JP2012196123A - 地域内電力需要管理システム - Google Patents
地域内電力需要管理システム Download PDFInfo
- Publication number
- JP2012196123A JP2012196123A JP2012034176A JP2012034176A JP2012196123A JP 2012196123 A JP2012196123 A JP 2012196123A JP 2012034176 A JP2012034176 A JP 2012034176A JP 2012034176 A JP2012034176 A JP 2012034176A JP 2012196123 A JP2012196123 A JP 2012196123A
- Authority
- JP
- Japan
- Prior art keywords
- power
- state
- reverse
- request
- demand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/12—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
Landscapes
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
【解決手段】本発明は、高圧電力を低圧電力に変換し、低圧電力の低圧線に接続された需要家をグループとして電力供給を制御するシステムであり、発電設備、蓄電設備、宅内電力供給、発電及び逆潮流を制御する宅内電力分配器、発電、蓄電及び需要を制御するホームゲートウェイを有する逆潮流需要家と、高圧系統からグループ内の需要家への商用電力供給、グループ内の逆潮流需要家に対し、高圧系統の電力の供給状況に応じた発電、蓄電及び需要の要請を行う電力会社と、制御要請に応じてグループ内の逆潮流需要家に対し、逆潮流可能、蓄電可能及び需要可能電力を問合わせ、グループ内の電力供給を制御する地域管理サーバと、高圧電力を低圧電力に変換して供給、低圧電力を高圧電力に変換して逆潮流を行う電力中継システムを有する。
【選択図】図1
Description
しかし、自然エネルギーを用いた発電の場合、例えば、太陽光発電の場合、季節及び天候による発電量の変化があるため、自身の住宅の電力を自給できない状態、あるいは発電した電力を蓄積してさらに発電量が余る状態などの安定した発電を行うことができないことがある。
この特許文献1においては、各需要家における家電の稼動に必要な電力量の供給要求を、需要家から調停サーバが受ける。そして、調停サーバは、需要家からの供給要求に対して、現在の総供給量を考慮し、供給要求に対して許可あるいは拒否を行う。
また、電力需要が増加して全ての需要家に対して供給要求に対応した電力を供給できない場合、調停サーバは、需要家間において予め設定された優先度や、家電の種別に応じて緊急度の低い家電を一次停止させたり、あるいは家電間の稼働時間をずらしたり、家電の能力を変更している。
この特許文献2においては、太陽電池による発電設備を有した需要家において、発電設備の発電量が需要家の需要を超える場合、発電設備が発電した電力を破棄することなく有効に活用するためには、余剰の電力を蓄電池に蓄える構成が必要となる。
しかし、現在の需要家が発電した電力の売買に関しては、蓄電池を有した発電設備の場合、安価な夜間電力により蓄電した電力と、昼間に太陽光により発電した電力との区別が付かない。このため、夜間電力により蓄電した電力を、昼間に電力会社に売ることにより、利鞘が生じることとなり、電力会社が損失を被ることになり、蓄電池を有する発電設備のある需要家から電力を買わないという買電制度となっている。
この特許文献2においては、管理センターが需要家で蓄電された電力の由来を厳格に管理し、電力会社に通知することにより、商用電力系統から供給される電力と太陽光発電システムで生成した電力とを分離し、買い取り価格を販売価格と別に設定することを可能としている。これにより、太陽電池と蓄電池とを設置した需要家に対するインセンティブを与え、蓄電池を普及させることで、電力負荷の平準化を推進する構成となっている。
このため、配電系統への負担を抑えつつ、電力会社が逆潮流を公平に受け入れるため、電力網の物理的特性を考慮した需要家のグループ化を行い、配電系統が所定の逆潮流の電力となるように、グループ内の各需要家の逆潮流電力の制御を行う構成がある(例えば、特許文献3参照)。
これにより、車載用バッテリーの充電を、太陽電池で賄うことにより自然エネルギーの有効利用を図ることが期待できる。
しかしながら、この特許文献4の構成においても、自然エネルギーの不安定性をカバーするためのスケジュール管理が考案されている。すなわち、ユーザは予定した時間内になるべく安いコストで充電することを望む要望に対して、商用電力を適切に利用する方法を提案している。
需要側の電力使用の制御に対して、調停サーバの運用をうまく行うことにより、電力の配電系統を安定化するという効果が得られることが想定できる。
しかしながら、需要側において太陽電池が大量に導入され、さらにそのエネルギーを無駄なく活用するための蓄電池が導入されることを考慮すると、需要家の発電能力をさらに発電所や蓄電所としての機能として活用する必要がある。
特許文献1のシステムは、需要家の発電設備及び蓄電設備を十分に活用する構成とはなっておらず、需要家の発電する電力を十分に生かすことができない。
しかしながら、今後の自然エネルギーを用いた発電設備の大量導入を考慮すると、電力の発生と需要を自然(例えば、天候状態)に任せたり、より高く買う相手に電力を売るというような経済原理だけで運用することには、電力の安定した供給を阻害するという問題が発生することが想定される。
したがって、特許文献2のシステムは、特許文献1と同様に、需要家の発電設備及び蓄電設備を十分に活用する構成とはなっておらず、需要家の発電する電力を十分に生かすことができない。
しかしながら、発電量そのものは、すでに述べたように自然の成り行きにより大きく変動することになる。
このため、配電系統への電力の受け入れには限界が発生し、この限界を超えた場合には逆潮流を禁止し、エネルギーを破棄する可能性がある。
より積極的に自然エネルギーを利用するためには、蓄電池への電力の蓄電や蓄電池からの電力の供給などの制御も必要になる。
したがって、特許文献3のシステムは、特許文献1と同様に、需要家の発電設備及び蓄電設備を十分に活用する構成とはなっておらず、需要家の発電する電力を十分に生かすことができない。
しかしながら、ユーザ視点に立ってみると、電力会社の電力を必要な時だけうまく活用している方法ではあるが、配電系統からすると特許文献1にも記載されているように、車載用バッテリーに充電するなどの負荷の変動を抑えるため、車載バッテリーの充電を安いコストで充電するなどして、需要を制御したい要望もある。
すなわち、同一のロジックでスケジューリングされる電力を需要する機器が、その需要時期が集中した場合には、全体に対して安定的な電力を供給できないとする問題が発生することが想定される。
したがって、特許文献4のシステムは、特許文献1と同様に、需要家の発電設備及び蓄電設備を十分に活用する構成とはなっておらず、需要家の発電する電力を十分に生かすことができない。
また、電力会社が高圧配電で各需要家に対して電力を供給している場合、各高圧配電線からの電力の供給の不安定な状態において、高圧配電を一旦低圧に電圧変換した後、低圧線を介して、各需要家に電力を供給する高圧系統を用いて電力を供給するシスセムがある。この高圧系統を用いた電力の供給を行う場合、発電設備を有する需要家それぞれの発電状態や需要状態を検出して、低圧とした後に各需要家に電力の供給及び逆潮流の制御を個別に制御することが困難である。
さらに、この先の自然エネルギーを用いた発電設備の導入は、より進捗すると考えられる。
しかしながら地域や建物の形態によっても、発電設備には多くのバラエティがあり、これらの管理の全てを発電所が取り扱っていくには、配電の設備が大型化し、さらには、上述した高圧系統により電力の供給を行う場合、電力の安定供給を行う処理がより複雑となることが考えられる。
また、有機的なシステムを構成するためには、通信技術と電力制御技術とが必要となるが、各バラエティに応じて実現したい内容によって制御レベルが異なっており、コストも違ってくる。
結果として、発電設備及び蓄電設備の制御方式を決定するためには、社会システム全般にかかわるため、その仕様に関しては決定が非常に難しい。
図1において、地域内電力需給制御システムは、逆潮流需要家1、地域管理サーバ2、電力会社3と従来電力網4とで構成されている。各逆潮流需要家1は、広域ネットワーク5を介して地域管理サーバ2と接続され、各種データの送受信を地域管理サーバ2と行う。
地域管理サーバ2は、電力会社3の電力調整サーバ(本実施形態においては電力会社3と記載する)と接続されているとともに、広域ネットワーク5を介して、逆潮流需要家1に接続されている。
従来電力網4は、発電所41が発電した電力(交流電力)を、電力会社3が発電設備を有していない需要家に対して供給している電力(交流電力、以下特に断りのない場合、電力とは交流電力を指す)の供給網である。
電力中継システム6は、電力会社3から供給される高圧系統における高圧電力を、低電圧電力に変換して共有低圧線に電力供給し、また、共有低圧線の低圧電力を高圧電力に変換して高圧系統に対して逆潮流する。この電力中継システム6における電力供給及び逆潮流の制御は地域管理サーバ2により行われる。
ホームゲートウェイ14は、太陽電池11の発電状態を検出し、宅内電力分配器12を制御し、蓄電池13に対する蓄電処理、電力会社3からの受電処理、電力会社3への逆潮流処理などの各処理を制御する(後に詳述)。
地域管理サーバ2は、電力会社3の電力調整サーバ(以下、本実施形態において、電力会社3との各信号の送受信を記述する場合、この電力調整サーバが各信号の送受信を行う)からの電力制御の要請信号(発電要請、蓄電要請及び需要要請の要請信号)を受けると、これらの電力制御の要請信号に対応して、各逆潮流需要家1の蓄電処理、受電処理及び逆潮流処理の各々を制御する(後に詳述)。
電力中継システム6は、高圧系統及び共有低圧線間に設けられ、変圧器61及び同期調整器62を備えている。
同期調整器62は、高圧系統から共有低圧線に対して電力を供給する場合、高圧系統における高圧電力を、共有低圧線における低圧電力の交流周波数と同期が取れるように調整し、一方、共有低圧線から高圧系統に対して電力を供給する場合、共有低圧線における低圧電力を、高圧系統における高圧電力の交流周波数と同期が取れるように調整する。
従来は、図3(a)に示すように、逆潮流需要家1において発電電力が余った場合(発電電力が自宅における需要を上回った場合)、電力会社3に対して余剰電力を逆潮流し、発電電力が需要量に満たない場合、電力会社3から電力の供給を受けている。
一方、本実施形態によれば、電力会社3が地域管理サーバ2に対し、すでに述べた電力制御の要請信号を出力し、地域管理サーバ2がこの要請信号に基づいて、逆潮流需要家1の電力制御装置(本実施形態においては逆潮流需要家1と記載する)に対して発電処理、蓄電処理及び逆潮流処理を制御している。
これにより、図3(b)に示すように、電力会社3は、自身の有する発電所41の他に、地域ごとにグループ化された逆潮流需要家1を、仮想発電所、仮想蓄電所及び仮想需要家として制御することができ、電力需要の急激な変化に対して、地域内で電力の不足及び余剰を解消して、電力の安定供給を行うことができる。
DC/DCコンバータ122は、太陽電池11から電力測定器m1方向にのみ電力を供給する片方向のコンバータであり、ダイオード126を介して太陽電池11の発電する電力を予め設定された電圧に変換して出力する。ここで、DC/DCコンバータ122は、入力端子がダイオード126のカソードに接続され、出力端子がスイッチSW1の共通端子3に接続されている。ダイオード126は、アノードが太陽電池11に接続されている。
スイッチSW1は、端子1がDC/DCコンバータ124の端子124aと接続され、共通端子3がDC/DCコンバータ122の出力端子と接続され、端子2がオープン状態である。そして、スイッチSW1は、DC/DCコンバータ122の出力端子とDC/ACコンバータ124の端子124aとを、オン状態(共通端子3が端子1と接続)にて接続とし、一方、オフ状態(共通端子3が端子2と接続)にて非接続とする。
スイッチSW2は、共通端子3がDC/DCコンバータ123の端子123bと接続され、端子2がオープンであり、端子1がDC/ACコンバータ125の入力端子である端子125aと接続されている。そして、スイッチSW2は、DC/DCコンバータ123の端子123bと、DC/ACコンバータ125の入力端子125aとを、オン状態(共通端子3が端子1と接続)にて接続とし、一方、オフ状態(共通端子3が端子2と接続)にて非接続とする。
スイッチSW5は、共通端子3がDC/ACコンバータ124の端子124bに接続され、端子2がオープンであり、端子1が外部の商用低圧線(電力会社からの電力の供給線)に接続されている。そして、スイッチSW5は、オン状態(共通端子3が端子1に接続)の場合、DC/ACコンバータ124の端子124bと商用定圧線とを接続し、オフ状態(共通端子3が端子2に接続)の場合、DC/ACコンバータ124の端子124bの端子と商用定圧線とを非接続とする。
電力測定器m3は、共通端子3と端子2とが接続している状態において、DC/ACコンバータ125の出力端子から宅内電力供給線に供給される電力である蓄電電力Psを測定し、一方、放電状態の場合、DC/DCコンバータ123から出力される電力である放電電力Pdを測定する。電力測定器m1、m2及びm3の各々は、それぞれ測定する測定電力をモニタデータ(Pp、Ps、Pd、Pc)として通信インターフェース121を介して、ホームゲートウェイ14へ出力する。
通信インターフェース121は、ホームゲートウェイ14からのスイッチ制御のための制御信号を、スイッチSW1、SW2、SW3、SW4及びSW5の各々へ供給し、電力測定器m1、m2及びm3から出力されるモニタデータ(Pp、Ps、Pd、Pc)を、ホームゲートウェイ14に対して出力する。
また、上述した電力測定器m1、m2及びm3の各々は、測定器内部の電圧計が測定する電圧と、測定器内部の電流計が測定する電流とから、各々の電力を求める。
分配器制御部141は、宅内記憶部144に記憶されている制御テーブル145に従い、宅内電力分配器12の制御を行う。
蓄電池残存容量算出部142は、宅内電力分配器12から供給されるモニタデータにおける蓄電電力Ps(W)及び放電電力Pd(W)により、蓄電池13の残存容量SOCの算出を以下の(1)式により行う。
SOC=(Pint+(KcΣPs−(1/Kd)ΣPd))/Pmax …(1)
このSOCを求める式において、係数Kcは、蓄電池13における充電効率係数である(0<Kc<1)。充電効率係数Kcは、電力の交流から直流への変換における損失、直流での電圧変換における損失、蓄電池13を構成するバッテリーセル内の内部抵抗による損失、及びこのバッテリーセルを直並列に組み合わせて運用するための蓄電池13内の制御回路による蓄電池13への充電の際における損失を実験的に求め、これら各損失により求めた蓄電池13への与えられた電気エネルギーに対し、実際に蓄電池13に対して充電される電気エネルギーの割合を示す充電効率係数である。ここで、蓄電池13内の制御回路は、個々のバッテリーセルの安全性やバランスの制御、高電圧制御を行う回路であり、一般的に、バッテリーセルで構成される蓄電池で用いられているセルマネージメントユニットまたはバッテリーマネージメントユニットと呼ばれている電子回路である。
また、Kdは、蓄電池13における放電効率係数である(0<Kd<1)。電力の直流から交流への変換における損失、交流での電圧変換における損失、蓄電池13を構成するバッテリーセルの内部抵抗による損失、及び上記蓄電池13内の制御回路による蓄電池13からの放電の際における損失を実験的に求める。そして、この実験的に求めた各損失かに基づき、蓄電池13に蓄電された電気エネルギーを外部に供給する際、蓄電池13から放電されるエネルギーに対して、上述した損失分減少して実際に外部に供給される割合を示す放電効率係数を求めている。したがって、電力容量Pdを供給する際、実質的に(1/Kd)Pdが蓄電池13から放電されて消費されることになる。
すなわち、蓄電池残存容量算出部142は、上記(1)式により、蓄電電力Ps及び放電電力Pdの各々を、時間単位すなわち測定周期(例えば、30分あるいは1時間周期など)毎の積算値として、電力量である蓄電量積算値ΣPdに係数Kcを乗算した結果と放電量積算値ΣPdを係数Kdにより除算した結果との差分を求め、この差分を初期電力量Pintに加算し、電力量Pmaxで除算した結果を残存容量SOCとして求めている。
次に、図7は制御テーブル145の構成例を示す図である。この図7には、後述する分配器制御部141がモニタデータなどにより、条件テーブル146を参照して判定した、状態に応じたスイッチSW1からSW5の設定が記述されている。
分配器制御部141は、条件テーブル146を参照して、自己充電中である状態SO1、商用充電中である状態SO2、逆潮流である状態SO3、強制逆潮流である状態SO4、強制商用充電であるSO5、放電中である状態SU1、商用受電である状態SU2、商用充電である状態SU3、強制逆潮流である状態SU4、強制商用充電であるSU5の何れかの状態であるか否かの判定を行う。
条件テーブル146には、図8に示す各状態の条件が記載されている。電力過剰状態であるPp≧(Pc+Ps)の場合、状態SOn(1≦n≦5)の各状態と定義され、電力不足状態Pp<(Pc+Ps)の場合、状態SOq(1≦q≦5)の各状態と定義されている。図8は、発電電力Ppの数値に応じて宅内電力分配器12における発電、蓄電などの状態遷移を示す図である。以下の状態遷移が行われる際の各スイッチSWの制御は分配器制御部141が行う。また、図8において、実線の矢印は地域管理サーバ2からの要請信号に基づく要請制御による状態間の移行を示し、破線の矢印は宅内における分配器制御部141の判定処理に基づく状態間の移行を示している。
状態SO1:SOCが1未満であり、蓄電電力Psが予め設定した蓄電電力閾値以上である状態。すなわち蓄電池13が充電可能な状態の場合に設定される。ここで、蓄電池13の運用に関しては、SOCを1を上限とするのではなく、0.9を上限とするなど、蓄電池13の寿命を考慮した運用をしても良い。すなわち、分配器制御部141は、電力過剰の状態となった場合、宅内電力分配器12の各スイッチSWを制御して、宅内電力分配器12の各スイッチSWの接続を電力不足状態(SU1〜SU5)から状態SO1に移行させる。また、地域管理サーバ2の需要を行う処理を要請する要請信号である需要要請信号を受け、上記状態の場合、分配器制御部141は、宅内電力分配器12の各スイッチSWを制御して、宅内電力分配器12の各スイッチSWの接続を状態SO3から状態SO1に移行させる。
状態SO2:SOCが1未満であり、蓄電電力Psが予め設定した数値以下であり、現在の時刻が電力料金が安価な(充電コストが安い)夜間である場合に設定される。すなわち、地域管理サーバ2の需要を要請する要請信号である需要要請信号を受け、上記状態の場合、分配器制御部141は、宅内電力分配器12の各スイッチSWを制御して、宅内電力分配器12の各スイッチSWの接続を状態SO3から状態SO2に移行させる。
状態SO3:電力会社3に対して電力を売る状態。太陽電池11の発電電力Ppが、Pp≧(Pc+Ps)であって、SOCが1であり、逆潮流需要家1においてユーザが逆潮流とする制御を行った場合に設定される。すなわち、蓄電池13の蓄電量がPmaxとなった場合、分配器制御部141は、宅内電力分配器12の各スイッチSWを制御して、宅内電力分配器12の各スイッチSWの接続を状態SO1から状態SO3に移行させる。
状態SO4:電力会社3に対して電力を売る状態。SOCが供給閾値以上であり、地域管理サーバ2から、逆潮流を行うように発電要請信号を受けた場合に設定される。すなわち、地域管理サーバ2からの発電を行う処理を要請する要請信号である発電要請信号を受け、上記状態の場合、分配器制御部141は、宅内電力分配器12の各スイッチSWを制御して、宅内電力分配器12の各スイッチSWの接続を状態SO1またはSO2から状態SO4に移行させる。
状態SO5:蓄電池13が充電可能なSOCが1未満の場合であり、地域管理サーバ2から蓄電を行う処理を要請する要請信号である蓄電要請信号を受けた場合に設定される。すなわち、地域管理サーバ2の蓄電要請により、分配器制御部141は、宅内電力分配器12の各スイッチSWを制御して、宅内電力分配器12の各スイッチSWの接続を状態SO1からSO5に移行させる。この状態SO5は、宅内電力分配器12の各スイッチ(SW1からSW4)の接続状態が、商用電力から蓄電池13に対して充電を行っている状態SO2と同様である。
また、状態SO1、SO2、SO3、SO4及びSO5の各々の電力過剰状態(Pp≧Pc+Ps)にあったが、電力不足状態(Pp<Pc+Ps)となると、電力不足状態における状態SU1に設定が移行される。
状態SU2:SOCが1未満であり、蓄電電力Psが予め設定した蓄電電力閾値以下であり、現在の時刻が電力料金が安価な(充電コストが安い)夜間でない場合に設定される。すなわち、地域管理サーバ2の需要を行う処理を要請する要請信号である需要要請信号を受け、上記状態の場合、分配器制御部141は、宅内電力分配器12の各スイッチSWを制御して、宅内電力分配器12の各スイッチSWの接続を状態SU1から状態SU2に移行させる。また、分配器制御部141は、蓄電池13の蓄電電力Psが予め設定した数値を下回った場合、宅内電力分配器12の各スイッチSWを制御して、宅内電力分配器12の各スイッチSWの接続を状態SU1から状態SU2に移行させる。また、分配器制御部141は、蓄電池13の蓄電電力Psが予め設定した数値を越えた場合、宅内電力分配器12の各スイッチSWを制御して、宅内電力分配器12の各スイッチSWの接続を状態SU3から状態SU2に移行させる。
状態SU3:SOCが1未満であり、蓄電電力Psが予め設定した蓄電電力閾値以下であり、現在の時刻が電力料金が安価な(充電コストが安い)夜間である場合に設定される。すなわち、地域管理サーバ2の需要を要請する要請信号である需要要求信号受け、上記状態の場合、分配器制御部141は、宅内電力分配器12の各スイッチSWを制御して、宅内電力分配器12の各スイッチSWの接続を状態SU1から状態SU3に移行させる。また、分配器制御部141は、蓄電池13の蓄電電力Psが最大蓄電電力に対して余裕があり、夜間電力の時間帯となったことを検出した場合、宅内電力分配器12の各スイッチSWを制御して、宅内電力分配器12の各スイッチSWの接続を状態SU2から状態SU3に移行させる。
状態SU4:電力会社3に対して電力を売る状態。SOCが供給閾値以上であり、地域管理サーバ2から、逆潮流を行う処理を要請する要請信号である発電要請信号を受けた場合に設定される。すなわち、地域管理サーバ2の発電要請により、分配器制御部141は、宅内電力分配器12の各スイッチSWを制御して、宅内電力分配器12の各スイッチSWの接続を状態SU2またはSU3から状態SU4に移行させる。
状態SU5:蓄電池13が充電可能なSOCが1未満の場合であり、地域管理サーバ2から蓄電を行う処理を要請する要請信号である蓄電要請信号を受けた場合に設定される。すなわち、状態SU1から状態SU5への移行は、上述したように、地域管理サーバ2からの蓄電要請信号が供給された場合にしか行われない。この状態SU5は、宅内電力分配器12の各スイッチ(SW1からSW4)の接続状態が、商用電力から蓄電池13に対して充電を行っている状態SU3と同様である。このとき、分配器制御部141は、宅内電力分配器12の各スイッチSWを制御して、宅内電力分配器12の各スイッチSWの接続を状態SU1またはSU2から状態SU5に移行させる。
また、分配器制御部141は、状態SU1、SU2及びSU3において、電力が過剰となった場合、状態SU1、SU2、SU3から状態SO1に遷移させ、状態SO1、SO3において、電力が不足した場合、状態SO1、SO3から状態SU1に遷移させる。
また、状態SU1、SU2、SU3、SU4及びSU5の各々の電力不足状態(Pp<Pc+Ps)にあったが、電力過剰状態(Pp≧Pc+Ps)となると、電力過剰状態における状態SO1に設定が移行される。
天気予報問い合わせ部143は、一定周期毎に天気予報データを配信する天気予報会社のサーバにアクセスし、周期単位の天気予報データ(天候、温度など)を取得する。天候は「晴れ」、「曇り」、「雨」及び「雲量」などの種別がある。
宅内記憶部144には、すでに説明した制御テーブル145及び条件テーブル146と電力消費履歴テーブル147とが記憶されている。
電力消費履歴テーブル147には、天候毎に、月、曜日、時間帯における過去の使用電力が記憶されている。
また、分配器制御部141は、地域管理サーバ2から供給された問い合わせ情報に対し、自身の識別情報と、計算した供給可能電力Pu及び供給可能時間Tuと、現在の状態である元の状態及び要請を受け入れて動作する際の変更後の状態とを地域管理サーバ2に対して出力する。
問い合わせ部21は、電力会社3から発電要請、蓄電要請及び需要要請の要請信号(発電要請信号、蓄電要請信号、需要要請信号)を受けると、自身の管理する逆潮流需要家1のグループに対し、逆潮流処理、蓄電処理及び受電処理を行えるか否かの回答を要求する問い合わせ信号(以下、問い合わせ)を出力する。
集計部22は、問い合わせに対する、各逆潮流需要家1からの回答信号(以下、回答)より、識別情報と、供給可能電力Pu及び供給可能時間Tuと、元の状態及び変更後の状態とを抽出し、元の状態及び変更後の状態とが、予め内部に設定された状態の組み合わせ(元の状態及び変更後の状態の組み合わせ)に対応するか否かの判定を行い、設定されている状態の組み合わせと一致する状態の組み合わせを有する逆潮流需要家1の抽出を行う。この状態の組み合わせは、発電要請、蓄電要請及び需要要請の各々に対して別々に複数設けられている。
また、集計部22は、状態の組み合わせと、残存容量SOCと、供給可能電力Puと、供給可能時間Tuとの各々の大小関係で設定されたランク付けルールにより、状態の組み合わせが一致する逆潮流需要家1のランク付けを行う。ここで、集計部22は、予め内部に設定されている供給時間より少ない供給可能時間Tuの逆潮流需要家1をランクから削除するようにしても良い。
また、制御部24は、発電要請の場合、選択された逆潮流需要家1からの逆潮流する逆潮流電力が、共有低圧線から高圧系統に対して逆潮流されるように、電力中継システム6の電力の出力方向を共有低圧側から高圧系統になるように制御する。一方、制御部24は、蓄電要請または需要要請の場合、選択された逆潮流需要家1に対して供給される電力が、高圧系統から共有低圧線に対して逆潮流されるように、電力中継システム6の電力の出力方向を高圧系統から共有低圧側になるように制御する。
上述した供給可能な能力である供給可能総電力を電力会社3に対して回答しておくことにより、電力会社3は逆潮流需要家1からの電力供給にリスクがあることを認識させることができる。この際、電力会社3は、能力いっぱいの回答をした地域管理サーバ2に対しては、追加の要請(発電要請、蓄電要請及び需要要請)を行わない。
そして、電力会社3は、他の逆潮流需要家1のグループを管理している地域管理サーバ2に対し、新たに要請(発電要請、蓄電要請及び需要要請)を行う。
<発電要請>
図9及び図10を用いて発電要請における地域内電力需給制御システムの動作を説明する。図9は、発電要請における電力会社3、地域管理サーバ2及び住戸(逆潮流需要家1)とにおける制御のシーケンスの一例を示す図である。図10は、地域管理サーバ2の集計部22が生成する逆潮流需要家1のランク付けの結果を示すテーブルである。この図10において、ランキングの順位と、元の状態、変更後の状態、残存容量SOC、発電量(供給可能電力Pu)、電力供給が可能な継続時間(供給可能時間Tu)とが対応され、図示しないがそれぞれランキングされた逆潮流需要家1の識別情報も対応付けられている。
電力会社3の電力調整サーバは、電力網における供給電力が不足すると、地域管理サーバ2に対し、この地域管理サーバ2の管理する逆潮流需要家1に対して逆潮流を行わせるための発電要請を示す発電要請信号に対し、必要とする電力である要請電力と、この要請電力を供給する時間と付加し、地域管理サーバ2に出力する。
問い合わせ部21は、電力会社3の電力調整サーバからの発電要請信号を受信すると、自身の管理する逆潮流需要家1の全てに対し、逆潮流処理に対する能力の問い合わせを行う問い合わせ情報を出力する。
分配器制御部141は、天気予報会社のサーバから天気予報データを取得し、電力消費履歴テーブル147から、この天気予報データが表す天候における月及び曜日及び時間帯における単位時間当たりの使用電力Pdと発電電力Ppとを読み出し、予想使用電力Pd、予想発電電力Ppとする。
そして、分配器制御部141は、現在の残存容量SOC、予想使用電力Pd、予想発電電力Ppとを用いて、以下の(2)式に基づいて、供給可能電力Puと供給可能時間Tuとを予め設定された単位時間(例えば、30分や1時間)毎に算出する。この単位時間の長さは、気象情報の示す現在の気象状態(天気、外気温などの状態)や、過去の気象状態における電力使用の実績記録の精度に基づいて設定される。
Pu=SOC・Pmax+Kc・Pp−(1/Kd)・Pd …(2)
また、分配器制御部141は、例えば、単位時間を1時間とした場合、1時間毎に積算値ΣPuを計算し、計算を行った時点からΣPuが0となる時点までの時間を供給可能時間Tuとする。したがって、分配器制御部141は、ΣPの積算回数、すなわち単位時間毎に算出した供給可能電力Puの加算値が4回でΣPuが負となると、3回まではΣPuが正であることを検出し、1時間×3を計算し、供給可能時間Tuを3時間として求める。
また、分配器制御部141は、単位時間が30分の場合、3回目でΣPuが負となると、直前の単位時間の計算時の2回目まではΣPuが正であるため、30分×2を計算し、供給可能時間Tuを1時間(60分)として求める。
そして、分配器制御部141は、現在の残存容量SOCと、算出した供給可能電力Pu及び供給可能時間Tuとを、回答(能力回答)として地域管理サーバ2へ出力する。
このとき、分配器制御部141は、上記回答に対して、自身の識別情報と、現在の状態と、発電要請により変更した後の状態を付加する。ここで、分配器制御部141は、現在の状態が状態SO1からSO3の場合、逆潮流処理を行うため、条件テーブル146のルール(制御ルール)により、変更後の状態を状態SO4とする。一方、分配器制御部141は、現在の状態が状態SU1からSU3の場合、逆潮流処理を行うため、条件テーブル146のルールにより、変更後の状態を状態SU4とする。本実施形態において、複数の要請が同一の地域管理サーバ2に対して行われないとし、要請された際、各逆潮流需要家1は通常運転状態の状態SO1からSO3、状態SU1からSU3のいずれかの状態にある。
集計部22は、予め内部記憶部に記憶されている管理下にある全ての逆潮流需要家1の識別情報と、回答を送信してきた逆潮流需要家1の識別情報とを比較し、全ての逆潮流需要家1から回答が来たことを検出すると、以下の集計処理を行う。
そして、集計部22は、逆潮流需要家1毎に、元の状態と変更後の状態との組み合わせと、予め内部に発電要請に対応して設定されていた元の状態と変更後の状態とを比較し、一致する組み合わせの逆潮流需要家1を抽出する。ここで、内部に発電要請に対応して設定されていた元の状態と変更後の状態の組み合わせは、図9に示すように、[元の状態,変更後の状態]として、[SO2,SO4]、[SO1,SO4]、[SU2,SU4]、[SU3,SU4]である。
そして、集計部22は、設定されている組み合わせ[SO2,SO4]、[SO1,SO4]、[SU2,SU4]、[SU3,SU4]のいずれかに一致した組み合わせ[元の状態,変更後の状態]の逆潮流需要家1を抽出し、抽出した逆潮流需要家1のランク付けを行う。
例えば、ランク付けのルール(制御ルール)としては、
Aa.電力会社3の電力調整サーバの要請信号が発電要請信号の際、逆潮流需要家1の宅内における発電電力が過剰(Pp≧Pc+Ps)であり、かつ商用電力による蓄電設備に対する充電を行う商用充電状態(SO2)の場合、
Ab.電力会社3の電力調整サーバの要請信号が発電要請信号の際、逆潮流需要家1の宅内における発電電力が過剰であり、かつ発電設備の発電電力による蓄電池13に対する充電を行う自己充電状態(SO1)の場合、
Ac.電力会社3の電力調整サーバの要請信号が発電要請信号の際、逆潮流需要家1の宅内における発電電力が不足(Pp<Pc+Ps)であり、かつ商用電力を受電している商用受電状態(SU2)の場合、
Ad.電力会社3の電力調整サーバの要請信号が発電要請信号の際、逆潮流需要家1の宅内における発電電力が不足であり、かつ商用充電状態(SU3)の場合、
のAa、Ab、Ac、Adの順番であり、同一の場合には要請電力に対応した発電電力の大きい方がランクが高くなるとした定義がなされている。
したがって、集計部22は、上述したルールに従い、逆潮流需要家1のランク付けを行い、それぞれ供給可能電力Pu及び供給可能時間Tuを付加し、図10に示すランク付けのテーブルを生成し、内部記憶部に書き込んで記憶する。図示されていないが、集計部22は、逆潮流需要家1の識別情報を、この逆流需要家1のランクに対応してランク付けのテーブルに書き込み記憶させる。
次に、制御部24は、ランク付けのテーブルにおいて、要請信号の発電要請として供給された要請電力の数値となるまで、識別情報により最上位のランクの逆潮流需要家1から順番に下位のランクの逆潮流需要家1の供給可能電力Puを積算する。
このとき、制御部24は、供給可能電力Puの加算が要請電力を超えた場合、そのとき要請電力を超えるまで加算した供給可能電力Puの逆潮流需要家1を電力供給元として選択する。一方、制御部24は、ランク付けした全ての逆潮流需要家1の供給可能電力Puを加算しても要請電力を超えない場合、ランク付けした全ての逆潮流需要家1を電力供給元として選択する。ここで、制御部24は、ランク付けされた逆潮流需要家1の供給可能時間Tuで最も短い時間を、供給可能総時間とする。このとき、制御部24は、電力供給元として選択した逆潮流需要家1の識別情報を内部の記憶部に書き込んで記憶させる。
そして、回答部23は、電力の供給が可能または供給可能総電力のいずれかと、供給可能総時間とを電力会社3へ回答として出力する。
電力会社3の電力調整サーバは、地域管理サーバ2から、発電要請を要請する発電要請信号に対する回答として、電力の供給が可能または供給可能総電力のいずれかと、供給可能総時間とが入力されると、電力と時間とを確認する。
そして、電力会社3の電力調整サーバは、各選択された逆潮流需要家1の電力制御装置(本実施形態においては逆潮流需要家1と記載する)に対して、逆潮流を開始することを指示する了解信号を地域管理サーバ2へ出力する。
地域管理サーバ2は、電力会社3の電力調整サーバから了解信号が供給されると、ステップS14において電力供給元として選択した逆潮流需要家1(識別情報により識別)の各々に対し、個別に逆潮流処理(強制逆潮流)を行うことを指示する変更要請信号を出力する。すなわち、地域管理サーバ2において、制御部24は、逆潮流先として選択した内部の記憶部に記憶している逆潮流需要家1の識別情報を読み出し、当該識別情報の示す逆潮流需要家1の各々に対し、個別に逆潮流処理を行うことを指示する変更要請信号を出力する。
分配器制御部141は、地域管理サーバ2から強制逆潮流を行うことを指示する変更要請信号が供給されると、自身が送信した変更後の状態に対応するスイッチ制御の情報を制御テーブル145から読み出し、宅内電力分配器12における各スイッチSWの制御を行う。
例えば、状態SO4に遷移した場合、分配器制御部141は、図6に示す制御テーブル145の状態SO4のスイッチ設定に基づいて、スイッチSW1において共通端子3を端子1と導通状態にさせ、スイッチSW2において共通端子3を端子1と導通状態とさせ、スイッチSW3において共通端子3を端子2と導通状態とさせ、スイッチSW4において共通端子3を端子2と導通状態とし、スイッチSW5において共通端子3を端子1と導通状態とする。このとき、分配器制御部141は、DC/ACコンバータ124を、端子124aから入力される電力を、端子124bから商用低電圧線へ供給するように制御する。また、分配器制御部141は、DC/DCコンバータ123を、端子123aから入力される蓄電池13からの電力を、端子123bから出力するように制御する。
これにより、宅内電力分配器12は、太陽電池11からDC/DCコンバータ122を介して得られる発電電力Ppと、蓄電池13からの放電電力PdとをDC/ACコンバータ124を介して、商用電圧線に対して逆量流させる。また、このとき、太陽電池11からDC/DCコンバータ122を介して得られる発電電力Ppと、蓄電池13からの放電電力Pdとが、DC/ACコンバータ125を介して宅内電力供給線に対して供給される。
これにより、宅内電力分配器12は、太陽電池11からDC/DCコンバータ122を介して得られる発電電力Ppと、蓄電池13からの放電電力PdとをDC/ACコンバータ124を介して、商用電圧線に対して逆潮流させる。また、このとき、太陽電池11からDC/DCコンバータ122を介して得られる発電電力Ppと、蓄電池13からの放電電力Pdとが、DC/ACコンバータ125を介して宅内電力供給線に対して供給される。
そして、地域管理サーバ2において、制御部24は、選択した全ての逆潮流需要家1から了解信号が供給されると、選択された逆潮流需要家1からの逆潮流する逆潮流電力が、共有低圧線から高圧系統に対して逆潮流されるように、電力中継システム6の電力の出力方向を共有低圧側から高圧系統になるように制御する。
このとき、制御部24は、了解信号に付加された識別情報と、電力供給元として内部に記憶されている選択した逆潮流需要家1の識別信号とを逐次比較し、内部に記憶されている識別情報の全てが入力されたか否かを判定することで、選択した全ての逆潮流需要家1から了解信号が入力されたか否かの判定を行う。
上述したように、電力会社3の発電要請に応じて、地域管理サーバ2が各逆潮流需要家1に対して逆潮流処理の制御を行うことにより、電力会社3は逆潮流需要家1のグループをあたかも発電所(仮想発電所)として用いることが可能となる。
また、上述したステップS14において、電力会社3が要請電力とともに要請時間(要請電力を供給する時間)が要求された場合、時間をずらして要請する場合もある。
また、地域管理サーバ2は、自身が管理する地域グループにおける共有低圧線の電力供給状況を検出し、電圧低下などから不足する電力を検出することにより、電力会社3からの発電要請が無い場合においても、電力会社3の発電要請を受けた際と同様の処理を管理する地域グループ内の各逆潮流需要家1に対して行う。
例えば、地域管理サーバ2における制御部24は、電力会社3から一定量の電力の供給を受けている場合、天候などの要因により地域グループ内の需要家(逆潮流需要家1も含む)の電力需要が増加し、電力会社3から供給される電力が供給に対して不足していることを検出すると、自身の管理する地域グループ内における全ての逆潮流需要家1に対して、逆潮流可能電力の問い合わせを行う。
このとき、地域グループ内における逆潮流需要家1の行う処理については、すでに電力会社3から発電要請のあった場合と同様である。
そして、制御部24は、各逆潮流需要家1からの回答に基づき、すでに説明したランク付けを逆流需要家1全てに対して行う。
ランク付けが終了した後、制御部24は、ランクの最上位から順番に発電量を加算し、上述した不足した電力となった時点まで加算に用いた発電量の逆潮流需要家1を、逆潮流元の逆潮流需要家1として選択する。
選択処理が終了すると、制御部24は、選択した逆潮流需要家1に対して、個別に逆潮流処理(強制逆潮流)を行うことを指示する変更要請信号を出力する。
変更要請信号が供給された逆潮流需要家1において、分配器制御部141は、自身が送信した変更後の状態に対応するスイッチ制御の情報を制御テーブル145から読み出し、宅内電力分配器12における各スイッチSWの制御を行う。以降は、電力会社3から発電要請を受けた場合と同様である。
図11及び図12を用いて蓄電要請における地域内電力需給制御システムの動作を説明する。図11は、蓄電要請における電力会社3の電力調整サーバ、地域管理サーバ2及び住戸(逆潮流需要家1)とにおける制御のシーケンスの一例を示す図である。図12は、地域管理サーバ2の集計部22が生成する逆潮流需要家1のランク付けの結果を示すテーブルである。この図12において、ランキングの順位と、元の状態、変更後の状態、残存容量SOC、発電量(蓄電可能電力Pst)、継続時間(蓄電可能時間Tst)とが対応され、図示しないがそれぞれランキングされた逆潮流需要家1の識別情報も対応付けられている。
電力会社3の電力調整サーバは、天気の状態などから、将来(数時間あるいは翌日など)の電力網における供給電力の不足が予想されると、地域管理サーバ2に対し、この地域管理サーバ2の管理する逆潮流需要家1に対して電力を蓄電させるための蓄電要請を示す蓄電要請信号に対し、必要とする電力である要請電力と、この要請電力を供給する時間と付加し、地域管理サーバ2に出力する。
問い合わせ部21は、電力会社3の電力調整サーバからの蓄電要請を示す蓄電要請信号を受信すると、自身の管理する逆潮流需要家1の全てに対し、蓄電処理に対する能力の問い合わせを行う問い合わせ情報を出力する。
分配器制御部141は、天気予報会社からの天気予報データを取得し、電力消費履歴テーブル147から、この天候における月及び曜日及び時間帯における単位時間当たりの使用電力Pdと発電電力Ppとを読み出し、予想使用電力Pd、予想発電電力Ppとする。
そして、分配器制御部141は、現在の残存容量SOC、予想使用電力Pd、予想発電電力Ppとを用いて、以下の(3)式に基づいて、蓄電可能電力Pstと蓄電可能時間Tstとを、予め設定された単位時間(例えば、30分や1時間)毎に算出する。この単位時間の長さは、気象情報の示す現在の気象状態(天気、外気温などの状態)や、過去の気象状態における電力使用の実績記録の精度に基づいて設定される。
Pst=(1/Kc)・(1−SOC)・Pmax−Pp+Pd …(3)
また、分配器制御部141は、例えば、単位時間を1時間とした場合、1時間毎に積算値ΣPstを計算し、計算を行った時点からΣPstが0となる時点までの時間を蓄電可能時間Tstとする。したがって、分配器制御部141は、ΣPstの積算回数、すなわち単位時間毎に算出した蓄電可能電力Pstの加算値が4回でΣPstが負となると、3回まではΣPstが正であることを検出し、1時間×3を計算し、蓄電可能時間Tstを3時間として求める。
また、分配器制御部141は、単位時間が30分の場合、3回目でΣPstが負となると、直前の単位時間の計算時の2回目まではΣPstが正であるため、30分×2を計算し、蓄電可能時間Tstを1時間(60分)として求める。
そして、分配器制御部141は、現在の残存容量SOCと、算出した蓄電可能電力Pst及び蓄電可能時間Tstとを、回答(能力回答)として地域管理サーバ2へ出力する。
このとき、分配器制御部141は、上記回答に対して、自身の識別情報と、現在の状態と、蓄電要請により変更した後の状態を付加する。ここで、分配器制御部141は、現在の状態が状態SU1からSU3の場合、蓄電処理を行うため、条件テーブル146のルールにより、変更後の状態を状態SU5とする。一方、分配器制御部141は、現在の状態が状態SO1からSO3の場合、蓄電処理を行うため、条件テーブル146のルールにより、変更後の状態を状態SO5とする。本実施形態において、複数の要請が同一の地域管理サーバ2に対して行われないとし、要請された際、各逆潮流需要家1は通常運転状態の状態SO1からSO3、状態SU1からSU3のいずれかの状態にある。
集計部22は、予め内部記憶部に記憶されている管理下にある全ての逆潮流需要家1の識別情報と、回答を送信してきた逆潮流需要家1の識別情報とを比較し、全ての逆潮流需要家1から回答が来たことを検出すると、以下の集計処理を行う。
そして、集計部22は、逆潮流需要家1毎に、元の状態と変更後の状態との組み合わせと、予め内部に蓄電要請に対応して設定されていた元の状態と変更後の状態とを比較し、一致する組み合わせの逆潮流需要家1を抽出する。ここで、内部に蓄電要請に対応して設定されていた元の状態と変更後の状態の組み合わせは、図12に示すように、[元の状態,変更後の状態]として、[SU1,SU5]、[SU2,SU5]、[SO3,SO5]、[SO1,SO5]である。
そして、集計部22は、設定されている組み合わせ[SU1,SU5]、[SU2,SU5]、[SO3,SO5]、[SO1,SO5]のいずれかに一致した組み合わせ[元の状態,変更後の状態]の逆潮流需要家1を抽出し、抽出した逆潮流需要家1のランク付けを行う。
例えば、ランク付けのルールとしては、
Ba.電力会社3の電力調整サーバからの要請信号が蓄電要請信号の際、逆潮流需要家1の宅内における発電電力が不足であり、かつ蓄電設備を放電している放電中状態(SU1)の場合、
Bb.電力会社3の電力調整サーバからの要請信号が蓄電要請信号の際、逆潮流需要家1の宅内における発電電力が不足であり、かつ商用受電状態(SU2)の場合、
Bc.電力会社3の電力調整サーバからの要請信号が蓄電要請信号の際、逆潮流需要家1の宅内における発電電力が過剰であり、かつ逆潮流を行っている逆潮流状態(SO3)の場合、
Bd.電力会社3の電力調整サーバからの要請信号が蓄電要請信号の際、逆潮流需要家1の宅内における発電電力が過剰であり、かつ自己充電(SO1)の場合、
のBa.Bb.Bc.Bdの順番であり、同一の場合には要請電力に対応した蓄電電力の大きい方がランクが高くなるとした定義が成されている。
したがって、集計部22は、上述したルールに従い、逆潮流需要家1のランク付けを行い、それぞれ蓄電可能電力Pst及び蓄電可能時間Tstを付加し、図11に示すランク付けのテーブルを生成し、内部記憶部に書き込んで記憶する。図示されていないが、集計部22は、逆潮流需要家1の識別情報を、この逆流需要家1のランクに対応してランク付けのテーブルに書き込み記憶させる。
次に、制御部24は、ランク付けのテーブルにおいて、蓄電要請として供給された要請電力の数値となるまで、識別情報により最上位のランクの逆潮流需要家1から順番に下位のランクの逆潮流需要家1の蓄電可能電力Pstを積算する。
このとき、制御部24は、蓄電可能電力Pstの加算が要請電力を超えた場合、そのとき要請電力を超えるまで加算した蓄電可能電力Pstの逆潮流需要家1を電力蓄電先として選択する。一方、制御部24は、ランク付けした全ての逆潮流需要家1の蓄電可能電力Pstを加算しても要請電力を超えない場合、ランク付けした全ての逆潮流需要家1を電力蓄電先として選択する。ここで、制御部24は、ランク付けされた逆潮流需要家1の蓄電可能時間Tstで最も短い時間を、蓄電可能総時間とする。このとき、制御部24は、電力蓄積先として選択した逆潮流需要家1の識別情報を内部の記憶部に書き込んで記憶させる。
そして、回答部23は、電力の供給が可能または蓄電可能総電力のいずれかと、蓄電可能総時間とを電力会社3へ回答として出力する。
電力会社3は、地域管理サーバ2から、蓄電要請の回答として、電力の蓄電が可能または蓄電可能総電力のいずれかと、蓄電可能総時間とが入力されると、電力と時間とを確認する。
そして、電力会社3は、各逆潮流需要家1に対して、蓄電を開始することを指示する了解信号を地域管理サーバ2へ出力する。
地域管理サーバ2は、電力会社3から了解信号が供給されると、ステップS14において電力の蓄電元として選択した逆潮流需要家1(識別情報により識別)の各々に対し、個別に蓄電処理(強制商用蓄電)を行うことを指示する変更要請信号を出力する。すなわち、地域管理サーバ2において、制御部24は、電力蓄積先として選択した内部の記憶部に記憶している逆潮流需要家1の識別情報を読み出し、当該識別情報の示す逆潮流需要家1の各々に対し、個別に蓄電処理を行うことを指示する変更要請信号を出力する。
分配器制御部141は、地域管理サーバ2から変更要請信号が供給されると、自身が送信した変更後の状態に対応するスイッチ制御の情報を制御テーブル145から読み出し、宅内電力分配器12における各スイッチSWの制御を行う。
例えば、状態SU5に遷移した場合、分配器制御部141は、図7に示す制御テーブル145の状態SU5のスイッチ設定に基づいて、スイッチSW1において共通端子3を端子1と導通状態にさせ、スイッチSW2において共通端子3を端子1と導通状態とさせ、スイッチSW3において共通端子3を端子2と導通状態とさせ、スイッチSW4において共通端子3を端子2と導通状態とし、スイッチSW5において共通端子3を端子1と導通状態とする。このとき、分配器制御部141は、DC/ACコンバータ124を、端子124bから入力される商用低電圧線のAC電力を、端子124aからDC電力として出力するように制御する。また、分配器制御部141は、DC/DCコンバータ123を、端子123bから入力される電力を、端子123aから蓄電池13に対して出力するように制御する。
これにより、宅内電力分配器12は、太陽電池11からDC/DCコンバータ122を介して得られる発電電力Ppと、商用低圧線からの商用電力により、蓄電池13を充電する。また、このとき、太陽電池11からDC/DCコンバータ122を介して得られる発電電力Ppと、商用定圧線から入力される電力とが、DC/ACコンバータ125を介して宅内電力供給線に対して供給される。
これにより、宅内電力分配器12は、太陽電池11からDC/DCコンバータ122を介して得られる発電電力Ppと、蓄電池13からの放電電力PdとをDC/ACコンバータ124を介して、商用電圧線に対して逆量流させる。また、このとき、太陽電池11からDC/DCコンバータ122を介して得られる発電電力Ppと、蓄電池13からの放電電力Pdとが、DC/ACコンバータ125を介して宅内電力供給線に対して供給される。
そして、地域管理サーバ2において、制御部24は、選択した全ての逆潮流需要家1から了解信号が供給されると、高圧系統から選択された逆潮流需要家1に対して供給する電力が、高圧系統から共有低圧線に対して供給されるように、電力中継システム6の電力の出力方向を高圧系統側から共有低圧側になるように制御する。(通常は高圧系統側から共有低圧側に対して電力が供給される状態となっているため、逆潮流が行われていた場合にのみ、電力中継システム6の電力の供給方向の切換は行われない。)
このとき、制御部24は、了解信号に付加された識別情報と、電力供給元として内部に記憶されている選択した逆潮流需要家1の識別信号とを逐次比較し、内部に記憶されている識別情報の全てが入力されたか否かを判定することで、選択した全ての逆潮流需要家1から了解信号が入力されたか否かの判定を行う。
上述したように、電力会社3の蓄電要請を示す蓄電要請信号に応じて、地域管理サーバ2が各逆潮流需要家1に対して蓄電処理の制御を行うことにより、電力会社3は逆潮流需要家1のグループをあたかも蓄電所(仮想蓄電所)として用いることが可能となる。
また、上述したステップS14において、電力会社3が要請電力とともに要請時間(要請電力を供給する時間)が要求された場合、時間をずらして要請する場合もある。
また、地域管理サーバ2は、現在の季節、時刻、天気の情報から、予め内部記憶部に記憶している季節(あるいは月単位)、時刻、天候などの条件における過去の電力の需要履歴により、自身が管理する地域グループにおける共有低圧線の電力供給が増加することが推定されると、将来蓄電池13からの放電による逆潮流により不足分を補うため、電力会社3からの蓄電要請が無い場合においても、電力会社3の蓄電要請と同様の処理を管理する地域グループ内の各逆潮流需要家1に対して行う。
例えば、地域管理サーバ2における制御部24は、電力会社3から一定量の電力の供給を受けている場合、現在の季節、時刻、天気の情報により必要となる電力に対し、現在の電力会社3から供給される電力が供給に対して不足することを検出すると、自身の管理する地域グループ内における全ての逆潮流需要家1に対して、蓄電可能電力の問い合わせを行う。
このとき、地域グループ内における逆潮流需要家1の行う処理については、すでに電力会社3から発電要請のあった場合と同様である。
そして、制御部24は、各逆潮流需要家1からの回答に基づき、すでに説明したランク付けを逆流需要家1全てに対して行う。
ランク付けが終了した後、制御部24は、ランクの最上位から順番に蓄電量を加算し、上述した不足した電力となった時点まで加算に用いた蓄電量の逆潮流需要家1を、蓄電先の逆潮流需要家1として選択する。
選択処理が終了すると、制御部24は、選択した逆潮流需要家1に対して、個別に蓄電処理(強制商用充電)を行うことを指示する変更要請信号を出力する。
変更要請信号が供給された逆潮流需要家1において、分配器制御部141は、自身が送信した変更後の状態に対応するスイッチ制御の情報を制御テーブル145から読み出し、宅内電力分配器12における各スイッチSWの制御を行う。以降は、電力会社3から蓄電要請を受けた場合と同様である。
図13及び図14を用いて需要要請における地域内電力需給制御システムの動作を説明する。図13は、需要要請における電力会社3、地域管理サーバ2及び住戸(逆潮流需要家1)とにおける制御のシーケンスの一例を示す図である。図14は、地域管理サーバ2の集計部22が生成する逆潮流需要家1のランク付けの結果を示すテーブルである。この図14において、ランキングの順位と、元の状態、変更後の状態、残存容量SOC、発電量(需要可能電力Pdemand)、継続時間(需要可能時間Tdemand)とが対応され、図示しないがそれぞれランキングされた逆潮流需要家1の識別情報も対応付けられている。
電力会社3は、天気の状態などから、電力網における供給電力が余剰である場合、地域管理サーバ2に対し、この地域管理サーバ2の管理する逆潮流需要家1に対して電力を需要(消費)させる必要がある。このため、電力会社3は、需要要請を示す需要要請信号に対し、必要とする電力である要請電力と、この要請電力を供給する時間と付加し、地域管理サーバ2に出力する。
問い合わせ部21は、電力会社3からの需要要請を示す需要要請信号を受信すると、自身の管理する逆潮流需要家1の全てに対し、需要処理に対する能力の問い合わせを行う問い合わせ情報を出力する。
分配器制御部141は、天気予報会社のサーバから天気予報データを取得し、電力消費履歴テーブル147から、この天気予報データが表す天候における月及び曜日及び時間帯における単位時間当たりの使用電力Pdと発電電力Ppとを読み出し、予想使用電力Pd、予想発電電力Ppとする。
そして、分配器制御部141は、現在の残存容量SOC、予想使用電力Pd、予想発電電力Ppとを用いて、以下の(4)式に基づいて、需要可能電力Pdemandと需要可能時間Tdemandとを予め設定された単位時間(例えば、30分や1時間)毎に算出する。この単位時間の長さは、気象情報の示す現在の気象状態(天気、外気温などの状態)や、過去の気象状態における電力使用の実績記録の精度に基づいて設定される。
Ps=(1/Kc)・(1−SOC)・Pmax−Pp+Pd−Pt …(4)
また、分配器制御部141は、例えば、単位時間を1時間とした場合、1時間毎に積算値ΣPdemandを計算し、計算を行った時点からΣPsが0となる時点までの時間を需要可能時間Tsとする。したがって、分配器制御部141は、ΣPdemandの積算回数、すなわち単位時間毎に算出した需要可能電力Pdemandの加算値が4回でΣPdemandが負となると、3回まではΣPsが正であることを検出し、1時間×3を計算し、蓄電可能時間Tdemandを3時間として求める。
また、分配器制御部141は、単位時間が30分の場合、3回目でΣPdemandが負となると、直前の単位時間の計算時の2回目まではΣPsが正であるため、30分×2を計算し、需要可能時間Tdemandを1時間(60分)として求める。
上記(4)式におけるPtは、タイムシフト可能負荷の単位時間当たりの電力使用量を示している。このタイムシフト可能負荷とは、指定された時間帯へ、家電製品の動作時間や温水器の動作時間の変更を行う場合の負荷を示している。すなわち、需要要請が供給されたということは、電力供給が過剰であるため、負荷を追加して需要可能電力Pdemandを増加させることになる。例えば、「スタンバイ状態としていた洗濯乾燥機を動作させる」、「風呂の水を温める電気温水器の動作時間を早める」の負荷の追加が考えられる。このように、需要要請に対応して動作の時間帯をシフトして(ずらして)、電力消費量を増加させる負荷を、本実施形態においてはタイムシフト可能負荷Ptとしている。
そして、分配器制御部141は、現在の残存容量SOCと、算出した需要可能電力Pdemand及び需要可能時間Tdemandとを、回答(能力回答)として地域管理サーバ2へ出力する。
このとき、分配器制御部141は、上記回答に対して、自身の識別情報と、現在の状態と、需要要請により変更した後の状態を付加する。ここで、分配器制御部141は、現在の状態が状態SU1の場合、需要処理を行うため、条件テーブル146のルールにより、変更後の状態を状態SU3またはSU2とする。また、分配器制御部141は、現在の状態が状態SO3の場合、需要処理を行うため、条件テーブル146のルールにより、変更後の状態を状態SO2またはSO1とする。
すなわち、分配器制御部141は、残存容量SOCが1未満である場合、条件テーブル146のルールにより、元の状態SU1を変更後の状態SU3とする状態遷移を行い、残存容量SOCが1である場合、元の状態SU1を変更後の状態SU2とする状態遷移を行う。また、分配器制御部141は、条件テーブル146のルールにより、残存容量SOCが1未満であり、商用電源を用いた充電コストが安い時間帯(夜間電力帯)の場合、元の状態SO3を変更後の状態SU2とする状態遷移を行い、残存容量SOCが1未満であり、商用電源を用いた充電コストが安くない時間帯の場合、状態SO3から状態SO1への状態遷移を行う。
集計部22は、予め内部記憶部に記憶されている管理下にある全ての逆潮流需要家1の識別情報と、回答を送信してきた逆潮流需要家1の識別情報とを比較し、全ての逆潮流需要家1から回答が来たことを検出すると、以下の集計処理を行う。
そして、集計部22は、逆潮流需要家1毎に、元の状態と変更後の状態との組み合わせと、予め内部に需要要請に対応して設定されていた元の状態と変更後の状態とを比較し、一致する組み合わせの逆潮流需要家1を抽出する。ここで、内部に需要要請に対応して設定されていた元の状態と変更後の状態の組み合わせは、図14に示すように、[元の状態,変更後の状態]として、[SU1,SU3]、[SU1,SU2]、[SO3,SO2]、[SO3,SO1]である。
そして、集計部22は、設定されている組み合わせ[SU1,SU3]、[SU1,SU2]、[SO3,SO2]、[SO3,SO1]のいずれかに一致した組み合わせ[元の状態,変更後の状態]の逆潮流需要家1を抽出し、抽出した逆潮流需要家1のランク付けを行う。
例えば、ランク付けのルールとしては、
Ca.電力会社3の要請信号が需要要請信号の際、逆潮流需要家1の宅内における発電電力が不足であり、放電中状態(SU1)であり、かつ要請を受け入れた後の状態が商用充電(SU3)の場合、
Cb.電力会社3の要請信号が需要要請信号の際、逆潮流需要家1の宅内における発電電力が不足であり、放電中状態(SU1)であり、要請を受け入れた後の状態が商用受電(SU2)の場合、
Cc.電力会社3の要請信号が需要要請信号の際、逆潮流需要家1の宅内における発電電力が過剰であり、逆潮流状態(SO3)であり、かつ要請を受け入れた後の状態が商用充電(SO2)の場合、
Cd.電力会社3の要請信号が需要要請信号の際、逆潮流需要家1の宅内における発電電力が過剰であり、逆潮流状態(SO3)であり、かつ要請を受け入れた後の状態が自己充電(SO1)の場合、
のCa、Cb、Cc、Cdの順番であり、同一の場合には要請電力に対応した需要電力の大きい方がランクが高くなるとした定義が成されている。
したがって、集計部22は、上述したルールに従い、逆潮流需要家1のランク付けを行い、それぞれ需要可能電力Pdemand及び需要可能時間Tdemandを付加し、図13に示すランク付けのテーブルを生成し、内部記憶部に書き込んで記憶する。図示されていないが、集計部22は、逆潮流需要家1の識別情報を、この逆流需要家1のランクに対応してランク付けのテーブルに書き込み記憶させる。
次に、制御部24は、ランク付けのテーブルにおいて、需要要請として供給された要請電力の数値となるまで、識別情報により最上位のランクの逆潮流需要家1から順番に下位のランクの逆潮流需要家1の需要可能電力Pdemandを積算する。
このとき、制御部24は、需要可能電力Pdemandの加算が要請電力を超えた場合、そのとき要請電力を超えるまで加算した需要可能電力Pdemandの逆潮流需要家1を電力需要先として選択する。
一方、制御部24は、ランク付けした全ての逆潮流需要家1の需要可能電力を加算しても要請電力を超えない場合、ランク付けした全ての逆潮流需要家1を電力需要先として選択する。ここで、制御部24は、ランク付けされた逆潮流需要家1の需要可能時間Tdemandで最も短い時間を、需要可能総時間とする。このとき、制御部24は、電力需要先として選択した逆潮流需要家1の識別情報を内部の記憶部に書き込んで記憶させる。
そして、回答部23は、電力の供給が可能または需要可能総電力のいずれかと、需要可能総時間とを電力会社3へ回答として出力する。
電力会社3は、地域管理サーバ2から、需要要請の回答として、電力の需要が可能または需要可能総電力のいずれかと、需要可能総時間とが入力されると、電力と時間とを確認する。
そして、電力会社3は、各逆潮流需要家1に対して、需要を開始することを指示する了解信号を地域管理サーバ2へ出力する。
地域管理サーバ2は、電力会社3から了解信号が供給されると、ステップS14において電力の需要先(電力需要先)として選択した逆潮流需要家1(識別情報により識別)の各々に対し、個別に需要処理(電力の消費)を行うことを指示する変更要請信号を出力する。すなわち、地域管理サーバ2において、制御部24は、電力需要先として選択した内部の記憶部に記憶している逆潮流需要家1の識別情報を読み出し、当該識別情報の示す逆潮流需要家1の各々に対し、個別に需要処理を行うことを指示する変更要請信号を出力する。
分配器制御部141は、地域管理サーバ2から変更要請信号が供給されると、自身が送信した変更後の状態に対応するスイッチ制御の情報を制御テーブル145から読み出し、宅内電力分配器12における各スイッチSWの制御を行う。
例えば、状態SU3に遷移した場合、分配器制御部141は、図7に示す制御テーブル145の状態SU3のスイッチ設定に基づいて、スイッチSW1において共通端子3を端子1と導通状態にさせ、スイッチSW2において共通端子3を端子1と導通状態とさせ、スイッチSW3において共通端子3を端子2と導通状態とさせ、スイッチSW4において共通端子3を端子2と導通状態とし、スイッチSW5において共通端子3を端子1と導通状態とする。
このとき、分配器制御部141は、DC/ACコンバータ124を、端子124bから入力される商用低電圧線のAC電力を、端子124aからDC電力として出力するように制御する。また、分配器制御部141は、DC/DCコンバータ123を、端子123bから入力される電力を、端子123aから蓄電池13に対して出力するように制御する。
これにより、宅内電力分配器12は、太陽電池11からDC/DCコンバータ122を介して得られる発電電力Ppと、商用低圧線からの商用電力により、蓄電池13を充電する。また、このとき、太陽電池11からDC/DCコンバータ122を介して得られる発電電力Ppと、商用定圧線から入力される電力とが、DC/ACコンバータ125を介して宅内電力供給線に対して供給される。
このとき、分配器制御部141は、DC/ACコンバータ124を、端子124bから入力される商用低電圧線のAC電力を、端子124aからDC電力として出力するように制御する。また、分配器制御部141は、DC/DCコンバータ123を、端子123bから入力される電力を、端子123aから蓄電池13に対して出力するように制御する。
これにより、宅内電力分配器12は、太陽電池11からの発電電力Ppを、蓄電値13に対して充電することもなく、宅内電力供給線に供給することもない。宅内電力分配器12は、商用低圧線からの商用電力を直接に、宅内電力供給線に対して供給する。
このとき、分配器制御部141は、DC/ACコンバータ124を、端子124bから入力される商用低電圧線のAC電力を、端子124aからDC電力として出力するように制御する。また、分配器制御部141は、DC/DCコンバータ123を、端子123bから入力される電力を、端子123aから蓄電池13に対して出力するように制御する。
これにより、宅内電力分配器12は、太陽電池11からDC/DCコンバータ122を介して得られる発電電力Ppを使用せず、商用定圧線から供給される商用電力により、蓄電池13に対する充電を行う。また、このとき、宅内電力分配器12は、DC/ACコンバータ124及びDC/DCコンバータ125を介し、商用定圧線から供給される商用電力を宅内電力供給線に対して供給する。
このとき、分配器制御部141は、DC/ACコンバータ124を、端子124bから入力される商用低電圧線のAC電力を、端子124aからDC電力として出力するように制御する。また、分配器制御部141は、DC/DCコンバータ123を、端子123bから入力される電力を、端子123aから蓄電池13に対して出力するように制御する。
これにより、宅内電力分配器12は、商用定圧線から供給される商用電力を用いず、太陽電池11からDC/DCコンバータ122を介して得られる発電電力Ppにより、蓄電池13に対する充電を行う。また、このとき、宅内電力分配器12は、DC/ACコンバータ125を介し、太陽電池11の発電した発電電力Ppを宅内電力供給線に対して供給する。
そして、地域管理サーバ2において、制御部24は、選択した全ての逆潮流需要家1から了解信号が供給されると、高圧系統から選択された逆潮流需要家1に対して供給する電力が、高圧系統から共有低圧線に対して供給されるように、電力中継システム6の電力の出力方向を高圧系統側から共有低圧側になるように制御する。(通常は高圧系統側から共有低圧側に対して電力が供給される状態となっているため、逆潮流が行われていた場合にのみ、電力中継システム6の電力の供給方向の切換は行われない。)
このとき、制御部24は、了解信号に付加された識別情報と、電力供給元として内部に記憶されている選択した逆潮流需要家1の識別信号とを逐次比較し、内部に記憶されている識別情報の全てが入力されたか否かを判定することで、選択した全ての逆潮流需要家1から了解信号が入力されたか否かの判定を行う。
上述したように、電力会社3の需要要請を示す需要要請信号に応じて、地域管理サーバ2が各逆潮流需要家1に対して重要処理の制御を行うことにより、電力会社3は逆潮流需要家1のグループをあたかも需要家(仮想需要家)として用いることが可能となる。
また、上述したステップS14において、電力会社3が要請電力とともに要請時間(要請電力を供給する時間)が要求された場合、時間をずらして要請する場合もある。
また、地域管理サーバ2は、現在の時刻、天候などの条件により電力需要が低下した場合、電力需要の低下分を補うため、電力会社3からの需要要請が無い場合においても、電力会社3の需要要請と同様の処理を管理する地域グループ内の各逆潮流需要家1に対して行う。
例えば、地域管理サーバ2における制御部24は、電力会社3から一定量の電力の供給を受けている場合、現在の時刻、天気の情報により電力需要の低下を、自身の管理する地位グループの電力中継システム6に設けられた電力測定器により検出すると、電力会社3から供給を受ける電力(すなわち、実際の使用及び不使用に関わらず料金を支払う契約電力)と、電力測定器の検出した電力との差分を求め、この差分を必要需要電力とする。
そして、制御部24は、自身の管理する地域グループ内における全ての逆潮流需要家1に対して、需要可能電力の問い合わせを行う。
このとき、地域グループ内における逆潮流需要家1の行う処理については、すでに電力会社3から需要要請のあった場合と同様である。
そして、制御部24は、各逆潮流需要家1からの回答に基づき、すでに説明したランク付けを逆流需要家1全てに対して行う。
ランク付けが終了した後、制御部24は、ランクの最上位から順番に需要量を加算し、上述した必要需要電力となった時点まで加算に用いた蓄電量の逆潮流需要家1を、需要先の逆潮流需要家1として選択する。
選択処理が終了すると、制御部24は、選択した逆潮流需要家1に対して、個別に需要処理(強制商用受電)を行うことを指示する変更要請信号を出力する。
変更要請信号が供給された逆潮流需要家1において、分配器制御部141は、自身が送信した変更後の状態に対応するスイッチ制御の情報を制御テーブル145から読み出し、宅内電力分配器12における各スイッチSWの制御を行う。以降は、電力会社3から需要要請を受けた場合と同様である。
また、自然エネルギーの効率的な利用する制御を行うため、従来技術全体に導入すべき技術としては、通信技術と電力制御技術がある。しかしながら、実現したい処理内容によって制御レベルが異なってきて、コストも違ってくる。そのため、方式を決定するためには社会システム全版にかかわることになり、自然エネルギーの効率的な利用の制御方式の決定が非常に難しくなる。
これにより、本実施形態によれば、地域管理サーバ2が所定の地域における複数の逆潮流需要家1の管理を行っているため、地域管理サーバ2を介して複数の逆流需要家1に対して、発電要請、蓄電要請及び需要要請を行うことができ、電力会社3から見た場合に仮想的な一般需要家と発電所および蓄電所に見えるように逆潮流需要家1を制御し、逆潮流需要家1に置かれた発電及び蓄電設備や、環境ごとに発生する複雑な状況(状態遷移)をすべて取り扱うことなく、商用定圧線に対する正確な需給バランスを行うことができる。
また、本実施形態は、地域管理サーバ2が電力会社3からの高圧系統による電力供給において、電力中継システム6を用いて高圧電力から低圧電力に変換した後、共有低圧線を用いて各逆潮流需要家1に対する電力供給の制御を行う構成となっている。
すなわち、本実施形態は、電力会社3から供給される電力あるいは逆潮流する電力を電力中継システム6により任意に制御している。
このため、本実施形態は、電力会社3からの発電要請、蓄電要請及び需要要請などの要請に応じて、発電設備を有する逆潮流需要家それぞれの発電状態や需要状態を検出して、地域グループ内における各逆流需要家に対する電力の供給及び逆潮流の個別の制御を容易に実現できる。
また、本発明の実施形態によれば、電力会社3からの発電要請、蓄電要請及び需要要請などの要請が無くとも、地域管理サーバ2が地域内グループにおける需要家の電力需要に応じて、発電設備を有する逆潮流需要家それぞれの発電状態や需要状態を検出して、地域グループ内における各逆流需要家に対する電力の供給及び逆潮流の個別の制御を容易に実現できる。
次に、図15は、地域管理サーバ2が複数の高圧受電単位の需要家(逆潮流需要家1を含む)を、地域グループとして電力供給の制御を行うことを示す図である。
この図15に示すように、地域管理サーバ2が複数の高圧受電単位における需要家を、それぞれ地域グループとして、すでに説明した電力供給の制御を行う構成としても良い。
この場合、電力中継システムは、電力会社3からの高圧系統と、高圧受電単位の地域グループの共有低圧線の各々との間に設けられ、電力の供給及び逆潮流の切換を地域管理サーバ2により制御される。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
2…地域管理サーバ
3…電力会社
4…従来電力網
5…広域ネットワーク
6…電力中継システム
11…太陽電池
12…宅内電力分配器
13…蓄電池
14…ホームゲートウェイ
21…問い合わせ部
22…集計部
23…回答部
24…制御部
61…変圧器
62…同期調整器
141…分配器制御部
142…蓄電池残存容量算出部
143…天気予報問い合わせ部
144…宅内記憶部
145…制御テーブル
146…条件テーブル
147…電力消費履歴テーブル
SW1,SW2,SW3,SW4…スイッチ
Claims (6)
- 高圧系統の高圧電力を低圧電力に変換し、この低圧電力の低圧線に接続されている電力の需要家を地域グループとし、当該地域グループ単位において電力の需要量と逆潮流とによる電力の供給量を制御する地域内電力需要管理システムであり、
自然エネルギーを利用した発電設備と、電力を蓄積する蓄電設備と、宅内の電力供給、発電及び逆潮流を制御する宅内電力分配器と、前記宅内電力分配器における電力センサにより、前記発電設備の発電電力、前記蓄電設備の蓄電電力及び宅内における電力需要を検出し、宅内の電力供給を制御するホームゲートウェイとを有する、逆潮流需要家に設けられた電力制御装置と、
前記高圧系統を介して、前記地域グループ内の住宅に対する商用電力の供給、及び前記地域グループ内の前記逆潮流需要家に対して、前記高圧系統における電力の供給状況に応じた発電を要請する発電要請、蓄電を要請する蓄電要請及び需要を要請する需要要請の制御要請の各要請信号を出力する、電力会社に設けられたサーバと、
前記電力会社からの前記制御要請に応じて、前記地域グループ内における全ての前記逆潮流需要家に対し、逆潮流可能な電力、蓄電可能な電力及び需要可能な電力を問い合わせを行い、前記地域グループ内における電力の供給を制御する前記地域管理サーバと、
前記地域管理サーバからの制御により、前記高圧系統からの前記高圧電力を前記低圧電力に変換し前記低圧線に供給、または前記低圧線からの前記低圧電力を前記高圧電力に変換して前記高圧系統に逆潮流する電力中継システムと
を有し、
前記ホームゲートウェイが、前記問い合わせに対応し、前記電力センサにより得られる発電電力、蓄電電力及び需要電力に基づき、逆潮流可能な電力、蓄電可能な電力及び需要可能な電力を求めて、前記地域管理サーバへ回答として出力し、
前記地域管理サーバが、前記逆潮流需要家各々からの前記回答を集計し、予め設定された選択のルールに従い、前記制御要請に対応した発電処理、蓄電処理及び需要処理を指示する処理制御信号を、選択した前記逆潮流需要家に対して出力する
ことを特徴とする地域内電力需要管理システム。 - 前記地域管理サーバが、自身の管理する地域管理グループの電力需要に応じて、地域グループ内における全ての前記逆潮流需要家に対し、逆潮流可能な電力、蓄電可能な電力及び需要可能な電力を問い合わせを行い、前記地域グループ内における電力の供給を制御することを特徴とする請求項1に記載の地域内電力需要管理システム。
- 前記地域管理サーバが、予め設定したランク付けルールに従い、前記回答に応じて、前記逆潮流需要家のランク付けを行い、ランクの最上位から順に、前記電力会社からの制御要請における要請電力となるまで、前記回答における電力を加算し、前記要請電力となるランクまでの前記逆潮流需要家を、制御要請に対応した前記各処理を要請する逆潮流需要家として選択することを特徴とする請求項1または請求項2に記載の地域内電力需要管理システム。
- 前記ランク付けルールが、
A.前記電力会社の要請が前記発電要請の際、
Aa.前記宅内における前記発電電力が過剰であり、かつ前記商用電力による前記蓄電設備に対する充電を行う商用充電状態の場合、
Ab.前記宅内における発電電力が過剰であり、かつ前記発電設備の発電電力による前記蓄電設備に対する充電を行う自己充電状態の場合、
Ac.前記宅内における発電電力が不足であり、かつ前記商用電力を受電している商用受電状態の場合、
Ad.前記宅内における発電電力が不足であり、かつ商用充電状態の場合、
のAa、Ab、Ac、Adの順番であり、同一の場合には要請電力に対応した発電電力の大きい方がランクが高くなるとした定義であり、
B.前記電力会社の要請が前記蓄電要請の際、
Ba.前記宅内における前記発電電力が不足であり、かつ前記蓄電設備を放電している放電中状態の場合、
Bb.前記宅内における発電電力が不足であり、かつ商用受電状態の場合、
Bc.前記宅内における発電電力が過剰であり、かつ前記逆潮流を行っている逆潮流状態の場合、
Bd.前記宅内における発電電力が過剰であり、かつ前記自己充電の場合、
のBa、Bb、Bc、Bdの順番であり、同一の場合には要請電力に対応した蓄電電力の大きい方がランクが高くなるとした定義であり、
C.前記電力会社の要請が前記需要要請の際、
Ca.前記宅内における前記発電電力が不足であり、前記放電中状態であり、かつ要請を受け入れた後の状態が前記商用充電の場合、
Cb.前記宅内における発電電力が不足であり、前記放電中状態であり、要請を受け入れた後の状態が前記商用受電の場合、
Cc.前記宅内における発電電力が過剰であり、前記逆潮流状態であり、かつ要請を受け入れた後の状態が前記商用充電の場合、
Cd.前記宅内における発電電力が過剰であり、前記逆潮流状態であり、かつ要請を受け入れた後の状態が前記自己充電の場合、
のCa、Cb、Cc、Cdの順番であり、同一の場合には要請電力に対応した需要電力の大きい方がランクが高くなるとした定義である、
ことを特徴とする請求項2に記載の地域内電力需要管理システム。 - 前記宅内電力分配器が、複数のスイッチを有しており、
前記ホームゲートウェイが、前記スイッチの導通及び非導通状態により、前記発電設備と、前記蓄電設備及び前記電力会社の電力供給線との接続状態を制御し、前記逆潮流処理、前記蓄電処理及び前記需要処理の各々を制御することを特徴とする請求項1から請求項4のいずれか一項に記載の地域内電力需要管理システム。 - 前記ホームゲートウェイが、
前記宅内電力分配器における前記スイッチの前記逆潮流処理、前記蓄電処理及び前記需要処理の状態毎のスイッチの制御ルールが定義された制御テーブルとが記憶された宅内記憶部と、
前記残存容量と、電力センサから得られる発電電力、蓄電電力、放電電力及び宅内で消費される電力の状態及び前記地域管理サーバからの制御に基づき、前記制御テーブルから前記状態毎の前記制御ルールを読み出し、当該制御ルールに基づいて前記宅内電力分配器におけるスイッチを制御する分波器制御部と、
前記蓄電設備における残存容量を、電力センサから得られる前記蓄電設備に対する蓄電電力及び放電電力の時間単位の積算により求める蓄電池残存容量算出部と
を有することを特徴とする請求項1から請求項5のいずれか一項に記載の地域内電力需要管理システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012034176A JP5907753B2 (ja) | 2011-02-28 | 2012-02-20 | 地域内電力需要管理システム |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011042734 | 2011-02-28 | ||
JP2011042734 | 2011-02-28 | ||
JP2012034176A JP5907753B2 (ja) | 2011-02-28 | 2012-02-20 | 地域内電力需要管理システム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012196123A true JP2012196123A (ja) | 2012-10-11 |
JP5907753B2 JP5907753B2 (ja) | 2016-04-26 |
Family
ID=47087521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012034176A Expired - Fee Related JP5907753B2 (ja) | 2011-02-28 | 2012-02-20 | 地域内電力需要管理システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5907753B2 (ja) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103117602A (zh) * | 2013-03-11 | 2013-05-22 | 辽宁省电力有限公司 | 继电保护智能在线运行管理系统中综合事故自动报告方法 |
CN103199622A (zh) * | 2013-03-11 | 2013-07-10 | 中国电力科学研究院 | 一种低压供电安全保障及辅助决策支持系统 |
CN103595077A (zh) * | 2013-11-29 | 2014-02-19 | 国网安徽省电力公司淮南供电公司 | 双变压器系统中分裂运行向单台运行状态转换的控制方法 |
JP2015186277A (ja) * | 2014-03-20 | 2015-10-22 | 積水化学工業株式会社 | 電力管理システム、電力管理方法及びプログラム |
JP2015198486A (ja) * | 2014-03-31 | 2015-11-09 | 清水建設株式会社 | 電力需要予測装置および電力需要予測方法 |
WO2015199265A1 (ko) * | 2014-06-27 | 2015-12-30 | 이노넷 주식회사 | 수요관리 기반 부하전력 관리장치 및 부하전력 관리방법 |
CN105226728A (zh) * | 2015-10-23 | 2016-01-06 | 河南柴油机重工有限责任公司 | 一种垃圾填埋气体发电机配电管理装置及方法 |
JP2016174486A (ja) * | 2015-03-17 | 2016-09-29 | 積水化学工業株式会社 | 電力管理システム、電力管理方法及びプログラム |
CN106300666A (zh) * | 2016-08-26 | 2017-01-04 | 南京国电南自电网自动化有限公司 | 一种采用fpga模拟交换机芯片的智能环网箱变测控装置 |
JP2017005911A (ja) * | 2015-06-12 | 2017-01-05 | パナソニックIpマネジメント株式会社 | 系統電圧管理システム、プログラム、および系統電圧管理方法 |
WO2017038720A1 (ja) * | 2015-08-28 | 2017-03-09 | 京セラ株式会社 | 管理サーバ、管理方法及び管理システム |
JP2017093189A (ja) * | 2015-11-12 | 2017-05-25 | 三菱電機株式会社 | 蓄電池管理装置、ゲートウェイ装置、蓄電池管理システム、およびプログラム |
JP2017158375A (ja) * | 2016-03-03 | 2017-09-07 | 東京電力ホールディングス株式会社 | 自家発電出力抑制緩和装置及び自家発電出力抑制緩和方法 |
JP2018032325A (ja) * | 2016-08-26 | 2018-03-01 | 東京電力ホールディングス株式会社 | 要求情報出力装置及び要求情報出力プログラム |
JP2018057152A (ja) * | 2016-09-29 | 2018-04-05 | 大和ハウス工業株式会社 | 電力供給システム |
WO2018147218A1 (ja) * | 2017-02-07 | 2018-08-16 | Sbエナジー株式会社 | 複数蓄電池を遠隔から群制御することによる電力供給システム及び電力供給方法 |
EP3337009A4 (en) * | 2015-08-12 | 2019-03-20 | Kyocera Corporation | MANAGEMENT SERVER, AND MANAGEMENT METHOD, AND MANAGEMENT PROGRAM |
JPWO2018078802A1 (ja) * | 2016-10-28 | 2019-03-22 | 三菱電機株式会社 | 電力管理システム、制御装置及び電力管理方法 |
JPWO2017204011A1 (ja) * | 2016-05-24 | 2019-04-18 | 京セラ株式会社 | 管理システム、管理方法、電力変換装置及び管理装置 |
CN110571813A (zh) * | 2019-09-12 | 2019-12-13 | 国网湖南省电力有限公司 | 一种基于储能调节的用户低电压治理方法及装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2024000807A (ja) * | 2022-06-21 | 2024-01-09 | 東芝エネルギーシステムズ株式会社 | 逆潮流電力制御装置および逆潮流電力制御方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09135536A (ja) * | 1995-11-07 | 1997-05-20 | Hitachi Ltd | 系統連系システム |
JP2002152976A (ja) * | 2000-11-13 | 2002-05-24 | Sharp Corp | 分散電源電力供給システム |
JP2003289627A (ja) * | 2002-03-28 | 2003-10-10 | Osaka Gas Co Ltd | エネルギー需給方法、エネルギー需給システム、需要側装置、管理側装置 |
JP2005102364A (ja) * | 2003-09-22 | 2005-04-14 | Nippon Telegr & Teleph Corp <Ntt> | 分散型エネルギーコミュニティー制御システム、中央制御装置、分散制御装置と、それらの制御方法 |
JP2006094648A (ja) * | 2004-09-24 | 2006-04-06 | Kansai Electric Power Co Inc:The | 二次電池を用いた電力系統制御方法及び電力系統制御装置 |
JP2007306744A (ja) * | 2006-05-12 | 2007-11-22 | National Institute Of Advanced Industrial & Technology | 配電系統電圧調節システム |
JP2008061382A (ja) * | 2006-08-31 | 2008-03-13 | Toshiba Corp | マイクログリットの電力需給調整システム |
US20100145532A1 (en) * | 2008-11-04 | 2010-06-10 | Daniel Constantine Gregory | Distributed hybrid renewable energy power plant and methods, systems, and comptuer readable media for controlling a distributed hybrid renewable energy power plant |
JP2010166734A (ja) * | 2009-01-16 | 2010-07-29 | Chugoku Electric Power Co Inc:The | 解列すべき進相コンデンサの決定を支援する方法、プログラム、情報処理装置 |
WO2010093345A1 (en) * | 2009-02-11 | 2010-08-19 | Accenture Global Services Gmbh | Method and system for reducing feeder circuit loss using demand response |
JP2010226942A (ja) * | 2009-02-26 | 2010-10-07 | Sanyo Electric Co Ltd | 系統連系装置、系統連系システム及び配電システム |
-
2012
- 2012-02-20 JP JP2012034176A patent/JP5907753B2/ja not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09135536A (ja) * | 1995-11-07 | 1997-05-20 | Hitachi Ltd | 系統連系システム |
JP2002152976A (ja) * | 2000-11-13 | 2002-05-24 | Sharp Corp | 分散電源電力供給システム |
JP2003289627A (ja) * | 2002-03-28 | 2003-10-10 | Osaka Gas Co Ltd | エネルギー需給方法、エネルギー需給システム、需要側装置、管理側装置 |
JP2005102364A (ja) * | 2003-09-22 | 2005-04-14 | Nippon Telegr & Teleph Corp <Ntt> | 分散型エネルギーコミュニティー制御システム、中央制御装置、分散制御装置と、それらの制御方法 |
JP2006094648A (ja) * | 2004-09-24 | 2006-04-06 | Kansai Electric Power Co Inc:The | 二次電池を用いた電力系統制御方法及び電力系統制御装置 |
JP2007306744A (ja) * | 2006-05-12 | 2007-11-22 | National Institute Of Advanced Industrial & Technology | 配電系統電圧調節システム |
JP2008061382A (ja) * | 2006-08-31 | 2008-03-13 | Toshiba Corp | マイクログリットの電力需給調整システム |
US20100145532A1 (en) * | 2008-11-04 | 2010-06-10 | Daniel Constantine Gregory | Distributed hybrid renewable energy power plant and methods, systems, and comptuer readable media for controlling a distributed hybrid renewable energy power plant |
JP2010166734A (ja) * | 2009-01-16 | 2010-07-29 | Chugoku Electric Power Co Inc:The | 解列すべき進相コンデンサの決定を支援する方法、プログラム、情報処理装置 |
WO2010093345A1 (en) * | 2009-02-11 | 2010-08-19 | Accenture Global Services Gmbh | Method and system for reducing feeder circuit loss using demand response |
JP2010226942A (ja) * | 2009-02-26 | 2010-10-07 | Sanyo Electric Co Ltd | 系統連系装置、系統連系システム及び配電システム |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103117602A (zh) * | 2013-03-11 | 2013-05-22 | 辽宁省电力有限公司 | 继电保护智能在线运行管理系统中综合事故自动报告方法 |
CN103199622A (zh) * | 2013-03-11 | 2013-07-10 | 中国电力科学研究院 | 一种低压供电安全保障及辅助决策支持系统 |
CN103595077A (zh) * | 2013-11-29 | 2014-02-19 | 国网安徽省电力公司淮南供电公司 | 双变压器系统中分裂运行向单台运行状态转换的控制方法 |
JP2015186277A (ja) * | 2014-03-20 | 2015-10-22 | 積水化学工業株式会社 | 電力管理システム、電力管理方法及びプログラム |
JP2015198486A (ja) * | 2014-03-31 | 2015-11-09 | 清水建設株式会社 | 電力需要予測装置および電力需要予測方法 |
WO2015199265A1 (ko) * | 2014-06-27 | 2015-12-30 | 이노넷 주식회사 | 수요관리 기반 부하전력 관리장치 및 부하전력 관리방법 |
JP2016174486A (ja) * | 2015-03-17 | 2016-09-29 | 積水化学工業株式会社 | 電力管理システム、電力管理方法及びプログラム |
JP2019009999A (ja) * | 2015-03-17 | 2019-01-17 | 積水化学工業株式会社 | 電力管理システム、電力管理方法及びプログラム |
JP2017005911A (ja) * | 2015-06-12 | 2017-01-05 | パナソニックIpマネジメント株式会社 | 系統電圧管理システム、プログラム、および系統電圧管理方法 |
EP3337009A4 (en) * | 2015-08-12 | 2019-03-20 | Kyocera Corporation | MANAGEMENT SERVER, AND MANAGEMENT METHOD, AND MANAGEMENT PROGRAM |
WO2017038720A1 (ja) * | 2015-08-28 | 2017-03-09 | 京セラ株式会社 | 管理サーバ、管理方法及び管理システム |
JPWO2017038720A1 (ja) * | 2015-08-28 | 2018-07-26 | 京セラ株式会社 | 管理サーバ、管理方法及び管理システム |
CN105226728A (zh) * | 2015-10-23 | 2016-01-06 | 河南柴油机重工有限责任公司 | 一种垃圾填埋气体发电机配电管理装置及方法 |
JP2017093189A (ja) * | 2015-11-12 | 2017-05-25 | 三菱電機株式会社 | 蓄電池管理装置、ゲートウェイ装置、蓄電池管理システム、およびプログラム |
JP2017158375A (ja) * | 2016-03-03 | 2017-09-07 | 東京電力ホールディングス株式会社 | 自家発電出力抑制緩和装置及び自家発電出力抑制緩和方法 |
JPWO2017204011A1 (ja) * | 2016-05-24 | 2019-04-18 | 京セラ株式会社 | 管理システム、管理方法、電力変換装置及び管理装置 |
US10978877B2 (en) | 2016-05-24 | 2021-04-13 | Kyocera Corporation | Management system, management method, power conversion apparatus, and management apparatus |
JP2018032325A (ja) * | 2016-08-26 | 2018-03-01 | 東京電力ホールディングス株式会社 | 要求情報出力装置及び要求情報出力プログラム |
CN106300666A (zh) * | 2016-08-26 | 2017-01-04 | 南京国电南自电网自动化有限公司 | 一种采用fpga模拟交换机芯片的智能环网箱变测控装置 |
JP2018057152A (ja) * | 2016-09-29 | 2018-04-05 | 大和ハウス工業株式会社 | 電力供給システム |
JPWO2018078802A1 (ja) * | 2016-10-28 | 2019-03-22 | 三菱電機株式会社 | 電力管理システム、制御装置及び電力管理方法 |
WO2018147218A1 (ja) * | 2017-02-07 | 2018-08-16 | Sbエナジー株式会社 | 複数蓄電池を遠隔から群制御することによる電力供給システム及び電力供給方法 |
CN110571813A (zh) * | 2019-09-12 | 2019-12-13 | 国网湖南省电力有限公司 | 一种基于储能调节的用户低电压治理方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
JP5907753B2 (ja) | 2016-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5907753B2 (ja) | 地域内電力需要管理システム | |
US10516268B2 (en) | Power management device and system | |
JP7460701B2 (ja) | 電力供給システムおよび電力供給方法 | |
US9343926B2 (en) | Power controller | |
Hambridge et al. | Solid State Transformer (SST) as an energy router: Economic dispatch based energy routing strategy | |
US7430545B2 (en) | Power supply/demand control system | |
US10031503B2 (en) | Energy management device, energy management method, and energy management system | |
US20160216722A1 (en) | Power management system, power management method, and computer program | |
JP2012110170A (ja) | 蓄電装置の制御装置,蓄電装置,蓄電装置の充放電方法 | |
JP6587336B2 (ja) | 再生可能エネルギー電力の分散型蓄電システム | |
JP2016015846A (ja) | 電力システム、御装置及び充放電制御方法 | |
JP5922431B2 (ja) | 地域内電力需給制御システム | |
CN102447307A (zh) | 电量运算装置、电量运算服务器、电量运算系统及电量运算方法 | |
JP2014003778A (ja) | 蓄電池装置制御システム及び蓄電装置制御方法 | |
JP2013017268A (ja) | 電力管理システム | |
JP2012060760A (ja) | 地域内電力融通システム | |
JP2020129962A (ja) | 配電制御システム、配電制御方法 | |
WO2015001767A1 (ja) | 制御装置、電力管理システム | |
CN111903027A (zh) | 电力信息管理系统、管理方法、程序、电力信息管理服务器、通信终端以及电力系统 | |
Zhang et al. | Resilient energy management for residential communities under grid outages | |
JP2015139322A (ja) | 電力ネットワークシステム | |
JPWO2016185671A1 (ja) | 蓄電池制御装置 | |
JP2013162560A (ja) | 需給調整システム | |
JP6789020B2 (ja) | 蓄電池運用方法および蓄電池運用装置 | |
JP7007202B2 (ja) | 電力管理システムおよび電力管理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141002 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151020 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160223 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160322 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5907753 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |