JP2012195132A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2012195132A
JP2012195132A JP2011057562A JP2011057562A JP2012195132A JP 2012195132 A JP2012195132 A JP 2012195132A JP 2011057562 A JP2011057562 A JP 2011057562A JP 2011057562 A JP2011057562 A JP 2011057562A JP 2012195132 A JP2012195132 A JP 2012195132A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode body
current collecting
negative electrode
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011057562A
Other languages
Japanese (ja)
Other versions
JP5912271B2 (en
Inventor
Toshihiko Mihashi
利彦 三橋
Akihiro Ochiai
章浩 落合
Yoshiyuki Ozaki
義幸 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011057562A priority Critical patent/JP5912271B2/en
Publication of JP2012195132A publication Critical patent/JP2012195132A/en
Application granted granted Critical
Publication of JP5912271B2 publication Critical patent/JP5912271B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress variation in fluid volume distribution of electrolyte with which each region of a positive electrode and a negative electrode is impregnated.SOLUTION: In a secondary battery comprising a wound body formed by winding a power generation sheet extending in belt-shape while including a positive electrode and a negative electrode, following conditional expressions (1), (2) are satisfied. In the conditional expressions, the length of one of the positive electrode or the negative electrode in the winding direction is M mm, the length of the other electrode in the winding direction is L mm, the number of first collector tabs connected side by side for the other electrode in the winding direction is n, the interval of adjoining first collector tabs is T mm, and the width of the first collector tabs is W mm. The conditional expression (1) is M/natural number=T, and the conditional expression (2) is 0.898<1-{(W×n)/L}<0.995.

Description

本発明は、発電要素として捲回体を備えるリチウムイオン電池に関する。   The present invention relates to a lithium ion battery including a wound body as a power generation element.

近年、リチウムイオンを吸蔵、放出する炭素材料を負極材料とし、リチウム含有複合酸化物を正極材料とするリチウムイオン電池が注目されている。この種のリチウムイオン電池では、正極体に接続される正極集電タブを正極外部端子に接続する一方で、負極体に接続される負極集電タブを負極端子兼用の外装管に接続し、これにより正負両極から電気エネルギを取り出す構成となっている。   In recent years, lithium ion batteries using a carbon material that occludes and releases lithium ions as a negative electrode material and a lithium-containing composite oxide as a positive electrode material have attracted attention. In this type of lithium ion battery, the positive electrode current collector tab connected to the positive electrode body is connected to the positive electrode external terminal, while the negative electrode current collector tab connected to the negative electrode body is connected to the outer tube also serving as the negative electrode terminal. Thus, electric energy is extracted from both positive and negative electrodes.

特許文献1は、正極集電体に一定間隔で複数の正極集電タブを接続したリチウムイオン電池を開示する。   Patent Document 1 discloses a lithium ion battery in which a plurality of positive electrode current collector tabs are connected to a positive electrode current collector at regular intervals.

特開平10−261439号公報Japanese Patent Laid-Open No. 10-261439 特開2000−182656号公報JP 2000-182656 A 特開2000−106167号公報JP 2000-106167 A

しかしながら、上記特許文献1の構成では、正極体及び負極体の各領域に含浸される電解液の液量分布にバラツキがあった。そこで、本願発明は、正極体及び負極体の各領域に含浸される電解液の液量分布のバラツキを抑制することを目的とする。   However, in the configuration of Patent Document 1, there is a variation in the liquid volume distribution of the electrolyte solution impregnated in each region of the positive electrode body and the negative electrode body. Then, this invention aims at suppressing the dispersion | variation in the liquid volume distribution of the electrolyte solution impregnated in each area | region of a positive electrode body and a negative electrode body.

上記課題を解決するために、本願発明に係る二次電池は、(I)正極体及び負極体をセパレータを介して積層した帯状に延びる発電シートを捲き回した捲回体を備える二次電池において、前記正極体及び前記負極体のうち一方の電極体の捲回方向の長さをM(mm)、他方の電極体の捲回方向の長さをL(mm)、前記他方の電極体に対して前記捲回方向に並んで接続される第1の集電タブの本数をn、互いに隣接する第1の集電タブの間隔をT(mm)、前記第1の集電タブの幅をW(mm)としたときに、以下の条件式(1)、(2)を満足することを特徴とする二次電池。
M/自然数=T・・・・・・・・・・・・・・・・(1)
0.898<1−{(W×n)/L}<0.995・・・・・・・・・・・・・・(2)
In order to solve the above-mentioned problems, a secondary battery according to the present invention is (I) a secondary battery including a wound body in which a power generation sheet extending in a strip shape in which a positive electrode body and a negative electrode body are stacked via a separator is wound. The length of one electrode body in the winding direction of the positive electrode body and the negative electrode body is M (mm), the length of the other electrode body in the winding direction is L (mm), and the other electrode body is In contrast, the number of first current collecting tabs connected side by side in the winding direction is n, the interval between adjacent first current collecting tabs is T (mm), and the width of the first current collecting tabs is A secondary battery characterized by satisfying the following conditional expressions (1) and (2) when W (mm).
M / natural number = T (1)
0.898 <1-{(W × n) / L} <0.995 (2)

(II)上記(I)の構成において、前記一方の電極体は前記負極体であり、前記他方の電極体は前記正極体とすることができる。   (II) In the configuration of (I), the one electrode body may be the negative electrode body, and the other electrode body may be the positive electrode body.

(III)上記(II)の構成において、前記発電シートの厚み方向視において、前記一方の電極体に接続される第2の集電タブは、前記正極体と重ならない位置に設けることができる。これにより、第2の集電タブに析出した金属がセパレータを貫通して、正極体に接触するのを抑制できる。   (III) In the configuration of (II), the second current collecting tab connected to the one electrode body can be provided at a position that does not overlap the positive electrode body when the power generation sheet is viewed in the thickness direction. Thereby, the metal deposited on the second current collecting tab can be prevented from penetrating the separator and coming into contact with the positive electrode body.

(IV)上記(I)又は(II)の構成において、前記発電シートの厚み方向視において、前記第1の集電タブ及び前記一方の電極体に接続される第2の集電タブは、互いに重ならない位置に設けることができる。これにより、第1及び第2の集電タブに生成されたバリ同士が接触して、短絡するのを抑制できる。   (IV) In the configuration of (I) or (II), in the thickness direction view of the power generation sheet, the first current collection tab and the second current collection tab connected to the one electrode body are mutually It can be provided at a position where it does not overlap. Thereby, it can suppress that the burr | flash produced | generated by the 1st and 2nd current collection tab contacted and short-circuited.

(V)上記(I)〜(III)の構成において、前記発電要素は、リチウムイオン電池の発電要素であり、前記捲回体は、円筒型形状のケースに電解液とともに収容することができる。(V)の構成によれば、捲回体に収容される発電要素に含浸される電解液の液量分布のバラツキを抑制できる。   (V) In the configurations of (I) to (III) above, the power generation element is a power generation element of a lithium ion battery, and the wound body can be housed together with an electrolyte in a cylindrical case. According to the structure of (V), the dispersion | variation in the liquid volume distribution of the electrolyte solution impregnated in the electric power generation element accommodated in the winding body can be suppressed.

(VI)上記(I)〜(V)のうちいずれか一つに記載の二次電池を複数個準備し、これらを接続して車両用の組電池として車両に搭載することができる。車両は、組電池の出力のみでモータを駆動する電気自動車、内燃機関と組電池とを動力源として兼用するハイブリッド自動車であってもよい。   (VI) A plurality of secondary batteries according to any one of the above (I) to (V) may be prepared and connected to be mounted on a vehicle as an assembled battery for a vehicle. The vehicle may be an electric vehicle that drives a motor only by the output of the assembled battery, or a hybrid vehicle that uses both the internal combustion engine and the assembled battery as a power source.

本発明によれば、正極体及び負極体の各領域に含浸される電解液の液量分布のバラツキを抑制することができる。   According to the present invention, it is possible to suppress variations in the distribution of the electrolyte amount impregnated in each region of the positive electrode body and the negative electrode body.

捲回体の捲回前の状態を図示した平面図である。It is the top view which illustrated the state before winding of a winding body. 円筒型電池の斜視図である。It is a perspective view of a cylindrical battery. 正極体、負極体及びセパレータの断面図である。It is sectional drawing of a positive electrode body, a negative electrode body, and a separator. 図2の比較例としての正極体、負極体及びセパレータの断面図である。It is sectional drawing of the positive electrode body as a comparative example of FIG. 2, a negative electrode body, and a separator. 図2の比較例としての正極体、負極体及びセパレータの断面図である。It is sectional drawing of the positive electrode body as a comparative example of FIG. 2, a negative electrode body, and a separator. 実施例1の正極体及び負極体の平面図である。2 is a plan view of a positive electrode body and a negative electrode body of Example 1. FIG. 実施例1の正極体、負極体及びセパレータを重ねた状態を示す平面図である。It is a top view which shows the state which accumulated the positive electrode body of Example 1, the negative electrode body, and the separator. 実施例2の正極体の平面図である。3 is a plan view of a positive electrode body in Example 2. FIG. 実施例3の正極体の平面図である。4 is a plan view of a positive electrode body in Example 3. FIG. 実施例4の正極体の平面図である。6 is a plan view of a positive electrode body in Example 4. FIG. 実施例5の正極体及び負極体の平面図である。6 is a plan view of a positive electrode body and a negative electrode body of Example 5. FIG. 比較例1の正極体の平面図である。3 is a plan view of a positive electrode body of Comparative Example 1. FIG. 比較例2の正極体の平面図である。6 is a plan view of a positive electrode body in Comparative Example 2. FIG. 比較例3の正極体及び負極体の平面図である。6 is a plan view of a positive electrode body and a negative electrode body of Comparative Example 3. FIG. 表1の評価結果を示すグラフである。It is a graph which shows the evaluation result of Table 1.

図1及び図2を参照しながら、本実施形態に係るリチウムイオン電池(二次電池)について説明する。図1Aは、リチウムイオン電池の発電シートを構成する正極体10及び負極体20の捲回前の状態を示す。図1Bは、リチウムイオン電池の斜視図である。図2は、正極体10、負極体20及びセパレータ30を厚み方向に切断した断面図である。正極体10及び負極体20は、セパレータ30を介して積層されることにより帯状に延びる発電シートを構成する(図1A参照)。この発電シートは捲き回されることにより捲回体とされ、円筒型ケース5の内部に電解液とともに収容される(図2参照)。   A lithium ion battery (secondary battery) according to this embodiment will be described with reference to FIGS. 1 and 2. FIG. 1A shows a state before winding of the positive electrode body 10 and the negative electrode body 20 constituting the power generation sheet of the lithium ion battery. FIG. 1B is a perspective view of a lithium ion battery. FIG. 2 is a cross-sectional view of the positive electrode body 10, the negative electrode body 20, and the separator 30 cut in the thickness direction. The positive electrode body 10 and the negative electrode body 20 constitute a power generation sheet extending in a strip shape by being stacked via a separator 30 (see FIG. 1A). The power generation sheet is wound to form a wound body, and is accommodated together with the electrolyte in the cylindrical case 5 (see FIG. 2).

正極体10は、集電体13とこの集電体13の両面に塗布される正極層11とを含む。集電体13には正極層11を塗布しない未塗工部が形成されており、この未塗工部には正極集電タブ12が接続されている。接続方法は、溶接などであってもよい。本実施形態の正極集電タブ12は、正極体10の長手方向に二つ並んで設けられている。ただし、正極集電タブ12は、二本以上であれば何本であってもよい。   The positive electrode body 10 includes a current collector 13 and a positive electrode layer 11 applied to both surfaces of the current collector 13. An uncoated portion where the positive electrode layer 11 is not applied is formed on the current collector 13, and a positive electrode current collecting tab 12 is connected to the uncoated portion. The connection method may be welding or the like. Two positive electrode current collecting tabs 12 of the present embodiment are provided side by side in the longitudinal direction of the positive electrode body 10. However, the number of the positive electrode current collecting tabs 12 is not limited as long as it is two or more.

負極体20は、集電体23とこの集電体23の両面に塗布される負極層21とを含む。集電体23には正極層21を塗布しない未塗工部が形成されており、この未塗工部には負極集電タブ22が接続されている。接続方法は、溶接などであってもよい。本実施形態の負極集電タブ22は、負極体20の長手方向に二つ並んで設けられている。   The negative electrode body 20 includes a current collector 23 and a negative electrode layer 21 applied to both surfaces of the current collector 23. An uncoated portion where the positive electrode layer 21 is not applied is formed on the current collector 23, and a negative electrode current collecting tab 22 is connected to the uncoated portion. The connection method may be welding or the like. Two negative electrode current collecting tabs 22 of the present embodiment are provided side by side in the longitudinal direction of the negative electrode body 20.

図1Aを参照して、負極体20の捲回方向の長さをM(mm)、正極体10の捲回方向の長さをL(mm)、正極体10の捲回方向に隣接する正極集電タブ12の間隔をT(mm)、正極集電タブ12の本数をn、正極集電タブ12の幅をW(mm)としたときに、以下の条件式(1)、(2)を満足する。
M/自然数=T・・・・・・・・・・・・・・・・(1)
0.898<1−{(W×n)/L}<0.995・・・・・・・・・・・(2)
With reference to FIG. 1A, the length of the negative electrode body 20 in the winding direction is M (mm), the length of the positive electrode body 10 in the winding direction is L (mm), and the positive electrode adjacent to the winding direction of the positive electrode body 10 When the interval between the current collecting tabs 12 is T (mm), the number of the positive current collecting tabs 12 is n, and the width of the positive current collecting tabs 12 is W (mm), the following conditional expressions (1) and (2) Satisfied.
M / natural number = T (1)
0.898 <1-{(W × n) / L} <0.995 (2)

上記条件式(1)、(2)を満足することにより、正極体10及び負極体20の各部分に含浸される電解液の液量分布のバラツキが抑制され、電池容量の低下を抑制できる。すなわち、正極集電タブ12は正極体10よりも厚く形成されており、捲回体とされた際に、正極集電タブ12の周りには隙間が形成され、この隙間を介して正極体10及び負極体20の各部分に電解液が含浸される。   By satisfying the above conditional expressions (1) and (2), variation in the distribution of the electrolyte solution impregnated in each part of the positive electrode body 10 and the negative electrode body 20 is suppressed, and a decrease in battery capacity can be suppressed. That is, the positive electrode current collector tab 12 is formed thicker than the positive electrode body 10, and when it is formed as a wound body, a gap is formed around the positive electrode current collector tab 12, and the positive electrode body 10 is interposed through this gap. And each part of the negative electrode body 20 is impregnated with an electrolytic solution.

条件式(2)において、正極集電タブ12の幅W、正極集電タブ12の本数n、正極体10の長手方向の長さLを限定した理由について説明する。正極体10に占める正極集電タブ12の面積が相対的に大きくなると、活物質が塗布されない未塗工部が増加するため、電池出力が低下する。他方、正極体10に占める正極集電タブ12の面積が相対的に小さくなると、電解液の含浸時に、正極集電タブ12の周囲から流入する電解液の液量が少なくなる。これらの課題を両立するために、正極集電タブ12の幅W、正極集電タブ12の本数n、正極体10の長手方向の長さLを限定した。   The reason why the conditional expression (2) limits the width W of the positive electrode current collecting tab 12, the number n of the positive electrode current collecting tabs 12, and the length L in the longitudinal direction of the positive electrode body 10 will be described. When the area of the positive electrode current collecting tab 12 occupying the positive electrode body 10 is relatively large, the number of uncoated parts to which the active material is not applied increases, so that the battery output decreases. On the other hand, when the area of the positive electrode current collecting tab 12 occupying the positive electrode body 10 is relatively small, the amount of the electrolytic solution flowing from the periphery of the positive electrode current collecting tab 12 is reduced when the electrolytic solution is impregnated. In order to satisfy these problems, the width W of the positive electrode current collecting tab 12, the number n of the positive electrode current collecting tabs 12, and the length L in the longitudinal direction of the positive electrode body 10 are limited.

図2に図示するように、正極体10の厚み方向視において、正極集電タブ12及び負極集電タブ22は、互いに重ならない位置に設けるのが好ましい。これによる効果を、比較例を示して説明する。図3Aは、図2に対応する断面図であり、正極集電タブ12に対向するように負極集電タブ22が設けられている点で、図2に図示する構成と異なる。   As shown in FIG. 2, the positive electrode current collecting tab 12 and the negative electrode current collecting tab 22 are preferably provided at positions that do not overlap with each other in the thickness direction of the positive electrode body 10. The effect of this will be described with reference to a comparative example. FIG. 3A is a cross-sectional view corresponding to FIG. 2, and differs from the configuration illustrated in FIG. 2 in that a negative electrode current collecting tab 22 is provided so as to face the positive electrode current collecting tab 12.

正極集電タブ12及び負極集電タブ22はそれぞれ、母材となる金属シートを切断することにより得られるが、この切断工程においてバリが発生することがある。図3Aに図示するように、正極集電タブ12及び負極集電タブ22が対向して配置される場合、これらのバリが互いに接触して短絡するおそれがある。したがって、図2に図示するように、正極集電タブ12及び負極集電タブ22を、互いに重ならない位置に設けることにより、バリ同士の接触による短絡を抑制することができる。   Each of the positive electrode current collecting tab 12 and the negative electrode current collecting tab 22 is obtained by cutting a metal sheet as a base material, and burrs may be generated in this cutting process. As shown in FIG. 3A, when the positive electrode current collecting tab 12 and the negative electrode current collecting tab 22 are arranged to face each other, these burrs may come into contact with each other and short-circuit. Therefore, as shown in FIG. 2, by providing the positive electrode current collecting tab 12 and the negative electrode current collecting tab 22 at positions where they do not overlap each other, it is possible to suppress a short circuit due to contact between burrs.

ただし、図3Aに図示する構成であっても、条件式(1)、(2)を満足することにより、電解液の液量分布のバラツキを抑制することができる。   However, even in the configuration illustrated in FIG. 3A, variation in the electrolyte volume distribution can be suppressed by satisfying conditional expressions (1) and (2).

図2に図示するように、正極体10の厚み方向視において、負極集電タブ22は、正極体10と重ならない位置に設けるのが好ましい。これによる効果を、比較例を示して説明する。図3Bは、図2に対応する断面図であり、正極体10に対向するように負極集電タブ22が設けられている点で、図2に図示する構成と異なる。   As shown in FIG. 2, the negative electrode current collecting tab 22 is preferably provided at a position that does not overlap the positive electrode body 10 in the thickness direction of the positive electrode body 10. The effect of this will be described with reference to a comparative example. FIG. 3B is a cross-sectional view corresponding to FIG. 2, and is different from the configuration illustrated in FIG. 2 in that a negative electrode current collecting tab 22 is provided so as to face the positive electrode body 10.

リチウムイオン電池を充電させると、正極層11のリチウムイオンが負極体20に移動する。この際、図3Bに図示する構成では、正極層11に対向する位置に負極集電タブ22が設けられているため、負極集電タブ22にリチウム金属が析出する。リチウムイオン電池を更に充電すると、負極集電タブ22に析出したリチウム金属がセパレータ30を貫通して正極体10に接触し、短絡するおそれがある。図2に図示する構成では、負極集電タブ22が正極体10と重ならない位置に設けられているため、負極集電タブ22にリチウム金属が析出するのを抑制できる。   When the lithium ion battery is charged, the lithium ions in the positive electrode layer 11 move to the negative electrode body 20. At this time, in the configuration illustrated in FIG. 3B, since the negative electrode current collecting tab 22 is provided at a position facing the positive electrode layer 11, lithium metal is deposited on the negative electrode current collecting tab 22. When the lithium ion battery is further charged, the lithium metal deposited on the negative electrode current collecting tab 22 may penetrate the separator 30 and contact the positive electrode body 10 to cause a short circuit. In the configuration illustrated in FIG. 2, since the negative electrode current collecting tab 22 is provided at a position where it does not overlap the positive electrode body 10, it is possible to suppress deposition of lithium metal on the negative electrode current collecting tab 22.

ただし、図3Bに図示する構成であっても、条件式(1)、(2)を満足することにより、電解液の液量分布のバラツキを抑制することができる。   However, even in the configuration illustrated in FIG. 3B, variation in the electrolyte volume distribution can be suppressed by satisfying conditional expressions (1) and (2).

実施例を示した本発明について具体的に説明する。以下の実施例1〜4、比較例1〜3の各リチウムイオン電池について、容量維持率を計算することにより評価を行った。容量維持率は、リチウムイオン電池をサイクル充放電し、サイクル充放電後のサイクル後容量をサイクル充電前の初期容量で除することにより計算した。具体的には、50℃の恒温槽内で2CのCCサイクル充放電を1000サイクル行い、その前後の容量から計算した。容量は、Cレート(1C)で4.2Vまで放電した後5分休止し、さらに2.5Vまで放電した後、CC−CV充電(4.2V、レート1C、0.1Cカット)とCCCV放電(4.2V、レート1C、0.1Cカット)とを行うことにより確認した。   The present invention showing examples will be described in detail. The lithium ion batteries of Examples 1 to 4 and Comparative Examples 1 to 3 below were evaluated by calculating the capacity retention rate. The capacity maintenance rate was calculated by subjecting a lithium ion battery to cycle charge / discharge and dividing the post-cycle capacity after cycle charge / discharge by the initial capacity before cycle charge. Specifically, it was calculated from the capacity before and after 1000 cycles of 2C CC charge / discharge in a 50 ° C. thermostat. The capacity was discharged to 4.2V at C rate (1C), paused for 5 minutes, then discharged to 2.5V, then CC-CV charge (4.2V, rate 1C, 0.1C cut) and CCCV discharge (4.2 V, rate 1 C, 0.1 C cut).

(実施例1)
図4は、実施例1の正極体10及び負極体20の平面図である。正極層11は、正極活物質、結着材及び導電剤により構成され、正極活物質としてコバルト酸リチウムを使用し、結着材としてPVDFを使用し、導電剤としてアセチレンブラックを使用した。集電体13には、アルミニウム箔を使用した。集電体13に正極層11を塗布して乾燥させた後、ロールによりシート状に圧延した。この圧延されたシートを54.0mmの幅に切断して、正極体10のフープを得た。この正極体10のフープの長手方向の長さを、690mmに設定した。正極集電タブ12は、長手方向の端部から218.0mm離れた第1の位置と、この第1の位置から巻回方向にさらに290.0mm離れた第2の位置とにそれぞれ超音波溶接により固定した。正極集電タブ12は、アルミニウムにより構成し、幅5.0mm、厚み0.1mm、長さ50.0mmのサイズに設定した。
Example 1
FIG. 4 is a plan view of the positive electrode body 10 and the negative electrode body 20 according to the first embodiment. The positive electrode layer 11 is composed of a positive electrode active material, a binder, and a conductive agent. Lithium cobaltate is used as the positive electrode active material, PVDF is used as the binder, and acetylene black is used as the conductive agent. An aluminum foil was used for the current collector 13. The positive electrode layer 11 was applied to the current collector 13 and dried, and then rolled into a sheet with a roll. The rolled sheet was cut into a width of 54.0 mm to obtain a hoop of the positive electrode body 10. The length in the longitudinal direction of the hoop of the positive electrode body 10 was set to 690 mm. The positive electrode current collecting tab 12 is ultrasonically welded to a first position that is 218.0 mm away from the end in the longitudinal direction and a second position that is further 290.0 mm away from the first position in the winding direction. Fixed by. The positive electrode current collecting tab 12 was made of aluminum and set to a size of width 5.0 mm, thickness 0.1 mm, and length 50.0 mm.

負極層21は、負極活物質、結着材及び増粘剤により構成され、負極活物質として天然黒鉛を使用し、結着材としてSBRを使用し、増粘剤としてカルボキシメチルセルロースを使用した。負極集電箔には、銅箔を使用した。負極体23に負極層21を塗布して乾燥させた後、ロールによりシート状に圧延した。この圧延されたシートを56.0mmの幅に切断して、負極体20のフープを得た。この負極体20のフープの長手方向の長さを、870.0mmに設定した。負極集電タブ22は、負極体20の長手方向の両端部にそれぞれ超音波溶接により固定した。負極集電タブ22は、ニッケルにより構成した。   The negative electrode layer 21 is composed of a negative electrode active material, a binder, and a thickener, natural graphite is used as the negative electrode active material, SBR is used as the binder, and carboxymethyl cellulose is used as the thickener. Copper foil was used for the negative electrode current collector foil. The negative electrode layer 21 was applied to the negative electrode body 23 and dried, and then rolled into a sheet by a roll. The rolled sheet was cut into a width of 56.0 mm to obtain a hoop of the negative electrode body 20. The length of the hoop of the negative electrode body 20 in the longitudinal direction was set to 870.0 mm. The negative electrode current collecting tab 22 was fixed to both ends in the longitudinal direction of the negative electrode body 20 by ultrasonic welding. The negative electrode current collecting tab 22 was made of nickel.

電解液として、非水混合溶媒にLIPFを1M溶解したものを用いた。非水混合溶媒として、エチレンカーボネート、エチルメチルカーボネート及びジエチルカーボネートからなる混合溶媒を用いた。エチレンカーボネート、エチルメチルカーボネート及びジエチルカーボネートの混合比は、体積比で3:5:2に設定した。 As the electrolytic solution, a solution obtained by dissolving 1M of LIPF 6 in a non-aqueous mixed solvent was used. As the non-aqueous mixed solvent, a mixed solvent composed of ethylene carbonate, ethyl methyl carbonate and diethyl carbonate was used. The mixing ratio of ethylene carbonate, ethyl methyl carbonate and diethyl carbonate was set to 3: 5: 2 by volume.

図5を参照して、これらの正極体10及び負極体20をセパレータ30を介して積層し、捲回すことにより、捲回体を得た。すなわち、正極体10及び負極体20をセパレータ30を挟んで対向させた状態で矢印A方向に捲回し、正極体10の捲回し後の内側端部と負極体20の捲回し後の外側端部との捲き方向の間隔が14.0mmとなるように捲回した。得られた捲回体を円筒型外装ケースに収容し、捲回体と円筒型外装ケースの底面とを溶接し、さらに、電解液を注入することにより、理論容量1.5Ahのリチウムイオン電池を10セル作製した。円筒型外装ケースのサイズは、直径が18mm、径方向に直交する方向の高さが650mmに設定した。   With reference to FIG. 5, these positive electrode body 10 and negative electrode body 20 were laminated | stacked through the separator 30, and the wound body was obtained by winding. That is, the positive electrode body 10 and the negative electrode body 20 are wound in the direction of the arrow A in a state where the positive electrode body 10 and the negative electrode body 20 are opposed to each other with the separator 30 interposed therebetween. Was wound so that the spacing in the rolling direction was 14.0 mm. The obtained wound body is accommodated in a cylindrical outer case, the wound body and the bottom surface of the cylindrical outer case are welded, and an electrolyte is injected to obtain a lithium ion battery having a theoretical capacity of 1.5 Ah. Ten cells were produced. The size of the cylindrical outer case was set to 18 mm in diameter and 650 mm in the direction perpendicular to the radial direction.

隣接する正極集電タブ12の間隔は、負極体20の長手方向の長さ(870.0mm)を自然数3で除した290.0mmであるため、条件式(1)を満足する。正極体10の長手方向の長さLは690.0mmであり、正極集電タブ12の本数nは2であり、正極集電タブ12の幅Wは5.0mmであり、これらのデータを条件式(2)に代入すると、0.986であるから、条件式(2)を満足する。   Since the interval between the adjacent positive electrode current collecting tabs 12 is 290.0 mm obtained by dividing the length of the negative electrode body 20 in the longitudinal direction (870.0 mm) by the natural number 3, conditional expression (1) is satisfied. The length L of the positive electrode body 10 in the longitudinal direction is 690.0 mm, the number n of the positive electrode current collecting tabs 12 is 2, and the width W of the positive electrode current collecting tabs 12 is 5.0 mm. Substituting into equation (2) yields 0.986, which satisfies conditional expression (2).

(実施例2)
正極体10の作製以外は実施例1と同様であり、理論容量1.35Ahのリチウムイオン電池を10セル作製した。図6を参照して、正極体10のフープを得て、このフープの長手方向の長さを690.0mmにサイズ調整した。正極集電タブ12は、108.75mm間隔で7本設けるとともに、これらの正極集電タブ12を正極体10に対して超音波溶接により固定した。最も左側に位置する正極集電タブ12は、正極体10の長手方向の端部から36.75mm離れた位置に配置した。正極集電タブ12は、アルミニウムにより構成し、幅10.0mm、厚み0.1mm、長さ50.0mmのサイズに調整した。
(Example 2)
Except the production of the positive electrode body 10, the same procedure as in Example 1 was carried out, and 10 lithium ion batteries having a theoretical capacity of 1.35 Ah were produced. Referring to FIG. 6, a hoop of positive electrode body 10 was obtained, and the length of the hoop in the longitudinal direction was adjusted to 690.0 mm. Seven positive electrode current collecting tabs 12 were provided at intervals of 108.75 mm, and these positive electrode current collecting tabs 12 were fixed to the positive electrode body 10 by ultrasonic welding. The positive electrode current collecting tab 12 located on the leftmost side was disposed at a position 36.75 mm away from the longitudinal end of the positive electrode body 10. The positive electrode current collecting tab 12 was made of aluminum and was adjusted to a size of 10.0 mm in width, 0.1 mm in thickness, and 50.0 mm in length.

隣接する正極集電タブ12の間隔は、負極体20の長手方向の長さ(870.0mm)を自然数8で除した108.75mmであるため、条件式(1)を満足する。正極体10の長手方向の長さLは690.0mmであり、正極集電タブ12の本数nは7であり、正極集電タブ12の幅Wは10.0mmであり、これらのデータを条件式(2)に代入すると、0.899であるから、条件式(2)を満足する。   Since the interval between the adjacent positive electrode current collecting tabs 12 is 108.75 mm obtained by dividing the length of the negative electrode body 20 in the longitudinal direction (870.0 mm) by the natural number 8, conditional expression (1) is satisfied. The length L in the longitudinal direction of the positive electrode body 10 is 690.0 mm, the number n of the positive electrode current collecting tabs 12 is 7, and the width W of the positive electrode current collecting tabs 12 is 10.0 mm. Substituting into equation (2) gives 0.899, which satisfies conditional expression (2).

(実施例3)
正極体10の作製以外は実施例1と同様であり、理論容量1.35Ahのリチウムイオン電池を10セル作製した。図7を参照して、正極体10のフープを得て、このフープの長手方向の長さを690.0mmにサイズ調整した。正極集電タブ12は、290.0mm間隔で2本設けるとともに、これらの正極集電タブ12を正極体10に対して超音波溶接により固定した。左側に位置する正極集電タブ12は、正極体10の長手方向の端部から218.0mm離れた位置に配置した。正極集電タブ12は、アルミニウムにより構成し、幅35.0mm、厚み0.1mm、長さ50.0mmのサイズに設定した。つまり、正極集電タブ12のサイズを実施例1から変更した。
(Example 3)
Except the production of the positive electrode body 10, the same procedure as in Example 1 was carried out, and 10 lithium ion batteries having a theoretical capacity of 1.35 Ah were produced. Referring to FIG. 7, a hoop of positive electrode body 10 was obtained, and the length of this hoop in the longitudinal direction was adjusted to 690.0 mm. Two positive electrode current collecting tabs 12 were provided at 290.0 mm intervals, and these positive electrode current collecting tabs 12 were fixed to the positive electrode body 10 by ultrasonic welding. The positive electrode current collecting tab 12 located on the left side was arranged at a position away from the end in the longitudinal direction of the positive electrode body 21 by 218.0 mm. The positive electrode current collecting tab 12 was made of aluminum and set to a size of 35.0 mm in width, 0.1 mm in thickness, and 50.0 mm in length. That is, the size of the positive electrode current collecting tab 12 was changed from that in Example 1.

隣接する正極集電タブ12の間隔は、負極体20の長手方向の長さ(870.0mm)を自然数3で除した290.0mmであるため、条件式(1)を満足する。正極体10の長手方向の長さLは690.0mmであり、正極集電タブ12の本数nは2であり、正極集電タブ12の幅Wは35.0mmであり、これらのデータを条件式(2)に代入すると、0.899であるから、条件式(2)を満足する。   Since the interval between the adjacent positive electrode current collecting tabs 12 is 290.0 mm obtained by dividing the length of the negative electrode body 20 in the longitudinal direction (870.0 mm) by the natural number 3, conditional expression (1) is satisfied. The length L in the longitudinal direction of the positive electrode body 10 is 690.0 mm, the number n of the positive electrode current collecting tabs 12 is 2, and the width W of the positive electrode current collecting tabs 12 is 35.0 mm. Substituting into equation (2) gives 0.899, which satisfies conditional expression (2).

(実施例4)
正極体10の作製以外は実施例1と同様であり、理論容量1.5Ahのリチウムイオン電池を10セル作製した。図8を参照して、正極体10のフープを得て、このフープの長手方向の長さを690.0mmにサイズ調整した。正極集電タブ12は、290.0mm間隔で2本設けるとともに、これらの正極集電タブ12を正極体10に対して超音波溶接により固定した。左側に位置する正極集電タブ12は、正極体10の長手方向の端部から218.0mm離れた位置に配置した。正極集電タブ12は、アルミニウムにより構成し、幅2.0mm、厚み0.1mm、長さ50.0mmのサイズに調整した。つまり、正極集電タブ12のサイズを実施例1から変更した。
Example 4
Except the production of the positive electrode body 10, the same procedure as in Example 1 was carried out, and 10 lithium ion batteries having a theoretical capacity of 1.5 Ah were produced. Referring to FIG. 8, a hoop of positive electrode body 10 was obtained, and the length of this hoop in the longitudinal direction was adjusted to 690.0 mm. Two positive electrode current collecting tabs 12 were provided at 290.0 mm intervals, and these positive electrode current collecting tabs 12 were fixed to the positive electrode body 10 by ultrasonic welding. The positive electrode current collecting tab 12 located on the left side was arranged at a position away from the end in the longitudinal direction of the positive electrode body 21 by 218.0 mm. The positive electrode current collecting tab 12 was made of aluminum and adjusted to a size of width 2.0 mm, thickness 0.1 mm, and length 50.0 mm. That is, the size of the positive electrode current collecting tab 12 was changed from that in Example 1.

隣接する正極集電タブ12の間隔は、負極体20の長手方向の長さ(870.0mm)を自然数3で除した290.0mmであるため、条件式(1)を満足する。正極体10の長手方向の長さLは690.0mmであり、正極集電タブ12の本数nは2であり、正極集電タブ12の幅Wは2.0mmであり、これらのデータを条件式(2)に代入すると、0.994であるから、条件式(2)を満足する。   Since the interval between the adjacent positive electrode current collecting tabs 12 is 290.0 mm obtained by dividing the length of the negative electrode body 20 in the longitudinal direction (870.0 mm) by the natural number 3, conditional expression (1) is satisfied. The length L of the positive electrode body 10 in the longitudinal direction is 690.0 mm, the number n of the positive electrode current collecting tabs 12 is 2, and the width W of the positive electrode current collecting tabs 12 is 2.0 mm. Substituting into equation (2) gives 0.994, which satisfies conditional expression (2).

(実施例5)
負極体20の作製以外は実施例1と同様であり、理論容量1.5Ahのリチウムイオン電池を10セル作製した。図9を参照して、負極層21は、負極活物質、結着材及び増粘剤により構成され、負極活物質として天然黒鉛を使用し、結着材としてSBRを使用し、増粘剤としてカルボキシメチルセルロースを使用した。負極集電箔には、銅箔を使用した。負極集電箔に負極層21を塗布した積層体を乾燥させた後、ロールにより圧延した。この圧延された積層体を56.0mmの幅に切断して、負極体20のフープを得た。この負極体20のフープの長手方向の長さを、870.0mmにサイズ調整した。負極集電タブ22は、正極体10の正極集電タブ12に対向するように2本配置し、これらの負極集電タブ22を正極体10に超音波溶接により接合した。負極集電タブ22は、ニッケルにより構成した。
(Example 5)
Except the production of the negative electrode body 20, it was the same as that of Example 1, and 10 lithium ion batteries having a theoretical capacity of 1.5 Ah were produced. Referring to FIG. 9, the negative electrode layer 21 is composed of a negative electrode active material, a binder and a thickener, using natural graphite as the negative electrode active material, using SBR as the binder, and as a thickener. Carboxymethyl cellulose was used. Copper foil was used for the negative electrode current collector foil. After drying the laminated body which apply | coated the negative electrode layer 21 to negative electrode current collector foil, it rolled with the roll. The rolled laminate was cut into a width of 56.0 mm to obtain a hoop of the negative electrode body 20. The length of the hoop of the negative electrode body 20 in the longitudinal direction was adjusted to 870.0 mm. Two negative electrode current collecting tabs 22 were arranged so as to face the positive electrode current collecting tabs 12 of the positive electrode body 10, and these negative electrode current collecting tabs 22 were joined to the positive electrode body 10 by ultrasonic welding. The negative electrode current collecting tab 22 was made of nickel.

隣接する正極集電タブ12の間隔は、負極体20の長手方向の長さ(870.0mm)を自然数3で除した290.0mmであるため、条件式(1)を満足する。正極体10の長手方向の長さLは690.0mmであり、正極集電タブ12の本数nは2であり、正極集電タブ12の幅Wは5.0mmであり、これらのデータを条件式(2)に代入すると、0.986であるから、条件式(2)を満足する。   Since the interval between the adjacent positive electrode current collecting tabs 12 is 290.0 mm obtained by dividing the length of the negative electrode body 20 in the longitudinal direction (870.0 mm) by the natural number 3, conditional expression (1) is satisfied. The length L of the positive electrode body 10 in the longitudinal direction is 690.0 mm, the number n of the positive electrode current collecting tabs 12 is 2, and the width W of the positive electrode current collecting tabs 12 is 5.0 mm. Substituting into equation (2) yields 0.986, which satisfies conditional expression (2).

(比較例1)
正極体10の作製以外は実施例1と同様であり、理論容量1.6Ahのリチウムイオン電池を10セル作製した。図10を参照して、正極体10のフープを得て、このフープの長手方向の長さを690.0mmにサイズ調整した。正極集電タブ12は、290.0mm間隔で2本設けるとともに、これらの正極集電タブ12を正極体10に対して超音波溶接により固定した。左側に位置する正極集電タブ12は、正極体10の長手方向の端部から218.0mm離れた位置に配置した。正極集電タブ12は、アルミニウムにより構成し、幅1.0mm、厚み0.1mm、長さ50.0mmのサイズに調整した。つまり、正極集電タブ12のサイズを実施例1から変更した。
(Comparative Example 1)
Except the production of the positive electrode body 10, the same procedure as in Example 1 was conducted, and 10 lithium ion batteries with a theoretical capacity of 1.6 Ah were produced. Referring to FIG. 10, a hoop of positive electrode body 10 was obtained, and the length of the hoop in the longitudinal direction was adjusted to 690.0 mm. Two positive electrode current collecting tabs 12 were provided at 290.0 mm intervals, and these positive electrode current collecting tabs 12 were fixed to the positive electrode body 10 by ultrasonic welding. The positive electrode current collecting tab 12 located on the left side was arranged at a position away from the end in the longitudinal direction of the positive electrode body 21 by 218.0 mm. The positive electrode current collecting tab 12 was made of aluminum and adjusted to a size of a width of 1.0 mm, a thickness of 0.1 mm, and a length of 50.0 mm. That is, the size of the positive electrode current collecting tab 12 was changed from that in Example 1.

隣接する正極集電タブ12の間隔は、負極体20の長手方向の長さ(870.0mm)を自然数3で除した290.0mmであるため、条件式(1)を満足する。正極体10の長手方向の長さLは690.0mmであり、正極集電タブ12の本数nは2であり、正極集電タブ12の幅Wは1.0mmであり、これらのデータを条件式(2)に代入すると、0.997であるから、条件式(2)を満足しない。   Since the interval between the adjacent positive electrode current collecting tabs 12 is 290.0 mm obtained by dividing the length of the negative electrode body 20 in the longitudinal direction (870.0 mm) by the natural number 3, conditional expression (1) is satisfied. The length L of the positive electrode body 10 in the longitudinal direction is 690.0 mm, the number n of the positive electrode current collecting tabs 12 is 2, and the width W of the positive electrode current collecting tabs 12 is 1.0 mm. Substituting into equation (2) gives 0.997, which does not satisfy conditional expression (2).

(比較例2)
正極体10の作製以外は実施例1と同様であり、理論容量1.3Ahのリチウムイオン電池を10セル作製した。図11を参照して、正極体10のフープを得て、このフープの長手方向の長さを690.0mmにサイズ調整した。正極集電タブ12は、290.0mm間隔で2本設けるとともに、これらの正極集電タブ12を正極体10に対して超音波溶接により固定した。左側に位置する正極集電タブ12は、正極体10の長手方向の端部から218.0mm離れた位置に配置した。正極集電タブ12は、アルミニウムにより構成し、幅40.0mm、厚み0.1mm、長さ50.0mmのサイズに調整した。つまり、正極集電タブ12のサイズを実施例1から変更した。
(Comparative Example 2)
Except the production of the positive electrode body 10, the same procedure as in Example 1 was carried out, and 10 lithium ion batteries having a theoretical capacity of 1.3 Ah were produced. Referring to FIG. 11, a hoop of positive electrode body 10 was obtained, and the length of the hoop in the longitudinal direction was adjusted to 690.0 mm. Two positive electrode current collecting tabs 12 were provided at 290.0 mm intervals, and these positive electrode current collecting tabs 12 were fixed to the positive electrode body 10 by ultrasonic welding. The positive electrode current collecting tab 12 located on the left side was arranged at a position away from the end in the longitudinal direction of the positive electrode body 21 by 218.0 mm. The positive electrode current collecting tab 12 was made of aluminum and adjusted to a size of 40.0 mm in width, 0.1 mm in thickness, and 50.0 mm in length. That is, the size of the positive electrode current collecting tab 12 was changed from that in Example 1.

隣接する正極集電タブ12の間隔は、負極体20の長手方向の長さ(870.0mm)を自然数3で除した290.0mmであるため、条件式(1)を満足する。正極体10の長手方向の長さLは690.0mmであり、正極集電タブ12の本数nは2であり、正極集電タブ12の幅Wは40.0mmであり、これらのデータを条件式(2)に代入すると、0.884であるから、条件式(2)を満足しない。   Since the interval between the adjacent positive electrode current collecting tabs 12 is 290.0 mm obtained by dividing the length of the negative electrode body 20 in the longitudinal direction (870.0 mm) by the natural number 3, conditional expression (1) is satisfied. The length L of the positive electrode body 10 in the longitudinal direction is 690.0 mm, the number n of the positive electrode current collecting tabs 12 is 2, and the width W of the positive electrode current collecting tabs 12 is 40.0 mm. Substituting into the formula (2) is 0.884, which does not satisfy the conditional formula (2).

(比較例3)
図12は、比較例3の正極体10及び負極体20の平面図である。正極層11は、正極活物質、結着材及び導電剤により構成され、正極活物質としてコバルト酸リチウムを使用し、結着材としてPVDFを使用し、導電剤としてアセチレンブラックを使用した。集電体13には、アルミニウム箔を使用した。集電体13に正極層11を塗布して乾燥させた後、ロールによりシート状に圧延した。この圧延されたシートを54.0mmの幅に切断して、正極体10のフープを得た。この正極体10のフープの長手方向の長さを、2000.0mmにサイズ調整した。正極集電タブ12は、長手方向の端部から1233.0mm離れた位置に超音波溶接により接合した。正極集電タブ12は、アルミニウムにより構成し、幅5.0mm、厚み0.1mm、長さ50.0mmのサイズに調整した。
(Comparative Example 3)
FIG. 12 is a plan view of the positive electrode body 10 and the negative electrode body 20 of Comparative Example 3. The positive electrode layer 11 is composed of a positive electrode active material, a binder, and a conductive agent. Lithium cobaltate is used as the positive electrode active material, PVDF is used as the binder, and acetylene black is used as the conductive agent. An aluminum foil was used for the current collector 13. The positive electrode layer 11 was applied to the current collector 13 and dried, and then rolled into a sheet with a roll. The rolled sheet was cut into a width of 54.0 mm to obtain a hoop of the positive electrode body 10. The length in the longitudinal direction of the hoop of the positive electrode body 10 was adjusted to 2000.0 mm. The positive electrode current collecting tab 12 was joined by ultrasonic welding at a position distant from the end in the longitudinal direction by 1233.0 mm. The positive electrode current collecting tab 12 was made of aluminum and adjusted to a size of width 5.0 mm, thickness 0.1 mm, and length 50.0 mm.

負極層21は、負極活物質、結着材及び増粘剤により構成され、負極活物質として天然黒鉛を使用し、結着材としてSBRを使用し、増粘剤としてカルボキシメチルセルロースを使用した。集電体23には、銅箔を使用した。集電体23に負極層21を塗布して乾燥させた後、ロールによりシート状に圧延した。この圧延されたシートを56.0mmの幅に切断して、負極体20のフープを得た。この負極体20のフープの長手方向の長さを、2610.0mmにサイズ調整した。負極集電タブ22は、負極体20の長手方向の両端部にそれぞれ超音波溶接により接合した。負極集電タブ22は、ニッケルにより構成した。
なお、電解液は実施例1と同様とした。
The negative electrode layer 21 is composed of a negative electrode active material, a binder, and a thickener, natural graphite is used as the negative electrode active material, SBR is used as the binder, and carboxymethyl cellulose is used as the thickener. A copper foil was used for the current collector 23. The negative electrode layer 21 was applied to the current collector 23 and dried, and then rolled into a sheet with a roll. The rolled sheet was cut into a width of 56.0 mm to obtain a hoop of the negative electrode body 20. The length of the hoop of the negative electrode body 20 in the longitudinal direction was adjusted to 2610.0 mm. The negative electrode current collecting tab 22 was joined to both ends in the longitudinal direction of the negative electrode body 20 by ultrasonic welding. The negative electrode current collecting tab 22 was made of nickel.
The electrolytic solution was the same as in Example 1.

比較例3は、正極集電タブ12が1本しかないため、条件式(1)を満足しない。正極体10の長手方向の長さLは2000.0mmであり、正極集電タブ12の本数nは1であり、正極集電タブ12の幅Wは30.0mmであり、これらのデータを条件式(2)に代入すると、0.985であるから、条件式(2)を満足する。   Since the comparative example 3 has only one positive electrode current collection tab 12, it does not satisfy conditional expression (1). The length L in the longitudinal direction of the positive electrode body 10 is 2000.0 mm, the number n of the positive electrode current collecting tabs 12 is 1, and the width W of the positive electrode current collecting tabs 12 is 30.0 mm. Substituting into equation (2) yields 0.985, which satisfies conditional expression (2).

Figure 2012195132
Figure 2012195132

表1は、実施例1〜5、比較例1〜3の評価結果を示している。容量維持率が65.0%よりも高く、かつ、不良セル数が0である場合には、結果が良好であるとして◎で評価した。容量維持率が65.0%よりも高いが、不良セルが発生した場合には、結果が概ね良好であるとして○で評価した。容量維持率が65.0%に満たない場合には、結果が不良であるとして×で評価した。図13は、表1の評価結果をグラフにしたものである。   Table 1 shows the evaluation results of Examples 1 to 5 and Comparative Examples 1 to 3. When the capacity retention rate was higher than 65.0% and the number of defective cells was 0, the result was evaluated as “good” as good. Although the capacity retention ratio was higher than 65.0%, when a defective cell was generated, the result was evaluated as “good” because the result was generally good. When the capacity maintenance rate was less than 65.0%, the result was evaluated as x because the result was defective. FIG. 13 is a graph of the evaluation results in Table 1.

これらの結果から、条件式(1)、(2)を満足することにより、容量維持率が高い電池を提供できることが証明された。   From these results, it was proved that a battery having a high capacity retention rate can be provided by satisfying conditional expressions (1) and (2).

(変形例1)
上述の実施形態ではリチウムイオン電池について説明したが、本発明はこれに限られるものではなく他の二次電池に適用することもできる。当該他の二次電池は、ニッケル水素電池であってもよい。
(Modification 1)
Although the lithium ion battery has been described in the above-described embodiment, the present invention is not limited to this and can be applied to other secondary batteries. The other secondary battery may be a nickel metal hydride battery.

1 リチウムイオン電池 5 円筒型ケース 10 正極体 11 正極層
12 正極集電タブ 13 集電体 20 負極体 21 負極層
22 負極集電タブ 23 集電体 30 セパレータ
DESCRIPTION OF SYMBOLS 1 Lithium ion battery 5 Cylindrical case 10 Positive electrode body 11 Positive electrode layer
DESCRIPTION OF SYMBOLS 12 Positive electrode current collection tab 13 Current collector 20 Negative electrode body 21 Negative electrode layer 22 Negative electrode current collection tab 23 Current collector 30 Separator

Claims (6)

正極体及び負極体をセパレータを介して積層した帯状に延びる発電シートを捲き回した捲回体を備える二次電池において、
前記正極体及び前記負極体のうち一方の電極体の捲回方向の長さをM(mm)、他方の電極体の捲回方向の長さをL(mm)、前記他方の電極体に対して前記捲回方向に並んで接続される第1の集電タブの本数をn、互いに隣接する前記第1の集電タブの間隔をT(mm)、前記第1の集電タブの幅をW(mm)としたときに、以下の条件式(1)、(2)を満足することを特徴とする二次電池。
M/自然数=T・・・・・・・・・・・・・・・・(1)
0.898<1−{(W×n)/L}<0.995・・・・・・・・・・・・・・(2)
In a secondary battery including a wound body in which a power generation sheet extending in a strip shape in which a positive electrode body and a negative electrode body are stacked via a separator is wound,
The length of one electrode body in the winding direction of the positive electrode body and the negative electrode body is M (mm), the length of the other electrode body in the winding direction is L (mm), and the length of the other electrode body is N is the number of first current collecting tabs connected side by side in the winding direction, T is the interval between the first current collecting tabs adjacent to each other, and the width of the first current collecting tab is A secondary battery characterized by satisfying the following conditional expressions (1) and (2) when W (mm).
M / natural number = T (1)
0.898 <1-{(W × n) / L} <0.995 (2)
前記一方の電極体は前記負極体であり、前記他方の電極体は前記正極体であることを特徴とする請求項1に記載の二次電池。   The secondary battery according to claim 1, wherein the one electrode body is the negative electrode body, and the other electrode body is the positive electrode body. 前記発電シートの厚み方向視において、前記一方の電極体に接続される第2の集電タブは、前記正極体と重ならない位置に設けられることを特徴とする請求項2に記載の二次電池。   3. The secondary battery according to claim 2, wherein the second current collecting tab connected to the one electrode body is provided at a position that does not overlap the positive electrode body when viewed in the thickness direction of the power generation sheet. . 前記発電シートの厚み方向視において、前記第1の集電タブ及び前記一方の電極体に接続される第2の集電タブは、互いに重ならない位置に設けられることを特徴とする請求項1又は2に記載の二次電池。   The first power collecting tab and the second current collecting tab connected to the one electrode body are provided at positions that do not overlap each other in the thickness direction view of the power generation sheet. 2. The secondary battery according to 2. 前記発電要素は、リチウムイオン電池の発電要素であり、
前記捲回体は、円筒型形状のケースに電解液とともに収容されることを特徴とする請求項1乃至4のうちいずれか一つに記載の二次電池。
The power generation element is a power generation element of a lithium ion battery,
5. The secondary battery according to claim 1, wherein the wound body is housed together with an electrolytic solution in a cylindrical case.
請求項1乃至5のうちいずれか一つに記載の二次電池を複数接続した車両用組電池。
An assembled battery for a vehicle in which a plurality of the secondary batteries according to any one of claims 1 to 5 are connected.
JP2011057562A 2011-03-16 2011-03-16 Secondary battery Active JP5912271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011057562A JP5912271B2 (en) 2011-03-16 2011-03-16 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011057562A JP5912271B2 (en) 2011-03-16 2011-03-16 Secondary battery

Publications (2)

Publication Number Publication Date
JP2012195132A true JP2012195132A (en) 2012-10-11
JP5912271B2 JP5912271B2 (en) 2016-04-27

Family

ID=47086843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011057562A Active JP5912271B2 (en) 2011-03-16 2011-03-16 Secondary battery

Country Status (1)

Country Link
JP (1) JP5912271B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016079943A1 (en) * 2014-11-21 2016-05-26 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP2016139596A (en) * 2015-01-28 2016-08-04 三星エスディアイ株式会社Samsung SDI Co., Ltd. Electrode assembly having electrode tab and secondary battery
CN108461811B (en) * 2018-07-20 2019-11-05 瑞浦能源有限公司 Pole piece and battery cell for coiled lithium ion battery
JP2021531618A (en) * 2018-07-20 2021-11-18 エルジー・ケム・リミテッド Electrode assembly and secondary battery containing it
CN114006021A (en) * 2021-10-29 2022-02-01 宁德新能源科技有限公司 Electrochemical device and electric equipment
CN114614212A (en) * 2022-05-11 2022-06-10 宁德新能源科技有限公司 Electrochemical device and electronic device
WO2022138625A1 (en) * 2020-12-23 2022-06-30 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2023165349A1 (en) * 2022-03-04 2023-09-07 宁德新能源科技有限公司 Electrochemical apparatus and electrical device
JP2023541746A (en) * 2021-08-19 2023-10-04 寧徳新能源科技有限公司 Electrode assemblies, batteries, and electrical equipment
WO2023189557A1 (en) * 2022-03-30 2023-10-05 パナソニックIpマネジメント株式会社 Cylindrical secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189026A (en) * 1996-12-24 1998-07-21 Sanyo Electric Co Ltd Spiral electrode assembly for secondary battery
JPH10261439A (en) * 1997-03-19 1998-09-29 Sanyo Electric Co Ltd Lithium secondary battery
JPH11111340A (en) * 1997-09-30 1999-04-23 Sanyo Electric Co Ltd Lithium secondary battery
JP2000106167A (en) * 1998-09-30 2000-04-11 Mitsubishi Electric Corp Battery
JP2000348757A (en) * 1999-06-07 2000-12-15 Matsushita Electric Ind Co Ltd Spiral type storage battery
JP2001110453A (en) * 1999-10-04 2001-04-20 Sony Corp Nonaqueous electrolytic solution secondary battery
JP2007184219A (en) * 2005-12-29 2007-07-19 Ind Technol Res Inst Lithium-ion secondary battery of high output design
JP2009245839A (en) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd Lithium secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189026A (en) * 1996-12-24 1998-07-21 Sanyo Electric Co Ltd Spiral electrode assembly for secondary battery
JPH10261439A (en) * 1997-03-19 1998-09-29 Sanyo Electric Co Ltd Lithium secondary battery
JPH11111340A (en) * 1997-09-30 1999-04-23 Sanyo Electric Co Ltd Lithium secondary battery
JP2000106167A (en) * 1998-09-30 2000-04-11 Mitsubishi Electric Corp Battery
JP2000348757A (en) * 1999-06-07 2000-12-15 Matsushita Electric Ind Co Ltd Spiral type storage battery
JP2001110453A (en) * 1999-10-04 2001-04-20 Sony Corp Nonaqueous electrolytic solution secondary battery
JP2007184219A (en) * 2005-12-29 2007-07-19 Ind Technol Res Inst Lithium-ion secondary battery of high output design
JP2009245839A (en) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd Lithium secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016079943A1 (en) * 2014-11-21 2016-05-26 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP2016139596A (en) * 2015-01-28 2016-08-04 三星エスディアイ株式会社Samsung SDI Co., Ltd. Electrode assembly having electrode tab and secondary battery
CN108461811B (en) * 2018-07-20 2019-11-05 瑞浦能源有限公司 Pole piece and battery cell for coiled lithium ion battery
JP2021531618A (en) * 2018-07-20 2021-11-18 エルジー・ケム・リミテッド Electrode assembly and secondary battery containing it
WO2022138625A1 (en) * 2020-12-23 2022-06-30 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2023541746A (en) * 2021-08-19 2023-10-04 寧徳新能源科技有限公司 Electrode assemblies, batteries, and electrical equipment
JP7509919B2 (en) 2021-08-19 2024-07-02 寧徳新能源科技有限公司 Electrode assembly, battery, and electrical device
CN114006021A (en) * 2021-10-29 2022-02-01 宁德新能源科技有限公司 Electrochemical device and electric equipment
WO2023165349A1 (en) * 2022-03-04 2023-09-07 宁德新能源科技有限公司 Electrochemical apparatus and electrical device
WO2023189557A1 (en) * 2022-03-30 2023-10-05 パナソニックIpマネジメント株式会社 Cylindrical secondary battery
CN114614212A (en) * 2022-05-11 2022-06-10 宁德新能源科技有限公司 Electrochemical device and electronic device
CN114614212B (en) * 2022-05-11 2022-08-19 宁德新能源科技有限公司 Electrochemical device and electronic device

Also Published As

Publication number Publication date
JP5912271B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5912271B2 (en) Secondary battery
JP5165482B2 (en) Winding type secondary battery
JP2011081931A (en) Lithium ion secondary battery
JP5849234B2 (en) Nonaqueous electrolyte secondary battery
US20120202097A1 (en) Lithium ion secondary cell
JP5686076B2 (en) Method for producing lithium ion secondary battery
KR101707335B1 (en) Nonaqueous electrolyte secondary battery
JP7194940B2 (en) lithium secondary battery
JP2014225326A (en) Nonaqueous electrolyte secondary battery
JP2013201077A (en) Nonaqueous electrolytic secondary battery
JP7212629B2 (en) lithium ion secondary battery
JP2015011969A (en) Nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP2014532955A (en) Secondary battery
JP2010161249A (en) Lithium ion capacitor
JP2012156405A (en) Electricity storage device
JP5623073B2 (en) Secondary battery
US10431846B2 (en) Energy storage device
JP3526786B2 (en) Lithium secondary battery
JPWO2015129376A1 (en) Winding electrode group and non-aqueous electrolyte battery
US10312493B2 (en) Battery
JP2018166080A (en) Manufacturing method of secondary battery
JP2015115261A (en) Sealed battery
JP7003775B2 (en) Lithium ion secondary battery
JP2013073718A (en) Nonaqueous electrolyte secondary battery
JP2010232146A (en) Laminated battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150126

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160401

R151 Written notification of patent or utility model registration

Ref document number: 5912271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250