JP2012195607A - High breakdown voltage field-effect transistor - Google Patents

High breakdown voltage field-effect transistor Download PDF

Info

Publication number
JP2012195607A
JP2012195607A JP2012134200A JP2012134200A JP2012195607A JP 2012195607 A JP2012195607 A JP 2012195607A JP 2012134200 A JP2012134200 A JP 2012134200A JP 2012134200 A JP2012134200 A JP 2012134200A JP 2012195607 A JP2012195607 A JP 2012195607A
Authority
JP
Japan
Prior art keywords
region
drain
oxide film
concentration region
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012134200A
Other languages
Japanese (ja)
Other versions
JP5481526B2 (en
Inventor
Masashi Yamagishi
雅司 山岸
Toshihiro Honma
俊廣 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Priority to JP2012134200A priority Critical patent/JP5481526B2/en
Publication of JP2012195607A publication Critical patent/JP2012195607A/en
Application granted granted Critical
Publication of JP5481526B2 publication Critical patent/JP5481526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Abstract

PROBLEM TO BE SOLVED: To obtain sufficiently low on-resistance without increasing the element area of a high breakdown voltage field-effect transistor.SOLUTION: A high breakdown voltage pMOS transistor is formed as follows: A drain low-concentration region 103 and a source low-concentration region 104 are formed so as to sandwich a channel formation region 102a in an n-type region 102 of a semiconductor substrate 101. A drain high-concentration region 105 and a source high-concentration region 106 are formed. A gate oxide film 109 is formed. A field oxide film 110 is formed in regions including the ends of gate oxide film 109 and the low-concentration regions 103 and 104. A gate electrode 111 is formed from the gate oxide film 109 to the ends of the field oxide film 110. In the high breakdown voltage pMOS transistor, a non-oxidation region 112 in which the field oxide film 110 is not formed is provided between the gate electrode 111 and the drain high-concentration region 105. The impurity in the drain low-concentration region 103 is hardly taken into the field oxide film 110 during manufacture, thereby suppressing an increase in on-resistance.

Description

この発明は、高耐圧電界効果トランジスタに関する。この発明は、例えば、HV−pMOS(High Voltage p-channel Metal Oxide Semiconductor;高耐圧pMOS)トランジスタに適用することができる。   The present invention relates to a high voltage field effect transistor. The present invention can be applied to, for example, an HV-pMOS (High Voltage p-channel Metal Oxide Semiconductor) transistor.

高耐圧の電界効果トランジスタを開示する文献としては、例えば下記特許文献1が知られている。   As a document disclosing a high withstand voltage field effect transistor, for example, the following Patent Document 1 is known.

同文献の例えば図16に示されているように、高耐圧nMOSトランジスタは、ドレイン領域として、低濃度の領域(同文献ではn−オフセットドレイン領域12)と、高濃度の領域(同文献ではn+ドレイン領域17)とを有している。ゲート酸化膜14は、チャネル形成領域と、ドレイン低濃度領域12の端部とを覆うように形成される。ドレイン低濃度領域12のうち、ドレイン高濃度領域17が形成されず且つゲート酸化膜14が形成されていない領域には、フィールド酸化膜13が形成される。そして、ゲート酸化膜14とフィールド酸化膜13の端部とを覆うように、ゲート電極15が形成される。すなわち、ゲート電極15のドレイン側端部は、ゲート酸化膜14ではなく、フィールド酸化膜13上に配置される。   For example, as shown in FIG. 16 of the same document, a high breakdown voltage nMOS transistor includes a low concentration region (n−offset drain region 12 in the same document) and a high concentration region (n + in the same document) as a drain region. A drain region 17). The gate oxide film 14 is formed so as to cover the channel formation region and the end of the drain low concentration region 12. A field oxide film 13 is formed in a region where the drain high concentration region 17 is not formed and the gate oxide film 14 is not formed in the low drain concentration region 12. Then, a gate electrode 15 is formed so as to cover the gate oxide film 14 and the end of the field oxide film 13. That is, the drain side end of the gate electrode 15 is disposed not on the gate oxide film 14 but on the field oxide film 13.

ドレイン領域を高濃度領域17と低濃度領域12との二重構造とするのは、ソース・ドレイン間耐圧を向上させるためである。低濃度領域12の距離が長いほど、すなわちチャネル形成領域と高濃度領域17との距離が長いほど、ソース・ドレイン間耐圧を向上させることができる。   The reason why the drain region has a double structure of the high concentration region 17 and the low concentration region 12 is to improve the source-drain breakdown voltage. The longer the distance of the low concentration region 12, that is, the longer the distance between the channel formation region and the high concentration region 17, the higher the source-drain breakdown voltage.

また、ゲート電極15のドレイン側端部をフィールド酸化膜13上に配置するのは、ゲート電極15の端部付近で電界が集中し易いからである。すなわち、ゲート電極15の端部をフィールド酸化膜13上に配置することにより、ドレイン領域での電界集中を緩和させて、MOSトランジスタの耐圧を高めることができる。   The reason why the drain side end of the gate electrode 15 is disposed on the field oxide film 13 is that the electric field tends to concentrate near the end of the gate electrode 15. That is, by disposing the end portion of the gate electrode 15 on the field oxide film 13, the electric field concentration in the drain region can be relaxed and the breakdown voltage of the MOS transistor can be increased.

特開2003−204062号公報Japanese Patent Laid-Open No. 2003-204062

上述のように、MOSトランジスタの耐圧を向上させるためには、低濃度領域の距離を長くすること、すなわちチャネル形成領域と高濃度領域との距離を長くすることが望ましい。   As described above, in order to improve the breakdown voltage of the MOS transistor, it is desirable to increase the distance between the low concentration regions, that is, increase the distance between the channel formation region and the high concentration region.

しかしながら、低濃度領域の距離を長くするほど、オン抵抗が増大して、MOSトランジスタの駆動能力が低下するという欠点がある。   However, as the distance of the low concentration region is increased, there is a disadvantage that the on-resistance increases and the driving capability of the MOS transistor decreases.

加えて、低濃度領域の距離を長くすると、素子面積が増大して、集積回路の集積率が低下するという欠点もある。   In addition, if the distance of the low-concentration region is increased, there is a disadvantage that the element area increases and the integration rate of the integrated circuit decreases.

ここで、低濃度領域の距離を長くしても、それに応じてチャネル幅を大きくすれば、オン抵抗の増大を防止・抑制することができる。しかし、MOSトランジスタのチャネル幅を大きくすれば、素子面積はさらに増大することになり、集積率低下の問題がいっそう顕著となる。   Here, even if the distance of the low concentration region is increased, an increase in on-resistance can be prevented / suppressed by increasing the channel width accordingly. However, if the channel width of the MOS transistor is increased, the element area is further increased, and the problem of lowering the integration rate becomes more remarkable.

この発明の課題は、オン抵抗が小さく且つ素子面積が小さい高耐圧電界効果トランジスタを提供する点にある。   An object of the present invention is to provide a high breakdown voltage field effect transistor having a small on-resistance and a small element area.

この発明に係る高耐圧電界効果トランジスタは、半導体基板のn型領域内にチャネル形成領域を挟んで形成されたp型のドレイン低濃度領域およびソース低濃度領域と、ドレイン低濃度領域内に形成されたドレイン低濃度領域よりも高い不純物濃度のドレイン高濃度領域と、少なくともチャネル形成領域の表面を覆うゲート絶縁膜と、ゲート絶縁膜のドレイン側端部と接するようにドレイン低濃度領域上に形成された第1フィールド酸化膜と、ゲート絶縁膜のソース側端部と接するように、ソース低濃度領域上に形成された第2フィールド酸化膜と、ゲート絶縁膜を介してチャネル形成領域の全面を覆い、且つ第1フィールド酸化膜を介してドレイン低濃度領域の端部を覆うように形成されるとともに、第2フィールド酸化膜を介してソース低濃度領域の端部を覆うように形成されたゲート電極と、ドレイン低濃度領域のうちゲート電極とドレイン高濃度領域とに挟まれており且つ表面にドレイン高濃度領域および第1フィールド酸化膜が形成されていない非酸化領域と、ドレイン低濃度領域上の、非酸化領域及びドレイン高濃度領域を挟んで第1フィールド酸化膜と向かい合う位置であって、ドレイン高濃度領域と隣り合う位置に形成された第3フィールド酸化膜とを有する。   The high breakdown voltage field effect transistor according to the present invention is formed in a p-type low drain concentration region and a low source concentration region formed in a n-type region of a semiconductor substrate with a channel formation region interposed therebetween, and a low drain concentration region. A drain high concentration region having a higher impurity concentration than the drain low concentration region, a gate insulating film covering at least the surface of the channel formation region, and a drain side end of the gate insulating film so as to be in contact with the drain low concentration region. Covering the entire surface of the channel formation region via the second field oxide film formed on the low concentration source region and the gate insulating film so as to be in contact with the first field oxide film and the source side end of the gate insulating film And the first field oxide film is formed so as to cover the end portion of the low-concentration drain region, and the source is formed through the second field oxide film. The gate electrode formed so as to cover the end of the concentration region, and the gate electrode and the drain high concentration region in the low concentration drain region are sandwiched, and the drain high concentration region and the first field oxide film are formed on the surface. A non-oxidized region that is not formed and a position on the drain low concentration region facing the first field oxide film across the non-oxidized region and the drain high concentration region, and adjacent to the drain high concentration region And a third field oxide film.

この発明によれば、ドレイン低濃度領域に、ゲート電極とドレイン高濃度領域とに挟まれており且つ表面にドレイン高濃度領域およびフィールド酸化膜が形成されていない非酸化領域を設けたので、製造時にドレイン低濃度領域内のp型不純物がフィールド酸化膜に吸収される現象を抑制することができる。これにより、ドレイン低濃度領域内のp型不純物濃度を高く維持することができ、したがって、高耐圧電界効果トランジスタの素子面積を増大させること無しに、十分に低いオン抵抗を得ることができる。   According to the present invention, the low-drain region is provided with the non-oxidized region sandwiched between the gate electrode and the high-drain region and having no high-drain region and field oxide film formed on the surface. The phenomenon that the p-type impurity in the drain low concentration region is sometimes absorbed by the field oxide film can be suppressed. Thereby, the p-type impurity concentration in the drain low concentration region can be kept high, and therefore a sufficiently low on-resistance can be obtained without increasing the element area of the high breakdown voltage field effect transistor.

第1の実施形態に係る高耐圧pMOSトランジスタの構造を概念的に示す断面図である。1 is a cross-sectional view conceptually showing the structure of a high voltage pMOS transistor according to a first embodiment. 第1の実施形態に係る製造工程を概念的に示す工程断面図である。It is process sectional drawing which shows notionally the manufacturing process which concerns on 1st Embodiment. 第1の実施形態に係る製造工程を概念的に示す工程断面図である。It is process sectional drawing which shows notionally the manufacturing process which concerns on 1st Embodiment. 第2の実施形態に係る高耐圧pMOSトランジスタの構造を概念的に示す断面図である。It is sectional drawing which shows notionally the structure of the high voltage | pressure-resistant pMOS transistor which concerns on 2nd Embodiment. 第2の実施形態に係る製造工程を概念的に示す工程断面図である。It is process sectional drawing which shows notionally the manufacturing process which concerns on 2nd Embodiment.

以下、この発明の実施の形態について、図面を用いて説明する。なお、図中、各構成成分の大きさ、形状および配置関係は、この発明が理解できる程度に概略的に示してあるにすぎず、また、以下に説明する数値的条件は単なる例示にすぎない。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the size, shape, and arrangement relationship of each component are shown only schematically to the extent that the present invention can be understood, and the numerical conditions described below are merely examples. .

第1の実施形態
第1の実施形態に係る高耐圧電界効果トランジスタおよびその製造方法について、図1〜図3を用いて説明する。
First Embodiment A high breakdown voltage field effect transistor and a manufacturing method thereof according to a first embodiment will be described with reference to FIGS.

図1は、この実施形態に係る高耐圧pMOSトランジスタの構造を概念的に示す断面図である。   FIG. 1 is a sectional view conceptually showing the structure of a high voltage pMOS transistor according to this embodiment.

図1に示したように、この実施形態の高耐圧pMOSトランジスタ100は、半導体基板101のnウェル102に形成された、ドレイン低濃度領域103と、ソース低濃度領域104と、ドレイン高濃度領域105と、ソース高濃度領域106と、ガードリング層107,108と、ゲート酸化膜109と、フィールド酸化膜110と、ゲート電極111と、非酸化領域112と、中間絶縁膜113と、コンタクト層114,115と、配線パターン116,117とを有する。   As shown in FIG. 1, the high breakdown voltage pMOS transistor 100 of this embodiment includes a low concentration drain region 103, a low concentration source region 104, and a high concentration drain region 105 formed in an n well 102 of a semiconductor substrate 101. Source high concentration region 106, guard ring layers 107 and 108, gate oxide film 109, field oxide film 110, gate electrode 111, non-oxidized region 112, intermediate insulating film 113, contact layer 114, 115 and wiring patterns 116 and 117.

半導体基板101としては、p型シリコン基板を使用することができる。   As the semiconductor substrate 101, a p-type silicon substrate can be used.

nウェル102は、半導体基板101の表面に、例えばリン等のn型不純物イオンを注入することによって、形成される。nウェル102の不純物濃度は、例えば1×1016cm-3である。   The n well 102 is formed by implanting n-type impurity ions such as phosphorus into the surface of the semiconductor substrate 101. The impurity concentration of the n well 102 is, for example, 1 × 10 16 cm −3.

ドレイン低濃度領域103およびソース低濃度領域104は、半導体基板101のn型領域102に、例えばボロン等の不純物イオンを注入することによって、形成される。ドレイン低濃度領域103およびソース低濃度領域104の不純物濃度は、例えば1×1016cm-3である。ドレイン低濃度領域103とソース低濃度領域104とに挟まれた領域が、チャネル形成領域102aとなる。 The drain low concentration region 103 and the source low concentration region 104 are formed by implanting impurity ions such as boron into the n-type region 102 of the semiconductor substrate 101. The impurity concentration of the low concentration drain region 103 and the low concentration source region 104 is, for example, 1 × 10 16 cm −3 . A region sandwiched between the low concentration drain region 103 and the low concentration source region 104 is a channel formation region 102a.

ドレイン高濃度領域105は、ドレイン低濃度領域103内に形成される。ドレイン高濃度領域105は、ドレイン低濃度領域103よりも高い不純物濃度(例えば1×1020cm-3)を有している。ドレイン高濃度領域105は、チャネル形成領域102aとの距離Ldが例えば10μm以下となる位置に形成される。 The drain high concentration region 105 is formed in the drain low concentration region 103. The drain high concentration region 105 has a higher impurity concentration (for example, 1 × 10 20 cm −3 ) than the drain low concentration region 103. The drain high concentration region 105 is formed at a position where the distance Ld to the channel formation region 102a is, for example, 10 μm or less.

ソース高濃度領域106は、ソース低濃度領域104内に形成される。ソース高濃度領域106は、ソース低濃度領域104よりも高い不純物濃度(例えば1×1020cm-3)を有している。ソース高濃度領域106は、チャネル形成領域102aとの距離Lsが上述のLdよりも短くなるような位置に形成される。 The source high concentration region 106 is formed in the source low concentration region 104. The high source concentration region 106 has a higher impurity concentration (for example, 1 × 10 20 cm −3 ) than the low source concentration region 104. The source high concentration region 106 is formed at a position where the distance Ls to the channel formation region 102a is shorter than the above-described Ld.

ガードリング層107,108は、高耐圧pMOSトランジスタ100を、隣接する他の素子から電気的に分離するための層である。ガードリング層107,108は、ドレイン低濃度領域103およびソース低濃度領域104の外側に、n型不純物イオンを注入することによって形成される。ガードリング層107,108の不純物濃度は、例えば1×1020cm-3である。   The guard ring layers 107 and 108 are layers for electrically isolating the high breakdown voltage pMOS transistor 100 from other adjacent elements. The guard ring layers 107 and 108 are formed by implanting n-type impurity ions outside the low concentration drain region 103 and the low concentration source region 104. The impurity concentration of the guard ring layers 107 and 108 is, for example, 1 × 10 20 cm −3.

ゲート酸化膜109は、少なくともチャネル形成領域102aの表面を覆うように形成された、シリコン酸化膜である。ゲート酸化膜109の膜厚は、例えば200nm以上250nm以下である。   The gate oxide film 109 is a silicon oxide film formed so as to cover at least the surface of the channel formation region 102a. The thickness of the gate oxide film 109 is, for example, not less than 200 nm and not more than 250 nm.

フィールド酸化膜110は、ゲート酸化膜109の端部と接するように形成されるとともに、ドレイン低濃度領域103が形成された領域のうちドレイン高濃度領域105および非酸化領域112以外の部分を覆う。さらに、この実施形態のフィールド酸化膜110は、ソース低濃度領域104が形成された領域のうち、ソース高濃度領域106以外の領域を覆う。フィールド酸化膜110の膜厚は例えば800nm以下である。また、フィールド酸化膜110は、ゲート酸化膜109側の端部から非酸化領域112側端部までの長さが1.5μm以上3.0μm以下となるように、形成される。   The field oxide film 110 is formed so as to be in contact with the end portion of the gate oxide film 109 and covers a portion other than the drain high concentration region 105 and the non-oxide region 112 in the region where the drain low concentration region 103 is formed. Further, the field oxide film 110 of this embodiment covers a region other than the source high concentration region 106 in the region where the source low concentration region 104 is formed. The thickness of the field oxide film 110 is, for example, 800 nm or less. The field oxide film 110 is formed so that the length from the end portion on the gate oxide film 109 side to the end portion on the non-oxidized region 112 side is 1.5 μm or more and 3.0 μm or less.

ゲート電極111は、ゲート酸化膜109を介してチャネル形成領域102aの全面を覆い、且つ、フィールド酸化膜110を介してドレイン低濃度領域103およびソース低濃度領域104の端部を覆うように形成される。ゲート電極111の構造は任意であるが、この実施形態では、ポリシリコン層111aとタングステンシリサイド層111bの積層構造のものを使用した。   The gate electrode 111 is formed so as to cover the entire surface of the channel formation region 102 a via the gate oxide film 109 and to cover the end portions of the drain low concentration region 103 and the source low concentration region 104 via the field oxide film 110. The The structure of the gate electrode 111 is arbitrary, but in this embodiment, a layered structure of a polysilicon layer 111a and a tungsten silicide layer 111b is used.

非酸化領域112は、ドレイン低濃度領域103のうち、ゲート電極111とドレイン高濃度領域105とに挟まれており、且つ、このドレイン高濃度領域105およびフィールド酸化膜110が表面に形成されていない領域である。この実施形態では、ドレイン低濃度領域103の表面に非酸化領域112を設けることにより(すなわち、ドレイン低濃度領域103の表面に、フィールド酸化膜110で覆われていない領域を設けることにより)、高耐圧pMOSトランジスタの素子面積を増大させること無しにオン抵抗の増加を抑制することができる(後述)。   The non-oxidized region 112 is sandwiched between the gate electrode 111 and the high drain concentration region 105 in the low drain concentration region 103, and the drain high concentration region 105 and the field oxide film 110 are not formed on the surface. It is an area. In this embodiment, the non-oxidized region 112 is provided on the surface of the drain low concentration region 103 (that is, the region not covered with the field oxide film 110 is provided on the surface of the drain low concentration region 103). An increase in on-resistance can be suppressed without increasing the element area of the withstand voltage pMOS transistor (described later).

中間絶縁膜113は、例えばシリコン酸化膜等で半導体基板101の全面を覆うことにより、形成される。   The intermediate insulating film 113 is formed by covering the entire surface of the semiconductor substrate 101 with a silicon oxide film or the like, for example.

コンタクト層114,115は、ドレイン高濃度領域105およびソース高濃度領域106と配線パターン116,117とを電気的に接続するための層間配線である。コンタクト層114,115は、中間絶縁膜113に形成されたコンタクトホールに例えばタングステンを埋め込むことによって形成される。   The contact layers 114 and 115 are interlayer wirings for electrically connecting the drain high concentration region 105 and the source high concentration region 106 to the wiring patterns 116 and 117. The contact layers 114 and 115 are formed by, for example, burying tungsten in a contact hole formed in the intermediate insulating film 113.

配線パターン116,117は、ドレイン高濃度領域105およびソース高濃度領域106に配線を施すための導電層であり、例えばアルミニウムにより形成される。   The wiring patterns 116 and 117 are conductive layers for wiring the drain high concentration region 105 and the source high concentration region 106, and are formed of aluminum, for example.

次に、図1に示した高耐圧pMOSトランジスタの製造方法について説明する。図2および図3は、この実施形態に係る製造工程を概念的に示す工程断面図である。   Next, a method for manufacturing the high voltage pMOS transistor shown in FIG. 1 will be described. 2 and 3 are process sectional views conceptually showing the manufacturing process according to this embodiment.

(1)まず、半導体基板101の表面に、リン等のn型不純物イオンを、例えばドーズ量最大1×1013cm-2程度で注入することにより、nウェル102を形成する。そして、このnウェル102内に、ボロン等のp型不純物イオンを、例えばドーズ量最大1×1013cm-2程度で注入することにより、ドレイン低濃度領域103およびソース低濃度領域104を形成する(図2(A)参照)。 (1) First, n-type impurity ions such as phosphorus are implanted into the surface of the semiconductor substrate 101, for example, at a maximum dose of about 1 × 10 13 cm −2 to form the n-well 102. Then, p-type impurity ions such as boron are implanted into the n-well 102 at a dose amount of about 1 × 10 13 cm −2 at the maximum, thereby forming the low-drain region 103 and the low-source region 104. (See FIG. 2A).

(2)次に、例えばLOCOS(localized oxidation of silicon)法を用いて、半導体基板101の表面に、膜厚が例えば800nm以下の、フィールド酸化膜110を形成する。フィールド酸化膜110は、ドレイン高濃度領域105、ソース高濃度領域106、ガードリング層107,108、ゲート酸化膜109が形成される領域と、非酸化領域112となるべき領域とには、形成されない。上述のように、この実施形態では、ゲート酸化膜109が形成される領域側の端部E1から非酸化領域112となる領域の端部E2までの長さが、1.5μm以上3.0μm以下となるように、フィールド酸化膜110を形成する(図2(B)参照)。   (2) Next, a field oxide film 110 having a film thickness of, for example, 800 nm or less is formed on the surface of the semiconductor substrate 101 using, for example, a LOCOS (localized oxidation of silicon) method. The field oxide film 110 is not formed in the region where the drain high concentration region 105, the source high concentration region 106, the guard ring layers 107 and 108, and the gate oxide film 109 are formed, and the region to be the non-oxidized region 112. . As described above, in this embodiment, the length from the end E1 on the region side where the gate oxide film 109 is formed to the end E2 of the region to be the non-oxidized region 112 is 1.5 μm or more and 3.0 μm or less. Then, a field oxide film 110 is formed (see FIG. 2B).

(3)例えば熱酸化法を用いて半導体基板101の表面を酸化することにより、膜厚が例えば250nm以下の酸化膜を形成し、続いて、レジストパターンを用いて、チャネル形成領域102a以外の領域上の酸化膜を選択的にエッチングすることにより、ゲート酸化膜109を形成する。さらに、通常のイオン注入技術を用い、チャネル形成領域102aへ、しきい値電圧を調整するためのイオン注入を行う。その後、例えば通常の薄膜堆積技術等を用いて、ゲート酸化膜109上に、ポリシリコン層111aおよびタングステンシリサイド層111bを形成する。これにより、ゲート電極111が完成する(図2(C)参照)。   (3) An oxide film having a film thickness of, for example, 250 nm or less is formed by oxidizing the surface of the semiconductor substrate 101 using, for example, a thermal oxidation method, and then a region other than the channel formation region 102a is formed using a resist pattern. The gate oxide film 109 is formed by selectively etching the upper oxide film. Further, ion implantation for adjusting the threshold voltage is performed on the channel formation region 102a using a normal ion implantation technique. Thereafter, a polysilicon layer 111a and a tungsten silicide layer 111b are formed on the gate oxide film 109 using, for example, a normal thin film deposition technique. Thus, the gate electrode 111 is completed (see FIG. 2C).

(4)続いて、通常のフォトリソグラフィ技術等を用いて、レジストマスク301を形成する。レジストマスク301は、ガードリング層107,108を形成する領域およびその周辺のフィールド酸化膜110のみを露出し、他の領域を覆う。そして、レジストマスク301を用いて、例えばヒ素イオンをドーズ量最大1×1016cm-2で注入することにより、ガードリング層107,108が形成される(図3(A)参照)。その後、レジストマスク301を除去する。 (4) Subsequently, a resist mask 301 is formed using a normal photolithography technique or the like. The resist mask 301 exposes only the region where the guard ring layers 107 and 108 are formed and the field oxide film 110 therearound, and covers the other regions. Then, for example, arsenic ions are implanted at a dose of 1 × 10 16 cm −2 using the resist mask 301 to form the guard ring layers 107 and 108 (see FIG. 3A). Thereafter, the resist mask 301 is removed.

(5)次に、通常のフォトリソグラフィ技術等を用いて、レジストマスク302を形成する。レジストマスク302は、ドレイン高濃度領域105およびソース高濃度領域106を形成する領域およびその周辺のフィールド酸化膜110のみを露出し、他の領域を覆う。そして、レジストマスク302を用いて、例えばBFイオンをドーズ量最大5×1015cm-2程度で注入することにより、ドレイン高濃度領域105およびソース高濃度領域106が形成される(図3(B)参照)。その後、レジストマスク302を除去する。このように、この実施形態では、ドレイン低濃度領域103の露出面をレジストマスク302で覆うこととしたので、この露出面を非酸化領域112にすることができる。 (5) Next, a resist mask 302 is formed using a normal photolithography technique or the like. The resist mask 302 exposes only the region where the drain high concentration region 105 and the source high concentration region 106 are formed and the field oxide film 110 therearound, and covers the other regions. Then, using the resist mask 302, for example, BF 2 ions are implanted at a dose of about 5 × 10 15 cm −2 at maximum, thereby forming the drain high concentration region 105 and the source high concentration region 106 (FIG. 3 ( B)). Thereafter, the resist mask 302 is removed. Thus, in this embodiment, since the exposed surface of the drain low concentration region 103 is covered with the resist mask 302, this exposed surface can be the non-oxidized region 112.

(6)最後に、通常の堆積技術、フォトリソグラフィー技術等を用いて、中間絶縁膜113と、コンタクト層114,115と、配線パターン116,117を形成し、図1に示したような高耐圧pMOSトランジスタ100を完成させる。   (6) Finally, the intermediate insulating film 113, the contact layers 114 and 115, and the wiring patterns 116 and 117 are formed using a normal deposition technique, a photolithography technique, etc., and the high breakdown voltage as shown in FIG. The pMOS transistor 100 is completed.

次に、この実施形態に係る高耐圧pMOSトランジスタのオン抵抗が小さくなる理由を説明する。   Next, the reason why the on-resistance of the high voltage pMOS transistor according to this embodiment is reduced will be described.

高耐圧のMOSトランジスタを製造するに際して、ドレイン低濃度領域の不純物濃度は、トランジスタのオン抵抗と耐圧とを考慮して決定される。トランジスタでは、ドレイン低濃度領域の不純物濃度を高くするほど、オン抵抗を小さくすることができる。その一方で、ドレイン低濃度領域の不純物濃度が高くなるほど、ウェル領域とドレイン低濃度領域との境界面における濃度勾配が急峻になって、トランジスタの耐圧が低下してしまう。したがって、オン抵抗が十分に低く且つ耐圧が十分に高いトランジスタを得るためには、ドレイン低濃度領域の不純物濃度を高精度に制御する必要がある。   When manufacturing a high breakdown voltage MOS transistor, the impurity concentration in the drain low concentration region is determined in consideration of the on-resistance and breakdown voltage of the transistor. In the transistor, the on-resistance can be reduced as the impurity concentration in the low drain concentration region is increased. On the other hand, the higher the impurity concentration in the low-drain region, the steeper concentration gradient at the interface between the well region and the low-drain region, and the breakdown voltage of the transistor decreases. Therefore, in order to obtain a transistor having a sufficiently low on-resistance and a sufficiently high breakdown voltage, it is necessary to control the impurity concentration in the drain low concentration region with high accuracy.

ここで、従来の高耐圧MOSトランジスタでは、ドレイン低濃度領域の表面には、ドレイン高濃度領域が形成されている部分およびゲート酸化膜が形成されている部分を除き、全域にフィールド酸化膜が形成されていた(上述の特許文献1参照)。   Here, in the conventional high breakdown voltage MOS transistor, a field oxide film is formed on the entire surface of the low drain concentration region except for a portion where the high drain concentration region is formed and a portion where the gate oxide film is formed. (See Patent Document 1 above).

しかしながら、p型の高耐圧MOSトランジスタにおいては、ドレイン低濃度領域の表面にフィールド酸化膜を形成する際に、このフィールド酸化膜にドレイン低濃度領域内のp型不純物が取り込まれてしまい、このために、ドレイン低濃度領域の表面近傍(すなわち、ドレイン低濃度領域とフィールド酸化膜との界面付近)で不純物濃度が低下して、オン抵抗が増大してしまう。その一方で、ドレイン低濃度領域の深い位置での不純物濃度は変化しないので、ドレイン低濃度領域全体の不純物濃度を予め高く設定しようとすると、トランジスタの耐圧が非常に低くなってしまう。   However, in the p-type high breakdown voltage MOS transistor, when a field oxide film is formed on the surface of the drain low concentration region, p-type impurities in the drain low concentration region are taken into the field oxide film. In addition, the impurity concentration decreases near the surface of the drain low concentration region (that is, near the interface between the drain low concentration region and the field oxide film), and the on-resistance increases. On the other hand, since the impurity concentration at the deep position of the drain low concentration region does not change, if the impurity concentration of the entire drain low concentration region is set high in advance, the breakdown voltage of the transistor becomes very low.

これに対して、この実施形態では、p型の高耐圧MOSトランジスタにおいて、ゲート電極とドレイン高濃度領域との間に非酸化領域を設けることによって、ドレイン低濃度領域とフィールド酸化膜との接触面積を小さく抑えた。これにより、製造時にドレイン低濃度領域内のp型不純物がフィールド酸化膜に吸収される現象を抑制することができるので、ドレイン低濃度領域内におけるp型不純物濃度の低下を抑制することができる。したがって、この実施形態によれば、高耐圧電界効果トランジスタの素子面積を増大させたり、耐圧を低下させたりすること無しに、十分に低いオン抵抗を得ることができる。上述のように、この実施形態では、非酸化領域112を、かかる非酸化領域112の端部とゲート酸化膜109の端部と距離(すなわち、これらの端部の間に形成されたフィールド酸化膜の長さ)が1.5μm以上3.0μm以下となるように、形成する。かかる距離が1.5μm未満の場合はフィールド酸化膜110の上にゲート電極111の端部を形成することが困難になり、また、かかる距離が3.0μmより大きい場合はオン抵抗の増大を抑制するという効果が不十分だからである。   In contrast, in this embodiment, in the p-type high breakdown voltage MOS transistor, a non-oxidized region is provided between the gate electrode and the drain high concentration region, so that the contact area between the drain low concentration region and the field oxide film is increased. Was kept small. As a result, the phenomenon that the p-type impurity in the low-drain concentration region is absorbed by the field oxide film at the time of manufacturing can be suppressed, so that the decrease in the p-type impurity concentration in the low-drain region can be suppressed. Therefore, according to this embodiment, a sufficiently low on-resistance can be obtained without increasing the element area of the high breakdown voltage field effect transistor or decreasing the breakdown voltage. As described above, in this embodiment, the non-oxidized region 112 is separated from the end portion of the non-oxidized region 112 and the end portion of the gate oxide film 109 (that is, the field oxide film formed between these end portions). Is formed to be 1.5 μm or more and 3.0 μm or less. When the distance is less than 1.5 μm, it becomes difficult to form the end of the gate electrode 111 on the field oxide film 110, and when the distance is greater than 3.0 μm, an increase in on-resistance is suppressed. This is because the effect of doing is insufficient.

一方、n型の高耐圧pMOSトランジスタにおいては、n型不純物が、フィールド酸化膜形成時にドレイン低濃度領域の表面近傍に移動するものの、かかるフィールド酸化膜内には殆ど取り込まれない。このため、トランジスタ全体としてのオン抵抗は殆ど増加しないので、非酸化領域を設けなくてもよい。   On the other hand, in an n-type high breakdown voltage pMOS transistor, n-type impurities move to the vicinity of the surface of the drain low concentration region when forming the field oxide film, but are hardly taken into the field oxide film. For this reason, the on-resistance of the entire transistor hardly increases, so that a non-oxidized region may not be provided.

以上説明したように、この実施形態に係る高耐圧pMOSトランジスタによれば、ゲート電極111とドレイン高濃度領域105との間に非酸化領域112を設けたので、素子面積を増大させること無しに、十分に低いオン抵抗を得ることができる。   As described above, according to the high breakdown voltage pMOS transistor of this embodiment, since the non-oxidized region 112 is provided between the gate electrode 111 and the drain high concentration region 105, without increasing the element area, A sufficiently low on-resistance can be obtained.

また、この実施形態に係る高耐圧pMOSトランジスタの製造方法によれば、非酸化領域112になるべき部分とゲート電極111とを少なくとも覆うマスクパターン302を形成し、その後、このマスクパターンを302用いてp型不純物を導入することによりドレイン高濃度領域105を形成することにより(上記工程(5)参照)、ゲート電極111とドレイン高濃度領域105との間に非酸化領域112を形成することができる。   In addition, according to the method of manufacturing the high voltage pMOS transistor according to this embodiment, the mask pattern 302 that covers at least the portion that should become the non-oxidized region 112 and the gate electrode 111 is formed, and then the mask pattern 302 is used. By forming the high concentration drain region 105 by introducing p-type impurities (see step (5) above), the non-oxidized region 112 can be formed between the gate electrode 111 and the high concentration drain region 105. .

なお、この実施形態では、ソース低濃度領域104内にも高濃度領域106を形成する場合を例に採って説明したが、高濃度領域106を形成しない場合にも、この実施形態を適用することができる。また、この実施形態では、ソース低濃度領域104の表面全体にフィールド酸化膜110で覆う構成としたが、例えば、ソース低濃度領域104側にフィールド酸化膜を形成しない場合等であっても、この発明を適用することができる。すなわち、ドレイン低濃度領域103上に非酸化領域112を設けることとすれば、ソース側の構成に拘わらず、本発明の効果を得ることができる。   In this embodiment, the case where the high concentration region 106 is formed also in the source low concentration region 104 has been described as an example. However, the present embodiment is also applied to the case where the high concentration region 106 is not formed. Can do. In this embodiment, the entire surface of the source low concentration region 104 is covered with the field oxide film 110. For example, even when the field oxide film is not formed on the source low concentration region 104 side, The invention can be applied. That is, if the non-oxidized region 112 is provided on the drain low concentration region 103, the effect of the present invention can be obtained regardless of the configuration on the source side.

第2実施形態
次に、第2の実施形態に係る高耐圧電界効果トランジスタおよびその製造方法について、図4および図5を用いて説明する。
Second Embodiment Next, a high breakdown voltage field effect transistor and a method for manufacturing the same according to a second embodiment will be described with reference to FIGS.

図4は、この実施形態に係る高耐圧pMOSトランジスタの構造を概念的に示す断面図である。図4において、図1と同じ符号を付した構成要素は、それぞれ図1と同じものを示している。   FIG. 4 is a sectional view conceptually showing the structure of the high voltage pMOS transistor according to this embodiment. In FIG. 4, the components given the same reference numerals as those in FIG. 1 are the same as those in FIG. 1.

図4に示したように、この実施形態の高耐圧pMOSトランジスタ400は、非酸化領域112の表面にp型低抵抗層401が設けられている点で、上述の第1の実施形態と異なる。   As shown in FIG. 4, the high breakdown voltage pMOS transistor 400 of this embodiment is different from the above-described first embodiment in that a p-type low resistance layer 401 is provided on the surface of the non-oxidized region 112.

p型低抵抗層401は、第1の実施形態の非酸化領域112に対応する位置に、形成される。p型低抵抗層401の不純物濃度は、ドレイン低濃度領域103よりも高く且つドレイン高濃度領域105よりも低い値に設定される。   The p-type low resistance layer 401 is formed at a position corresponding to the non-oxidized region 112 of the first embodiment. The impurity concentration of the p-type low resistance layer 401 is set to a value higher than that of the drain low concentration region 103 and lower than that of the drain high concentration region 105.

次に、図4に示した高耐圧pMOSトランジスタの製造方法について説明する。図5は、この実施形態に係る製造工程を概念的に示す工程断面図である。   Next, a manufacturing method of the high voltage pMOS transistor shown in FIG. 4 will be described. FIG. 5 is a process sectional view conceptually showing the manufacturing process according to this embodiment.

(1)まず、第1の実施形態の工程(1)〜(3)と同様にして、半導体基板101の表面に、nウェル102、ドレイン低濃度領域103、ソース低濃度領域104、ゲート酸化膜109、フィールド酸化膜110およびゲート電極111を形成する(図5(A)参照)。   (1) First, similarly to the steps (1) to (3) of the first embodiment, an n well 102, a drain low concentration region 103, a source low concentration region 104, a gate oxide film are formed on the surface of the semiconductor substrate 101. 109, a field oxide film 110 and a gate electrode 111 are formed (see FIG. 5A).

(2)次に、通常のフォトリソグラフィ技術等を用いて、レジストマスク501を形成する。レジストマスク501は、ガードリング層107,108を形成する領域およびその周辺のフィールド酸化膜110を覆うように形成される(図5(B)参照)。   (2) Next, a resist mask 501 is formed using a normal photolithography technique or the like. The resist mask 501 is formed so as to cover the region where the guard ring layers 107 and 108 are formed and the field oxide film 110 around the region (see FIG. 5B).

(3)続いて、レジストマスク501を用い、例えばBFイオンをドーズ量最大1×1013cm-2程度で注入することにより、p型低抵抗層401を形成する(図5(C)参照)。なお、高耐圧pMOSトランジスタ400と同時に低耐圧トランジスタ(すなわち、LV−MOSトランジスタ)を製造する場合には、かかるLV−MOSトランジスタのLDD(Lightly Doped Drain) 領域を形成するためのイオン注入と同時に、p型低抵抗層401を形成してもよい。 (3) Subsequently, by using the resist mask 501, for example, BF 2 ions are implanted at a dose of about 1 × 10 13 cm −2 to form the p-type low resistance layer 401 (see FIG. 5C). ). When a low breakdown voltage transistor (ie, LV-MOS transistor) is manufactured simultaneously with the high breakdown voltage pMOS transistor 400, simultaneously with ion implantation for forming an LDD (Lightly Doped Drain) region of the LV-MOS transistor, A p-type low resistance layer 401 may be formed.

(4)その後、第1の実施形態の工程(4)〜(6)と同様にして、ガードリング層107,108、ドレイン高濃度領域105、ソース高濃度領域106、中間絶縁膜113と、コンタクト層114,115、配線パターン116,117を形成し、図4に示したような高耐圧pMOSトランジスタ400を完成させる。   (4) Thereafter, in the same manner as in the steps (4) to (6) of the first embodiment, the guard ring layers 107 and 108, the drain high concentration region 105, the source high concentration region 106, and the intermediate insulating film 113 are contacted. Layers 114 and 115 and wiring patterns 116 and 117 are formed to complete a high voltage pMOS transistor 400 as shown in FIG.

以上説明したように、この実施形態に係る高耐圧pMOSトランジスタによれば、低抵抗層401を設けたので、第1の実施形態よりもさらにオン抵抗を低くすることができる。   As described above, according to the high-breakdown-voltage pMOS transistor according to this embodiment, since the low-resistance layer 401 is provided, the on-resistance can be further reduced as compared with the first embodiment.

100 高耐圧pMOSトランジスタ
101 半導体基板
102 nウェル
103 ドレイン低濃度領域
104 ソース低濃度領域
105 ドレイン高濃度領域
106 ソース高濃度領域
107,108 ガードリング層
109 ゲート酸化膜
110 フィールド酸化膜
111 ゲート電極
112 非酸化領域
113 中間絶縁膜
114,115 コンタクト層
116,117 配線パターン
DESCRIPTION OF SYMBOLS 100 High voltage | pressure-resistant pMOS transistor 101 Semiconductor substrate 102 N well 103 Drain low concentration area | region 104 Source low concentration area | region 105 Drain high concentration area | region 106 Source high concentration area | region 107,108 Guard ring layer 109 Gate oxide film 110 Field oxide film 111 Gate electrode 112 Non- Oxidized region 113 Intermediate insulating film 114, 115 Contact layer 116, 117 Wiring pattern

Claims (7)

半導体基板のn型領域内に、チャネル形成領域を挟んで形成された、p型のドレイン低濃度領域およびソース低濃度領域と、
前記ドレイン低濃度領域内に形成された、該ドレイン低濃度領域よりも高い不純物濃度のドレイン高濃度領域と、
少なくとも前記チャネル形成領域の表面を覆うゲート絶縁膜と、
前記ゲート絶縁膜のドレイン側端部と接するように、前記ドレイン低濃度領域上に形成された第1フィールド酸化膜と、
前記ゲート絶縁膜のソース側端部と接するように、前記ソース低濃度領域上に形成された第2フィールド酸化膜と、
前記ゲート絶縁膜を介して前記チャネル形成領域の全面を覆い、且つ、前記第1フィールド酸化膜を介して前記ドレイン低濃度領域の端部を覆うように形成されるとともに、前記第2フィールド酸化膜を介して前記ソース低濃度領域の端部を覆うように形成されたゲート電極と、
前記ドレイン低濃度領域のうち、前記ゲート電極と前記ドレイン高濃度領域とに挟まれており且つ表面に当該ドレイン高濃度領域および前記第1フィールド酸化膜が形成されていない非酸化領域と、
前記ドレイン低濃度領域上の、前記非酸化領域及び前記ドレイン高濃度領域を挟んで前記第1フィールド酸化膜と向かい合う位置であって、前記ドレイン高濃度領域と隣り合う位置に形成された第3フィールド酸化膜と
を有することを特徴とする高耐圧電界効果トランジスタ。
A p-type lightly doped drain region and a lightly doped source region formed in the n-type region of the semiconductor substrate with the channel forming region interposed therebetween;
A drain high concentration region having a higher impurity concentration than the drain low concentration region formed in the drain low concentration region;
A gate insulating film covering at least the surface of the channel formation region;
A first field oxide film formed on the drain low concentration region so as to be in contact with the drain side end of the gate insulating film;
A second field oxide film formed on the source low-concentration region so as to be in contact with the source side end of the gate insulating film;
The second field oxide film is formed so as to cover the entire surface of the channel formation region via the gate insulating film and to cover an end portion of the low drain concentration region via the first field oxide film. A gate electrode formed so as to cover an end of the low concentration source region via
Of the low concentration drain region, a non-oxidized region sandwiched between the gate electrode and the high concentration drain region and having the drain high concentration region and the first field oxide film not formed on the surface;
A third field formed on the lightly doped drain region at a position facing the first field oxide film across the non-oxidized region and the heavily doped drain region and adjacent to the heavily doped drain region. A high breakdown voltage field effect transistor comprising an oxide film.
前記第1フィールド酸化膜の、前記ゲート絶縁膜側端部から前記非酸化領域側端部までの長さが、1.5μm以上3.0μm以下であることを特徴とする請求項1に記載の高耐圧電界効果トランジスタ。   2. The length of the first field oxide film from the end portion on the gate insulating film side to the end portion on the non-oxidized region side is 1.5 μm or more and 3.0 μm or less. High voltage field effect transistor. 前記非酸化領域に、前記ドレイン低濃度領域よりも高く且つ前記ドレイン高濃度領域よりも低い不純物濃度のp型の低抵抗層が形成されたことを特徴とする請求項1または2に記載の高耐圧電界効果トランジスタ。   3. The high resistance layer according to claim 1, wherein a p-type low resistance layer having an impurity concentration higher than that of the low drain concentration region and lower than that of the high drain concentration region is formed in the non-oxidized region. Withstand voltage field effect transistor. 前記ソース低濃度領域内に、該ソース低濃度領域よりも高い不純物濃度のソース高濃度領域が形成され、且つ、
前記ソース低濃度領域内の、前記ソース高濃度領域が形成されていない領域が、フィールド酸化膜で覆われている
ことを特徴とする請求項1〜3のいずれかに記載の高耐圧電界効果トランジスタ。
A source high concentration region having a higher impurity concentration than the source low concentration region is formed in the source low concentration region; and
The high breakdown voltage field effect transistor according to claim 1, wherein a region in which the source high concentration region is not formed in the source low concentration region is covered with a field oxide film. .
前記チャネル形成領域と前記ドレイン高濃度領域との距離が、該チャネル形成領域と前記ソース高濃度領域との距離よりも長いことを特徴とする請求項1〜4のいずれかに記載の高耐圧電界効果トランジスタ。   5. The high withstand voltage electric field according to claim 1, wherein a distance between the channel formation region and the drain high concentration region is longer than a distance between the channel formation region and the source high concentration region. Effect transistor. 前記ゲート絶縁膜の膜厚が200nm以上250nm以下であることを特徴とする請求項1〜5のいずれかに記載の高耐圧電界効果トランジスタ。   6. The high breakdown voltage field effect transistor according to claim 1, wherein the gate insulating film has a thickness of 200 nm to 250 nm. 前記第2フィールド酸化膜と隣り合う位置に前記ソース高濃度領域が形成されている
ことを特徴とする請求項1〜6のいずれかに記載の高耐圧電界効果トランジスタ。
7. The high breakdown voltage field effect transistor according to claim 1, wherein the source high concentration region is formed at a position adjacent to the second field oxide film.
JP2012134200A 2012-06-13 2012-06-13 High voltage field effect transistor Active JP5481526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012134200A JP5481526B2 (en) 2012-06-13 2012-06-13 High voltage field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012134200A JP5481526B2 (en) 2012-06-13 2012-06-13 High voltage field effect transistor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006222964A Division JP5058529B2 (en) 2006-08-18 2006-08-18 Manufacturing method of high voltage field effect transistor

Publications (2)

Publication Number Publication Date
JP2012195607A true JP2012195607A (en) 2012-10-11
JP5481526B2 JP5481526B2 (en) 2014-04-23

Family

ID=47087159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012134200A Active JP5481526B2 (en) 2012-06-13 2012-06-13 High voltage field effect transistor

Country Status (1)

Country Link
JP (1) JP5481526B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02237037A (en) * 1989-03-09 1990-09-19 Fuji Electric Co Ltd Manufacture of semiconductor integrated circuit
JPH11121742A (en) * 1997-10-15 1999-04-30 Toshiba Corp High-breakdown volage semiconductor device
JP2002208694A (en) * 2001-01-09 2002-07-26 Fuji Electric Co Ltd Semiconductor device and manufacturing method thereof
JP2002217406A (en) * 2001-01-16 2002-08-02 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
JP2004134568A (en) * 2002-10-10 2004-04-30 Seiko Instruments Inc Manufacturing method of semiconductor device
JP2005039036A (en) * 2003-07-14 2005-02-10 Seiko Epson Corp Semiconductor device and its manufacturing method
JP2005150331A (en) * 2003-11-14 2005-06-09 Renesas Technology Corp Semiconductor device and its manufacturing method
JP2005150300A (en) * 2003-11-13 2005-06-09 Toyota Central Res & Dev Lab Inc Semiconductor device and its manufacturing method
JP2006185996A (en) * 2004-12-27 2006-07-13 Seiko Epson Corp Semiconductor device and manufacturing method thereof
JP2006324346A (en) * 2005-05-17 2006-11-30 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02237037A (en) * 1989-03-09 1990-09-19 Fuji Electric Co Ltd Manufacture of semiconductor integrated circuit
JPH11121742A (en) * 1997-10-15 1999-04-30 Toshiba Corp High-breakdown volage semiconductor device
JP2002208694A (en) * 2001-01-09 2002-07-26 Fuji Electric Co Ltd Semiconductor device and manufacturing method thereof
JP2002217406A (en) * 2001-01-16 2002-08-02 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
JP2004134568A (en) * 2002-10-10 2004-04-30 Seiko Instruments Inc Manufacturing method of semiconductor device
JP2005039036A (en) * 2003-07-14 2005-02-10 Seiko Epson Corp Semiconductor device and its manufacturing method
JP2005150300A (en) * 2003-11-13 2005-06-09 Toyota Central Res & Dev Lab Inc Semiconductor device and its manufacturing method
JP2005150331A (en) * 2003-11-14 2005-06-09 Renesas Technology Corp Semiconductor device and its manufacturing method
JP2006185996A (en) * 2004-12-27 2006-07-13 Seiko Epson Corp Semiconductor device and manufacturing method thereof
JP2006324346A (en) * 2005-05-17 2006-11-30 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
JP5481526B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
TWI488306B (en) Semiconductor device and manufacturing method thereof
US8384167B2 (en) Semiconductor device with field effect transistor and manufacturing method thereof
KR102068395B1 (en) Semiconductor Device Structure having Low Rdson and Manufacturing Method thereof
US6921942B2 (en) Structure of a lateral diffusion MOS transistor in widespread use as a power control device
TWI521702B (en) Often open the lack of type MOS transistor
JP4044446B2 (en) Semiconductor device and manufacturing method thereof
JP5058529B2 (en) Manufacturing method of high voltage field effect transistor
JP2007019200A (en) Semiconductor device and its manufacturing method
JP5915194B2 (en) Semiconductor device and manufacturing method thereof
JP2007027622A (en) Semiconductor device and its manufacturing method
KR20110078621A (en) Semiconductor device, and fabricating method thereof
JP5983122B2 (en) Semiconductor device
JP6346777B2 (en) Manufacturing method of semiconductor device
US20140175553A1 (en) Mos semiconductor device and method of manufacturing the same
JP5481526B2 (en) High voltage field effect transistor
CN107204370B (en) Semiconductor device and method for manufacturing semiconductor device
JP2009302114A (en) Semiconductor device and its manufacturing method
JP2005093456A (en) Lateral short channel dmos, its fabricating process, and semiconductor device
JP4887662B2 (en) Semiconductor device and manufacturing method thereof
JP2014053414A (en) Semiconductor device manufacturing method
JP5784269B2 (en) Semiconductor device and manufacturing method thereof
CN108807379B (en) High-voltage depletion type MOS (Metal oxide semiconductor) element with adjustable threshold voltage and manufacturing method thereof
US9525066B2 (en) Semiconductor device and manufacturing method thereof
KR101090049B1 (en) Semiconductor device and method of manufacturing the same
JP2009044036A (en) Semiconductor device and method of manufacturing same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5481526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250