JP2012195482A - Unit for configuring capacitor and capacitor - Google Patents

Unit for configuring capacitor and capacitor Download PDF

Info

Publication number
JP2012195482A
JP2012195482A JP2011059139A JP2011059139A JP2012195482A JP 2012195482 A JP2012195482 A JP 2012195482A JP 2011059139 A JP2011059139 A JP 2011059139A JP 2011059139 A JP2011059139 A JP 2011059139A JP 2012195482 A JP2012195482 A JP 2012195482A
Authority
JP
Japan
Prior art keywords
unit
conductor film
film
capacitor
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011059139A
Other languages
Japanese (ja)
Other versions
JP5665618B2 (en
Inventor
Nobuaki Take
宜成 武
Hidetoshi Masuda
秀俊 増田
Kenichi Ota
謙一 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2011059139A priority Critical patent/JP5665618B2/en
Priority to US13/422,694 priority patent/US8837111B2/en
Publication of JP2012195482A publication Critical patent/JP2012195482A/en
Application granted granted Critical
Publication of JP5665618B2 publication Critical patent/JP5665618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a unit having compatibility with a conventional laminated capacitor, and useful for satisfying the requirements of higher capacity.SOLUTION: A unit U10 comprises: a rectangular dielectric plate 11 having a plurality of through holes 11a formed in the thickness direction; a first conductor film 14 covering the region of the upper surface of the plate excepting the front end thereof; a first insulator film 16 covering the front end of the upper surface of the plate; a second conductor film 15 covering the region of the lower surface of the plate excepting the rear end thereof; a second insulator film 17 covering the rear end of the lower surface of the plate; a plurality of first electrode rods 12 arranged on the inside of some of the plurality of through holes 11a and connected electrically with the first conductor film 14 but insulated electrically from the second conductor film 15; and a plurality of second electrode rods 13 arranged on the inside of the remainder of the plurality of through holes 11a and connected electrically with the second conductor film 15 but insulated electrically from the first conductor film 14.

Description

本発明は、コンデンサを構成する際に用いられるユニットと、該ユニットを用いて構成されたコンデンサに関する。   The present invention relates to a unit used when a capacitor is configured, and a capacitor configured using the unit.

携帯電話やノートパソコンやビデオカメラやデジタルカメラ等の電子機器には、現状において1台当たり数百個の積層型コンデンサが用いられている。各種電子機器に積層型コンデンサが汎用されている理由は、回路基板への実装性に優れていることに加え、小型ながらも大容量化が実現されていることにある。一例を挙げれば、0603サイズで容量が0.47μFの積層型コンデンサ(定格電圧は4.0V)は既に商品化されている。   Currently, several hundreds of multilayer capacitors are used for electronic devices such as mobile phones, notebook computers, video cameras, and digital cameras. The reason why multilayer capacitors are widely used in various electronic devices is that they are excellent in mountability on circuit boards and have a large capacity despite being small. As an example, a multilayer capacitor (rated voltage: 4.0 V) having a 0603 size and a capacity of 0.47 μF has already been commercialized.

近年にあっては、各種電子機器の高性能化に伴う「さらなる大容量化」が積層型コンデンサに対して要求されている。積層型コンデンサにおける「さらなる大容量化」は内部電極層の数や厚さを変更することによって改善可能ではあるが、外形サイズを変えずに「さらなる大容量化」の要求を満足することは実際上困難を極める。   In recent years, “further increase in capacity” has been demanded for multilayer capacitors as performance of various electronic devices increases. “Further increase in capacity” in multilayer capacitors can be improved by changing the number and thickness of internal electrode layers, but it is actually possible to satisfy the requirements for “higher capacity” without changing the external size. Extremely difficult.

先に述べた一連の要求は、(1)実装性に優れていること、(2)小型であること、(3)大容量であること、(4)さらなる大容量化に追従していること、にある。つまり、観点を変えれば、従前の積層型コンデンサと互換性があり、且つ、前記要求(4)を満足できる新型コンデンサが提供できれば良いことになる。   The series of requirements described above are (1) excellent in mountability, (2) small size, (3) large capacity, and (4) following further increase in capacity. ,It is in. In other words, from a different viewpoint, it is only necessary to provide a new capacitor that is compatible with the conventional multilayer capacitor and can satisfy the requirement (4).

ところで、前記要求(2)及び(3)を満足するのに適したコンデンサ構造に対するアプローチは本出願人によって既に為されている(特許文献1を参照)。このコンデンサ構造は、所定の間隔で対向する一対の導電体層と、弁金属の酸化物から成り一対の導電体層間に設けられた誘電体層と、誘電体層に一対の導電体層と略直交する方向に貫通形成された複数の略柱状の孔と、複数の孔のうちの一部に充填され一端が一方の導電体層に導通し他端が他方の導電体層と絶縁した複数の第1電極と、複数の孔のうちの第1電極が充填されていない孔に充填され一端が他方の導電体層に導通し他端が一方の導電体層と絶縁した複数の第2電極とを備えている。   Incidentally, an approach to a capacitor structure suitable for satisfying the requirements (2) and (3) has already been made by the present applicant (see Patent Document 1). This capacitor structure includes a pair of conductor layers facing each other at a predetermined interval, a dielectric layer made of a valve metal oxide and provided between the pair of conductor layers, and a pair of conductor layers on the dielectric layer. A plurality of substantially columnar holes penetrating in an orthogonal direction, and a plurality of holes filled in a part of the plurality of holes, one end conducting to one conductor layer and the other end insulated from the other conductor layer A first electrode and a plurality of second electrodes filled in a hole not filled with the first electrode of the plurality of holes and having one end conducting to the other conductor layer and the other end insulated from the one conductor layer; It has.

特許文献1に開示されたコンデンサ構造は前記要求(2)及び(3)を満足するのに適したものであるが、従前の積層型コンデンサと互換性があり、且つ、前記要求(4)を満足できる新型コンデンサを提供するには、前記要求(1)及び(4)を満足する構造的工夫の他に、新型コンデンサの製造コストが従前の積層型コンデンサの製造コストと同等或いはそれ以下となる構造的工夫を施す必要がある。特に、後者の構造的工夫は新型コンデンサを商品化するに際して極めて重要なものであり、該工夫無しに新型コンデンサを商品化しても部品単価がネックとなってユーザには受け入れられない。   The capacitor structure disclosed in Patent Document 1 is suitable for satisfying the requirements (2) and (3), but is compatible with a conventional multilayer capacitor and satisfies the requirement (4). In order to provide a satisfactory new capacitor, in addition to the structural device that satisfies the requirements (1) and (4), the manufacturing cost of the new capacitor is equal to or less than the manufacturing cost of the conventional multilayer capacitor. Structural ingenuity is required. In particular, the latter structural contrivance is extremely important when commercializing a new capacitor, and even if a new capacitor is commercialized without the contrivance, the unit price is a bottleneck and cannot be accepted by the user.

尚、特許文献2及び3には、特許文献1に開示されたコンデンサ構造と類似するコンデンサ構造が開示されている。しかしながら、特許文献2に開示されたコンデンサ構造は、相対向端面に向かって伸びる複数の通孔を有する半導体粒界絶縁型誘電体磁器と、誘電体磁器の相対向端面それぞれに設けられた外部接続用電極と、誘電体磁器の各通孔に挿通された容量用電極体とを備え、容量用電極体は隣り合うものが互いに異なる外部接続用電極に導電接続されているものであり、特許文献1の誘電体層に該当するものが半導体粒界絶縁型誘電体磁器であることから特許文献1に開示されたコンデンサ構造とは実質的に異なる。   Patent Documents 2 and 3 disclose capacitor structures similar to the capacitor structure disclosed in Patent Document 1. However, the capacitor structure disclosed in Patent Document 2 includes a semiconductor grain boundary insulating dielectric ceramic having a plurality of through holes extending toward opposite end faces, and external connections provided on the opposite end faces of the dielectric ceramic. The electrode for capacity and the electrode body for capacity | capacitance inserted in each through-hole of the dielectric ceramic are electrically connected to the external connection electrodes which are adjacent to each other. Since the one corresponding to one dielectric layer is a semiconductor grain boundary insulation type dielectric ceramic, it is substantially different from the capacitor structure disclosed in Patent Document 1.

また、特許文献3に開示されたコンデンサ構造は、面状電極層と円柱状体とを有する第1電極と、円柱状体を覆うように第1電極の表面に形成された誘電体薄膜と、誘電体薄膜を介して円柱状体の外側を覆うように誘電体薄膜の表面に形成された第2電極とを備えるものであり、特許文献1の誘電体層に該当するものが誘電体薄膜であることから特許文献1に開示されたコンデンサ構造とは実質的に異なる。   The capacitor structure disclosed in Patent Document 3 includes a first electrode having a planar electrode layer and a cylindrical body, a dielectric thin film formed on the surface of the first electrode so as to cover the cylindrical body, And a second electrode formed on the surface of the dielectric thin film so as to cover the outside of the cylindrical body through the dielectric thin film. A dielectric thin film corresponds to the dielectric layer of Patent Document 1. Therefore, the capacitor structure disclosed in Patent Document 1 is substantially different.

特許第4493686号公報Japanese Patent No. 4493686 特公昭61−029133号公報Japanese Patent Publication No. 61-029133 特開2003−249417号公報JP 2003-249417 A

本発明の目的は、従前の積層型コンデンサと互換性があり、且つ、さらなる大容量化の要求を満たすコンデンサを構成するのに有用なユニットを提供することと、従前の積層型コンデンサと互換性があり、且つ、さらなる大容量化の要求を満たすコンデンサを提供することにある。   An object of the present invention is to provide a unit that is compatible with a conventional multilayer capacitor and is useful for constructing a capacitor that satisfies the demand for further increase in capacity, and is compatible with a conventional multilayer capacitor. And providing a capacitor that satisfies the demand for larger capacity.

前記目的を達成するため、本発明に係るコンデンサ構成用ユニットは、所定厚さを有すると共に厚さ方向の複数の貫通孔が形成された矩形状の誘電体プレートと、前記誘電体プレートの一方の貫通孔露出面の一端部を除く領域を覆うように形成された第1導体膜と、前記誘電体プレートの一方の貫通孔露出面の前記一端部を覆うように形成された第1絶縁体膜と、前記誘電体プレートの他方の貫通孔露出面の他端部を除く領域を覆うように形成された第2導体膜と、前記誘電体プレートの他方の貫通孔露出面の前記他端部を覆うように形成された第2絶縁体膜と、前記誘電体プレートの複数の貫通孔の一部の内側に配置され、前記第1導体膜に電気的に接続され、且つ、前記第2導体膜に電気的に絶縁された複数の第1電極棒と、前記誘電体プレートの複数の貫通孔の残部の内側に配置され、前記第2導体膜に電気的に接続され、且つ、前記第1導体膜に電気的に絶縁された複数の第2電極棒と、を備えている。   In order to achieve the above object, a capacitor constituting unit according to the present invention includes a rectangular dielectric plate having a predetermined thickness and having a plurality of through holes in the thickness direction, and one of the dielectric plates. A first conductor film formed so as to cover a region excluding one end portion of the through hole exposed surface, and a first insulator film formed so as to cover the one end portion of one through hole exposed surface of the dielectric plate A second conductor film formed to cover a region excluding the other end of the other through hole exposed surface of the dielectric plate, and the other end of the other through hole exposed surface of the dielectric plate. A second insulator film formed so as to cover; and disposed inside a part of the plurality of through holes of the dielectric plate, electrically connected to the first conductor film, and the second conductor film A plurality of first electrode bars electrically insulated from each other, and the dielectric A plurality of second electrode rods disposed inside the remainder of the plurality of through holes of the rate, electrically connected to the second conductor film, and electrically insulated from the first conductor film. ing.

一方、本発明に係る第1のコンデンサは、n個(nは2以上の整数)の前記ユニットを厚さ向きで積み重ねて一体化した構造を有し、隣接する2個のユニットは第1導体膜同士または第2導体膜同士が向き合っていて電気的に接続されており、相対する2つの面のうちの一方の面には各ユニットの第1導体膜の端縁が露出し、且つ、他方の面には各ユニットの第2導体膜の端縁が露出している直方体形状のユニット積層体と、前記ユニット積層体の前記相対する2つの面を除く面を覆うように形成された絶縁性外装膜と、前記ユニット積層体の前記相対する2つの面のうちの一方の面を少なくとも覆うように形成され、前記各ユニットの第1導体膜の端縁と電気的に接続された一方の外部端子と、前記ユニット積層体の前記相対する2つの面のうちの他方の面を少なくとも覆うように形成され、前記各ユニットの第2導体膜の端縁と電気的に接続された他方の外部端子と、を備えている。   On the other hand, the first capacitor according to the present invention has a structure in which n units (n is an integer of 2 or more) are stacked and integrated in the thickness direction, and two adjacent units are first conductors. The films or the second conductor films face each other and are electrically connected to each other, the edge of the first conductor film of each unit is exposed on one of the two opposing faces, and the other A rectangular parallelepiped unit laminated body in which the edge of the second conductor film of each unit is exposed, and an insulating property formed so as to cover the surface excluding the two opposed faces of the unit laminated body One exterior formed so as to cover at least one of the two opposing surfaces of the exterior laminate film and the unit laminate, and electrically connected to the edge of the first conductor film of each unit Terminals and the two opposing surfaces of the unit laminate The other surface of the inner is formed so as to cover at least, and a, and the other external terminal electrically connected to the end edge of the second conductive layer of each unit.

また、本発明に係る第2のコンデンサは、n個(nは2以上の整数)の前記ユニットを厚さ向きで積み重ねて一体化した構造を有し、隣接する2個のユニットは第1導体膜と第2導体膜とが向き合っていて絶縁体層を介して電気的に絶縁されており、相対する2つの面のうちの一方の面には各ユニットの第1導体膜の端縁が露出し、且つ、他方の面には各ユニットの第2導体膜の端縁が露出している直方体形状のユニット積層体と、前記ユニット積層体の前記相対する2つの面を除く面を覆うように形成された絶縁性外装膜と、前記ユニット積層体の前記相対する2つの面のうちの一方の面を少なくとも覆うように形成され、前記各ユニットの第1導体膜の端縁と電気的に接続された一方の外部端子と、前記ユニット積層体の前記相対する2つの面のうちの他方の面を少なくとも覆うように形成され、前記各ユニットの第2導体膜の端縁と電気的に接続された他方の外部端子と、を備えている。   Further, the second capacitor according to the present invention has a structure in which n units (n is an integer of 2 or more) are stacked and integrated in the thickness direction, and two adjacent units are the first conductors. The film and the second conductor film face each other and are electrically insulated via the insulator layer, and the edge of the first conductor film of each unit is exposed on one of the two opposing faces. In addition, the other surface covers a rectangular parallelepiped unit laminated body in which the edge of the second conductor film of each unit is exposed, and a surface excluding the two opposed surfaces of the unit laminated body. It is formed so as to cover at least one of the two opposing surfaces of the unit laminate body and the formed insulating exterior film, and is electrically connected to the edge of the first conductor film of each unit One external terminal and the two opposite of the unit laminate Is formed the other surface of the surface so as to at least cover, and a, and the other external terminal electrically connected to the end edge of the second conductive layer of each unit.

本発明に係るユニットは、第1導体膜と第2導体膜との間に大きな容量を確保できる構造にあると共に、n個(nは2以上整数)を厚さ向きに積み重ねて一体化したときに該容量を並列接続するのに適した第1絶縁体膜と第2絶縁体膜を有している。また、このユニットは構造がシンプルであるため、その作製は容易でコストもさほどかからない。   The unit according to the present invention has a structure in which a large capacity can be secured between the first conductor film and the second conductor film, and n pieces (n is an integer of 2 or more) are stacked and integrated in the thickness direction. And a first insulator film and a second insulator film suitable for connecting the capacitors in parallel. In addition, since this unit has a simple structure, its production is easy and does not cost much.

つまり、前記ユニットを用いれば、本発明に係る第1のコンデンサのユニット積層体として、隣接する2個のユニットの第1導体膜同士または第2導体膜同士が向き合っていて電気的に接続され、相対する2つの面のうちの一方の面に各ユニットの第1導体膜の端縁が露出し、且つ、他方の面に各ユニットの第2導体膜の端縁が露出した直方体形状のものを容易に作製できるし、該ユニット積層体に絶縁性外装膜と一対の外部端子を作製することによって、n個の容量が一対の外部端子の間に並列接続されたコンデンサを容易に製造できる。即ち、前記ユニットを予め用意しておけば簡単なプロセスでコンデンサを製造できるため、その製造コストを従前の積層型コンデンサの製造コストと同等或いはそれ以下として部品単価の高騰を回避できる。   That is, if the unit is used, as the unit capacitor laminate of the first capacitor according to the present invention, the first conductor films of the two adjacent units or the second conductor films face each other and are electrically connected, A rectangular parallelepiped shape in which the edge of the first conductor film of each unit is exposed on one of the two opposing faces, and the edge of the second conductor film of each unit is exposed on the other face. A capacitor in which n capacitors are connected in parallel between a pair of external terminals can be easily manufactured by forming an insulating exterior film and a pair of external terminals in the unit laminate. That is, if the unit is prepared in advance, the capacitor can be manufactured by a simple process. Therefore, the manufacturing cost can be made equal to or less than the manufacturing cost of the conventional multilayer capacitor, and the increase in the unit price can be avoided.

また、前記ユニットを用いれば、本発明に係る第2のコンデンサのユニット積層体として、隣接する2個のユニットの第1導体膜と第2導体膜とが向き合っていて絶縁体層を介して電気的に絶縁され、相対する2つの面のうちの一方の面に各ユニットの第1導体膜の端縁が露出し、且つ、他方の面に各ユニットの第2導体膜の端縁が露出した直方体形状のものを容易に作製できるし、該ユニット積層体に絶縁性外装膜と一対の外部端子を作製することによって、n個の容量が一対の外部端子の間に並列接続されたコンデンサを容易に製造できる。即ち、前記ユニットを予め用意しておけば簡単なプロセスでコンデンサを製造できるため、その製造コストを従前の積層型コンデンサの製造コストと同等或いはそれ以下として部品単価の高騰を回避できる。   In addition, if the unit is used, the first conductor film and the second conductor film of two adjacent units face each other as a unit laminated body of the second capacitor according to the present invention and are electrically connected through the insulator layer. The edge of the first conductor film of each unit is exposed on one of the two opposing surfaces, and the edge of the second conductor film of each unit is exposed on the other surface. A rectangular parallelepiped shape can be easily manufactured, and by forming an insulating exterior film and a pair of external terminals in the unit laminate, a capacitor in which n capacitors are connected in parallel between the pair of external terminals can be easily obtained Can be manufactured. That is, if the unit is prepared in advance, the capacitor can be manufactured by a simple process. Therefore, the manufacturing cost can be made equal to or less than the manufacturing cost of the conventional multilayer capacitor, and the increase in the unit price can be avoided.

要するに、前記ユニットは、従前の積層型コンデンサと互換性があり、且つ、さらなる大容量化の要求を満たすコンデンサを構成するのに極めて有用である。また、前記コンデンサは、従前の積層型コンデンサと互換性があり、且つ、さらなる大容量化の要求を確実に満足する。しかも、ユニットの使用個数を変えることで、コンデンサ自体の容量をニーズに応じて簡単に変更できる。   In short, the unit is very useful for constructing a capacitor that is compatible with a conventional multilayer capacitor and satisfies the demand for further increase in capacity. Further, the capacitor is compatible with a conventional multilayer capacitor and satisfies the demand for further increase in capacity. Moreover, by changing the number of units used, the capacity of the capacitor itself can be easily changed according to needs.

本発明の前記目的とそれ以外の目的と、構成特徴と、作用効果は、以下の説明と添付図面によって明らかとなる。   The above object and other objects, structural features, and operational effects of the present invention will become apparent from the following description and the accompanying drawings.

図1は、ユニットの上面図である。FIG. 1 is a top view of the unit. 図2は、図1に示したユニットの左側面図である。FIG. 2 is a left side view of the unit shown in FIG. 図3は、図2のS11−S11線に沿う断面図である。3 is a cross-sectional view taken along line S11-S11 in FIG. 図4は、図1のS12−S12線に沿う断面図である。4 is a cross-sectional view taken along line S12-S12 of FIG. 図5は、図1のS13−S13線に沿う断面図である。FIG. 5 is a cross-sectional view taken along line S13-S13 in FIG. 図6は、図1に示したユニットの作製方法を説明するための図である。FIG. 6 is a diagram for explaining a method of manufacturing the unit shown in FIG. 図7は、図1に示したユニットの作製方法を説明するための図である。FIG. 7 is a diagram for explaining a method of manufacturing the unit shown in FIG. 図8は、図1に示したユニットの作製方法を説明するための図である。FIG. 8 is a diagram for explaining a method of manufacturing the unit shown in FIG. 図9は、図1に示したユニットの作製方法を説明するための図である。FIG. 9 is a diagram for explaining a method of manufacturing the unit shown in FIG. 図10(A)〜図10(C)は、図1に示したユニットの変形例を示す図である。FIGS. 10A to 10C are diagrams showing a modification of the unit shown in FIG. 図11(A)〜図11(C)は、図1に示したユニットの他の変形例を示す図である。FIG. 11A to FIG. 11C are diagrams showing another modification of the unit shown in FIG. 図12は、図1に示したユニットを用いて構成されたコンデンサ(コンデンサの第1実施形態)の外観斜視図である。FIG. 12 is an external perspective view of a capacitor (first embodiment of a capacitor) configured using the unit shown in FIG. 図13は、図12のS21−S21線に沿う断面図である。13 is a cross-sectional view taken along line S21-S21 in FIG. 図14は、図12に示したコンデンサの等価回路である。FIG. 14 is an equivalent circuit of the capacitor shown in FIG. 図15は、図12に示したコンデンサの製造方法を説明するための図である。FIG. 15 is a diagram for explaining a method of manufacturing the capacitor shown in FIG. 図16は、図12に示したコンデンサの製造方法を説明するための図である。FIG. 16 is a diagram for explaining a method of manufacturing the capacitor shown in FIG. 図17は、図12に示したコンデンサの製造方法を説明するための図である。FIG. 17 is a diagram for explaining a method of manufacturing the capacitor shown in FIG. 図18は、図12に示したコンデンサの製造方法を説明するための図である。FIG. 18 is a diagram for explaining a method of manufacturing the capacitor shown in FIG. 図19は、図12に示したコンデンサの変形例を示す図13対応の断面図である。FIG. 19 is a cross-sectional view corresponding to FIG. 13 showing a modification of the capacitor shown in FIG. 図20は、図19に示したコンデンサの等価回路である。FIG. 20 is an equivalent circuit of the capacitor shown in FIG. 図21は、図1に示したユニットを用いて構成されたコンデンサ(コンデンサの第2実施形態)の図13対応の断面図である。FIG. 21 is a cross-sectional view corresponding to FIG. 13 of a capacitor (second embodiment of a capacitor) configured using the unit shown in FIG. 図22は、図21に示したコンデンサの等価回路である。FIG. 22 is an equivalent circuit of the capacitor shown in FIG. 図23は、図21に示したコンデンサの製造方法を説明するための図である。FIG. 23 is a diagram for explaining a method of manufacturing the capacitor shown in FIG. 図24は、図21に示したコンデンサの製造方法を説明するための図である。FIG. 24 is a diagram for explaining a method of manufacturing the capacitor shown in FIG. 図25は、図21に示したコンデンサの製造方法を説明するための図である。FIG. 25 is a diagram for explaining a method of manufacturing the capacitor shown in FIG. 図26は、図21に示したコンデンサの製造方法を説明するための図である。FIG. 26 is a diagram for explaining a method of manufacturing the capacitor shown in FIG. 図27は、図21に示したコンデンサの変形例を示す図21対応の断面図である。FIG. 27 is a cross-sectional view corresponding to FIG. 21, showing a modification of the capacitor shown in FIG. 図28は、図27に示したコンデンサの等価回路である。FIG. 28 is an equivalent circuit of the capacitor shown in FIG.

《コンデンサを構成する際に用いられるユニットU10》
以下、図1〜図9を引用して、後記コンデンサを構成する際に用いられるユニットU10の構造と好ましい作製方法について説明する。ここでの説明では、説明の便宜上、図1の左、右、下、上、手前、奥をそれぞれ前、後、左、右、上、下と称し、図2〜図9のこれらに相当する方向も同様に称する。
<< Unit U10 used when configuring capacitor >>
Hereinafter, with reference to FIGS. 1 to 9, the structure of the unit U <b> 10 used when configuring the capacitor described later and a preferable manufacturing method will be described. In the description here, for the sake of convenience of explanation, the left, right, bottom, top, front, and back in FIG. 1 are referred to as front, back, left, right, top, and bottom, respectively, and correspond to these in FIGS. The direction is also referred to similarly.

〈ユニットU10の構造〉
図1〜図5に示したユニットU10は、0603サイズのコンデンサを構成する際に用いられるものであって、誘電体プレート11と、第1電極棒12と、第2電極棒13と、第1導体膜14と、第2導体膜15と、第1絶縁体膜16と、第2絶縁体膜17とを備えている。
<Structure of unit U10>
The unit U10 shown in FIGS. 1 to 5 is used when a 0603 size capacitor is configured, and includes a dielectric plate 11, a first electrode rod 12, a second electrode rod 13, and a first electrode. A conductor film 14, a second conductor film 15, a first insulator film 16, and a second insulator film 17 are provided.

誘電体プレート11は、上面視輪郭が矩形で所定の厚さ(上下寸法)を有している。誘電体プレート11はAl、Ta、Nb、Ti、Zr、Hf、Zn、W、Sb等の弁金属の酸化物(=誘電体)から成り、その厚さは50〜150μmである。誘電体プレート11の前後寸法は0.6mmよりも僅かに小さく、左右寸法は0.3mmよりも僅かに小さい。   The dielectric plate 11 has a rectangular outline in top view and a predetermined thickness (vertical dimension). The dielectric plate 11 is made of a valve metal oxide (= dielectric) such as Al, Ta, Nb, Ti, Zr, Hf, Zn, W, Sb, etc., and has a thickness of 50 to 150 μm. The front-rear dimension of the dielectric plate 11 is slightly smaller than 0.6 mm, and the left-right dimension is slightly smaller than 0.3 mm.

また、誘電体プレート11の前面近傍部分及び後面近傍部分を除く部分には、断面形が円形で所定の内径を有する厚さ方向の複数(図面では計108個)の貫通孔11aが所定の配列、詳しくは各々の中心が正六角形の角に位置する正六方規則配列(図3に記した正六角形を参照)で形成されている。各貫通孔11aの内径は15〜45nmである。   Further, a plurality of through holes 11a in the thickness direction having a circular cross-sectional shape and a predetermined inner diameter (a total of 108 in the drawing) are arranged in a predetermined arrangement in a portion excluding the front surface vicinity portion and the rear surface vicinity portion of the dielectric plate 11. Specifically, it is formed of a regular hexagonal regular array (see regular hexagons shown in FIG. 3) whose centers are located at the corners of regular hexagons. The inner diameter of each through hole 11a is 15 to 45 nm.

第1電極棒12は、誘電体プレート11に形成された複数の貫通孔11aの一部(図面では54個)の内側に配置され、且つ、該内側面に密着している。各第1電極棒12はCu、Ni、Co、Cr、Ag、Au、Pd、Fe、Sn、Pb、Pt等の純金属やこれらの合金等の導体材料から成り、各々の外径は貫通孔11aの内径と同じである。図4及び図5から分かるように、各第1電極棒12の上端は誘電体プレート11の上面(一方の貫通孔露出面)と面一であり、該各第1電極棒12の下端は誘電体プレート11の下面(他の貫通孔露出面)よりも僅かに引っ込んでいる。つまり、各第1電極棒12の下端と誘電体プレート11の下面(他方の貫通孔露出面)との間には、空隙から成る絶縁ギャップ12aが存在する。各絶縁ギャップ12aの上下寸法は5〜15μmである。図3から分かるように、貫通孔11aの左右方向の等間隔並び(図面では5個の並びと4個の並び)を1つの列として見た場合、前から1、2、5、6、9、10、13、14、17、18、21及び22番目の列に第1電極棒12が存するため、該第1電極棒12は左右方向において各々の中心が実線波線の頂点に位置するような並び方をしている。   The first electrode rod 12 is disposed inside a part (54 in the drawing) of the plurality of through holes 11a formed in the dielectric plate 11, and is in close contact with the inner surface. Each first electrode rod 12 is made of a conductive material such as a pure metal such as Cu, Ni, Co, Cr, Ag, Au, Pd, Fe, Sn, Pb, and Pt, or an alloy thereof, and each outer diameter is a through hole. It is the same as the inner diameter of 11a. As can be seen from FIGS. 4 and 5, the upper end of each first electrode rod 12 is flush with the upper surface (one through hole exposed surface) of the dielectric plate 11, and the lower end of each first electrode rod 12 is dielectric. The body plate 11 is slightly retracted from the lower surface (other exposed surface of the through hole). That is, an insulating gap 12a formed of a gap exists between the lower end of each first electrode rod 12 and the lower surface of the dielectric plate 11 (the other through hole exposed surface). The vertical dimension of each insulating gap 12a is 5 to 15 μm. As can be seen from FIG. 3, when the through-holes 11a are arranged at equal intervals in the left-right direction (in the drawing, 5 rows and 4 rows) as one row, 1, 2, 5, 6, 9 from the front. Since the first electrode rods 12 exist in the tenth, thirteenth, fourteenth, seventeenth, eighteenth, twenty-first, twenty-first and twenty-second rows, the first electrode rods 12 are positioned such that their centers are located at the vertices of the solid line in the left-right direction. They are lined up.

第2電極棒13は、誘電体プレート11に形成された複数の貫通孔11aの残部(図面では54個)の内側に配置され、且つ、該内側面に密着している。各第2電極棒13はCu、Ni、Co、Cr、Ag、Au、Pd、Fe、Sn、Pb、Pt等の純金属やこれらの合金等の導体材料から成り、各々の外径は貫通孔11aの内径と同じである。図4及び図5から分かるように、各第2電極棒13の下端は誘電体プレート11の下面(他方の貫通孔露出面)と面一であり、該各第2電極棒13の上端は誘電体プレート11の上面(一方の貫通孔露出面)よりも僅かに引っ込んでいる。つまり、各第2電極棒13の上端と誘電体プレート11の上面(一方の貫通孔露出面)との間には、空隙から成る絶縁ギャップ13aが存在する。各絶縁ギャップ13aの上下寸法は5〜15μmである。図3から分かるように、貫通孔11aの左右方向の等間隔並び(図面では5個の並びと4個の並び)を1つの列として見た場合、前から3、4、7、8、11、12、15、16、19、20、23及び24番目の列に第2電極棒13が存するため、該第2電極棒13は左右方向において各々の中心が破線波線の頂点に位置するような並び方をしている。要するに、図3に実線波線で示した第1電極棒13の並びと破線波線で示した第2電極棒13の並びは、誘電体プレート11の前後方向において交互に存在する。   The second electrode rod 13 is disposed inside the remaining portions (54 in the drawing) of the plurality of through holes 11a formed in the dielectric plate 11, and is in close contact with the inner surface. Each second electrode rod 13 is made of a pure metal such as Cu, Ni, Co, Cr, Ag, Au, Pd, Fe, Sn, Pb, and Pt, or a conductor material such as an alloy thereof, and each outer diameter is a through hole. It is the same as the inner diameter of 11a. As can be seen from FIGS. 4 and 5, the lower end of each second electrode bar 13 is flush with the lower surface of the dielectric plate 11 (the other through-hole exposed surface), and the upper end of each second electrode bar 13 is dielectric. The body plate 11 is slightly retracted from the upper surface (one through hole exposed surface). That is, an insulating gap 13a formed of a gap exists between the upper end of each second electrode bar 13 and the upper surface (one through hole exposed surface) of the dielectric plate 11. The vertical dimension of each insulating gap 13a is 5 to 15 μm. As can be seen from FIG. 3, when the through-holes 11 a are arranged at equal intervals in the left-right direction (5 rows and 4 rows in the drawing) as one row, 3, 4, 7, 8, 11 from the front. , 12, 15, 16, 19, 20, 23, and 24 th row, the second electrode rods 13 are located at the vertices of broken lines in the left-right direction. They are lined up. In short, the arrangement of the first electrode bars 13 indicated by the solid wavy lines in FIG. 3 and the arrangement of the second electrode bars 13 indicated by the broken wavy lines are alternately present in the front-rear direction of the dielectric plate 11.

第1導体膜14は、誘電体プレート11の上面(一方の貫通孔露出面)の前端部を除く矩形状の領域を覆うように形成され、且つ、該領域に密着している。第1導体膜14はCu、Ni、Cr、Ag、Au、Pd、Fe、Sn、Pb、Pt、Ir、Rh、Ru、Al、Ti等の純金属やこれらの合金等の導体材料から成り、その厚さ(上下寸法)は0.5〜1.5μmである。第1導体膜14の左右寸法は誘電体プレート11の左右寸法と同じであり、好ましい前後寸法は誘電体プレート11の前後寸法の85/100〜95/100である。図4及び図5から分かるように、第1導体膜14の下面は各第1電極棒12の上端と電気的に接続されているが、該下面は各第2電極棒13の上端と絶縁ギャップ13aを介して電気的に絶縁されている。第1導体膜14の後面は誘電体プレート11の後面と面一である。第1導体膜14の好ましい態様はTi膜と該Ti膜を覆うCu膜の2層構造であるが、誘電体プレート11に対する密着が良好に行え、且つ、各第1電極棒12に対する電気的接続が良好に行えるものであれば、その層数や材料に特段の制限は無い。   The first conductor film 14 is formed so as to cover a rectangular region excluding the front end portion of the upper surface (one through hole exposed surface) of the dielectric plate 11 and is in close contact with the region. The first conductor film 14 is made of a conductive material such as pure metals such as Cu, Ni, Cr, Ag, Au, Pd, Fe, Sn, Pb, Pt, Ir, Rh, Ru, Al, Ti, and alloys thereof. Its thickness (vertical dimension) is 0.5 to 1.5 μm. The left and right dimensions of the first conductor film 14 are the same as the left and right dimensions of the dielectric plate 11, and the preferred front and rear dimensions are 85/100 to 95/100 of the front and rear dimensions of the dielectric plate 11. As can be seen from FIGS. 4 and 5, the lower surface of the first conductive film 14 is electrically connected to the upper end of each first electrode rod 12, but the lower surface is connected to the upper end of each second electrode rod 13. It is electrically insulated via 13a. The rear surface of the first conductor film 14 is flush with the rear surface of the dielectric plate 11. A preferred embodiment of the first conductor film 14 is a two-layer structure of a Ti film and a Cu film covering the Ti film. However, the first conductor film 14 can be satisfactorily adhered to the dielectric plate 11 and can be electrically connected to each first electrode rod 12. There are no particular restrictions on the number of layers and materials as long as the material can be satisfactorily performed.

第2導体膜15は、誘電体プレート11の下面(他方の貫通孔露出面)の後端部を除く矩形状の領域を覆うように形成され、且つ、該領域に密着している。第2導体膜15はCu、Ni、Cr、Ag、Au、Pd、Fe、Sn、Pb、Pt、Ir、Rh、Ru、Al、Ti等の純金属やこれらの合金等の導体材料から成り、その厚さ(上下寸法)は0.5〜1.5μmである。第2導体膜15の左右寸法は誘電体プレート11の左右寸法と同じであり、好ましい前後寸法は誘電体プレート11の前後寸法の85/100〜95/100である。図4及び図5から分かるように、第2導体膜15の上面は各第2電極棒13の下端と電気的に接続されているが、該上面は各第1電極棒12の下端と絶縁ギャップ12aを介して電気的に絶縁されている。第2導体膜15の前面は誘電体プレート11の前面と面一である。第2導体膜15の好ましい態様はTi膜と該Ti膜を覆うCu膜の2層構造であるが、誘電体プレート11に対する密着が良好に行え、且つ、各第2電極棒13に対する電気的接続が良好に行えるものであれば、その層数や材料に特段の制限は無い。   The second conductor film 15 is formed so as to cover a rectangular region excluding the rear end portion of the lower surface (the other through hole exposed surface) of the dielectric plate 11, and is in close contact with the region. The second conductive film 15 is made of a conductive material such as pure metals such as Cu, Ni, Cr, Ag, Au, Pd, Fe, Sn, Pb, Pt, Ir, Rh, Ru, Al, Ti, and alloys thereof. Its thickness (vertical dimension) is 0.5 to 1.5 μm. The left and right dimensions of the second conductor film 15 are the same as the left and right dimensions of the dielectric plate 11, and the preferred front and rear dimensions are 85/100 to 95/100 of the front and rear dimensions of the dielectric plate 11. As can be seen from FIGS. 4 and 5, the upper surface of the second conductor film 15 is electrically connected to the lower end of each second electrode rod 13, and the upper surface is electrically connected to the lower end of each first electrode rod 12. It is electrically insulated through 12a. The front surface of the second conductor film 15 is flush with the front surface of the dielectric plate 11. A preferred embodiment of the second conductor film 15 is a two-layer structure of a Ti film and a Cu film covering the Ti film. However, the second conductor film 15 can be satisfactorily adhered to the dielectric plate 11 and can be electrically connected to each second electrode rod 13. There are no particular restrictions on the number of layers and materials as long as the material can be satisfactorily performed.

第1絶縁体膜16は、誘電体プレート11の上面(一方の貫通孔露出面)の前端部、即ち、第1導体膜14が形成されていない矩形状の前側領域を覆うように形成され、且つ、該前側領域に密着しており、その後面は第1導体膜14の前面と密着している。第1絶縁体膜16はエポキシ樹脂、フェノール樹脂、不飽和ポリエステル、ポリイミド等の絶縁体材料から成り、その厚さ(上下寸法)は第1導体膜14と同じである。第1絶縁体膜16の左右寸法は誘電体プレート11の左右寸法と同じであり、前後寸法は「誘電体プレート11の前後寸法」−「第1導体膜14の前後寸法」である。図4及び図5から分かるように、第1絶縁体膜16の前面は誘電体プレート11の前面と面一である。   The first insulator film 16 is formed so as to cover the front end portion of the upper surface (one through-hole exposed surface) of the dielectric plate 11, that is, the rectangular front region where the first conductor film 14 is not formed, The rear surface is in close contact with the front surface of the first conductor film 14. The first insulator film 16 is made of an insulator material such as epoxy resin, phenol resin, unsaturated polyester, polyimide, etc., and its thickness (vertical dimension) is the same as that of the first conductor film 14. The left and right dimensions of the first insulator film 16 are the same as the left and right dimensions of the dielectric plate 11, and the front and rear dimensions are “front and rear dimensions of the dielectric plate 11” − “front and rear dimensions of the first conductor film 14”. As can be seen from FIGS. 4 and 5, the front surface of the first insulator film 16 is flush with the front surface of the dielectric plate 11.

第2絶縁体膜17は、誘電体プレート11の下面(他方の貫通孔露出面)の後端部、即ち、第2導体膜15が形成されていない矩形状の後側領域を覆うように形成され、且つ、該後側領域に密着しており、その前面は第2導体膜15の後面と密着している。第2絶縁体膜17はエポキシ樹脂、フェノール樹脂、不飽和ポリエステル、ポリイミド等の絶縁体材料から成り、その厚さ(上下寸法)は第2導体膜15と同じである。第2絶縁体膜17の左右寸法は誘電体プレート11の左右寸法と同じであり、前後寸法は「誘電体プレート11の前後寸法」−「第2導体膜15の前後寸法」である。図4及び図5から分かるように、第2絶縁体膜17の後面は誘電体プレート11の後面と面一である。   The second insulator film 17 is formed so as to cover the rear end portion of the lower surface of the dielectric plate 11 (the exposed surface of the other through hole), that is, the rectangular rear region where the second conductor film 15 is not formed. In addition, it is in close contact with the rear region, and its front surface is in close contact with the rear surface of the second conductor film 15. The second insulator film 17 is made of an insulator material such as epoxy resin, phenol resin, unsaturated polyester, polyimide, etc., and its thickness (vertical dimension) is the same as that of the second conductor film 15. The left and right dimensions of the second insulator film 17 are the same as the left and right dimensions of the dielectric plate 11, and the front and rear dimensions are “front and rear dimensions of the dielectric plate 11” − “front and rear dimensions of the second conductor film 15”. As can be seen from FIGS. 4 and 5, the rear surface of the second insulator film 17 is flush with the rear surface of the dielectric plate 11.

前記ユニットU10は、誘電体プレート11内に存する各第1電極棒12が第1導体膜14に電気的に接続し、且つ、誘電体プレート11内に各第1電極棒12と非接触で存する各第2電極棒13が第2導体膜15に電気的に接続した構造にあるため、第1導体膜14と第2導体膜15との間に所定の容量(大容量)を確保することができる。   In the unit U10, each first electrode rod 12 existing in the dielectric plate 11 is electrically connected to the first conductor film 14 and is not in contact with each first electrode rod 12 in the dielectric plate 11. Since each of the second electrode bars 13 is electrically connected to the second conductor film 15, a predetermined capacity (large capacity) can be secured between the first conductor film 14 and the second conductor film 15. it can.

〈ユニットU10の好ましい作製方法〉
前記ユニットU10を作製するときには、図6に示したように、先ず、誘電体プレート11用のプレート基材BMを用意し、該プレート基材BMに陽極酸化の基点となるピットを形成した後、2段の陽極酸化処理によって深さが異なる2種類の孔BMa及びBMb(図6のBMaは貫通した孔を示し、BMbは貫通していない孔を示す)を形成する。
<Preferred production method of unit U10>
When producing the unit U10, as shown in FIG. 6, first, a plate base material BM for the dielectric plate 11 is prepared, and after forming pits serving as a base point for anodization on the plate base material BM, Two types of holes BMa and BMb (BMa in FIG. 6 indicates a through-hole and BMb indicates a non-penetrating hole) having different depths are formed by two-step anodizing treatment.

続いて、図7に示したように、PVD処理(物理気相成長処理)によってプレート基材BMの上面にCu等から成るシード層SLを第1導体膜14に対応した前後寸法及び左右寸法で形成した後、該シード層SLを利用した電解メッキ処理によって孔BMaに第1電極棒12用の導体材料CMを充填する。   Subsequently, as shown in FIG. 7, the seed layer SL made of Cu or the like is formed on the upper surface of the plate base material BM by the PVD process (physical vapor deposition process) with the front and rear dimensions and the left and right dimensions corresponding to the first conductor film 14. After the formation, the hole BMa is filled with the conductor material CM for the first electrode rod 12 by an electrolytic plating process using the seed layer SL.

続いて、図8に示したように、プレート基材BMからシード層SLを除去し、孔BMbの下端が開口するように該プレート基材BMの下面側(図7の破線よりも下側部分)を除去して、誘電体プレート11を得る。そして、PVD処理によって誘電体プレート11の下面に第2導体膜15を形成した後、該第2導体膜15を利用した電解メッキ処理によって孔BMb(ここでは貫通した孔を示す)に第2電極棒13用の導体材料CMを充填する。   Subsequently, as shown in FIG. 8, the seed layer SL is removed from the plate base material BM, and the lower surface side of the plate base material BM (the lower part than the broken line in FIG. 7) so that the lower end of the hole BMb is opened. ) Is removed to obtain the dielectric plate 11. Then, after the second conductor film 15 is formed on the lower surface of the dielectric plate 11 by the PVD process, the second electrode is formed in the hole BMb (here, a through-hole is shown) by the electrolytic plating process using the second conductor film 15. The conductor material CM for the rod 13 is filled.

続いて、図9に示したように、PVD処理によって誘電体プレート11の上面に第1導体膜14を形成する。   Subsequently, as shown in FIG. 9, the first conductor film 14 is formed on the upper surface of the dielectric plate 11 by PVD processing.

続いて、絶縁体材料の塗布及び硬化処理によって、誘電体プレート11の上面前端部に第1絶縁体膜16を形成すると共に、誘電体プレート11の下面後端部に第2絶縁体膜17を形成する。以上で前記ユニットU10が作製される。   Subsequently, the first insulator film 16 is formed at the front end portion of the upper surface of the dielectric plate 11 by applying and curing the insulator material, and the second insulator film 17 is formed at the rear end portion of the lower surface of the dielectric plate 11. Form. Thus, the unit U10 is manufactured.

〈ユニットU10の変形例〉
(1)誘電体プレート11の前面近傍部分及び後面近傍部分を除く部分に複数の貫通孔11aを形成したものを示したが、該誘電体プレート11の全体に複数の貫通孔11aが所定の配列で形成されていても良い。この場合、作製方法如何では、第1絶縁体膜16の下側に存する貫通孔11aと第2絶縁体膜17の上側に存する貫通孔11aに第1電極棒12と第2電極棒13が幾つか設けられてしまうが、前記ユニットU10の構造からして該ユニットU10自体の性能に特段の問題は生じないし、後記コンデンサの性能にも特段の問題は生じない。勿論、第1絶縁体膜16の下側に存する貫通孔11aと第2絶縁体膜17の上側に存する貫通孔11aに、これら貫通孔11aに第1電極棒12用の導体材料CMと第2電極棒13用の導体材料CMが充填されないように該貫通孔11aの開口に予めマスクを付しておけば、該貫通孔11aを空孔として残存させることもできる。また、こえら貫通孔に第1電極棒12用の導体材料CMと第2電極棒13用の導体材料CMが充填されないように該貫通孔11aに予め適当な絶縁体材料を予め充填しておけば、該貫通孔11aを誘電体プレート11と同様の誘電体部分とすることもできる。
<Modification of unit U10>
(1) The dielectric plate 11 has a plurality of through holes 11a formed in portions excluding the vicinity of the front surface and the vicinity of the rear surface. The plurality of through holes 11a are arranged in a predetermined arrangement on the entire dielectric plate 11. It may be formed by. In this case, depending on the manufacturing method, the number of the first electrode rods 12 and the second electrode rods 13 in the through-holes 11a below the first insulator film 16 and the through-holes 11a above the second insulator film 17 is different. However, the structure of the unit U10 causes no particular problem in the performance of the unit U10 itself, and no particular problem occurs in the performance of the capacitor described later. Of course, the through-hole 11a existing on the lower side of the first insulator film 16 and the through-hole 11a existing on the upper side of the second insulator film 17 are connected to the conductor material CM for the first electrode rod 12 and the second hole 11a. If a mask is attached in advance to the opening of the through hole 11a so as not to be filled with the conductor material CM for the electrode rod 13, the through hole 11a can be left as a hole. Further, an appropriate insulator material may be previously filled in the through hole 11a so that the through hole is not filled with the conductor material CM for the first electrode rod 12 and the conductor material CM for the second electrode rod 13. For example, the through hole 11 a can be a dielectric portion similar to the dielectric plate 11.

(2)誘電体プレート11に計108個の貫通孔11aを形成したものを示したが、該貫通孔11aの数は108個よりも多くても少なくても良い。また、計108個のうちの半分に当たる54個の貫通孔11aに第1電極棒12を設け、残りの54個の貫通孔11aに第2電極棒13を設けたものを示したが、第1電極棒12の数と第2電極棒13の数は必ずしも一致させる必要は無い。   (2) Although a total of 108 through holes 11a are formed in the dielectric plate 11, the number of through holes 11a may be more or less than 108. Further, the first electrode rod 12 is provided in 54 through-holes 11a corresponding to half of the 108 pieces, and the second electrode rod 13 is provided in the remaining 54 through-holes 11a. The number of electrode rods 12 and the number of second electrode rods 13 do not necessarily need to match.

(3)誘電体プレート11における第1電極棒12と第2電極棒13の並び方を図3の実線波線と破線波線で示したが、図10(A)〜図10(C)のそれぞれに示した他の並び方を採用しても良い。図10(A)にあっては、第1電極棒12は左右方向において各々の中心が実線直線上に位置するように並び、第2電極棒13は左右方向において各々の中心が破線直線上に位置するように並んでおり、第1電極棒12の並びと第2電極棒13の並びは前後方向において交互に存在する。図10(B)にあっては、第1電極棒12は各々の中心が実線正六角形の角に位置するように並び、第2電極棒13は実線正六角形の中心に位置するように並んでいる。図10(C)にあっては、第1電極棒12は左右方向と30度を成す斜め方向において各々の中心が実線直線上に位置するように並び、第2電極棒13は同じ斜め方向において各々の中心が破線直線上に位置するように並んでおり、第1電極棒12の並びと第2電極棒13の並びは斜め方向と直交する方向において交互に存在する。勿論、図3と図10(A)〜図10(C)のそれぞれに示した並び方以外の規則的な並び方を採用しても良いし、規則性を有しない並び方を採用しても良い。   (3) The arrangement of the first electrode rod 12 and the second electrode rod 13 in the dielectric plate 11 is indicated by the solid line broken line and the broken line broken line in FIG. 3, and is shown in each of FIGS. 10 (A) to 10 (C). Other arrangements may be used. In FIG. 10A, the first electrode rods 12 are arranged such that their centers are located on a solid straight line in the left-right direction, and the second electrode rods 13 are arranged on the broken line straight line in the left-right direction. The first electrode rods 12 and the second electrode rods 13 are alternately arranged in the front-rear direction. In FIG. 10B, the first electrode rods 12 are arranged so that their centers are located at the corners of the solid regular hexagon, and the second electrode rods 13 are arranged so as to be located at the center of the solid regular hexagon. Yes. In FIG. 10 (C), the first electrode rods 12 are arranged so that their centers are located on a solid straight line in an oblique direction of 30 degrees with the left-right direction, and the second electrode rods 13 are arranged in the same oblique direction. Each center is arranged so that it may be located on the straight line of a broken line, and the arrangement of the first electrode rods 12 and the arrangement of the second electrode rods 13 are alternately present in the direction orthogonal to the oblique direction. Of course, a regular arrangement other than the arrangement shown in FIG. 3 and FIGS. 10A to 10C may be adopted, or an arrangement having no regularity may be adopted.

(4)誘電体プレート11における貫通孔11aの配列を図3に示したが、図11(A)〜図11(C)に示したように、前から奇数番目の列と前から偶数番目の列とが左右方向にずれていない配列(マトリクス配設)としても良い。また、このような貫通孔11aの配列の場合、第1電極棒12と第2電極棒13の並び方として図11(A)〜図11(C)のそれぞれに示した並び方を採用できる。図11(A)にあっては、第1電極棒12は左右方向において各々の中心が実線波線の頂点に位置するように並び、第2電極棒13は左右方向において各々の中心が破線波線の頂点に位置するように並んでおり、第1電極棒12の並びと第2電極棒13の並びは前後方向において交互に存在する。図11(B)にあっては、第1電極棒12は左右方向において各々の中心が実線直線上に位置するように並び、第2電極棒13は左右方向において各々の中心が破線直線上に位置するように並んでおり、第1電極棒12の並びと第2電極棒13の並びは前後方向において交互に存在する。図11(C)にあっては、第1電極棒12は各々の中心が実線正方形の頂点と中心に位置するように並び、第2電極棒13は各々の中心が破線ひし形の頂点に位置するように並んでいる。勿論、図11(A)〜図11(C)のそれぞれに示した並び方以外の規則的な並び方を採用しても良いし、規則性を有しない並び方を採用しても良い。   (4) Although the arrangement of the through holes 11a in the dielectric plate 11 is shown in FIG. 3, as shown in FIGS. 11 (A) to 11 (C), the odd-numbered rows from the front and the even-numbered rows from the front An arrangement (matrix arrangement) in which the columns are not displaced in the left-right direction may be employed. Further, in the case of such an arrangement of the through holes 11a, the arrangement shown in each of FIGS. 11A to 11C can be adopted as the arrangement of the first electrode rod 12 and the second electrode rod 13. In FIG. 11A, the first electrode rods 12 are arranged so that their centers are located at the vertices of the solid wavy lines in the left-right direction, and the second electrode rods 13 are arranged in the left-right direction with each broken line wavy line. The first electrode rods 12 and the second electrode rods 13 are alternately arranged in the front-rear direction. In FIG. 11B, the first electrode rods 12 are arranged so that their centers are located on a solid straight line in the left-right direction, and the second electrode rods 13 are arranged on their respective straight lines in the left-right direction. The first electrode rods 12 and the second electrode rods 13 are alternately arranged in the front-rear direction. In FIG. 11C, the first electrode rods 12 are arranged so that the centers thereof are located at the vertices of solid squares, and the second electrode rods 13 are arranged at the vertices of broken diamonds. Are lined up like Of course, a regular arrangement other than the arrangement shown in each of FIGS. 11A to 11C may be employed, or an arrangement having no regularity may be employed.

(5)各第1電極棒12の絶縁ギャップ12aとして空隙を示し、各第2電極棒13の絶縁ギャップ13aとして空隙を示したが、各々の空隙にポリイミド等の絶縁体材料を充填して、該充填物を絶縁ギャップ12a及び13aとして採用しても良い。   (5) Although an air gap was shown as the insulating gap 12a of each first electrode rod 12, and an air gap was shown as the insulating gap 13a of each second electrode rod 13, each gap was filled with an insulator material such as polyimide, The filler may be employed as the insulating gaps 12a and 13a.

《ユニットU10を用いて構成されたコンデンサC20》
以下、図12〜図18を引用して、前記ユニットU10を4個用いて構成されたコンデンサC20(コンデンサの第1実施形態)の構造と好ましい製造方法について説明する。ここでの説明では、説明の便宜上、図13の左、右、手前、奥、上、下をそれぞれ前、後、左、右、上、下と称し、図12及び図15〜図18のこれらに相当する方向も同様に称する。
<< Capacitor C20 configured using unit U10 >>
Hereinafter, the structure of a capacitor C20 (first embodiment of the capacitor) configured by using four units U10 and a preferable manufacturing method will be described with reference to FIGS. In the description here, for convenience of explanation, the left, right, front, back, top, and bottom in FIG. 13 are referred to as front, back, left, right, top, and bottom, respectively, and those in FIGS. 12 and 15 to 18. The direction corresponding to is also referred to similarly.

〈コンデンサC20の構造〉
図12及び図13に示したコンデンサC20は、従前の0603サイズの積層型コンデンサと互換性を有するものであって、ユニット積層体21と、絶縁性外装膜22と、下地導体膜23と表面導体膜24とから構成された一対の外部端子25とを備えており、前後寸法は0.6mmで左右寸法は0.3mmである。
<Structure of capacitor C20>
The capacitor C20 shown in FIGS. 12 and 13 is compatible with a conventional 0603 size multilayer capacitor, and is composed of a unit laminate 21, an insulating exterior film 22, a base conductor film 23, and a surface conductor. A pair of external terminals 25 constituted by the membrane 24 is provided, the front-rear dimension is 0.6 mm, and the left-right dimension is 0.3 mm.

ユニット積層体21は、4個のユニットU10を厚さ向きで上下方向に積み重ねて一体化した構造を有しており、全体が直方体形状を成している。4個のユニットU10の3次元向きについて詳しく述べれば、上から1及び3番目のユニットU10は第1導体膜14及び第1絶縁体膜16が上に位置し該第1絶縁体膜16が前に位置する3次元向きにあり、上から2及び4番目のユニットU10は第2導体膜15及び第2絶縁体膜17が上に位置し該第2絶縁体膜17が後に位置する3次元向きにある。つまり、上から1番目のユニットU10の第2導体膜15は上から2番目のユニットU10の第2導体膜15と向き合い、上から1番目のユニットU10の第2絶縁体膜17は上から2番目のユニットU10の第2絶縁体膜17と向き合っている。上から2番目のユニットU10の第1導体膜14は上から3番目のユニットU10の第1導体膜14と向き合い、上から2番目のユニットU10の第1絶縁体膜16は上から3番目のユニットU10の第1絶縁体膜16と向き合っている。上から3番目のユニットU10の第2導体膜15は上から4番目のユニットU10の第2導体膜15と向き合い、上から3番目のユニットU10の第2絶縁体膜17は上から4番目のユニットU10の第2絶縁体膜17と向き合っている。   The unit stacked body 21 has a structure in which four units U10 are stacked in the vertical direction in the thickness direction and integrated, and the whole has a rectangular parallelepiped shape. Describing in detail the three-dimensional orientation of the four units U10, the first and third units U10 from the top are such that the first conductor film 14 and the first insulator film 16 are positioned above, and the first insulator film 16 is the front. The second and fourth units U10 from the top are in the three-dimensional direction in which the second conductor film 15 and the second insulator film 17 are located above and the second insulator film 17 is located behind. It is in. That is, the second conductor film 15 of the first unit U10 from the top faces the second conductor film 15 of the second unit U10 from the top, and the second insulator film 17 of the first unit U10 from the top is 2 from the top. It faces the second insulator film 17 of the second unit U10. The first conductor film 14 of the second unit U10 from the top faces the first conductor film 14 of the third unit U10 from the top, and the first insulator film 16 of the second unit U10 from the top is the third from the top. It faces the first insulator film 16 of the unit U10. The second conductor film 15 of the third unit U10 from the top faces the second conductor film 15 of the fourth unit U10 from the top, and the second insulator film 17 of the third unit U10 from the top is the fourth from the top. It faces the second insulator film 17 of the unit U10.

また、上から1番目のユニットU10の第2導体膜15の下面と上から2番目のユニットU10の第2導体膜15の上面とが結合していて電気的に接続され、上から2番目のユニットU10の第1導体膜14の下面と上から3番目のユニットU10の第1導体膜14の上面とが結合していて電気的に接続され、上から3番目のユニットU10の第2導体膜15の下面と上から4番目のユニットU10の第2導体膜15の上面とが結合していて電気的に接続されている。これら電気的接続には、拡散接合(熱圧着接合)等の直接接合法の他、ハンダや導電性接着剤等の導電性接合材を用いた間接接合法が採用されている。   The lower surface of the second conductor film 15 of the first unit U10 from the top and the upper surface of the second conductor film 15 of the second unit U10 from the top are coupled and electrically connected, and the second from the top. The lower surface of the first conductor film 14 of the unit U10 and the upper surface of the first conductor film 14 of the third unit U10 from the top are combined and electrically connected, and the second conductor film of the third unit U10 from the top is connected. The lower surface of 15 and the upper surface of the second conductor film 15 of the fourth unit U10 from the top are coupled and electrically connected. In addition to direct bonding methods such as diffusion bonding (thermocompression bonding), an indirect bonding method using a conductive bonding material such as solder or a conductive adhesive is employed for these electrical connections.

即ち、各ユニットU10の第1導体膜14の後端縁と第2絶縁体膜17の後端縁はユニット積層体21の後面において露出し、各ユニットU10の第2導体膜15の前端縁と第1絶縁体膜16の前端縁はユニット積層体21の前面において露出している。   That is, the rear end edge of the first conductor film 14 of each unit U10 and the rear end edge of the second insulator film 17 are exposed on the rear surface of the unit laminate 21, and the front end edge of the second conductor film 15 of each unit U10 The front edge of the first insulator film 16 is exposed on the front surface of the unit laminate 21.

絶縁性外装膜22は、ユニット積層体21の左面、右面、上面及び下面を連続して覆うように形成されている。絶縁性外装膜22はエポキシ樹脂、フェノール樹脂、不飽和ポリエステル、ポリイミド等の絶縁体材料から成り、その厚さ(上下寸法)は1.5〜4.5μmである。   The insulating exterior film 22 is formed so as to continuously cover the left surface, the right surface, the upper surface, and the lower surface of the unit laminate 21. The insulating exterior film 22 is made of an insulating material such as epoxy resin, phenol resin, unsaturated polyester, polyimide, etc., and has a thickness (vertical dimension) of 1.5 to 4.5 μm.

前側の外部端子25を構成する前側の下地導体膜23は、ユニット積層体21の前面と絶縁性外装膜22の左面前端部、右面前端部、上面前端部及び下面前端部とを連続して覆うように形成されている。後側の外部端子25を構成する後側の下地導体膜23は、ユニット積層体21の後面と絶縁性外装膜22の左面後端部、右面後端部、上面後端部及び下面後端部とを連続して覆うように形成されている。各下地導体膜23は導電性プラスチックから成り、その厚さは5〜15μmである。導電性プラスチックのプラスチック成分はエポキシ樹脂、フェノール樹脂、不飽和ポリエステル、ポリイミド等から成り、金属成分はAg粒子、Pd粒子、Cu粒子、Ni粒子等から成る。図13から分かるように、前側の下地導体膜23の内面は各ユニットU10の第2導体膜15の前端縁と電気的に接続し、後側の下地導体膜23の内面は各ユニットU10の第1導体膜14の後端縁と電気的に接続している。各下地導体膜23は導電性を確保するのに適した量(例えば80〜90wt%)の金属成分を含んでいるため、第1導体膜14と第2導体膜15に対する電気的接続を良好に行える。各下地導体膜23は密着性を確保するのに適した量(例えば10〜20wt%)のプラスチック成分を含んでいるため、ユニット積層体21と絶縁性外装膜22に対する密着を良好に行える。   The front base conductor film 23 constituting the front external terminal 25 continuously covers the front surface of the unit laminate 21 and the left front end, right front front, upper front front, and lower front front of the insulating exterior film 22. It is formed as follows. The rear base conductor film 23 constituting the rear external terminal 25 includes the rear surface of the unit laminate 21 and the left rear end, the right rear end, the upper rear end, and the lower rear end of the insulating exterior film 22. Are continuously covered. Each base conductor film 23 is made of a conductive plastic and has a thickness of 5 to 15 μm. The plastic component of the conductive plastic is made of epoxy resin, phenol resin, unsaturated polyester, polyimide, or the like, and the metal component is made of Ag particles, Pd particles, Cu particles, Ni particles, or the like. As can be seen from FIG. 13, the inner surface of the base conductor film 23 on the front side is electrically connected to the front end edge of the second conductor film 15 of each unit U10, and the inner surface of the base conductor film 23 on the rear side is the first end of each unit U10. The one conductor film 14 is electrically connected to the rear end edge. Since each base conductor film 23 contains a metal component in an amount suitable for ensuring conductivity (for example, 80 to 90 wt%), the electrical connection between the first conductor film 14 and the second conductor film 15 is excellent. Yes. Since each base conductor film 23 contains a plastic component in an amount suitable for ensuring adhesion (for example, 10 to 20 wt%), adhesion to the unit laminate 21 and the insulating exterior film 22 can be performed satisfactorily.

前側の外部端子25を構成する前側の表面導体膜24は、前側の下地導体膜23を覆うように形成されている。後側の外部端子25を構成する後側の表面導体膜24は、後側の下地導体膜23を覆うように形成されている。各表面導体膜24はNi、Sn、Au等の導体材料から成り、その厚さは5〜15μmである。図13から分かるように、前側の表面導体膜24の内面は前側の下地導体膜23の表面に電気的に接続し、後側の表面導体膜24の内面は後側の下地導体膜23の表面に電気的に接続している。各表面導体膜24の好ましい態様はNi膜と該Ni膜の表面を覆うSn膜の2層構造であるが、各下地導体膜23に対する電気的接続が良好に行え、且つ、回路基板のパッドへのハンダ付けが良好に行えるものであれば、その層数や材料に特段の制限は無い。   The front surface conductor film 24 constituting the front external terminal 25 is formed so as to cover the front base conductor film 23. The rear surface conductor film 24 constituting the rear external terminal 25 is formed so as to cover the rear base conductor film 23. Each surface conductor film 24 is made of a conductor material such as Ni, Sn, or Au, and has a thickness of 5 to 15 μm. As can be seen from FIG. 13, the inner surface of the front surface conductor film 24 is electrically connected to the surface of the front conductor film 23, and the inner surface of the rear surface conductor film 24 is the surface of the rear conductor film 23. Is electrically connected. A preferred embodiment of each surface conductor film 24 is a two-layer structure of a Ni film and a Sn film covering the surface of the Ni film. However, the electrical connection to each underlying conductor film 23 can be made well and to the pads of the circuit board. If the soldering can be performed satisfactorily, the number of layers and materials are not particularly limited.

前記コンデンサC20は、各ユニットU10の第1導体膜14が後側の外部端子25に電気的に接続し、且つ、各ユニットU10の第2導体膜15が前側の外部端子25に電気的に接続した構造にあるため、該コンデンサC20の等価回路は図14に示したようになる。つまり、1つのユニットU10で得られる容量をC-U10とした場合、前記コンデンサC20は4個の容量C-U10が一対の外部端子25の間に並列接続された等価回路を有している。   In the capacitor C20, the first conductor film 14 of each unit U10 is electrically connected to the rear external terminal 25, and the second conductor film 15 of each unit U10 is electrically connected to the front external terminal 25. Because of this structure, the equivalent circuit of the capacitor C20 is as shown in FIG. That is, when the capacity obtained by one unit U10 is C-U10, the capacitor C20 has an equivalent circuit in which four capacitors C-U10 are connected in parallel between a pair of external terminals 25.

〈コンデンサC20の好ましい製造方法〉
前記コンデンサC20を製造するときには、先ず、図15及び図16に示したように、下から1番目のユニットU10の第2導体膜15及び第2絶縁体膜17の上面に下から2番目のユニットU10の第2導体膜15及び第2絶縁体膜17の下面を重ね、そして、該2番目のユニットU10の第1導体膜14及び第1絶縁体膜16の上面に下から3番目のユニットU10の第1導体膜14及び第1絶縁体膜16の下面を重ね、そして、該3番目のユニットU10の第2導体膜15及び第2絶縁体膜17の上面に下から4番目のユニットU10の第2導体膜15及び第2絶縁体膜17の下面を重ねた後、下から1番目のユニットU10の第2導体膜15と下から2番目のユニットU10の第2導体膜15とを接合し、下から2番目のユニットU10の第1導体膜14と下から3番目のユニットU10の第1導体膜14とを接合し、下から3番目のユニットU10の第2導体膜15と下から4番目のユニットU10の第2導体膜15とを接合してユニット積層体21を作製する。
<Preferred manufacturing method of capacitor C20>
When the capacitor C20 is manufactured, first, as shown in FIGS. 15 and 16, the second unit from the bottom on the second conductor film 15 and the second insulator film 17 of the first unit U10 from the bottom. The lower surfaces of the second conductor film 15 and the second insulator film 17 of U10 are overlapped, and the third unit U10 from the bottom on the upper surfaces of the first conductor film 14 and the first insulator film 16 of the second unit U10. The lower surfaces of the first conductor film 14 and the first insulator film 16 are overlapped, and the upper surfaces of the second conductor film 15 and the second insulator film 17 of the third unit U10 are overlapped with the fourth unit U10 from the bottom. After the lower surfaces of the second conductor film 15 and the second insulator film 17 are overlapped, the second conductor film 15 of the first unit U10 from the bottom and the second conductor film 15 of the second unit U10 from the bottom are joined. , Second unit U from the bottom The first conductor film 14 of 0 and the first conductor film 14 of the third unit U10 from the bottom are joined together, the second conductor film 15 of the third unit U10 from the bottom and the second conductor film 15 of the fourth unit U10 from the bottom. The unit laminated body 21 is produced by joining the conductor film 15.

続いて、図17に示したように、ローラ塗布機、噴霧塗布機等の塗布装置を用いてユニット積層体21の左面、右面、上面及び下面を連続して覆うように絶縁性外装膜22用の絶縁体材料IMa(未硬化のもの)を塗布した後、該絶縁体材料IMaを硬化させて絶縁性外装膜22を作製する。   Subsequently, as shown in FIG. 17, for the insulating exterior film 22 so as to continuously cover the left surface, the right surface, the upper surface, and the lower surface of the unit laminate 21 using a coating device such as a roller coating machine or a spray coating machine. After applying the insulating material IMa (uncured material), the insulating material IMa is cured to produce the insulating exterior film 22.

続いて、図18に示したように、ローラ塗布機、ディップ塗布機等の塗布装置を用いてユニット積層体21の前面と絶縁性外装膜22の左面前端部、右面前端部、上面前端部及び下面前端部とを連続して覆うように下地導体膜23用の導電性プラスチック材料CMa(未硬化のもの)を塗布し、ユニット積層体21の後面と絶縁性外装膜22の左面後端部、右面後端部、上面後端部及び下面後端部とを連続して覆うように下地導体膜23用の導電性プラスチック材料CMa(未硬化のもの)を塗布した後、該各導電性プラスチック材料CMaを硬化させて各下地導体膜23を作製する。   Subsequently, as shown in FIG. 18, the front surface of the unit laminate 21 and the left front end, the right front end, the upper front end, and the front surface of the insulating laminate film 22 are applied using a coating device such as a roller coating machine or a dip coating machine. A conductive plastic material CMa (uncured material) for the base conductor film 23 is applied so as to continuously cover the lower surface front end portion, and the rear surface of the unit laminate 21 and the left surface rear end portion of the insulating exterior film 22 are applied. After applying the conductive plastic material CMa (uncured) for the base conductor film 23 so as to continuously cover the rear end of the right surface, the rear end of the upper surface, and the rear end of the lower surface, each of the conductive plastic materials CMa is cured to produce each underlying conductor film 23.

続いて、電解メッキ処理によって各下地導体膜23の表面のそれぞれに表面導体膜24を作製する。表面導体膜24の層数が2以上の場合には、各層に対応した電解メッキ処理を続けて行う。以上で前記コンデンサC20が製造される。   Subsequently, a surface conductor film 24 is formed on each surface of each base conductor film 23 by electrolytic plating. When the number of layers of the surface conductor film 24 is 2 or more, the electrolytic plating process corresponding to each layer is continued. Thus, the capacitor C20 is manufactured.

〈コンデンサC20の変形例〉
(1)コンデンサC20として各下地導体膜23が導電性プラスチックから成るものを示したが、各下地導体膜23はTi、Cu、Ni、Ag、Pd等の導体材料から形成されていても良い。各下地導体膜23の好ましい態様はTi膜と該Ti膜を覆うCu膜の2層構造であるが、第1導体膜14と第2導体膜15に対する電気的接続を良好に行え、且つ、ユニット積層体21及び絶縁性外装膜22に対する密着が良好に行えるものであれば、その層数や材料に特段の制限は無い。
<Modification of Capacitor C20>
(1) Although each base conductor film 23 is made of a conductive plastic as the capacitor C20, each base conductor film 23 may be made of a conductor material such as Ti, Cu, Ni, Ag, or Pd. A preferred embodiment of each underlying conductor film 23 is a two-layer structure of a Ti film and a Cu film covering the Ti film. However, the electrical connection to the first conductor film 14 and the second conductor film 15 can be satisfactorily performed, and the unit There are no particular restrictions on the number of layers or materials, as long as adhesion to the laminate 21 and the insulating exterior film 22 can be satisfactorily performed.

(2)コンデンサC20として前記ユニットU10を4個用いて構成されたものを示したが、コンデンサを構成する該ユニットU10の数は2個、または、3個以上であっても良い。前記ユニットU10を3個用いてコンデンサを構成する場合には、図19に示したように、前記コンデンサC20の上から4番目のユニットU10を排除した構造とすれば良く、該コンデンサC20-1では3個の容量C-U10が一対の外部端子25の間に並列接続された等価回路(図20を参照)が得られる。図示を省略したが、前記ユニットU10を2個用いてコンデンサを構成する場合には、前記コンデンサC20の上から3番目と4番目のユニットU10を排除した構造とすれば良く、該コンデンサでは2個の容量C-U10が一対の外部端子25の間に並列接続された等価回路が得られる。前記ユニットU10を5個用いてコンデンサを構成する場合には、前記コンデンサC20の上から4番目のユニットU10の下側に上から1番目のユニットU10と同じ3次元向きにあるユニットU10を追加すれば良く、該コンデンサでは5個の容量C-U10が一対の外部端子25の間に並列接続された等価回路が得られる。前記ユニットU10を6個以上用いてコンデンサを構成する場合も、前記コンデンサC20の各ユニットU10の3次元向きに合わせてユニットU10を追加すれば良い。   (2) Although the capacitor C20 is configured using four units U10, the number of the units U10 configuring the capacitor may be two, or three or more. When a capacitor is configured by using the three units U10, as shown in FIG. 19, the fourth unit U10 from the top of the capacitor C20 may be eliminated, and the capacitor C20-1 An equivalent circuit (see FIG. 20) in which three capacitors C-U10 are connected in parallel between a pair of external terminals 25 is obtained. Although not shown, when a capacitor is formed by using two units U10, a structure in which the third and fourth units U10 from the top of the capacitor C20 are excluded may be used. An equivalent circuit in which the capacitor C-U10 is connected in parallel between the pair of external terminals 25 is obtained. When a capacitor is configured using five units U10, a unit U10 that is in the same three-dimensional direction as the first unit U10 from the top is added below the fourth unit U10 from the top of the capacitor C20. In this capacitor, an equivalent circuit in which five capacitors C-U10 are connected in parallel between a pair of external terminals 25 can be obtained. Even when a capacitor is configured by using six or more units U10, the unit U10 may be added according to the three-dimensional orientation of each unit U10 of the capacitor C20.

《ユニットU10を用いて構成されたコンデンサC30》
以下、図21及び図22を引用して、前記ユニットU10を4個用いて構成された別タイプのコンデンサC30(コンデンサの第2実施形態)の構造と好ましい製造方法について説明する。ここでの説明では、説明の便宜上、図21の左、右、手前、奥、上、下をそれぞれ前、後、左、右、上、下と称する。
<< Capacitor C30 configured using unit U10 >>
Hereinafter, with reference to FIG. 21 and FIG. 22, a structure and a preferable manufacturing method of another type of capacitor C30 (second embodiment of the capacitor) configured by using four units U10 will be described. In the description here, for the convenience of description, the left, right, front, back, top, and bottom in FIG. 21 are referred to as front, back, left, right, top, and bottom, respectively.

〈コンデンサC30の構造〉
図21に示したコンデンサC30は、、従前の0603サイズの積層型コンデンサと互換性を有するものであって、ユニット積層体31と、絶縁性外装膜32と、下地導体膜33と表面導体膜34とから構成された一対の外部端子35とを備えており、前後寸法は0.6mmで左右寸法は0.3mmである。
<Structure of capacitor C30>
A capacitor C30 shown in FIG. 21 is compatible with a conventional 0603 size multilayer capacitor, and includes a unit laminate 31, an insulating exterior film 32, a base conductor film 33, and a surface conductor film 34. The front and rear dimensions are 0.6 mm and the left and right dimensions are 0.3 mm.

ユニット積層体31は、4個のユニットU10を厚さ向きで上下方向に積み重ねて一体化した構造を有しており、全体が直方体形状を成している。4個のユニットU10の3次元向きについて詳しく述べれば、各ユニットU10は第1導体膜14及び第1絶縁体膜16が上に位置し該第1絶縁体膜16が前に位置する3次元向きにある。つまり、上から1番目のユニットU10の第2導体膜15は上から2番目のユニットU10の第1導体膜14と向き合っているものの、上から1番目のユニットU10の第2絶縁体膜17は上から2番目のユニットU10の第1絶縁体膜16と向き合っていない。上から2番目のユニットU10の第2導体膜15は上から3番目のユニットU10の第1導体膜14と向き合っているものの、上から2番目のユニットU10の第2絶縁体膜17は上から3番目のユニットU10の第1絶縁体膜16と向き合っていない。上から3番目のユニットU10の第2導体膜15は上から4番目のユニットU10の第1導体膜14と向き合っているものの、上から3番目のユニットU10の第2絶縁体膜17は上から4番目のユニットU10の第1絶縁体膜16と向き合っていない。   The unit laminated body 31 has a structure in which four units U10 are stacked in the vertical direction in the thickness direction and integrated, and the whole has a rectangular parallelepiped shape. Describing in detail the three-dimensional orientation of the four units U10, each unit U10 has a three-dimensional orientation in which the first conductor film 14 and the first insulator film 16 are located above and the first insulator film 16 is located in front. It is in. That is, the second conductor film 15 of the first unit U10 from the top faces the first conductor film 14 of the second unit U10 from the top, but the second insulator film 17 of the first unit U10 from the top is It does not face the first insulator film 16 of the second unit U10 from the top. The second conductor film 15 of the second unit U10 from the top faces the first conductor film 14 of the third unit U10 from the top, but the second insulator film 17 of the second unit U10 from the top is from above. It does not face the first insulator film 16 of the third unit U10. The second conductor film 15 of the third unit U10 from the top faces the first conductor film 14 of the fourth unit U10 from the top, but the second insulator film 17 of the third unit U10 from the top is from above. It does not face the first insulator film 16 of the fourth unit U10.

また、上から1番目のユニットU10の第2導体膜15と上から2番目のユニットU10の第1導体膜14とが両者に密着する絶縁体層31aを介して電気的に絶縁され、上から2番目のユニットU10の第2導体膜15と上から3番目のユニットU10の第1導体膜14とが両者に密着する絶縁体層31aを介して電気的に絶縁され、上から3番目のユニットU10の第2導体膜15と上から4番目のユニットU10の第1導体膜14とが両者に密着する絶縁体層31aを介して電気的に絶縁されている。各絶縁体層31aはエポキシ樹脂、フェノール樹脂、不飽和ポリエステル、ポリイミド等の絶縁体材料から成り、その厚さ(上下寸法)は1.5〜4.5μmである。   In addition, the second conductor film 15 of the first unit U10 from the top and the first conductor film 14 of the second unit U10 from the top are electrically insulated via an insulator layer 31a in close contact with both, and from above The second conductor film 15 of the second unit U10 and the first conductor film 14 of the third unit U10 from the top are electrically insulated via an insulator layer 31a that is in close contact with both, and the third unit from the top The second conductor film 15 of U10 and the first conductor film 14 of the fourth unit U10 from the top are electrically insulated via an insulator layer 31a in close contact with both. Each insulator layer 31a is made of an insulator material such as epoxy resin, phenol resin, unsaturated polyester, polyimide, etc., and its thickness (vertical dimension) is 1.5 to 4.5 μm.

即ち、各ユニットU10の第1導体膜14の後端縁と第2絶縁体膜17の後端縁はユニット積層体31の後面において露出し、各ユニットU10の第2導体膜15の前端縁と第1絶縁体膜16の前端縁はユニット積層体31の前面において露出している。   That is, the rear edge of the first conductor film 14 of each unit U10 and the rear edge of the second insulator film 17 are exposed on the rear surface of the unit laminate 31, and the front edge of the second conductor film 15 of each unit U10 The front edge of the first insulator film 16 is exposed on the front surface of the unit laminate 31.

絶縁性外装膜32は、ユニット積層体31の左面、右面、上面及び下面を連続して覆うように形成されている。絶縁性外装膜32の材料及び厚さ等は前記コンデンサC20の絶縁性外装膜22と同じであるためその説明を省略する。   The insulating exterior film 32 is formed so as to continuously cover the left surface, the right surface, the upper surface, and the lower surface of the unit laminate 31. Since the material and thickness of the insulating packaging film 32 are the same as those of the insulating packaging film 22 of the capacitor C20, description thereof is omitted.

前側の外部端子35を構成する前側の下地導体膜33は、ユニット積層体31の前面と絶縁性外装膜32の左面前端部、右面前端部、上面前端部及び下面前端部とを連続して覆うように形成されている。後側の外部端子35を構成する後側の下地導体膜33は、ユニット積層体31の後面と絶縁性外装膜22の左面後端部、右面後端部、上面後端部及び下面後端部とを連続して覆うように形成されている。図21から分かるように、前側の下地導体膜33の内面は各ユニットU10の第2導体膜15の前端縁と電気的に接続し、後側の下地導体膜33の内面は各ユニットU10の第1導体膜14の後端縁と電気的に接続している。各下地導体膜33の材料及び厚さ等は前記コンデンサC20の下地導体膜23と同じであるためその説明を省略する。   The front base conductor film 33 constituting the front external terminal 35 continuously covers the front surface of the unit laminate 31 and the left front end, the right front end, the top front end, and the bottom front end of the insulating exterior film 32. It is formed as follows. The rear base conductor film 33 constituting the rear external terminal 35 includes the rear surface of the unit laminate 31 and the left rear end, the right rear end, the upper rear end, and the lower rear end of the insulating exterior film 22. Are continuously covered. As can be seen from FIG. 21, the inner surface of the front conductor film 33 on the front side is electrically connected to the front edge of the second conductor film 15 of each unit U10, and the inner surface of the rear conductor film 33 on the rear side is connected to the second conductor film 15 of each unit U10. The one conductor film 14 is electrically connected to the rear end edge. Since the material, thickness, and the like of each base conductor film 33 are the same as those of the base conductor film 23 of the capacitor C20, description thereof is omitted.

前側の外部端子35を構成する前側の表面導体膜34は、前側の下地導体膜33を覆うように形成されている。後側の外部端子35を構成する後側の表面導体膜34は、後側の下地導体膜33を覆うように形成されている。図21から分かるように、前側の表面導体膜34の内面は前側の下地導体膜33の表面に電気的に接続し、後側の表面導体膜34の内面は後側の下地導体膜33の表面に電気的に接続している。各表面導体膜34の材料及び厚さ等は前記コンデンサC20の表面導体膜24と同じであるためその説明を省略する。   The front surface conductor film 34 constituting the front external terminal 35 is formed so as to cover the front base conductor film 33. The rear surface conductor film 34 constituting the rear external terminal 35 is formed so as to cover the rear base conductor film 33. As can be seen from FIG. 21, the inner surface of the front surface conductor film 34 is electrically connected to the surface of the front base conductor film 33, and the inner surface of the rear surface conductor film 34 is the surface of the rear base conductor film 33. Is electrically connected. Since the material and thickness of each surface conductor film 34 are the same as those of the surface conductor film 24 of the capacitor C20, the description thereof is omitted.

前記コンデンサC30は、各ユニットU10の第1導体膜14が後側の外部端子35に電気的に接続し、且つ、各ユニットU10の第2導体膜15が前側の外部端子35に電気的に接続した構造にあるため、該コンデンサC30の等価回路は図22に示したようになる。つまり、1つのユニットU10で得られる容量をC-U10とした場合、前記コンデンサC30は4個の容量C-U10が一対の外部端子35の間に並列接続された等価回路を有している。   In the capacitor C30, the first conductor film 14 of each unit U10 is electrically connected to the rear external terminal 35, and the second conductor film 15 of each unit U10 is electrically connected to the front external terminal 35. Because of this structure, an equivalent circuit of the capacitor C30 is as shown in FIG. That is, when the capacity obtained by one unit U10 is C-U10, the capacitor C30 has an equivalent circuit in which four capacitors C-U10 are connected in parallel between a pair of external terminals 35.

〈コンデンサC30の好ましい製造方法〉
前記コンデンサC30を製造するときには、先ず、図23及び図24に示したように、下から1番目のユニットU10の第1導体膜14及び第1絶縁体膜16の上面に絶縁体層31a用の絶縁体材料IMb(未硬化のもの)を塗布し、その上に下から2番目のユニットU10の第2導体膜15及び第2絶縁体膜17の下面を重ね、そして、該2番目のユニットU10の第1導体膜14及び第1絶縁体膜16の上面に絶縁体層31a用の絶縁体材料IMb(未硬化のもの)を塗布し、その上に下から3番目のユニットU10の第2導体膜15及び第2絶縁体膜17の下面を重ね、そして、該3番目のユニットU10の第1導体膜14及び第1絶縁体膜16の上面に絶縁体層31a用の絶縁体材料IMb(未硬化のもの)を塗布し、その上に下から4番目のユニットU10の第2導体膜15及び第2絶縁体膜17の下面を重ねた後、各絶縁体材料IMbを硬化させて図13に示したユニット積層体31を作製する。
<Preferred manufacturing method of capacitor C30>
When manufacturing the capacitor C30, first, as shown in FIGS. 23 and 24, the top surface of the first conductor film 14 and the first insulator film 16 of the first unit U10 from the bottom is used for the insulator layer 31a. An insulating material IMb (uncured material) is applied, and the lower surfaces of the second conductor film 15 and the second insulating film 17 of the second unit U10 from the bottom are overlaid thereon, and the second unit U10 The insulator material IMb (uncured material) for the insulator layer 31a is applied to the top surfaces of the first conductor film 14 and the first insulator film 16, and the second conductor of the third unit U10 from the bottom is applied thereon. The lower surfaces of the film 15 and the second insulator film 17 are overlapped, and the insulator material IMb (not yet formed) for the insulator layer 31a is formed on the upper surfaces of the first conductor film 14 and the first insulator film 16 of the third unit U10. Apply a cured product) After repeated underside of the fourth second unit U10 conductive film 15 and the second insulator film 17, to produce a unit stack 31 shown in FIG. 13 by curing the insulating material IMb.

続いて、図25に示したように、ローラ塗布機、噴霧塗布機等の塗布装置を用いてユニット積層体31の左面、右面、上面及び下面を連続して覆うように絶縁性外装膜32用の絶縁体材料IMa(未硬化のもの)を塗布した後、該絶縁体材料IMaを硬化させて絶縁性外装膜32を作製する。   Subsequently, as shown in FIG. 25, for the insulating exterior film 32 so as to continuously cover the left surface, the right surface, the upper surface, and the lower surface of the unit laminate 31 using a coating apparatus such as a roller coating machine or a spray coating machine. The insulating material IMa (uncured material) is applied, and then the insulating material IMa is cured to produce the insulating exterior film 32.

続いて、図26に示したように、ローラ塗布機、ディップ塗布機等の塗布装置を用いてユニット積層体31の前面と絶縁性外装膜32の左面前端部、右面前端部、上面前端部及び下面前端部とを連続して覆うように下地導体膜33用の導電性プラスチック材料CMa(未硬化のもの)を塗布し、ユニット積層体31の後面と絶縁性外装膜32の左面後端部、右面後端部、上面後端部及び下面後端部とを連続して覆うように下地導体膜33用の導電性プラスチック材料CMa(未硬化のもの)を塗布した後、該各導電性プラスチック材料CMaを硬化させて各下地導体膜33を作製する。   Subsequently, as shown in FIG. 26, the front surface of the unit laminate 31 and the left front end, the right front end, the upper front end, and the front surface of the unit laminate 31 using a coating device such as a roller coating machine and a dip coating machine, A conductive plastic material CMa (uncured material) for the base conductor film 33 is applied so as to continuously cover the lower surface front end portion, and the rear surface of the unit laminate 31 and the left surface rear end portion of the insulating exterior film 32; After applying the conductive plastic material CMa (uncured material) for the base conductor film 33 so as to continuously cover the rear end of the right surface, the rear end of the upper surface, and the rear end of the lower surface, each of the conductive plastic materials CMa is cured to produce each underlying conductor film 33.

続いて、電解メッキ処理によって各下地導体膜33の表面のそれぞれに表面導体膜34を作製する。表面導体膜34の層数が2以上の場合には、各層に対応した電解メッキ処理を続けて行う。以上で前記コンデンサC30が製造される。   Subsequently, a surface conductor film 34 is formed on each surface of each base conductor film 33 by electrolytic plating. When the number of layers of the surface conductor film 34 is two or more, the electrolytic plating process corresponding to each layer is continued. Thus, the capacitor C30 is manufactured.

〈コンデンサC30の変形例〉
(1)コンデンサC30として各下地導体膜33が導電性プラスチックから成るものを示したが、各下地導体膜33はTi、Cu、Ni、Ag、Pd等の導体材料から形成されていても良い。各下地導体323の好ましい態様はTi膜と該Ti膜を覆うCu膜の2層構造であるが、第1導体膜14と第2導体膜15に対する電気的接続を良好に行え、且つ、ユニット積層体31及び絶縁性外装膜32に対する密着が良好に行えるものであれば、その層数や材料に特段の制限は無い。
<Modification of capacitor C30>
(1) Although each base conductor film 33 is made of a conductive plastic as the capacitor C30, each base conductor film 33 may be made of a conductor material such as Ti, Cu, Ni, Ag, or Pd. A preferred embodiment of each base conductor 323 is a two-layer structure of a Ti film and a Cu film covering the Ti film. However, the electrical connection to the first conductor film 14 and the second conductor film 15 can be satisfactorily performed, and the unit lamination There are no particular restrictions on the number of layers or materials, as long as adhesion to the body 31 and the insulating exterior film 32 can be satisfactorily performed.

(2)コンデンサC30として前記ユニットU10を4個用いて構成されたものを示したが、コンデンサを構成する該ユニットU10の数は2個、または、3個以上であっても良い。前記ユニットU10を3個用いてコンデンサを構成する場合には、図27に示したように、前記コンデンサC20の上から4番目のユニットU10と上から3番目の絶縁体層31aを排除した構造とすれば良く、該コンデンサC30-1では3個の容量C-U10が一対の外部端子35の間に並列接続された等価回路(図28を参照)が得られる。図示を省略したが、前記ユニットU10を2個用いてコンデンサを構成する場合には、前記コンデンサC30の上から3番目と4番目のユニットU10と上から2番目と3番目の絶縁体層31aを排除した構造とすれば良く、該コンデンサでは2個の容量C-U10が一対の外部端子35の間に並列接続された等価回路が得られる。前記ユニットU10を5個用いてコンデンサを構成する場合には、前記コンデンサC20の上から4番目のユニットU10の下側に該4番目のユニットU10と同じ3次元向きにあるユニットU10を追加すれば良く、該コンデンサでは5つの容量C-U10が一対の外部端子35の間に並列接続された等価回路が得られる。前記ユニットU10を6個以上用いてコンデンサを構成する場合も、前記コンデンサC30の各ユニットU10の3次元向きに合わせてユニットU10を追加すれば良い。   (2) Although the capacitor C30 is configured using four units U10, the number of the units U10 constituting the capacitor may be two, or three or more. When a capacitor is configured using three units U10, as shown in FIG. 27, a structure in which the fourth unit U10 from the top of the capacitor C20 and the third insulator layer 31a from the top are excluded, In the capacitor C30-1, an equivalent circuit (see FIG. 28) in which three capacitors C-U10 are connected in parallel between a pair of external terminals 35 is obtained. Although not shown, when a capacitor is formed using two units U10, the third and fourth units U10 from the top of the capacitor C30 and the second and third insulator layers 31a from above are provided. An equivalent circuit in which two capacitors C-U10 are connected in parallel between a pair of external terminals 35 can be obtained. When a capacitor is configured by using five units U10, a unit U10 in the same three-dimensional direction as the fourth unit U10 is added below the fourth unit U10 from the top of the capacitor C20. In the capacitor, an equivalent circuit in which five capacitors C-U10 are connected in parallel between a pair of external terminals 35 can be obtained. Even when a capacitor is formed by using six or more units U10, the unit U10 may be added according to the three-dimensional orientation of each unit U10 of the capacitor C30.

《ユニットU10とコンデンサC20、C20-1、C30及びC30-1等による効果》
(1)前記ユニットU10は、第1導体膜14と第2導体膜15との間に大きな容量C-U10を確保できる構造にあると共に、n個(nは2以上整数)を厚さ向きに積み重ねて一体化したときに該容量C-U10を並列接続するのに適した第1絶縁体膜16及び第2絶縁体膜17を有している。また、前記ユニットU10は構造がシンプルであるため、その作製は容易でコストもさほどかからない。
<< Effects of Unit U10 and Capacitors C20, C20-1, C30, and C30-1 >>
(1) The unit U10 has a structure capable of securing a large capacitance C-U10 between the first conductor film 14 and the second conductor film 15, and n (n is an integer of 2 or more) in the thickness direction. A first insulator film 16 and a second insulator film 17 suitable for connecting the capacitors C-U10 in parallel when stacked and integrated are provided. Further, since the unit U10 has a simple structure, it is easy to manufacture and does not cost much.

つまり、前記ユニットU10を用いれば、前記《ユニットU10を用いて構成されたコンデンサC20》で説明したように、n個のユニットU10を厚さ向きに積み重ねて一体化した構造を有するユニット積層体21として、隣接する2個のユニットU10の第1導体膜14同士または第2導体膜15同士が向き合っていて電気的に接続され、後面に各ユニットU10の第1導体膜14の後端縁が露出し、且つ、前面に各ユニットU10の第2導体膜15の前端縁が露出した直方体形状のものを容易に作製できるし、該ユニット積層体21に絶縁性外装膜22と一対の外部端子25を作製することによって、n個の容量C-U10が一対の外部端子25の間に並列接続されたコンデンサC20及びC20-1等を容易に製造できる。即ち、ユニットU10を予め用意しておけば簡単なプロセスでコンデンサC20及びC20-1等を製造できるため、その製造コストを従前の積層型コンデンサの製造コストと同等或いはそれ以下として部品単価の高騰を回避できる。   That is, when the unit U10 is used, a unit laminate 21 having a structure in which n units U10 are stacked and integrated in the thickness direction as described in << Capacitor C20 configured using unit U10 >>. The first conductor films 14 or the second conductor films 15 of the two adjacent units U10 face each other and are electrically connected, and the rear edge of the first conductor film 14 of each unit U10 is exposed on the rear surface. In addition, a rectangular parallelepiped shape in which the front end edge of the second conductor film 15 of each unit U10 is exposed on the front surface can be easily manufactured, and an insulating exterior film 22 and a pair of external terminals 25 are provided on the unit laminate 21. As a result, it is possible to easily manufacture capacitors C20 and C20-1 in which n capacitors C-U10 are connected in parallel between a pair of external terminals 25. That is, if the unit U10 is prepared in advance, the capacitors C20 and C20-1 and the like can be manufactured by a simple process. Therefore, the manufacturing cost is made equal to or less than the manufacturing cost of the conventional multilayer capacitor, and the unit price increases. Can be avoided.

また、前記ユニットU10を用いれば、前記《ユニットU10を用いて構成されたコンデンサC30》で説明したように、n個のユニットU10を厚さ向きに積み重ねて一体化した構造を有するユニット積層体31として、隣接する2個のユニットU10の第1導体膜14と第2導体膜15とが向き合っていて絶縁体層31aを介して電気的に絶縁され、後面に各ユニットU10の第1導体膜14の後端縁が露出し、且つ、前面に各ユニットU10の第2導体膜15の前端縁が露出した直方体形状のものを容易に作製できるし、該ユニット積層体31に絶縁性外装膜32と一対の外部端子35を作製することによって、n個の容量C-U10が一対の外部端子35の間に並列接続されたコンデンサC30及びC30-1等を容易に製造できる。即ち、ユニットU10を予め用意しておけば簡単なプロセスでコンデンサC30及びC30-1等を製造できるため、その製造コストを従前の積層型コンデンサの製造コストと同等或いはそれ以下として部品単価の高騰を回避できる。   Further, when the unit U10 is used, a unit laminate 31 having a structure in which n units U10 are stacked and integrated in the thickness direction as described in << Capacitor C30 configured using unit U10 >>. As described above, the first conductor film 14 and the second conductor film 15 of the two adjacent units U10 face each other and are electrically insulated via the insulator layer 31a, and the first conductor film 14 of each unit U10 is disposed on the rear surface. A rectangular parallelepiped with the rear end edge exposed and the front end edge of the second conductor film 15 of each unit U10 exposed on the front surface can be easily manufactured. By producing the pair of external terminals 35, the capacitors C30 and C30-1 in which n capacitors C-U10 are connected in parallel between the pair of external terminals 35 can be easily manufactured. That is, if the unit U10 is prepared in advance, the capacitors C30 and C30-1 and the like can be manufactured by a simple process. Therefore, the manufacturing cost is made equal to or lower than the manufacturing cost of the conventional multilayer capacitor, so that the unit price increases. Can be avoided.

要するに、前記ユニットU10は、従前の積層型コンデンサと互換性があり、且つ、さらなる大容量化の要求を満たすコンデンサを構成するのに極めて有用である。また、前記コンデンサC20、C20-1、C30及びC30-1等は、従前の積層型コンデンサと互換性があり、且つ、さらなる大容量化の要求を確実に満足する。しかも、ユニットU10の使用個数を変えることによって、コンデンサ自体の容量をニーズに応じて簡単に変更できる。   In short, the unit U10 is very useful for constructing a capacitor that is compatible with a conventional multilayer capacitor and satisfies the demand for further increase in capacity. Further, the capacitors C20, C20-1, C30, C30-1 and the like are compatible with conventional multilayer capacitors and satisfy the requirement for further increase in capacity. Moreover, by changing the number of units U10 used, the capacity of the capacitor itself can be easily changed according to needs.

(2)前記ユニットU10の第1導体膜14及び第2導体膜15の左右寸法が誘電体プレート11の左右寸法と同じであるため、該ユニットU10をn個用いて構成されたコンデンサC20、C20-1、C30及びC30-1等において、各ユニットU10の第1導体膜14の後端縁と後側の外部端子(25、35)との電気的接続、並びに、各ユニットU10の第2導体膜15の前端縁と前側の外部端子(25、35)との電気的接続を良好に行って、一対の外部端子(25、35)の間にn個の容量C-U10を確実に並列接続できる。   (2) Since the left and right dimensions of the first conductor film 14 and the second conductor film 15 of the unit U10 are the same as the left and right dimensions of the dielectric plate 11, capacitors C20 and C20 configured using n units U10. -1, C30, C30-1, etc., the electrical connection between the rear edge of the first conductor film 14 of each unit U10 and the rear external terminals (25, 35), and the second conductor of each unit U10 The electrical connection between the front end edge of the membrane 15 and the external terminals (25, 35) on the front side is performed well, and n capacitors C-U10 are reliably connected in parallel between the pair of external terminals (25, 35). it can.

(3)前記ユニットU10の第1絶縁体膜16及び第2絶縁体膜17の左右寸法が誘電体プレート11の左右寸法と同じであるため、該ユニットU10をn個用いて構成されたコンデンサC20、C20-1、C30及びC30-1等において、各ユニットU10の第1導体膜14と前側の外部端子(25、35)との絶縁、並びに、各ユニットU10の第2導体膜15と後側の外部端子(25、35)との絶縁を確実に行って、一対の外部端子(25、35)の間にn個の容量C-U10を確実に並列接続できる。   (3) Since the left and right dimensions of the first insulator film 16 and the second insulator film 17 of the unit U10 are the same as the left and right dimensions of the dielectric plate 11, a capacitor C20 configured using n units U10. , C20-1, C30, C30-1, etc., insulation between the first conductor film 14 of each unit U10 and the front external terminals (25, 35), and the second conductor film 15 and rear side of each unit U10 Thus, the n capacitors C-U10 can be reliably connected in parallel between the pair of external terminals (25, 35).

(4)前記《ユニットU10を用いて構成されたコンデンサC20》で説明したように、互いに向き合う第1導体膜14と互いに向き合う第2導体膜15を拡散接合(熱圧着接合)等の直接接合法によって結合して電気的に接続すれば、導電性接合材を用いた間接接合法によって結合する場合に比べてユニット積層体21の上下寸法を小さくできるので、コンデンサC20及びC20-1等の小型化により一層貢献できる。   (4) Direct bonding method such as diffusion bonding (thermocompression bonding) between the first conductor film 14 facing each other and the second conductor film 15 facing each other as described in the above-mentioned << capacitor C20 configured using unit U10 >>. If the unit laminate 21 is coupled and electrically connected by using the indirect bonding method using a conductive bonding material, the vertical size of the unit laminate 21 can be reduced, so that the capacitors C20 and C20-1 can be downsized. Can contribute even more.

《ユニットU10の作製方法とコンデンサC20、C20-1、C30及びC30-1等の製造方法に関する補足》
以上の説明では、ユニットU10の構造と、コンデンサC20、C20-1、C30及びC30-1等の構造を明らかとするために、ユニットU10を単一のコンデンサに対応するサイズのものとして示したが、図1〜図5に示したユニットU10が前後方向及び左右方向で連続して並ぶ態様のユニット母材、即ち、格子状に切断することで多数のユニットU10が得られるユニット母材を作製すれば、該ユニット母材を用いてコンデンサをより容易に製造することができる。
<< Supplementary information on the manufacturing method of the unit U10 and the manufacturing method of the capacitors C20, C20-1, C30, C30-1, etc. >>
In the above description, in order to clarify the structure of the unit U10 and the structures of the capacitors C20, C20-1, C30, C30-1, etc., the unit U10 is shown as having a size corresponding to a single capacitor. 1 to 5, a unit base material in which the units U10 are continuously arranged in the front-rear direction and the left-right direction, that is, a unit base material from which a large number of units U10 are obtained by cutting into a lattice shape, is manufactured. In this case, the capacitor can be more easily manufactured using the unit base material.

つまり、コンデンサC20、C20-1、C30及びC30-1等を構成するn個(nは2以上の整数)のユニットの3次元向きと整合するようにn枚のユニット母材を積み重ねて一体化してから、該積み重ね物を単一のユニットU10のサイズに合わせて格子状に切断すれば、図16と図24に示したようなユニット積層体(21、31)をより容易に、且つ、低コストで作製できる。勿論、多数個取りのユニット母材を作製することによって、ユニットU10の1個当たりの作製コストも低減できる。   In other words, n unit base materials are stacked and integrated so as to match the three-dimensional orientation of n units (n is an integer of 2 or more) constituting capacitors C20, C20-1, C30, C30-1, and the like. Then, if the stack is cut into a lattice shape in accordance with the size of the single unit U10, the unit laminate (21, 31) as shown in FIGS. Can be manufactured at a low cost. Of course, the production cost per unit U10 can be reduced by producing a multi-unit unit base material.

要するに、コンデンサC20、C20-1、C30及びC30-1等が小型である場合には、前記の如きユニット母材を作製し、該ユニット母材を積み重ねて一体化した後に切断してユニット積層体を得る方法を採用した方が効率的であり、コンデンサC20、C20-1、C30及びC30-1等の製造コストもより低減できる。   In short, when the capacitors C20, C20-1, C30, and C30-1 are small in size, the unit base material as described above is manufactured, the unit base materials are stacked and integrated, and then cut into unit laminates. It is more efficient to adopt the method of obtaining the above, and the manufacturing cost of the capacitors C20, C20-1, C30, C30-1, etc. can be further reduced.

《他のサイズのコンデンサへの適用》
以上の説明では、0603サイズのコンデンサを構成する際に用いられるユニットU10と、該ユニットU10を用いて構成された0603サイズのコンデンサC20、C20-1、C30及びC30-1等を示したが、ユニットU10と同じ構造で該ユニットU10よりも前後寸法及び左右寸法が小さなユニットを作製すれば、該ユニットを複数個用いて0402サイズ等の0603サイズよりも小さなコンデンサを構成することができるし、また、ユニットU10と同じ構造で該ユニットU10よりも前後寸法及び左右寸法が大きなユニットを作製すれば、該ユニットを複数個用いて3225サイズや4532サイズ等の0603サイズよりも大きなコンデンサを構成することができる。
《Application to other size capacitors》
In the above description, the unit U10 used when the 0603 size capacitor is configured and the 0603 size capacitors C20, C20-1, C30, and C30-1 configured using the unit U10 are shown. If a unit having the same structure as the unit U10 and smaller in the front-rear dimension and the left-right dimension than the unit U10 is manufactured, a capacitor smaller than 0603 size such as 0402 size can be configured by using a plurality of the units. If a unit having the same structure as the unit U10 and larger in the front-rear dimension and the left-right dimension than the unit U10 is manufactured, a capacitor larger than 0603 size such as 3225 size or 4532 size can be formed using a plurality of the units. it can.

U10…ユニット、11…誘電体プレート、11a…貫通孔、12…第1電極棒、13…第2電極棒、14…第1導体膜、15…第2導体膜、16…第1絶縁体膜、17…第2絶縁体膜、C20,C20-1,C30,C30-1…コンデンサ、21,31…ユニット積層体、22,32…絶縁性外装膜、23,33…下地導体膜、24,34…表面導体膜、25,35…外部端子。   U10 unit, 11 dielectric plate, 11a through hole, 12 first electrode rod, 13 second electrode rod, 14 first conductor film, 15 second conductor film, 16 first insulator film , 17 ... second insulator film, C20, C20-1, C30, C30-1 ... capacitor, 21,31 ... unit laminate, 22,32 ... insulating exterior film, 23,33 ... underlying conductor film, 24, 34 ... surface conductor film, 25, 35 ... external terminals.

Claims (3)

所定厚さを有すると共に厚さ方向の複数の貫通孔が形成された矩形状の誘電体プレートと、
前記誘電体プレートの一方の貫通孔露出面の一端部を除く領域を覆うように形成された第1導体膜と、
前記誘電体プレートの一方の貫通孔露出面の前記一端部を覆うように形成された第1絶縁体膜と、
前記誘電体プレートの他方の貫通孔露出面の他端部を除く領域を覆うように形成された第2導体膜と、
前記誘電体プレートの他方の貫通孔露出面の前記他端部を覆うように形成された第2絶縁体膜と、
前記誘電体プレートの複数の貫通孔の一部の内側に配置され、前記第1導体膜に電気的に接続され、且つ、前記第2導体膜に電気的に絶縁された複数の第1電極棒と、
前記誘電体プレートの複数の貫通孔の残部の内側に配置され、前記第2導体膜に電気的に接続され、且つ、前記第1導体膜に電気的に絶縁された複数の第2電極棒と、
を備えることを特徴とするコンデンサ構成用ユニット。
A rectangular dielectric plate having a predetermined thickness and having a plurality of through holes in the thickness direction;
A first conductor film formed to cover a region excluding one end of the exposed surface of one through hole of the dielectric plate;
A first insulator film formed to cover the one end of the exposed surface of one through hole of the dielectric plate;
A second conductor film formed so as to cover a region excluding the other end of the other through-hole exposed surface of the dielectric plate;
A second insulator film formed so as to cover the other end of the other through-hole exposed surface of the dielectric plate;
A plurality of first electrode rods disposed inside a part of the plurality of through holes of the dielectric plate, electrically connected to the first conductor film, and electrically insulated from the second conductor film When,
A plurality of second electrode rods disposed inside the remaining portions of the plurality of through holes of the dielectric plate, electrically connected to the second conductor film, and electrically insulated from the first conductor film; ,
A capacitor construction unit comprising:
請求項1に記載のn個(nは2以上の整数)のユニットを厚さ向きで積み重ねて一体化した構造を有し、隣接する2個のユニットは第1導体膜同士または第2導体膜同士が向き合っていて電気的に接続されており、相対する2つの面のうちの一方の面には各ユニットの第1導体膜の端縁が露出し、且つ、他方の面には各ユニットの第2導体膜の端縁が露出している直方体形状のユニット積層体と、
前記ユニット積層体の前記相対する2つの面を除く面を覆うように形成された絶縁性外装膜と、
前記ユニット積層体の前記相対する2つの面のうちの一方の面を少なくとも覆うように形成され、前記各ユニットの第1導体膜の端縁と電気的に接続された一方の外部端子と、
前記ユニット積層体の前記相対する2つの面のうちの他方の面を少なくとも覆うように形成され、前記各ユニットの第2導体膜の端縁と電気的に接続された他方の外部端子と、
を備えることを特徴とするコンデンサ。
2. The n units (n is an integer of 2 or more) according to claim 1 have a structure in which the units are stacked and integrated in the thickness direction, and two adjacent units are adjacent to each other between the first conductor films or the second conductor films. The ends of the first conductor film of each unit are exposed on one of the two opposing surfaces, and the other surface is exposed to each unit. A rectangular parallelepiped unit laminate in which the edge of the second conductor film is exposed;
An insulating exterior film formed so as to cover the surface excluding the two opposing surfaces of the unit laminate;
One external terminal formed so as to cover at least one of the two opposing surfaces of the unit laminate, and electrically connected to an edge of the first conductor film of each unit;
The other external terminal formed to cover at least the other of the two opposing surfaces of the unit laminate, and electrically connected to the edge of the second conductor film of each unit;
A capacitor comprising:
請求項1に記載のn個(nは2以上の整数)のユニットを厚さ向きで積み重ねて一体化した構造を有し、隣接する2個のユニットは第1導体膜と第2導体膜とが向き合っていて絶縁体層を介して電気的に絶縁されており、相対する2つの面のうちの一方の面には各ユニットの第1導体膜の端縁が露出し、且つ、他方の面には各ユニットの第2導体膜の端縁が露出している直方体形状のユニット積層体と、
前記ユニット積層体の前記相対する2つの面を除く面を覆うように形成された絶縁性外装膜と、
前記ユニット積層体の前記相対する2つの面のうちの一方の面を少なくとも覆うように形成され、前記各ユニットの第1導体膜の端縁と電気的に接続された一方の外部端子と、
前記ユニット積層体の前記相対する2つの面のうちの他方の面を少なくとも覆うように形成され、前記各ユニットの第2導体膜の端縁と電気的に接続された他方の外部端子と、
を備えることを特徴とするコンデンサ。
The n units (n is an integer of 2 or more) according to claim 1 have a structure in which the units are stacked and integrated in the thickness direction, and the two adjacent units include a first conductor film and a second conductor film. Are opposed to each other and electrically insulated via an insulator layer, and the edge of the first conductor film of each unit is exposed on one of the two opposing surfaces, and the other surface The unit laminated body of a rectangular parallelepiped shape in which the edge of the second conductor film of each unit is exposed,
An insulating exterior film formed so as to cover the surface excluding the two opposing surfaces of the unit laminate;
One external terminal formed so as to cover at least one of the two opposing surfaces of the unit laminate, and electrically connected to an edge of the first conductor film of each unit;
The other external terminal formed to cover at least the other of the two opposing surfaces of the unit laminate, and electrically connected to the edge of the second conductor film of each unit;
A capacitor comprising:
JP2011059139A 2011-03-17 2011-03-17 Capacitor configuration unit and capacitor Active JP5665618B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011059139A JP5665618B2 (en) 2011-03-17 2011-03-17 Capacitor configuration unit and capacitor
US13/422,694 US8837111B2 (en) 2011-03-17 2012-03-16 Capacitor element and capacitor device having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011059139A JP5665618B2 (en) 2011-03-17 2011-03-17 Capacitor configuration unit and capacitor

Publications (2)

Publication Number Publication Date
JP2012195482A true JP2012195482A (en) 2012-10-11
JP5665618B2 JP5665618B2 (en) 2015-02-04

Family

ID=47087091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011059139A Active JP5665618B2 (en) 2011-03-17 2011-03-17 Capacitor configuration unit and capacitor

Country Status (2)

Country Link
US (1) US8837111B2 (en)
JP (1) JP5665618B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014154703A (en) * 2013-02-08 2014-08-25 Taiyo Yuden Co Ltd Capacitor and method of manufacturing the same
JP2015088582A (en) * 2013-10-30 2015-05-07 太陽誘電株式会社 Capacitor
JP2015192083A (en) * 2014-03-28 2015-11-02 太陽誘電株式会社 capacitor
JP2019057703A (en) * 2017-09-21 2019-04-11 サムソン エレクトロ−メカニックス カンパニーリミテッド. Capacitor component

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5931594B2 (en) * 2012-06-07 2016-06-08 太陽誘電株式会社 Capacitor
EP3104382B1 (en) * 2014-02-07 2019-07-31 Murata Manufacturing Co., Ltd. Capacitor with porous metal electrode and method for its manufacturing
JP2017108011A (en) * 2015-12-10 2017-06-15 株式会社村田製作所 Ceramic capacitor and method of manufacturing the same
KR101811851B1 (en) * 2016-06-09 2017-12-22 (주)포인트엔지니어링 Three-dimensional capacitor
WO2018102598A1 (en) 2016-12-02 2018-06-07 Carver Scientific, Inc. Memory device and capacitive energy storage device
US10283274B2 (en) 2017-07-17 2019-05-07 Headway Technologies, Inc. Capacitor including dielectric structure formed of sintered body, and manufacturing method thereof
KR102449358B1 (en) * 2017-08-31 2022-09-30 삼성전기주식회사 Capacitor component
JPWO2021181774A1 (en) * 2020-03-12 2021-09-16
KR20230091307A (en) * 2021-12-16 2023-06-23 삼성전기주식회사 Capacitor Component

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543530U (en) * 1991-11-12 1993-06-11 日新電機株式会社 Ceramic capacitor
JPH11288835A (en) * 1998-03-31 1999-10-19 Okaya Electric Ind Co Ltd Metallized film capacitor
JP2002252152A (en) * 2001-02-23 2002-09-06 Nec Tokin Ceramics Corp Electronic component
JP2003174210A (en) * 2001-12-06 2003-06-20 Denso Corp Ceramic laminate and its manufacturing method
JP2004039713A (en) * 2002-07-01 2004-02-05 Fain Denshi Kk Layered capacitor
JP2008153618A (en) * 2006-11-24 2008-07-03 Taiyo Yuden Co Ltd Capacitor, and method of manufacturing the capacitor
JP2009054980A (en) * 2007-07-30 2009-03-12 Taiyo Yuden Co Ltd Capacitor element and method of manufacturing capacitor element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3838320A (en) * 1974-01-04 1974-09-24 American Tech Ceramics Multiple layer capacitors
JPS6129133A (en) 1984-07-20 1986-02-10 Hitachi Ltd Resin molding machine
JP2003249417A (en) 2002-02-25 2003-09-05 Tdk Corp Capacitor structure and manufacturing method of the same
JP2006278566A (en) * 2005-03-28 2006-10-12 Tdk Corp Multilayer electronic component and its manufacturing method
US8027145B2 (en) * 2007-07-30 2011-09-27 Taiyo Yuden Co., Ltd Capacitor element and method of manufacturing capacitor element
JP4493686B2 (en) 2007-09-27 2010-06-30 太陽誘電株式会社 Capacitor and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543530U (en) * 1991-11-12 1993-06-11 日新電機株式会社 Ceramic capacitor
JPH11288835A (en) * 1998-03-31 1999-10-19 Okaya Electric Ind Co Ltd Metallized film capacitor
JP2002252152A (en) * 2001-02-23 2002-09-06 Nec Tokin Ceramics Corp Electronic component
JP2003174210A (en) * 2001-12-06 2003-06-20 Denso Corp Ceramic laminate and its manufacturing method
JP2004039713A (en) * 2002-07-01 2004-02-05 Fain Denshi Kk Layered capacitor
JP2008153618A (en) * 2006-11-24 2008-07-03 Taiyo Yuden Co Ltd Capacitor, and method of manufacturing the capacitor
JP2009054980A (en) * 2007-07-30 2009-03-12 Taiyo Yuden Co Ltd Capacitor element and method of manufacturing capacitor element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014154703A (en) * 2013-02-08 2014-08-25 Taiyo Yuden Co Ltd Capacitor and method of manufacturing the same
JP2015088582A (en) * 2013-10-30 2015-05-07 太陽誘電株式会社 Capacitor
JP2015192083A (en) * 2014-03-28 2015-11-02 太陽誘電株式会社 capacitor
JP2019057703A (en) * 2017-09-21 2019-04-11 サムソン エレクトロ−メカニックス カンパニーリミテッド. Capacitor component
JP7259173B2 (en) 2017-09-21 2023-04-18 サムソン エレクトロ-メカニックス カンパニーリミテッド. capacitor parts

Also Published As

Publication number Publication date
JP5665618B2 (en) 2015-02-04
US8837111B2 (en) 2014-09-16
US20120300360A1 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
JP5665618B2 (en) Capacitor configuration unit and capacitor
JP5665617B2 (en) Capacitor configuration unit and capacitor
JP2022082766A (en) Multilayer capacitor, mounting board thereof, and manufacturing method thereof
JP5874682B2 (en) Capacitor component and capacitor component mounting structure
JP2015216337A (en) Multilayer ceramic capacitor, array multilayer ceramic capacitor, manufacturing method therefor, and mounting board therefor
JP2012094820A (en) Multilayer ceramic electronic component
JP2013211302A (en) Laminate coil component
JP2014027255A (en) Ceramic electronic component and ceramic electronic device
JP2018107201A (en) Electronic component and method of manufacturing the same
JP5829487B2 (en) Coil parts
CN109148156B (en) Electronic assembly and method of manufacturing the same
JP2010062406A (en) Solid electrolytic capacitor and method of manufacturing the same
US20150077905A1 (en) Solid electrolytic capacitor
JP4725432B2 (en) Multilayer piezoelectric element and piezoelectric device
JP6261855B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP4622367B2 (en) Electronic components
CN103715152B (en) Connect substrate and package-on-package structure
US10658200B2 (en) Thin film component sheet, board with built-in electronic component, and method of manufacturing the thin film component sheet
JP5332480B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
KR102052769B1 (en) Composite electronic component and Manufacturing method of the same
JP5773702B2 (en) Capacitor
JP2004289142A (en) Laminated solid electrolytic capacitor and laminated transmission line element
JP2016018988A (en) Piezoelectric element and piezoelectric vibration module including the same
WO2024047961A1 (en) Capacitor and method for producing capacitor
JP6053467B2 (en) Method for manufacturing piezoelectric element

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140305

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141209

R150 Certificate of patent or registration of utility model

Ref document number: 5665618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250