JP2012189307A - Gas generation method of technological configuration for providing external force motion to action and reaction of fluid motion, and carbon dioxide decomposition, oxygen separation system - Google Patents

Gas generation method of technological configuration for providing external force motion to action and reaction of fluid motion, and carbon dioxide decomposition, oxygen separation system Download PDF

Info

Publication number
JP2012189307A
JP2012189307A JP2011068790A JP2011068790A JP2012189307A JP 2012189307 A JP2012189307 A JP 2012189307A JP 2011068790 A JP2011068790 A JP 2011068790A JP 2011068790 A JP2011068790 A JP 2011068790A JP 2012189307 A JP2012189307 A JP 2012189307A
Authority
JP
Japan
Prior art keywords
combustion
gas
oxygen
motion
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011068790A
Other languages
Japanese (ja)
Inventor
Takeshige Sugimoto
武繁 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011068790A priority Critical patent/JP2012189307A/en
Publication of JP2012189307A publication Critical patent/JP2012189307A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve a key problem that assured clean combustion technology for every kind of fossil fuel and the like is uncompleted currently, leading to generation sources of air pollution, as a problem that a combustion method of a nozzle spraying method is mainly predominant for fossil fuel and various liquid fuels for global main energy and particles of spraying fuel are coarse in density, and flame moves straight at high speed in a combustion furnace, thus leaving uneven portions in mixing of spraying fuel and air and resulting in heat quantity loss of portions which are not completely burnt and a cost increase of purification facilities for harmful exhaust gas, and a problem of carbon dioxide reduction are overlapped.SOLUTION: A clean combustion system is constituted which eliminates the need for a nozzle and uses a new principle of generating gas with a technological configuration for making a means of clean combustion of fossil fuel and the like generate special fluid motion of gas in a combustion chamber, and for providing external force motion to an acceleration means for action and reaction thereof, and a separation system is constituted which decomposes a carbon dioxide of exhaust gas into oxygen, a carbon dioxide, and the like. In the humidified combustion of the system, superfine particles of water are decomposed by heat of flame, hydrogen is heated, and oxygen is added to oxygen in the air, causing clean combustion.

Description

世界の一次エネルギー事情によれば化石燃料が大気汚染の発生源と言われている化石燃料を、本発明の新しい気体の発生原理の燃焼システムによって、これまでとは逆に化石燃料を大気環境の改善エネルギーへの技術革新。  According to the world's primary energy situation, fossil fuels, which are said to be the source of air pollution, are converted into fossil fuels in the atmospheric environment by the combustion system based on the new gas generation principle of the present invention. Innovation to improve energy.

従来方式の産業用燃焼機器類の最先端技術において液状燃料では主にノズル噴霧方式の燃焼法が主流で噴霧の粒子は密度が荒く炎は燃焼炉内を直進するため炉内で炎の滞在時間が短くて噴霧燃料と空気との混合が不均一となる部分が多く、電子制御と高圧ノズル方式の最先端技術においても液状燃料では都市ガスやL.P.G.天然ガスのようなクリーン燃焼が不可能で未燃焼のエネルギーを含む排ガスを浄化システムの技術によって環境基準をクリアしているのが現状で、自動車においても完全燃焼されない部分の燃え残りの公害対策には触媒による排ガス浄化システムの技術によってクリアしている。
しかし従来の燃焼方式では現状が限界のようで、その一方石炭燃焼では燃焼炉内に送る空気量の調整燃焼が主流、これらの従来の技術では燃料の一部分が熱エネルギーに転換されないまま大気に放出され未燃焼のエネルギーの損失と排ガス浄化システムの設備のコスト高の課題があり、大気汚染の発生源と言われている化石燃料の全種類において都市ガスやL.P.G.天然ガスのようなクリーン燃焼技術の確立が求められている。
In the state-of-the-art technology of industrial combustion equipment of the conventional method, for the liquid fuel, the combustion method of the nozzle spray method is mainly used, and the spray particles are coarse in density, and the flame travels straight in the combustion furnace, so the residence time of the flame in the furnace In many cases, the mixture of sprayed fuel and air is non-uniform because it is short, and even in the state-of-the-art technology of electronic control and high-pressure nozzle system, liquid fuels include city gas and L.P. P. G. It is currently clearing environmental standards by purifying system technology for exhaust gas containing unburned energy that cannot be cleanly burned, such as natural gas, and as a countermeasure against pollution of remaining unburned parts even in automobiles Is cleared by the technology of exhaust gas purification system using catalyst.
However, with the conventional combustion method, the current situation seems to be the limit. On the other hand, with coal combustion, the adjustment combustion of the amount of air sent into the combustion furnace is the mainstream, and with these conventional technologies, a part of the fuel is released into the atmosphere without being converted into thermal energy. However, there is a problem of the loss of unburned energy and the high cost of the equipment of the exhaust gas purification system. In all types of fossil fuels that are said to be sources of air pollution, city gas and L.P. P. G. Establishment of clean combustion technology such as natural gas is required.

本発明の関連と類似文献なし。  There is no literature related to the present invention.

岩波、理化学辞典、第5版、121ページの運動の3法則のうち、運動の第3法則、作用反作用の法則に関連。  Iwanami, Physics and Chemistry Dictionary, 5th edition, related to the third law of motion and the law of action and reaction among the three laws of motion on page 121.

上記で述べた通り電子制御と高圧ノズル方式の最先端技術においても液状燃料では従来の燃焼方式では現状が限界にあり石炭燃焼では燃焼炉内に送る空気量の調整燃焼が主流のままで進歩なし、このような諸課題が未解決なために世界の一次エネルギー事情では化石燃料が大気汚染の発生源となっているその重要課題を解決の技術革新を以下に説明。  As described above, even in the state-of-the-art technology of electronic control and high-pressure nozzle method, the current state of liquid fuel is limited in the conventional combustion method, and in coal combustion, adjustment combustion of the amount of air sent into the combustion furnace remains the mainstream and there is no progress Because these issues are still unresolved, the world's primary energy situation describes fossil fuels as the source of air pollution.

上記の課題を解決するための手段に本発明は、流体運動の作用反作用に外力運動を与える技術構成の新しい気体の発生原理の燃焼システムによるクリーン燃焼法と二酸化炭素の分解及び酸素と一酸化炭素等の分離システムを構成した。具体的には、円筒状内に扇風翼の付いた凹面真円体の機構を内設、その凹面真円体に外力運動を与えることによって円筒状内には前進作用の主力空気の流れが発生、その空気は円筒状内で前進高速横流体運動となる。その中心部分は前進の流れに対して反作用がおこり円筒状内には空気の流れの作用反作用の相互作用の高速環流現象が発生する。
その作用反作用の高速環流現象の中に燃料を送れば超微粒子の高速横流体運動の燃料ガスが発生し、そのガス気体に点火すれば極めてクリーン燃焼となる。
燃料ガス気体の超微粒子の粒子の太さは凹面真円体に与える外力運動エネルギー量に比例する。
As a means for solving the above problems, the present invention provides a clean combustion method, decomposition of carbon dioxide, and decomposition of oxygen and carbon monoxide by a combustion system based on a new gas generation principle having a technical configuration that gives external force motion to the action and reaction of fluid motion. And so on. Specifically, a concave circular body with a fan blade in a cylindrical shape is installed, and external force motion is given to the concave circular body, so that the main air flow of forward action is generated in the cylindrical shape. The generated air becomes a forward high-speed lateral fluid motion within the cylinder. The central portion reacts with the forward flow, and a high-speed recirculation phenomenon occurs in the cylindrical shape due to the interaction of the air flow and the reaction.
If fuel is sent during the high-speed recirculation phenomenon of reaction and reaction, fuel gas of high-speed transverse fluid motion of ultrafine particles is generated, and if the gas is ignited, extremely clean combustion occurs.
The thickness of the ultrafine particles of the fuel gas is proportional to the amount of external force kinetic energy applied to the concave circular body.

本発明のシステムで燃焼させた排気ガスを、白金系の特殊触媒の多層機構を通過させる触媒効果によってCOを高温可逆的にC0とOに分解、更に冷却層においてC0とOの分子を安定させ、Oは酸素透過膜のフィルターを通して大気へ放出、残ったC0等は燃焼室に送り再燃焼させる機構。System exhaust gas is burned in the present invention, decomposition of CO 2 to a high temperature reversibly C0 and O 2 by the catalytic effect of passing the multilayer arrangement of platinum-based special catalysts, further molecules of the cooling layer C0 and O 2 , O 2 is released to the atmosphere through an oxygen permeable membrane filter, and the remaining C0 etc. is sent to the combustion chamber for recombustion.

本発明による超微粒子の気体は燃焼室内で高速横流体の運動現象によって燃料と空気、酸素の混合がより均一化されて燃焼するために、従来方式の炎の直進タイプに比べて、炎の高速横流体の運動現象により燃焼室内で炎の滞在時間が極めて長く、炎の中心部分の高温ガスは燃焼室内の奥に向かって環流現象がおこる。そのために超微粒子のガス気体燃料は燃焼室内で流星が大気に突入して燃え尽きるように燃料が燃焼炉内で燃え尽きて排気され、燃料の熱転換率がより向上されたクリーン燃焼となる。  The ultrafine gas according to the present invention burns in a combustion chamber with a more uniform mixing of fuel, air, and oxygen due to the movement phenomenon of the high-speed lateral fluid. The staying time of the flame in the combustion chamber is extremely long due to the movement phenomenon of the lateral fluid, and the high temperature gas in the center portion of the flame causes a reflux phenomenon toward the back of the combustion chamber. For this reason, the ultrafine gas gas fuel is burned and exhausted in the combustion furnace so that meteors enter the atmosphere and burned out in the combustion chamber, resulting in clean combustion with a further improved thermal conversion rate of the fuel.

本発明の気体の発生原理で発生させた水の超微粒子(最小分子レベル)の気体と燃料の気体との混合の加湿燃焼では、水の超微粒子は炎の熱で分解されて水素は発熱、酸素は空気中の酸素にプラスされて燃焼をより向上させ、燃焼で余った酸素は大気へ放出。  In the humidified combustion of the mixture of the water ultrafine particles (minimum molecular level) gas generated by the gas generation principle of the present invention and the fuel gas, the ultrafine water particles are decomposed by the heat of the flame and hydrogen is exothermic, Oxygen is added to oxygen in the air to improve combustion, and excess oxygen is released into the atmosphere.

これまで大気汚染の発生源と言われている化石燃料の燃焼でも、本発明では水の超微粒子を炎の熱分解によって大気に酸素を放出のメリットがあり、これまで大気汚染の発生源と言われた化石燃料の燃焼が本発明の新しい気体の発生原理によって、新しい気体運動の現象を発生させ、それによる新しい燃焼システムによってこれまでとは逆に化石燃料の燃焼は大気環境の改善エネルギーへの技術革新。  Even the combustion of fossil fuels, which has been said to be a source of air pollution, has the merit of releasing oxygen into the atmosphere by thermal decomposition of ultrafine water particles in the present invention. Combustion of fossil fuels generates a new phenomenon of gas motion due to the new gas generation principle of the present invention, and the new combustion system thereby reverses the combustion of fossil fuels to the improvement of the atmospheric environment. Innovation.

上述したようにこれまで大気汚染の発生源と言われた化石燃料を本発明によってこれまでとは逆に化石燃料を大気環境の改善エネルギーへ転換の技術革新、そして本発明による超微粒子のガス化クリーン燃焼を可能した各種の燃料は、液状炭化水素、バイオ燃料及び石炭等、更に含水汚染物のクリーン燃焼を可能にした。  As described above, the fossil fuel, which has been said to be the source of air pollution as described above, is a technological innovation for converting fossil fuel into energy for improving the air environment, and gasification of ultrafine particles according to the present invention. The various fuels that enabled clean combustion enabled clean combustion of liquid hydrocarbons, biofuels, coal, and other water-containing contaminants.

本発明の構成図Configuration diagram of the present invention 燃焼機構の構成断面図Cross-sectional view of the combustion mechanism 3bCO分解機構室の断面図と4bCO等分離機構室の断面図Sectional view of 3bCO 2 decomposition mechanism chamber and sectional view of separation mechanism chamber for 4bCO, etc. 本発明全体構成外観図Overall configuration external view of the present invention

以下、本発明の実施の形態を図1〜図4に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は本発明の構成図。1バーナー、2燃焼機構、3COの分解機構、4O分離機構、5煙突,6と7はCO等の再燃焼回路。FIG. 1 is a block diagram of the present invention. 1 burner, 2 combustion mechanism, 3CO 2 decomposition mechanism, 4O 2 separation mechanism, 5 chimney, 6 and 7 are recombustion circuits such as CO.

図2は燃焼機構の構成断面図。動力源のモ−タ−1の回転動力が次のプ−リ−2、シャフト18、扇風翼3a、凹面真円体3bに高速回転で伝わり、扇風翼3aによって発生の4cの空気は前進作用の主力空気である。4a.4b.4g、4eの各々から吸い込まれる空気は、凹面真円体(高速横流体運動の気体発生機)3bの高速回転によって16の燃焼室内へ進行する。
円筒状の燃焼室内で前進作用の主力空気が高速横流体運動で進行するに対し、その反作用現象で5からバ−ナ−機構の部分15の方向へ気体の環流現がおこり16の円筒状の燃焼室内では6,7、8,9のように空気の高速横流体運動現象が発生する。尚、4g、4eは二次空気の吸い込み口。これらの現象は円筒状内において作用反作用に外力運動を与える技術によって起こせる現象である。
このような空気の高速横流体運動現象が発生している燃焼室内に10bの燃料の入口から液状燃料を送れば液状燃料は6、7、8からは超微粒子の気体が発生する。それは5,6,7、8,9の連続高速横流体運動の作用によって超微粒子のガス気体となる。
このような機構で発生された超微粒子のガス気体に点火機構10aで点火をすれば円筒状の燃焼室内ではてクリーンなガス化燃焼となる。更に水の供給入り口W、から水又は加湿器で発生させた水の噴霧状を送れば水分は超微粒子になって炎の熱で分解され酸素のプラス効果で極めてクリーン燃焼となる。尚、燃焼室内の炎は11の空気の吸い込み量を14の調整によって燃焼室内の炎の形状をコントロールできる。
以下は本発明燃焼機構の各部分の説明である。次のそれぞれの各部分の働きによって図2の全機能がある。
6は第一負圧部分(減圧部)7は第二負圧部分(減圧部)8は気体の発生端部分、9炎の高速横流体運動現象の軌道、10a点火機構、W、水の供給入り口、11炎の形状調整用空気の入り口、13前進作用の主力空気の流量調整機、14は11の空気量調整用の開閉機構、15バ−ナ−機構の部分、16燃焼室の断面、17シャフト受けベアリング、18シャフト。12a.12bクリーン排気ガス。
[図3]3bCO分解機構室の断面図と4bCO等分離機構室の断面図
FIG. 2 is a sectional view of the structure of the combustion mechanism. The rotational power of motor 1 of the power source is transmitted at high speed to the next pulley-2, shaft 18, fan blade 3a, and concave circular body 3b, and the air 4c generated by fan blade 3a is Main air for forward action. 4a. 4b. The air sucked from each of 4g and 4e travels into the 16 combustion chambers by the high-speed rotation of the concave circular body (gas generator for high-speed lateral fluid motion) 3b.
In the cylindrical combustion chamber, the main air of forward action travels by high-speed transverse fluid motion, but the reaction phenomenon causes the gas to recirculate in the direction of the burner mechanism portion 15 and the cylindrical shape of 16 In the combustion chamber, a high-speed transverse fluid motion phenomenon of air occurs like 6, 7, 8, and 9. Reference numerals 4g and 4e are secondary air inlets. These phenomena are phenomena that can be caused by a technique for applying an external force motion to the reaction within the cylinder.
If liquid fuel is sent from the fuel inlet 10b into the combustion chamber in which such a high-speed transverse fluid motion phenomenon of air occurs, ultrafine gas is generated from the liquid fuel 6, 7, and 8. It becomes an ultrafine gas gas by the action of continuous high-speed transverse fluid motion of 5, 6, 7, 8, and 9.
If the gas gas of ultrafine particles generated by such a mechanism is ignited by the ignition mechanism 10a, clean gasification combustion is achieved in the cylindrical combustion chamber. Further, if water or a spray form of water generated by a humidifier is sent from the water supply inlet W, the water becomes ultrafine particles and is decomposed by the heat of the flame, resulting in extremely clean combustion due to the positive effect of oxygen. The flame shape in the combustion chamber can be controlled by adjusting the amount of air sucked in 11 to 14.
The following is a description of each part of the combustion mechanism of the present invention. Each of the following functions has all the functions shown in FIG.
6 is a first negative pressure part (decompression part) 7 is a second negative pressure part (decompression part) 8 is a gas generation end part, 9 is a trajectory of high-speed lateral fluid motion phenomenon of flame, 10a ignition mechanism, W, supply of water Inlet, 11 flame shape adjusting air inlet, 13 forward-acting main air flow rate adjuster, 14 air quantity adjusting opening / closing mechanism, 15 burner mechanism part, 16 combustion chamber cross section, 17 shaft bearing, 18 shaft. 12a. 12b clean exhaust gas.
[FIG. 3] Sectional view of 3bCO 2 decomposition mechanism chamber and sectional view of separation mechanism chamber for 4bCO, etc.

前図2の12a、12bのクリーン排気ガスは次の図3、3b内でCO分解機構のX、

Figure 2012189307
に分解、分解された分子を4b内のca冷却層で分子を安定させてfi酸素透過膜のフィルタ−によってOを分離、4b内から放出、CO等を次の図4の1Rからfによって2Rより燃焼室へ送る再燃焼のシステムである。Before Figure 2 12a, X of CO 2 decomposition mechanism 12b is clean exhaust gas in the following figure 3, 3b,
Figure 2012189307
The molecule decomposed into O 2 is stabilized in the ca cooling layer in 4b, and O 2 is separated by the filter of the fi oxygen permeable membrane, released from inside 4b, CO, etc. from 1R in the next FIG. This is a re-combustion system that sends the fuel from 2R to the combustion chamber by f.

図4は本発明全体構成外観図FIG. 4 shows the overall configuration of the present invention.

1バ−ナ−、2燃焼機構の構成外観、3COの分解機構の外観、4O等分離機構の外観、1RはCO等の再燃焼回路、2Rは燃焼室へCO等の入り口、20煙突、10b燃料の入り口、W、水の供給入り口、f、CO等を2Rへの送風機、1 Burner, 2 Combustion mechanism exterior, 3CO 2 decomposition mechanism exterior, 4O 2 etc. separation mechanism exterior, 1R CO recombustion circuit, 2R CO inlet to combustion chamber, 20 chimney, etc. 10b Fuel inlet, W, water supply inlet, f, CO etc. blower to 2R,

本発明は上記の発明を実施するための形態の図2、に述べたシステムにおいて既に次の実験実績の実施例がある。重油のA、B、C油のガス化無煙燃焼に成功、廃食用油のガス化無煙燃焼に成功、石炭のガス化無煙燃焼に成功、L.P.G.ガスと水混合、灯油と水混合、重油のA、B、C油と水混合等の燃焼では、これらの燃料に対し、容積比で燃料1に対して水1以上の混合でクリーン燃焼に成功しており排気ガスはいずれも無味無臭である。  The present invention already has the following experimental results in the system described in FIG. 2 for implementing the above-described invention. Successful gasification and smokeless combustion of heavy oil A, B and C oils, successful gasification and smokeless combustion of waste cooking oil, successful gasification and smokeless combustion of coal, P. G. In the combustion of gas and water mixing, kerosene and water mixing, heavy oil A, B, C oil and water mixing, etc., these fuels succeeded in clean combustion by mixing water 1 or more with fuel 1 by volume. The exhaust gas is tasteless and odorless.

本発明技術の応用分野では、産業用燃焼システム、ボイラー、暖房用機機(液状燃料用ストーブ、園芸ハウス用大小温風機、ビル用暖房機等)ディーゼルエンジンの排熱還元エネルギーの利用による重油のガス化システム等。  In the field of application of the technology of the present invention, industrial combustion systems, boilers, heating machines (liquid fuel stoves, large and small warm air heaters for horticultural houses, building heaters, etc.) Gasification system etc.

[図1]本発明の構成図
1バ−ナ−
2燃焼機構
3COの分解機構
4O分離機構
5煙突
6と7はCO等の再燃焼回路
[図2]燃焼機構の構成断面図
[FIG. 1] Configuration diagram of the present invention 1 Burner
2 Combustion mechanism 3CO 2 decomposition mechanism 4O 2 separation mechanism 5 Chimney 6 and 7 are re-combustion circuits such as CO [FIG.

1モ−タ−
2プ−リ−
33a扇風翼
3b凹面真円体(高速横流体運動の気体発生機)
4 4a.4b.4c前進作用の主力空気
4g、4eは二次空気の吸い込み口
5前進作用の主力空気の高速横流体運動の進行に対する反作用現象でバ−ナ−の方向へ気体の環流現象
6第一負圧部分(減圧部)
7第二負圧部分(減圧部)
8気体の発生端部分
9炎の高速横流体運動現象の軌道
10 10a 点火機構、
10b 燃料の入り口
W 水の供給入り口
11炎の形状調整用空気の入り口
12 12a.12bクリーン排気ガス
13前進作用の主力空気の流量調整機
14 11の空気量調整用の開閉機構
15バ−ナ−機構の部分
16燃焼室の断面
17シャフト受けベアリング
18シャフト
[図3]3bCO分解機構室の断面図と4bCO等分離機構室の断面図
1 motor
2 Puri
33a Fan 3b Concave round body (gas generator for high-speed transverse fluid motion)
4 4a. 4b. 4c, main air for forward action 4g, 4e are inlets for secondary air 5 gas reaction in the direction of the burner in response to the progress of high-speed lateral fluid movement of main force air for forward action 6 first negative pressure part (Decompression section)
7 Second negative pressure part (pressure reduction part)
8 Gas generation end portion 9 Trajectory of high-speed lateral fluid motion phenomenon of flame 10 10a Ignition mechanism,
10b Fuel inlet W Water supply inlet 11 Flame shape adjusting air inlet 12 12a. 12b Clean exhaust gas 13 Main air flow rate regulator 14 for forward action 14 11 Opening / closing mechanism 15 for adjusting air quantity 15 Burner mechanism section 16 Combustion chamber section 17 Shaft bearing 18 shaft [Fig. 3] 3bCO 2 decomposition Sectional view of mechanism chamber and sectional view of separation mechanism chamber such as 4bCO

3b CO分解機構の断面図
4b OとCO等の分離機構の断面図
X 白金系の特殊触媒層
ca冷却層
CL1冷却媒体入り口
CL2冷却媒体出口
fi酸素透過膜のフィルタ−
19OとCO等の分離壁
[図4]本発明全体構成外観図
3b Cross-sectional view of CO 2 decomposition mechanism 4b Cross-sectional view of separation mechanism of O 2 and CO X Platinum-based special catalyst layer ca cooling layer CL1 cooling medium inlet CL2 cooling medium outlet fi oxygen permeable membrane filter
Separation wall of 19O 2 and CO, etc. [FIG. 4] Overall configuration external view of the present invention

1バ−ナ−
2燃焼機構の構成外観
3CO分解機構室の外観
4O等分離機構の外観
1R CO等の再燃焼回路
2R燃焼室へCO等の入り口
20煙突
10b燃料の入り口
W 水の供給入り口
f CO等を2Rへの送風機
1 burner
2 Appearance of the combustion mechanism 3 Appearance of the CO 2 decomposition mechanism chamber 4 Appearance of the 2 O 2 separation mechanism 1 Re-combustion circuit for 2R CO, etc. 2R Combustion entrance 20 CO entrance 20 Chimney 10b Fuel entrance W Water supply entrance f CO etc. Blower to 2R

Claims (3)

円筒状内に翼付凹面真円体の回転機器を内設、その回転機器に外力による回転運動を与える機構によって円筒状内には高速横流体運動の前進する空気の流れが発生する。円筒状内の中心部分には、空気の流れの方向への作用と逆の方向への反作用との相互作用の環流現象が発生する。その環流現象の環境に燃料を送る手段よって超微粒子の燃料ガス気体を発生させる凹面真円体高速横流体運動の気体発生システム。  A rotating device having a concave circular body with wings is provided in the cylindrical shape, and a flow of air in which a high-speed transverse fluid motion advances is generated in the cylindrical shape by a mechanism that imparts a rotating motion to the rotating device by an external force. In the central part in the cylindrical shape, a recirculation phenomenon of interaction between the action in the air flow direction and the reaction in the opposite direction occurs. A gas generation system for concave high-speed lateral fluid motion that generates ultrafine fuel gas gas by means of sending fuel to the environment of the reflux phenomenon. 上記のシステムに液状の水又は加湿器で発生させた水の気体と各種燃料の混合燃焼のシステム。  A system of mixed combustion of liquid water or water gas generated by a humidifier in the above system and various fuels. 上記請求項1の燃焼システムの排気ガスを白金系の特殊触媒層の機構を通過させ高温で可逆的に二酸化炭素を分解、更に冷却層を通過させて酸素と一酸化炭素等の分子を安定させた後に酸素は酸素透過膜のフィルタ−を通して外部へ放出、一酸化炭素等を再燃焼回路を通して燃焼室に送るシステム。  The exhaust gas of the combustion system of claim 1 passes through the mechanism of a platinum-based special catalyst layer, reversibly decomposes carbon dioxide at a high temperature, and further passes through a cooling layer to stabilize molecules such as oxygen and carbon monoxide. After that, oxygen is released to the outside through the filter of the oxygen permeable membrane, and carbon monoxide is sent to the combustion chamber through the recombustion circuit.
JP2011068790A 2011-03-08 2011-03-08 Gas generation method of technological configuration for providing external force motion to action and reaction of fluid motion, and carbon dioxide decomposition, oxygen separation system Withdrawn JP2012189307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011068790A JP2012189307A (en) 2011-03-08 2011-03-08 Gas generation method of technological configuration for providing external force motion to action and reaction of fluid motion, and carbon dioxide decomposition, oxygen separation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011068790A JP2012189307A (en) 2011-03-08 2011-03-08 Gas generation method of technological configuration for providing external force motion to action and reaction of fluid motion, and carbon dioxide decomposition, oxygen separation system

Publications (1)

Publication Number Publication Date
JP2012189307A true JP2012189307A (en) 2012-10-04

Family

ID=47082680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011068790A Withdrawn JP2012189307A (en) 2011-03-08 2011-03-08 Gas generation method of technological configuration for providing external force motion to action and reaction of fluid motion, and carbon dioxide decomposition, oxygen separation system

Country Status (1)

Country Link
JP (1) JP2012189307A (en)

Similar Documents

Publication Publication Date Title
KR100679869B1 (en) Pm reduction equipment of dpf system using plasma reactor
US7896645B2 (en) Three phased combustion system
JP6674045B2 (en) Catalytic flameless combustion apparatus and combustion method with emission of pollutants lower than 1 ppm
US9593609B2 (en) System and method for urea decomposition to ammonia in a side stream for selective catalytic reduction
CN102278240A (en) Method and device for reducing oil consumption of diesel engine by utilizing catalytic decomposition of oxygen-containing fuels
KR20090077777A (en) System for generating brown gas and uses thereof
JP2008514898A (en) Catalyst transfer system
KR100638639B1 (en) A plasma reactor for vaporization and mixing of liquid fuel
CN106233071A (en) Reduce fuel type burner
KR100699495B1 (en) PM Reduction Equipment of DPF System using Plasma Reactor
JP2006046765A (en) Combustion device
CN102020243A (en) Method for decomposing water into hydrogen-oxygen mixed gas fuel
RU81786U1 (en) DEVICE FOR FUEL SUPPLY
JP2012189307A (en) Gas generation method of technological configuration for providing external force motion to action and reaction of fluid motion, and carbon dioxide decomposition, oxygen separation system
KR100839458B1 (en) The burning system of heavy oil and emulsion oil and emulsion of heavy oil
JP2008057441A (en) Fuel supply device for internal combustion engine
RU2750638C1 (en) Device for flameless obtaining of thermal energy from hydrocarbon fuels
WO2011142811A1 (en) A recuperated combustion apparatus assembly with steam injection
KR102417963B1 (en) Energy producing system using emulsion and operating method thereof
JP2018136112A (en) Method of manufacturing device for supplying nano micro-particle water (particle diameter 1 to 100 nm) as high functional air for combustion, improving combustion efficiency and generating such high functional air for combustion
JP6574183B2 (en) Process of combustion in a heat engine of solid, liquid or gaseous hydrocarbon (HC) raw materials, heat engine and system for producing energy from hydrocarbon (HC) material
TW202010833A (en) Method and device for enhancing combustion efficiency
CN202660563U (en) Oxygen-enriched local oxygen-increasing jet auxiliary combustion device for incinerator
KR101895379B1 (en) Apparatus for generating high-pressure steam
WO2023240372A1 (en) System and method for capturing combustion gases and collecting the particulate material thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513