による実施工での短時間での確実な処理効果について>
高濃度VOC汚染土(土壌汚染対策法指定基準の100倍)に対して3分で作業環境管理濃度を満足する低減効果があること、実施工ではシールド機によって、チャンバー内を充満させた土砂を強力かつ長い時間で攪拌混合できることから、実施工では掘削土砂がスクリューコンベアから排出された時点でVOC処理が済み、坑内環境に悪影響を与えることは無い。
VOC処理の低減率(97.7%)から、実施工(例えばトリクロロエチレン最大溶出量0.2mg/Lの場合)におけるVOC汚染土壌の処理後の溶出量は0.0046mg/Lと推定でき、土壌汚染対策法指定基準0.03mg/Lを満足した土砂として場外搬出できる。
<Reliable treatment effect in a short time at the construction work based on the results of laboratory tests>
High concentration VOC contaminated soil (100 times the standard specified by the Soil Contamination Countermeasures Law) has a reduction effect that satisfies the work environment management concentration in 3 minutes. Since stirring and mixing can be performed in a strong and long time, the VOC treatment is completed at the time when the excavated earth and sand are discharged from the screw conveyor in the construction work, and the mine environment is not adversely affected.
Based on the reduction rate of VOC treatment (97.7%), the amount of elution after treatment of VOC-contaminated soil in the construction work (for example, when the maximum elution amount of trichlorethylene is 0.2 mg / L) can be estimated to be 0.0046 mg / L. It can be transported off-site as soil that satisfies the standard 0.03mg / L.

<チャンバー内撹拌(滞留)時間とVOC処理効果について>
(1)撹拌(滞留)時間の根拠
試験例において、チャンバー内撹拌(滞留)時間とは、掘削した土砂が71分後に排出されることを意味している。71分間の根拠は、20mm/分での掘進速度に対して、チャンバー内奥行き長から計算した時間である。
チャンバー内滞留時間71分間(掘削した土砂は71分後に排出される)
=(チャンバー長1430mm) / (掘進速度20mm/分)×=1430/20≒71分
ただし、カッタースポーク体積を考慮したチャンバー容量及びスクリューコンベア容量を考慮した場合、図9に示すようになる。
この場合、掘削から排土までの平均時間68.9分=チャンバー内平均通過時間64.4分(攪拌混合平均時間)+スクリューコンベア通過時間4.5分となる。
<In-chamber agitation (residence) time and VOC treatment effect>
(1) Basis of stirring (dwelling) time In the test example, the stirring (residence) time in the chamber means that the excavated earth and sand are discharged after 71 minutes. The basis for 71 minutes is the time calculated from the depth in the chamber for the digging speed at 20 mm / min.
Residence time in the chamber is 71 minutes (the excavated sediment is discharged after 71 minutes)
= (Chamber length 1430 mm) / (digging speed 20 mm / min) x = 1430/20 ≈ 71 min However, when the chamber capacity and the screw conveyor capacity considering the cutter spoke volume are taken into account, the result is as shown in FIG.
In this case, the average time from excavation to earth removal is 68.9 minutes = average passage time in the chamber is 64.4 minutes (stir mixing average time) + screw conveyor passage time is 4.5 minutes.

<撹拌(滞留)中のVOCの処理効果>
室内試験では、溶出量が土壌汚染対策法指定基準の100倍を超える高濃度VOC汚染土に対して3分で確実に処理できることが確認された。実施工において、チャンバー内を掘削土砂が通過する時間は、チャンバー内での攪拌混合の過程によりバラツキが生じるものと考えられるが、排出までの時間のバラツキを考慮しても掘削と超微細鉄粉及び微粉末活性炭の注入開始からチャンバー内通過時間が数分(試験では3分)あれば確実にVOCを処理することができる。
<Effect of VOC treatment during stirring (retention)>
In laboratory tests, it was confirmed that high-concentration VOC-contaminated soil, whose elution amount exceeds 100 times the standard specified by the Soil Contamination Countermeasures Law, can be reliably treated in 3 minutes. In the construction work, the time for the excavated sediment to pass through the chamber is thought to vary due to the stirring and mixing process in the chamber. In addition, if the passage time in the chamber is several minutes (3 minutes in the test) from the start of injection of finely powdered activated carbon, the VOC can be reliably processed.

よって、本発明によれば、この短時間における効果と、泥土圧シールド工法の特徴(切羽での加泥材の注入、カッター回転等による均一な攪拌混合、チャンバー内に充満させた塑性流動性を持つ掘削土の加圧による切羽保持)を活用し、連続したシールド掘進の工程の中で別の攪拌時間を必要とせずに、掘進同時処理による効率的なVOC処理をチャンバー内で行い、スクリューコンベアから排土された段階では処理が済んで坑内環境に影響を与えないという、格別顕著な効果を奏することができる。   Therefore, according to the present invention, the effect in a short time and the characteristics of the mud pressure shield method (uniform mud mixing at the face, uniform stirring and mixing by rotating the cutter, etc., plastic fluidity filled in the chamber) The screw conveyor that performs efficient VOC processing by simultaneous excavation processing in the chamber without using another stirring time in the continuous shield excavation process. At the stage where the soil is discharged from the soil, it is possible to achieve a particularly remarkable effect that the processing is completed and the underground environment is not affected.

なお、本発明による掘削土浄化技術においては、泥土圧シールド掘削機を用いる他に、泥水圧シールド掘削機を用いる場合にも適用することができる。   The excavated soil purification technology according to the present invention can be applied to the case where a mud pressure shield excavator is used in addition to the mud pressure shield excavator.

10 シールド掘削機
11 カッター
12 掘削機本体
13 チャンバー
14 攪拌手段
15 スクリューコンベア
16 攪拌翼
20 浄化剤添加手段(浄化剤供給装置)
30 土砂ビット
40 防音ハウス
50 シールドトンネル
DESCRIPTION OF SYMBOLS 10 Shield excavator 11 Cutter 12 Excavator main body 13 Chamber 14 Stirring means 15 Screw conveyor 16 Stirring blade 20 Purifier addition means (purifier supply device)
30 earth and sand bit 40 soundproof house 50 shield tunnel

Claims (6)

汚染土壌内をシールド掘進する際の掘削土浄化方法であって、
シールド切羽にて汚染土壌の浄化剤を地山に添加する工程と、
シールド掘削機のチャンバー内に取り込まれる浄化剤を含む掘削土を、攪拌手段で攪拌混合する工程と、
前記チャンバー内の攪拌済み掘削土をチャンバー外に搬送する工程と、
を有することを特徴とする、汚染土壌内をシールド掘進する際の掘削土浄化方法。
A method for purifying excavated soil when shield digging in contaminated soil,
Adding a soil cleaner with a shield face to the ground,
A step of stirring and mixing the excavated soil containing the purification agent taken into the chamber of the shield excavator with a stirring means;
Transporting the agitated excavated soil in the chamber out of the chamber;
A method for purifying excavated soil at the time of shield excavation in contaminated soil, characterized by comprising:
前記汚染土壌は揮発性有機化合物を含み、前記浄化剤は微細鉄粉と微粉末活性炭を含むことを特徴とする請求項1に記載の汚染土壌内をシールド掘進する際の掘削土浄化方法。   2. The excavated soil purification method for shield excavation in contaminated soil according to claim 1, wherein the contaminated soil contains a volatile organic compound, and the purification agent contains fine iron powder and fine powder activated carbon. 前記浄化剤を地山に添加する工程では、浄化剤を液状にして添加することを特徴とする請求項1又は2に記載の汚染土壌内をシールド掘進する際の掘削土浄化方法。   The method for purifying excavated soil when carrying out shield excavation in contaminated soil according to claim 1 or 2, wherein in the step of adding the purifier to the natural ground, the purifier is added in a liquid state. 汚染土壌内をシールド掘進する際の掘削土浄化方法に用いるシールド掘削機であって、
地山を掘削するカッターを先端部に備える掘削機本体と、
掘削機本体前面の切羽に汚染土壌の浄化剤を添加する浄化剤添加手段と、を備え、
前記掘削機本体は、浄化剤を含む掘削土が取り込まれるチャンバーと、チャンバー内の掘削土を攪拌する攪拌手段と、攪拌された掘削土を搬送する搬送手段と、を備えることを特徴とするシールド掘削機。
A shield excavator used for excavation soil purification method when shield excavation in contaminated soil,
An excavator body equipped with a cutter for excavating natural ground at the tip,
A purification agent adding means for adding a contaminated soil purification agent to the face of the front surface of the excavator body,
The excavator body includes a chamber into which excavated soil containing a cleaning agent is taken in, a stirring unit that stirs the excavated soil in the chamber, and a transport unit that transports the stirred excavated soil. Excavator.
前記攪拌手段は、カッター及び回転攪拌翼、固定攪拌翼、アジテータを含むことを特徴とする請求項4に記載のシールド掘削機。   The shield excavator according to claim 4, wherein the stirring means includes a cutter, a rotary stirring blade, a fixed stirring blade, and an agitator. 前記搬送手段がスクリューコンベアであることを特徴とする請求項4又は5に記載のシールド掘削機。   The shield excavator according to claim 4 or 5, wherein the conveying means is a screw conveyor.
JP2010274397A 2010-12-09 2010-12-09 Method for purifying excavated soil when shield construction is performed in contaminated soil and shield excavator Pending JP2012120987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010274397A JP2012120987A (en) 2010-12-09 2010-12-09 Method for purifying excavated soil when shield construction is performed in contaminated soil and shield excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010274397A JP2012120987A (en) 2010-12-09 2010-12-09 Method for purifying excavated soil when shield construction is performed in contaminated soil and shield excavator

Publications (1)

Publication Number Publication Date
JP2012120987A true JP2012120987A (en) 2012-06-28

Family

ID=46503032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010274397A Pending JP2012120987A (en) 2010-12-09 2010-12-09 Method for purifying excavated soil when shield construction is performed in contaminated soil and shield excavator

Country Status (1)

Country Link
JP (1) JP2012120987A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103711497A (en) * 2013-12-30 2014-04-09 上海市机械施工集团有限公司 Device for preventing shield tail of rectangular shield tunneling machine from further deforming
JP2015054262A (en) * 2013-09-10 2015-03-23 鹿島建設株式会社 Treatment method of construction sludge
JP2015196989A (en) * 2014-04-01 2015-11-09 鹿島建設株式会社 Method for removing gas from ground and tunnel-boring method
JP2015206205A (en) * 2014-04-21 2015-11-19 株式会社大林組 Foaming material for foam shield method, and foam shield method
JP2016079771A (en) * 2014-10-22 2016-05-16 株式会社大林組 Foam shielding method
JP2017196620A (en) * 2017-07-26 2017-11-02 株式会社大林組 Contaminated soil purifying method and system in shield method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544394A (en) * 1991-08-08 1993-02-23 Asanumagumi:Kk Diposition method of excavated earth and sand in earth pressure shield construction method
JP2002115486A (en) * 2000-10-06 2002-04-19 Shimizu Corp Shield excavator
JP2005058871A (en) * 2003-08-08 2005-03-10 Ohbayashi Corp Purification method for volatile organic chlorine compound
JP2006316599A (en) * 2005-05-16 2006-11-24 Riitekku:Kk Countermeasure method for polluted soil in closed type shield tunnel construction
JP2008169683A (en) * 2006-06-26 2008-07-24 Ohbayashi Corp Natural ground stabilizing method, natural ground stabilizing structure, filler, method for forming space in natural ground, tunnel construction method using jacking method, tunnel constructed by this method, tunnel construction method by shield machine, tunnel constructed by this method, drain well construction method for draining confined ground water and drain well for draining confined ground water
JP2012082618A (en) * 2010-10-12 2012-04-26 Kajima Corp Tunnel construction method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544394A (en) * 1991-08-08 1993-02-23 Asanumagumi:Kk Diposition method of excavated earth and sand in earth pressure shield construction method
JP2002115486A (en) * 2000-10-06 2002-04-19 Shimizu Corp Shield excavator
JP2005058871A (en) * 2003-08-08 2005-03-10 Ohbayashi Corp Purification method for volatile organic chlorine compound
JP2006316599A (en) * 2005-05-16 2006-11-24 Riitekku:Kk Countermeasure method for polluted soil in closed type shield tunnel construction
JP2008169683A (en) * 2006-06-26 2008-07-24 Ohbayashi Corp Natural ground stabilizing method, natural ground stabilizing structure, filler, method for forming space in natural ground, tunnel construction method using jacking method, tunnel constructed by this method, tunnel construction method by shield machine, tunnel constructed by this method, drain well construction method for draining confined ground water and drain well for draining confined ground water
JP2012082618A (en) * 2010-10-12 2012-04-26 Kajima Corp Tunnel construction method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015054262A (en) * 2013-09-10 2015-03-23 鹿島建設株式会社 Treatment method of construction sludge
CN103711497A (en) * 2013-12-30 2014-04-09 上海市机械施工集团有限公司 Device for preventing shield tail of rectangular shield tunneling machine from further deforming
JP2015196989A (en) * 2014-04-01 2015-11-09 鹿島建設株式会社 Method for removing gas from ground and tunnel-boring method
JP2015206205A (en) * 2014-04-21 2015-11-19 株式会社大林組 Foaming material for foam shield method, and foam shield method
JP2016079771A (en) * 2014-10-22 2016-05-16 株式会社大林組 Foam shielding method
JP2017196620A (en) * 2017-07-26 2017-11-02 株式会社大林組 Contaminated soil purifying method and system in shield method

Similar Documents

Publication Publication Date Title
JP2012120987A (en) Method for purifying excavated soil when shield construction is performed in contaminated soil and shield excavator
US20070225192A1 (en) Combined Chemical Oxidation/Assisted Bioremediation of Contaminats
JP5462761B2 (en) Tunnel construction method
JP6463222B2 (en) Processing method and processing system of excavated soil
KR101768006B1 (en) Soil Treatment System Using Nanobubble and Multi-Stage Washing of Inorganic Acid
JP2014073464A (en) Contaminated soil decontamination method in shield method
JP2015044171A (en) Treatment method for construction sludge and treatment device therefor
JP5959040B2 (en) How to treat aerated soil
JP2016000927A (en) Sludge site stabilization treatment method
JP4518503B2 (en) Contaminated soil purification method
JP4518504B2 (en) Contaminated soil purification method and equipment
JP6243171B2 (en) Construction sludge treatment method
JP2009112969A (en) Method for treating acid soil
JP6536633B2 (en) Method and system for purifying contaminated soil in shield method
JP5545441B2 (en) Method for treating surfactant in excavated soil
CN104254498B (en) The process of acid ore deposit discharge
JP3897553B2 (en) Construction method of underground purification wall
JP3764741B2 (en) Soil restoration method and soil restoration agent
JP2004292806A (en) Soil renewing agent and method for renewal of soil
JP2005324083A (en) Polluted soil treatment method and polluted soil treatment system
JP5809839B2 (en) Purification method for contaminated soil
JP5206363B2 (en) Sediment transport method and sediment transport system
JP2006055724A (en) Method for soil restoration
JP2009208077A (en) Contamination control method
JP2006159023A (en) Soil cleaning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150714