JP2012188982A - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP2012188982A
JP2012188982A JP2011052484A JP2011052484A JP2012188982A JP 2012188982 A JP2012188982 A JP 2012188982A JP 2011052484 A JP2011052484 A JP 2011052484A JP 2011052484 A JP2011052484 A JP 2011052484A JP 2012188982 A JP2012188982 A JP 2012188982A
Authority
JP
Japan
Prior art keywords
suction
pipe
cross
rotary compressor
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011052484A
Other languages
Japanese (ja)
Other versions
JP5528379B2 (en
Inventor
Toshitsune Arai
聡経 新井
Masao Tani
谷  真男
Tokuyoshi Fukaya
篤義 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011052484A priority Critical patent/JP5528379B2/en
Priority to KR1020120015763A priority patent/KR101335100B1/en
Priority to CZ2012-160A priority patent/CZ306345B6/en
Priority to CN201210061252.6A priority patent/CN102678554B/en
Publication of JP2012188982A publication Critical patent/JP2012188982A/en
Application granted granted Critical
Publication of JP5528379B2 publication Critical patent/JP5528379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/902Hermetically sealed motor pump unit

Abstract

PROBLEM TO BE SOLVED: To provide a rotary compressor whose size can be miniaturized without causing a pressure loss in a suction gas passage and accomplishing saving resources, a higher efficiency, and low vibrations.SOLUTION: The rotary compressor includes a compressing mechanism formed in a sealed vessel and driven by a motor through a crankshaft, wherein the compressing mechanism is furnished with a cylinder having an internal space approximately in cylindrical shape where a suction port to suck in the low-pressure fluid in the refrigerating cycle is bored in a radial direction, and a coupling pipe to couple the suction port with a suction pipe located outside the sealed vessel. The cross-section shapes of the suction port, coupling pipe, and suction pipe are non-circular shapes whose dimensions in the rotational direction of the crankshaft are greater than in the axial direction of the crankshaft.

Description

この発明は、空気調和機や冷蔵庫等の冷凍空調装置の冷凍サイクルに用いられる、冷媒ガスの圧縮を行う回転圧縮機に関する。   The present invention relates to a rotary compressor that compresses refrigerant gas used in a refrigeration cycle of a refrigerating and air-conditioning apparatus such as an air conditioner or a refrigerator.

従来、シリンダ吸入ポートのシリンダ周方向の長さがシリンダ縦方向の長さより大きく設定される、若しくは、前記吸入ポートのシリンダ縦方向の長さがシリンダ周方向の長さより大きく設定されるように構成された回転圧縮機が提案されている(例えば、特許文献1参照)。   Conventionally, the length of the cylinder suction port in the circumferential direction of the cylinder is set to be greater than the length of the cylinder in the longitudinal direction, or the length of the suction port in the cylinder longitudinal direction is set to be greater than the length of the cylinder in the circumferential direction. A rotary compressor has been proposed (see, for example, Patent Document 1).

また、シリンダ吸入ポートを、主軸の軸方向寸法より回転方向寸法を大とした非円形断面形状とし、一方を前記非円形断面形状とし他方を円形断面形状とした接続部を備えている吸入フィッティングを介して吸入管と連結されるよう構成した回転圧縮機が提案されている(例えば、特許文献2参照)。   Also, a suction fitting having a non-circular cross-sectional shape in which the cylinder suction port has a rotational direction dimension larger than the axial direction dimension of the main shaft, one of which is the non-circular cross-sectional shape and the other is a circular cross-sectional shape. There has been proposed a rotary compressor configured to be connected to a suction pipe via a suction pipe (for example, see Patent Document 2).

特開平5−99170号公報JP-A-5-99170 特開2003−214370号公報JP 2003-214370 A

上記特許文献2に記載の回転圧縮機は、非円形断面形状のシリンダ吸入ポートと円形断面形状の吸入管を、吸入フィッティングを介して連結している。低圧流体の流路であるシリンダ吸入ポートと吸入管の間で流路面積減少による圧損を生じさせないためには、吸入管の内径を吸入ポートの軸方向寸法に対して大きくせざるを得ず、圧縮機軸方向寸法の縮小による小型化実現の阻害要因となっていた。また、多気筒圧縮機においては複数の吸入管の軸方向間隔を縮小することができず、その影響が顕著であった。   In the rotary compressor described in Patent Literature 2, a cylinder suction port having a non-circular cross-sectional shape and a suction pipe having a circular cross-sectional shape are connected via a suction fitting. In order not to cause pressure loss due to the reduction of the flow area between the cylinder suction port and the suction pipe, which is a flow path for low-pressure fluid, the inner diameter of the suction pipe must be made larger than the axial dimension of the suction port, This was an impediment to the realization of downsizing due to the reduction in the axial dimension of the compressor. Further, in the multi-cylinder compressor, the axial interval between the plurality of suction pipes cannot be reduced, and the influence is remarkable.

この発明は、上記のような課題を解決するためになされたもので、吸入ガス流路の圧損を生じさせることなく、圧縮機の小型化を実現でき、省資源、高効率、低振動の回転圧縮機を提供する。   The present invention has been made to solve the above-described problems, and can achieve downsizing of the compressor without causing pressure loss of the suction gas flow path, and can achieve resource saving, high efficiency, and low vibration rotation. Provide a compressor.

この発明に係る回転圧縮機は、密閉容器内にクランク軸を介して電動機で駆動される圧縮機構を備え、
圧縮機構は、
略円筒状の内部空間を有し、内部空間に冷凍サイクルの低圧流体を吸入する吸入ポートが径方向に穿設されたシリンダと、
吸入ポートと密閉容器外の吸入管とを連結する連結管と、を備え、
吸入ポート、連結管及び吸入管の断面形状が、クランク軸の軸方向寸法より回転方向寸法が大きい非円形形状であることを特徴とする。
The rotary compressor according to the present invention includes a compression mechanism that is driven by an electric motor via a crankshaft in a sealed container,
The compression mechanism is
A cylinder having a substantially cylindrical inner space, and a suction port for sucking a low-pressure fluid of the refrigeration cycle is bored in the inner space in a radial direction;
A connecting pipe that connects the suction port and the suction pipe outside the sealed container,
The cross-sectional shapes of the suction port, the connecting pipe, and the suction pipe are non-circular shapes having a rotational dimension larger than the axial dimension of the crankshaft.

この発明に係る回転圧縮機は、吸入ポート、連結管及び吸入管の断面形状を、クランク軸の軸方向寸法より回転方向寸法が大きい非円形形状としたので、これらが円形断面形状の場合に比べて、シリンダ、連結管、吸入管の軸方向寸法を、流路面積の減少による圧損を生じさせることなく縮小させることができ、圧縮機軸方向寸法の縮小による小型化を図ることが可能となり、省資源、高効率、低振動の回転圧縮機を得ることが可能となる。   In the rotary compressor according to the present invention, since the cross-sectional shapes of the suction port, the connecting pipe, and the suction pipe are non-circular shapes whose rotational direction dimensions are larger than the axial direction dimensions of the crankshaft, these are compared with the circular cross-sectional shape. Thus, the axial dimensions of the cylinder, connecting pipe, and suction pipe can be reduced without causing pressure loss due to the reduction of the flow path area, and downsizing can be achieved by reducing the axial dimension of the compressor. A resource, high efficiency, and low vibration rotary compressor can be obtained.

実施の形態1を示す図で、2気筒回転圧縮機100の縦断面図。FIG. 2 is a diagram showing the first embodiment and is a longitudinal sectional view of a two-cylinder rotary compressor 100. 図1の圧縮機構3の拡大図。The enlarged view of the compression mechanism 3 of FIG. 実施の形態1を示す図で、第1のシリンダ8の横断面図。FIG. 3 is a diagram showing the first embodiment, and is a cross-sectional view of the first cylinder 8. 図1のA部拡大図。The A section enlarged view of FIG. 実施の形態1を示す図で、吸入ポート50の断面図。FIG. 5 shows the first embodiment and is a cross-sectional view of the suction port 50. 図3のB−B断面図。BB sectional drawing of FIG. 実施の形態1を示す図で、吸入ポート50,51、吸入管40,41と、連結管60,61が円形断面形状の2気筒回転圧縮機100の外形図。FIG. 3 is a diagram showing the first embodiment, and is an external view of a two-cylinder rotary compressor 100 in which suction ports 50 and 51, suction pipes 40 and 41, and connection pipes 60 and 61 have a circular cross-sectional shape. 実施の形態1を示す図で、吸入ポート50,51、吸入管40,41と、連結管60,61が非円形断面形状の2気筒回転圧縮機100の外形図。FIG. 3 is a diagram showing the first embodiment, and is an external view of a two-cylinder rotary compressor 100 in which suction ports 50 and 51, suction pipes 40 and 41, and connection pipes 60 and 61 have a non-circular cross-sectional shape. 実施の形態1を示す図で、吸入管挿入部60bを円形とし圧入部60aを非円形として同一流路面積で繋げる場合の連結管60を示す図((a)は回転方向に長穴、(b)は軸方向に長穴)。The figure which shows Embodiment 1, and is a figure which shows the connection pipe | tube 60 in case the suction pipe insertion part 60b is circular and the press-fit part 60a is non-circular and it connects with the same flow-path area ((a) is a long hole in a rotation direction, ( b) is an elongated hole in the axial direction). 実施の形態1を示す図で、変形例1の2気筒回転圧縮機200の縦断面図。FIG. 5 shows the first embodiment, and is a longitudinal sectional view of a two-cylinder rotary compressor 200 of a first modification. 実施の形態1を示す図で、変形例1の2気筒回転圧縮機200の縦断面図(吸入管22,23の連結管接続部22a,23aが非円形断面形状)。FIG. 5 shows the first embodiment, and is a longitudinal sectional view of a two-cylinder rotary compressor 200 of Modification 1 (the connection pipe connecting portions 22a and 23a of the suction pipes 22 and 23 are non-circular cross-sectional shapes). 実施の形態1を示す図で、断面形状が長穴の吸入ポート50と連結管60の圧入部60aを圧入した際の、連結管60の内部応力の方向を示す模式図。FIG. 5 shows the first embodiment and is a schematic diagram showing the direction of internal stress of the connecting pipe 60 when the suction port 50 having a long hole and the press-fitting portion 60a of the connecting pipe 60 are press-fitted. 実施の形態1を示す図で、連結管60の圧入部60aの一変形形態を示す模式図。FIG. 5 shows the first embodiment, and is a schematic diagram showing a modification of the press-fit portion 60a of the connecting pipe 60. FIG. 実施の形態1を示す図で、連結管60の圧入部60aの断面図。FIG. 4 shows the first embodiment, and is a cross-sectional view of a press-fit portion 60a of a connecting pipe 60. 実施の形態1を示す図で、吸入ポート縁50b及び吐出ポート縁70aで決まる圧縮工程角度θを示す図。FIG. 5 shows the first embodiment, and shows a compression process angle θ determined by a suction port edge 50b and a discharge port edge 70a.

実施の形態1.
図1は実施の形態1を示す図で、2気筒回転圧縮機100の縦断面図である。2気筒回転圧縮機100は、高圧雰囲気の密閉容器1内に、固定子2aと回転子2bとを有する電動機2と、電動機2によりクランク軸4を介して駆動される圧縮機構3と、図示しない冷凍機油(圧縮機構3の摺動部を潤滑するもので、密閉容器1内の底部に貯留する)とが設けられる。
Embodiment 1 FIG.
FIG. 1 is a longitudinal sectional view of a two-cylinder rotary compressor 100 showing the first embodiment. The two-cylinder rotary compressor 100 includes an electric motor 2 having a stator 2a and a rotor 2b in a sealed container 1 in a high-pressure atmosphere, a compression mechanism 3 driven by the electric motor 2 via a crankshaft 4, and not shown. Refrigerating machine oil (which lubricates the sliding portion of the compression mechanism 3 and is stored at the bottom of the sealed container 1) is provided.

密閉容器1は、胴部1a、上皿容器1b、下皿容器1cとで構成される。上皿容器1bと胴部1a、下皿容器1cと胴部1aが夫々溶接により一体化される。   The hermetic container 1 includes a body 1a, an upper dish container 1b, and a lower dish container 1c. The upper dish container 1b and the trunk part 1a, and the lower dish container 1c and the trunk part 1a are integrated by welding.

圧縮機構3が密閉容器1の底部に設けられ、圧縮機構3の上方に電動機2が設けられる。   The compression mechanism 3 is provided at the bottom of the hermetic container 1, and the electric motor 2 is provided above the compression mechanism 3.

冷凍サイクルの低圧側に接続される吸入管40,41から低圧の冷媒ガスを圧縮機構3が吸入し、圧縮する。   The compression mechanism 3 sucks and compresses low-pressure refrigerant gas from suction pipes 40 and 41 connected to the low-pressure side of the refrigeration cycle.

圧縮機構3から吐出される高圧の冷媒ガスは、電動機2を通過し、吐出管25から冷凍サイクルの高圧側に吐出される。   The high-pressure refrigerant gas discharged from the compression mechanism 3 passes through the electric motor 2 and is discharged from the discharge pipe 25 to the high-pressure side of the refrigeration cycle.

電動機2は、通常は、回転子2bに永久磁石を使用するブラシレスDCモータである。但し、誘導電動機が使用される場合もある。   The electric motor 2 is usually a brushless DC motor that uses a permanent magnet for the rotor 2b. However, an induction motor may be used.

外部電源(図示せず)からガラス端子26、リード線27を経由して電力が電動機2の固定子2aに供給される。   Electric power is supplied from an external power source (not shown) to the stator 2 a of the electric motor 2 through the glass terminal 26 and the lead wire 27.

後述するが、密閉容器1の接続部1d,1eに、吸入管40,41が溶接により接続される。   As will be described later, the suction pipes 40 and 41 are connected to the connection portions 1d and 1e of the sealed container 1 by welding.

図2は図1の圧縮機構3の拡大図、図3は実施の形態1を示す図で、第1のシリンダ8の横断面図である。図2、図3を参照しながら、圧縮機構3の構成について説明する。クランク軸4は、電動機2の回転子2bに固定され、主軸受6により支持される主軸4aと、主軸4aの反対側に設けられ、副軸受7で支持される副軸4bと、主軸4aと副軸4bとの間に所定の位相差(例えば、180°)を設けて形成される偏芯軸4c,4dを有する。   FIG. 2 is an enlarged view of the compression mechanism 3 of FIG. 1, and FIG. 3 is a diagram showing the first embodiment, and is a transverse sectional view of the first cylinder 8. The configuration of the compression mechanism 3 will be described with reference to FIGS. 2 and 3. The crankshaft 4 is fixed to the rotor 2b of the electric motor 2, and is supported by the main bearing 6, the main shaft 4a is provided on the opposite side of the main shaft 4a, the sub shaft 4b is supported by the sub bearing 7, and the main shaft 4a. There are eccentric shafts 4c and 4d formed with a predetermined phase difference (for example, 180 °) between the sub shaft 4b.

主軸受6は、断面が略T字形状である。クランク軸4の主軸4aに摺動のためのクリアランスを持って嵌合され、回転自在に主軸4aを軸支する。また、第1のシリンダ8の両端部の開口部の一方(電動機2側)を閉塞する。   The main bearing 6 has a substantially T-shaped cross section. The main shaft 4a of the crank shaft 4 is fitted with a clearance for sliding, and the main shaft 4a is rotatably supported. Further, one of the opening portions at both ends of the first cylinder 8 (on the electric motor 2 side) is closed.

副軸受7は、断面が略T字形状である。クランク軸4の副軸4bに摺動のためのクリアランスを持って嵌合され、回転自在に副軸4bを軸支する。また、第2のシリンダ9の両端部の開口部の一方(反電動機2側)を閉塞する。   The sub bearing 7 has a substantially T-shaped cross section. The countershaft 4b of the crankshaft 4 is fitted with a clearance for sliding and rotatably supports the countershaft 4b. Further, one of the openings at both ends of the second cylinder 9 (on the side opposite to the electric motor 2) is closed.

圧縮機構3は、主軸4a側の第1のシリンダ8と、副軸4b側の第2のシリンダ9とを備える。   The compression mechanism 3 includes a first cylinder 8 on the main shaft 4a side and a second cylinder 9 on the sub shaft 4b side.

第1のシリンダ8(シリンダ)は略円筒状の内部空間を有し、この内部空間に、クランク軸4の偏芯軸4cに回転自在に嵌合する第1のピストン11a(ローリングピストンともいう)が設けられる。さらに、偏芯軸4cの回転に伴い、第1のピストン11aに当接しながら、ベーン溝8b内を往復運動する第1のベーン5aが設けられる。ベーン溝8bは、第1のシリンダ8の径方向に設けられ、軸方向に貫通している。   The first cylinder 8 (cylinder) has a substantially cylindrical internal space, and a first piston 11a (also referred to as a rolling piston) that is rotatably fitted to the eccentric shaft 4c of the crankshaft 4 in this internal space. Is provided. Furthermore, the 1st vane 5a which reciprocates in the vane groove | channel 8b is provided, contacting the 1st piston 11a with rotation of the eccentric shaft 4c. The vane groove 8b is provided in the radial direction of the first cylinder 8 and penetrates in the axial direction.

クランク軸4の偏芯軸4cに回転自在に嵌合する第1のピストン11a、第1のベーン5aを収納した第1のシリンダ8の内部空間の軸方向両端面を、主軸受6と仕切板10とで閉塞して、密閉された室30を形成する。   The axial end faces of the internal space of the first cylinder 8 housing the first piston 11a and the first vane 5a that are rotatably fitted to the eccentric shaft 4c of the crankshaft 4 are connected to the main bearing 6 and the partition plate. 10 is closed to form a sealed chamber 30.

さらに、室30は、第1のピストン11aと第1のベーン5aとにより、クランク軸4の回転方向(図3に矢印で示す)前方に位置する吸入室30aと、クランク軸4の回転方向後方に位置する圧縮室30bとに仕切られている。   Further, the chamber 30 includes a suction chamber 30a positioned in front of the rotation direction of the crankshaft 4 (indicated by an arrow in FIG. 3) and a rearward rotation direction of the crankshaft 4 by the first piston 11a and the first vane 5a. And is divided into a compression chamber 30b.

第2のシリンダ9(シリンダ)も、円筒状の内部空間を有し、この内部空間に、クランク軸4の偏芯軸4dに回転自在に嵌合する第2のピストン11bが設けられる。さらに、偏芯軸4dの回転に伴い、第2のピストン11bに当接しながら、ベーン溝(図示せず)内を往復運動する第2のベーン(図示せず)が設けられる。ベーン溝は、第2のシリンダ9の径方向に設けられ、軸方向に貫通している。   The second cylinder 9 (cylinder) also has a cylindrical internal space, and a second piston 11b that is rotatably fitted to the eccentric shaft 4d of the crankshaft 4 is provided in this internal space. Further, a second vane (not shown) that reciprocates in a vane groove (not shown) while being in contact with the second piston 11b as the eccentric shaft 4d rotates is provided. The vane groove is provided in the radial direction of the second cylinder 9 and penetrates in the axial direction.

クランク軸4の偏芯軸4dに回転自在に嵌合する第2のピストン11b、第2のベーンを収納した第2のシリンダ9の内部空間の軸方向両端面を、副軸受7と仕切板10とで閉塞して室31を形成する。   A second piston 11b that is rotatably fitted to the eccentric shaft 4d of the crankshaft 4 and both axial end surfaces of the inner space of the second cylinder 9 that houses the second vane are connected to the auxiliary bearing 7 and the partition plate 10. And the chamber 31 is formed.

さらに、室31は、第2のピストン11bと第2のベーンとにより、クランク軸4の回転方向前方に位置する吸入室31a(図示せず)と、クランク軸4の回転方向後方に位置する圧縮室31b(図示せず)とに仕切られている。   Furthermore, the chamber 31 is compressed by a suction chamber 31a (not shown) positioned forward in the rotational direction of the crankshaft 4 and a rotational position rearward in the rotational direction of the crankshaft 4 by the second piston 11b and the second vane. It is partitioned into a chamber 31b (not shown).

第1のシリンダ8と第2のシリンダ9には、室30,31に冷凍サイクルの低圧流体を吸入するよう、吸入管40,41と室30,31とを夫々連通する吸入ポート50,51が径方向に穿設されている。   The first cylinder 8 and the second cylinder 9 have suction ports 50 and 51 that connect the suction pipes 40 and 41 and the chambers 30 and 31, respectively, so as to suck the low-pressure fluid of the refrigeration cycle into the chambers 30 and 31. It is drilled in the radial direction.

また、吸入ポート50,51と吸入管40,41を接続(連結)するため、連結管60,61が使用される。連結管60,61の圧入部60a,61aは、吸入ポート50,51の外側に拡径して設けられている圧入受入部50a,51aに圧入して接続される。連結管60,61の吸入管挿入部60b,61bには、吸入管40,41が挿入される。吸入管挿入部60b,61bは、密閉容器1の接続部1d,1e(図1参照)及び吸入管40,41と溶接により接続される。   In addition, connecting pipes 60 and 61 are used to connect (connect) the suction ports 50 and 51 and the suction pipes 40 and 41. The press-fit portions 60a and 61a of the connecting pipes 60 and 61 are press-fitted and connected to press-fit receiving portions 50a and 51a provided on the outside of the suction ports 50 and 51, respectively. The suction pipes 40 and 41 are inserted into the suction pipe insertion portions 60b and 61b of the connection pipes 60 and 61, respectively. The suction pipe insertion parts 60b and 61b are connected to the connection parts 1d and 1e (see FIG. 1) and the suction pipes 40 and 41 of the sealed container 1 by welding.

密閉容器1の接続部1d,1eは、連結管60,61の挿入時に干渉しないよう、密閉容器1の中心線に対し垂直に、且つ密閉容器1の中心方向に向かい取付けられる。   The connection portions 1d and 1e of the sealed container 1 are attached perpendicularly to the center line of the sealed container 1 and toward the center of the sealed container 1 so as not to interfere when the connecting pipes 60 and 61 are inserted.

図4は図1のA部拡大図である。密閉容器1の胴部1aと下皿容器1c、密閉容器1の胴部1aと接続部1d,1eはともに溶接される。そのため、接続部1dと接続部1e、密閉容器1の胴部1aの端部と接続部1eとの間には、溶接歪の影響を受けないよう各々所定の間隔L1、L2をもって取付られる。   FIG. 4 is an enlarged view of part A of FIG. The body 1a and the lower dish container 1c of the sealed container 1 are welded together, and the body 1a and the connecting parts 1d and 1e of the sealed container 1 are welded together. For this reason, the connection portion 1d and the connection portion 1e, and the end portion of the body portion 1a of the sealed container 1 and the connection portion 1e are attached with predetermined intervals L1 and L2 so as not to be affected by welding distortion.

図示しないが、密閉容器1と下皿容器1cが絞り成形等により一体構造である場合、L2は密閉容器下部R形状の端部と接続部1eとの間隔を指す。   Although not shown, when the sealed container 1 and the lower dish container 1c have an integral structure by drawing or the like, L2 indicates the distance between the end of the sealed container lower part R shape and the connecting portion 1e.

冷凍サイクルから流入する低圧流体は、吸入管40,41、連結管60,61の圧入部60a,61a、吸入ポート50,51の順に通り、室30,31に導入される。そのため、低圧流体の吸入経路で吸入圧損が大きくならないよう、吸入管40,41、連結管60,61の圧入部60a,61a、吸入ポート50,51の断面積を順に大きくするか、略同一としている。   The low-pressure fluid flowing from the refrigeration cycle is introduced into the chambers 30 and 31 through the suction pipes 40 and 41, the press-fit portions 60a and 61a of the connection pipes 60 and 61, and the suction ports 50 and 51 in this order. Therefore, the cross-sectional areas of the suction pipes 40 and 41, the press-fit portions 60a and 61a of the connection pipes 60 and 61, and the suction ports 50 and 51 are increased in order or substantially the same so that the suction pressure loss does not increase in the suction path of the low-pressure fluid. Yes.

図5は実施の形態1を示す図で、吸入ポート50の断面図である。吸入ポート50を、クランク軸4の軸方向寸法H1より回転方向寸法Dを大とした非円形断面形状としている。従って、断面積が同一の円形断面形状に比べて、軸方向寸法を小さくできる。   FIG. 5 shows the first embodiment and is a cross-sectional view of the suction port 50. The suction port 50 has a non-circular cross-sectional shape in which the rotational dimension D is larger than the axial dimension H1 of the crankshaft 4. Accordingly, the axial dimension can be reduced as compared with a circular cross-sectional shape having the same cross-sectional area.

吸入ポート50を非円形断面形状とし、H1<Dとすることにより、第1のシリンダ8の軸方向高さHを小さく設定できる。   By setting the suction port 50 to a non-circular cross-sectional shape and satisfying H1 <D, the axial height H of the first cylinder 8 can be set small.

図6は図3のB−B断面図である。図6に示すように、第1のシリンダ8の内周8aと、第1のピストン11aの外周11cの間には、互いの接触を避けるために、クリアランスWを設ける必要がある。クリアランスWと第1のシリンダ8の軸方向高さHとの積Sが、圧縮室30bと吸入室30aとを連通する漏れ流路となり、圧縮機効率低下の要因となることが知られている。第1のシリンダ8の軸方向高さHを小さく設定することで、漏れ面積Sが低減し、圧縮機効率を向上させることが可能となる。   6 is a cross-sectional view taken along line BB in FIG. As shown in FIG. 6, it is necessary to provide a clearance W between the inner periphery 8a of the first cylinder 8 and the outer periphery 11c of the first piston 11a in order to avoid mutual contact. It is known that the product S of the clearance W and the height H in the axial direction of the first cylinder 8 becomes a leakage flow path that connects the compression chamber 30b and the suction chamber 30a, which causes a reduction in compressor efficiency. . By setting the axial height H of the first cylinder 8 small, the leakage area S can be reduced and the compressor efficiency can be improved.

本実施の形態の特徴として、吸入管40,41と、連結管60,61も、クランク軸4の軸方向寸法より回転方向寸法を大とした非円形断面としている。従って、吸入管40,41と、連結管60,61も、同じ断面積の円形断面の場合よりも軸方向高さを小さくできる。   As a feature of the present embodiment, the suction pipes 40 and 41 and the connection pipes 60 and 61 also have a non-circular cross section in which the rotational dimension is larger than the axial dimension of the crankshaft 4. Accordingly, the suction pipes 40 and 41 and the connection pipes 60 and 61 can also have a smaller axial height than the circular cross section having the same cross sectional area.

図7、図8は実施の形態1を示す図で、図7は吸入ポート50,51、吸入管40,41と、連結管60,61が円形断面形状の2気筒回転圧縮機100の外形図、図8は吸入ポート50,51、吸入管40,41と、連結管60,61が非円形断面形状の2気筒回転圧縮機100の外形図である。   7 and 8 show the first embodiment. FIG. 7 is an external view of the two-cylinder rotary compressor 100 in which the suction ports 50 and 51, the suction pipes 40 and 41, and the connection pipes 60 and 61 have a circular cross-sectional shape. FIG. 8 is an external view of the two-cylinder rotary compressor 100 in which the suction ports 50 and 51, the suction pipes 40 and 41, and the connection pipes 60 and 61 have a noncircular cross-sectional shape.

図7に示す2気筒回転圧縮機100は、吸入ポート50,51、吸入管40,41、連結管60,61が円形断面形状である。また、図8に示す2気筒回転圧縮機100は、吸入ポート50,51、吸入管40,41、連結管60,61が非円形断面形状である。   In the two-cylinder rotary compressor 100 shown in FIG. 7, the suction ports 50 and 51, the suction pipes 40 and 41, and the connection pipes 60 and 61 have a circular cross-sectional shape. Further, in the two-cylinder rotary compressor 100 shown in FIG. 8, the suction ports 50 and 51, the suction pipes 40 and 41, and the connection pipes 60 and 61 have a non-circular cross-sectional shape.

接続部1dと接続部1eとの間隔L1、密閉容器1の胴部1aの端部と接続部1eとの間隔L2を一定とした場合、吸入ポート50,51、吸入管40,41、連結管60,61を非円形断面形状にすると、第1のシリンダ8、第2のシリンダ9に連結される吸入管40,41の軸方向距離を小さく設定できるとともに、第2のシリンダ9の軸方向配置を低く設定できる。   When the interval L1 between the connecting portion 1d and the connecting portion 1e and the interval L2 between the end of the trunk portion 1a of the sealed container 1 and the connecting portion 1e are constant, the suction ports 50 and 51, the suction pipes 40 and 41, the connecting pipe If the non-circular cross-sections 60 and 61 are formed, the axial distance between the suction pipes 40 and 41 connected to the first cylinder 8 and the second cylinder 9 can be set small, and the axial arrangement of the second cylinder 9 can be set. Can be set low.

図7に示す2気筒回転圧縮機100における第2のシリンダ9の軸方向中心と下皿容器1cとの下面との距離をK’、図8に示す2気筒回転圧縮機100における第2のシリンダ9の軸方向中心と下皿容器1cとの下面との距離をKとすると、K’>Kの関係になる。   The distance between the axial center of the second cylinder 9 and the lower surface of the lower dish container 1c in the two-cylinder rotary compressor 100 shown in FIG. 7 is K ′, and the second cylinder in the two-cylinder rotary compressor 100 shown in FIG. When the distance between the axial center of 9 and the lower surface of the lower dish container 1c is K, the relationship is K ′> K.

吸入ポート50,51、吸入管40,41、連結管60,61を非円形断面形状にすることにより、以下に示す効果を奏する。
(1)第1のシリンダ8、第2のシリンダ9の軸方向高さを低くできるので、圧縮機の軸方向の高さ寸法を縮小することができる(小型化)。
(2)吸入管40,41、連結管60,61も非円形断面形状にしているので、接続部1dと接続部1eとの間隔L1、密閉容器1の胴部1aの端部と接続部1eとの間隔L2はそのままで、第1のシリンダ8、第2のシリンダ9の位置を、吸入ポート50,51、吸入管40,41、連結管60,61が円形断面形状の場合よりも下げることができる(圧縮機低重心化による低振動化)。
By making the suction ports 50 and 51, the suction pipes 40 and 41, and the connection pipes 60 and 61 into a non-circular cross-sectional shape, the following effects can be obtained.
(1) Since the axial heights of the first cylinder 8 and the second cylinder 9 can be reduced, the axial height dimension of the compressor can be reduced (miniaturization).
(2) Since the suction pipes 40 and 41 and the connecting pipes 60 and 61 are also non-circular cross-sectional shapes, the distance L1 between the connecting portion 1d and the connecting portion 1e, the end of the trunk portion 1a of the sealed container 1 and the connecting portion 1e. The position of the first cylinder 8 and the second cylinder 9 should be lowered as compared with the case where the suction ports 50 and 51, the suction pipes 40 and 41, and the connection pipes 60 and 61 have a circular cross-sectional shape. (Lower vibration by lowering the center of gravity of the compressor).

一方、吸入ポート50,51が非円形断面形状であっても、吸入管40,41と連結管60,61が円形の場合は、第1のシリンダ8、第2のシリンダ9の軸方向の高さを縮小できるだけで、圧縮機の軸方向の高さ寸法の縮小はできない。この場合の2気筒回転圧縮機100の外形は図7と同じである。圧縮機の外形の小型化や、低重心化による低振動化の効果は得られない。   On the other hand, even if the suction ports 50 and 51 have a non-circular cross-sectional shape, if the suction pipes 40 and 41 and the connection pipes 60 and 61 are circular, the height of the first cylinder 8 and the second cylinder 9 in the axial direction is high. The height dimension in the axial direction of the compressor cannot be reduced. The outer shape of the two-cylinder rotary compressor 100 in this case is the same as that in FIG. The effect of low vibration due to downsizing of the outer shape of the compressor and low center of gravity cannot be obtained.

2気筒回転圧縮機100の内部では、第1のシリンダ8、第2のシリンダ9の軸方向の高さが縮小されるが、第1のシリンダ8、第2のシリンダ9の軸方向の中心は図7の場合と同じである。   Inside the two-cylinder rotary compressor 100, the axial heights of the first cylinder 8 and the second cylinder 9 are reduced, but the axial centers of the first cylinder 8 and the second cylinder 9 are This is the same as in the case of FIG.

図7の場合より、副軸受7の位置が上がり、仕切板10が厚くなり、主軸受6の位置が下がる。   Compared to the case of FIG. 7, the position of the sub-bearing 7 is increased, the partition plate 10 is thickened, and the position of the main bearing 6 is decreased.

図9は実施の形態1を示す図で、吸入管挿入部60bを円形とし圧入部60aを非円形として同一流路面積で繋げる場合の連結管60を示す図((a)は回転方向に長穴、(b)は軸方向に長穴)である。   FIG. 9 is a diagram showing the first embodiment, and is a diagram showing the connecting pipe 60 when the suction pipe inserting portion 60b is circular and the press-fitting portion 60a is non-circular and connected with the same flow path area ((a) is long in the rotation direction. (B) is an elongated hole in the axial direction).

図9に示すように、連結管60の吸入管挿入部60bを円形とし、圧入部60aを非円形として同一流路面積で繋げる場合、必ず縮径部をもち、低圧流体の流路抵抗による吸入圧損が避けられない。   As shown in FIG. 9, when the suction pipe insertion part 60b of the connecting pipe 60 is circular and the press-fitting part 60a is non-circular and connected with the same flow path area, it always has a reduced diameter part, and suction by low-pressure fluid flow path resistance. Pressure loss is inevitable.

そのため、非円形吸入断面形状の回転方向寸法(図9(a))を最小径とする円形形状を選択せざるを得ないが、圧縮機軸方向寸法の縮小と相反する形状となる。   Therefore, a circular shape having the minimum diameter of the rotational direction dimension (FIG. 9A) of the non-circular suction cross-sectional shape must be selected, but the shape is contrary to the reduction of the compressor axial dimension.

本実施の形態の効果は、2気筒回転圧縮機100(図1)のみならず、多気筒圧縮機においても同様の効果が得られる。さらに、1気筒圧縮機においても、シリンダ軸方向高さの縮小と、シリンダの軸方向配置を低く設定できる効果を得ることができ、圧縮機小型化と低振動化が可能となる。   The effect of this embodiment can be obtained not only in the two-cylinder rotary compressor 100 (FIG. 1) but also in a multi-cylinder compressor. Further, even in a one-cylinder compressor, it is possible to obtain an effect that the height in the cylinder axial direction can be reduced and the axial arrangement of the cylinders can be set low, and the compressor can be reduced in size and vibration can be reduced.

さらに、吸入ポート50,51、吸入管40,41、連結管60,61を非円形断面形状にすることにより、第1のシリンダ8、第2のシリンダ9の軸方向高さを低くできることで、クランク軸4の偏芯軸4c又は偏芯軸4dに作用する圧縮ガス負荷を低減できる。さらに、第1のシリンダ8、第2のシリンダ9の軸方向高さを低くできることで、圧縮ガス負荷の支持点となる主軸受6又は副軸受7までの距離が小さくなり、圧縮ガス負荷によるクランク軸4の撓みを抑制できる。   Furthermore, by making the suction ports 50 and 51, the suction pipes 40 and 41, and the connection pipes 60 and 61 into a noncircular cross-sectional shape, the axial height of the first cylinder 8 and the second cylinder 9 can be reduced. The compressed gas load acting on the eccentric shaft 4c or the eccentric shaft 4d of the crankshaft 4 can be reduced. Furthermore, since the axial heights of the first cylinder 8 and the second cylinder 9 can be reduced, the distance to the main bearing 6 or the sub-bearing 7 serving as a support point for the compressed gas load is reduced, and the crank caused by the compressed gas load is reduced. The bending of the shaft 4 can be suppressed.

クランク軸4の撓みが大きくなると、主軸受6又は副軸受7に対するクランク軸4の傾きが大きくなり、片当たりによる軸受信頼性の低下が生じるため、クランク軸4の撓みに対応したクランク軸4の剛性を確保する必要がある。   When the deflection of the crankshaft 4 is increased, the inclination of the crankshaft 4 with respect to the main bearing 6 or the sub-bearing 7 is increased, and the bearing reliability is reduced due to contact with each other. It is necessary to ensure rigidity.

しかし、クランク軸4の撓みを抑制できる分、軸径の縮小といったクランク軸4の剛性を低下させる設計変更も可能となり、軸摺動損失の低減による圧縮機高効率化が可能となる。   However, since the bending of the crankshaft 4 can be suppressed, a design change that reduces the rigidity of the crankshaft 4 such as the reduction of the shaft diameter is possible, and the efficiency of the compressor can be increased by reducing the shaft sliding loss.

図10は実施の形態1を示す図で、変形例1の2気筒回転圧縮機200の縦断面図である。2気筒回転圧縮機100と異なる点は、密閉容器1に隣接してアキュムレータ20が設けられる点である。   FIG. 10 shows the first embodiment, and is a longitudinal sectional view of a two-cylinder rotary compressor 200 of the first modification. The difference from the two-cylinder rotary compressor 100 is that an accumulator 20 is provided adjacent to the sealed container 1.

アキュムレータ20は、アキュムレータ20に冷凍サイクルの低圧流体を導入する導入管21と、アキュムレータ20から低圧流体を排出し、連結管60,61に連結される吸入管22,23とを備える。   The accumulator 20 includes an introduction pipe 21 that introduces the low-pressure fluid of the refrigeration cycle to the accumulator 20, and suction pipes 22 and 23 that discharge the low-pressure fluid from the accumulator 20 and are connected to the connection pipes 60 and 61.

回転圧縮機においては、冷凍サイクルからくる低圧流体の気液分離、低圧流体に微量に含まれる潤滑油(冷凍機油)の分離、マフラー効果による騒音低減等の用途からアキュムレータ20を取付けることが望ましい。   In the rotary compressor, it is desirable to attach the accumulator 20 for uses such as gas-liquid separation of the low-pressure fluid coming from the refrigeration cycle, separation of lubricating oil (refrigeration oil) contained in a small amount in the low-pressure fluid, and noise reduction due to the muffler effect.

アキュムレータ20を取付ける場合にも、吸入管22,23を、クランク軸4の軸方向寸法より回転方向寸法を大とした非円形断面とすることで、2気筒回転圧縮機100と同様の効果を得ることができる。   Even when the accumulator 20 is attached, the suction pipes 22 and 23 have a non-circular cross section having a larger rotational dimension than the axial dimension of the crankshaft 4, thereby obtaining the same effect as the two-cylinder rotary compressor 100. be able to.

但し、アキュムレータ20の導入管21の断面形状は円形としてある。冷凍サイクル機器の配管の断面形状は円形であり、導入管21の断面形状を円形に合わせることで、多種多様の冷凍サイクル機器に容易に搭載可能という圧縮機の基本性能を満足する。   However, the cross-sectional shape of the introduction tube 21 of the accumulator 20 is circular. The cross-sectional shape of the piping of the refrigeration cycle equipment is circular, and the basic performance of the compressor that can be easily mounted on a wide variety of refrigeration cycle equipment is satisfied by matching the cross-sectional shape of the introduction pipe 21 to a circular shape.

冷凍サイクルからくる低圧流体は、アキュムレータ20の導入管21を通り、一度アキュムレータ容器24内に流入し、気液分離、潤滑油の分離が行われた後に吸入管22,23に流入する。そのため、導入管21と吸入管22,23の断面形状の違いにより、吸入圧損が生じることはない。   The low-pressure fluid coming from the refrigeration cycle passes through the introduction pipe 21 of the accumulator 20, and once flows into the accumulator container 24, and after gas-liquid separation and lubricating oil separation, it flows into the suction pipes 22 and 23. Therefore, the suction pressure loss does not occur due to the difference in cross-sectional shape between the introduction pipe 21 and the suction pipes 22 and 23.

図11は実施の形態1を示す図で、変形例1の2気筒回転圧縮機200の縦断面図(吸入管22,23の連結管接続部22a,23aが非円形断面形状)である。   FIG. 11 is a diagram showing the first embodiment, and is a longitudinal sectional view of the two-cylinder rotary compressor 200 of Modification 1 (the connecting pipe connecting portions 22a and 23a of the suction pipes 22 and 23 are non-circular cross-sectional shapes).

アキュムレータ20の吸入管22,23は、必要な流路面積が確保できていれば、全長に渡り同一の非円形断面形状でなくてもよい。図11に示すよう、吸入管22,23の連結管接続部22a,23aが非円形断面形状で、アキュムレータ挿入部22b,23bが円形断面形状であってもよい。このような構成とすることで、吸入管22,23が円形である機種と、アキュムレータ容器24の部品共通化を図ることが可能となる。   The suction pipes 22 and 23 of the accumulator 20 may not have the same non-circular cross-sectional shape over the entire length as long as a necessary flow path area can be secured. As shown in FIG. 11, the connecting pipe connecting portions 22a and 23a of the suction pipes 22 and 23 may have a non-circular cross-sectional shape, and the accumulator insertion portions 22b and 23b may have a circular cross-sectional shape. By adopting such a configuration, it is possible to share the parts of the accumulator container 24 with the model in which the suction pipes 22 and 23 are circular.

さらに、吸入管22,23は、全長に渡り同一部品でなくてもよい。吸入管22,23は、溶接性、曲げ成形性が良好な銅素材が一般的に選択される。昨今の銅素材の市場価格高騰を考慮すれば、吸入管22,23のアキュムレータ挿入部22b,23bの円形断面形状部分をより安価な素材にて代替することでコスト低減を図ることも可能である。   Further, the suction pipes 22 and 23 may not be the same part over the entire length. For the suction pipes 22 and 23, a copper material having good weldability and bending formability is generally selected. Considering the recent rise in the market price of copper materials, it is possible to reduce costs by replacing the circular cross-sectional shape portions of the accumulator insertion portions 22b and 23b of the suction pipes 22 and 23 with cheaper materials. .

吸入ポート50,51、吸入管40,41(連結管接続部22a,23a)、連結管60,61の非円形断面形状は、楕円、長円、接続円、あるいは二つの円を短径で接続してなる形状のいずれであっても、円形断面形状に対し、軸方向高さを縮小できるため、吸入ポート50,51、吸入管40,41(連結管接続部22a,23a)、連結管60,61の加工、成形性等を鑑み、適宜選択することが可能である。   The non-circular cross-sectional shapes of the suction ports 50 and 51, the suction pipes 40 and 41 (connecting pipe connecting portions 22a and 23a), and the connecting pipes 60 and 61 are an ellipse, an ellipse, a connection circle, or two circles connected with a short diameter. In any of the shapes, the height in the axial direction can be reduced with respect to the circular cross-sectional shape. Therefore, the suction ports 50 and 51, the suction pipes 40 and 41 (connecting pipe connecting portions 22a and 23a), and the connecting pipe 60 are used. , 61 can be selected as appropriate in consideration of the processing, formability, and the like.

図12、図13は実施の形態1を示す図で、図12は断面形状が長穴の吸入ポート50と連結管60の圧入部60aを圧入した際の、連結管60の内部応力の方向を示した模式図、図13は連結管60の圧入部60aの一変形形態を示した模式図である。   12 and 13 show the first embodiment, and FIG. 12 shows the direction of internal stress of the connecting pipe 60 when the suction port 50 having a long cross-sectional shape and the press-fit portion 60a of the connecting pipe 60 are press-fitted. FIG. 13 is a schematic diagram showing a modification of the press-fitting portion 60 a of the connecting pipe 60.

図12、図13に示すように、長穴の部材を圧入した場合、円弧部60dにて発生した内部応力が平坦部60cに伝わり、平坦部60cを内周側に変形させる恐れがある。平坦部60cが内周側に変形した場合、連結管60の圧入シール性低下により、密閉容器1内の高圧雰囲気の冷媒ガスが、吸入室30aに流入し、圧縮機効率の低下を招く恐れがあった。   As shown in FIGS. 12 and 13, when a member having a long hole is press-fitted, internal stress generated in the arc portion 60d is transmitted to the flat portion 60c, and the flat portion 60c may be deformed to the inner peripheral side. When the flat part 60c is deformed to the inner peripheral side, the press-fit sealing property of the connecting pipe 60 may decrease, and the refrigerant gas in the high-pressure atmosphere in the sealed container 1 may flow into the suction chamber 30a, leading to a decrease in compressor efficiency. there were.

図14は実施の形態1を示す図で、連結管60の圧入部60aの断面図である。図14に示す連結管60の圧入部60aは、断面形状を長穴とし、且つ、長穴の2つの円を接続する平坦部を吸入ポート50との圧入代の範囲で外周側に凸形状60eとしたものである。   FIG. 14 shows the first embodiment, and is a cross-sectional view of the press-fitting portion 60 a of the connecting pipe 60. The press-fit portion 60a of the connecting pipe 60 shown in FIG. 14 has a cross-sectional shape that is a long hole, and a flat portion that connects the two circles of the long hole has a convex shape 60e on the outer peripheral side within the range of the press-fit allowance with the suction port 50. It is what.

連結管60の圧入部60aの平坦部を外周側に凸形状60eとしたので、圧入により円弧部60dにて発生した内部応力が、平坦部の凸形状60eを外周側に変形させる方向に伝わるため、平坦部が内周側に変形することなく、圧入シール性低下のない連結管60を得ることが可能となる。   Since the flat portion of the press-fit portion 60a of the connecting pipe 60 has a convex shape 60e on the outer peripheral side, the internal stress generated in the arc portion 60d by the press-fitting is transmitted in a direction to deform the convex shape 60e of the flat portion to the outer peripheral side. Further, it is possible to obtain the connecting pipe 60 without the press-fit sealing performance being lowered without the flat portion being deformed to the inner peripheral side.

平坦部60cに伝わる内部応力の方向を外周側に向ける方法として、断面形状を楕円とすることも考えられるが、長穴と楕円形状を面積、軸方向寸法同一にて比較した場合、楕円形状のほうが長穴に対し回転方向寸法が大きくなる。   As a method of directing the direction of internal stress transmitted to the flat portion 60c to the outer peripheral side, it is conceivable that the cross-sectional shape is an ellipse, but when comparing the oblong hole and the elliptical shape with the same area and axial dimensions, the elliptical shape However, the direction of rotation is larger than that of the long hole.

図15は実施の形態1を示す図で、吸入ポート縁50b及び吐出ポート縁70aで決まる圧縮工程角度θを示す図である。   FIG. 15 is a diagram showing the first embodiment and is a diagram showing the compression process angle θ determined by the suction port edge 50b and the discharge port edge 70a.

吸入ポート50の回転方向寸法が大きくなると、図15に示すよう、吸入ポート縁50b(Y点、第1のベーン5aの反対側縁部)、吐出ポート70の吐出ポート縁70a(Z点、第1のベーン5aの反対側縁部)とで決まる圧縮工程角度θが減少し、排除容積が減少してしまうため、連結管の圧入シール性低下や排除容積減少のない本実施の形態(長穴)が最良の選択となる。   As the rotational direction dimension of the suction port 50 increases, as shown in FIG. 15, the suction port edge 50b (Y point, the opposite edge of the first vane 5a), the discharge port edge 70a (Z point, first point) of the discharge port 70. The compression process angle θ determined by the vane 5a on the opposite side of the vane 5a is reduced, and the excluded volume is reduced. ) Is the best choice.

ところで、冷媒を使用して、本実施の形態の2気筒回転圧縮機100,200により冷凍サイクルを作動する空気調和機における地球環境への課題としては、オゾン層保護、地球温暖化対応(CO等排出抑制)、省エネルギー化、資源の再利用(リサイクル)などがある。 By the way, as problems to the global environment in an air conditioner that uses a refrigerant and operates a refrigeration cycle by the two-cylinder rotary compressors 100 and 200 of the present embodiment, protection of the ozone layer, response to global warming (CO 2 Etc.), energy conservation, and resource reuse (recycling).

これらの地球環境に関する課題のうち、オゾン層保護については、使用する冷媒をオゾン破壊係数が高いR22(HFC22)から、オゾン破壊係数がゼロであるR410A(HFC32:HFC125=50:50(重量比))に切り替えた空気調和機が既に製品化されている。尚、HFC125は、化学式CHF−CF(化学名ペンタフルオロエタン)である。 Among these global environmental issues, for the protection of the ozone layer, the refrigerant used is R22 (HFC22), which has a high ozone destruction coefficient, and R410A (HFC32: HFC125 = 50: 50 (weight ratio)) where the ozone destruction coefficient is zero. The air conditioner switched to) has already been commercialized. Incidentally, HFC125 is a chemical formula CHF 2 -CF 3 (chemical name pentafluoroethane).

一方、地球温暖化防止対策への要求が益々高くなってきている。空気調和機においては、総等価温暖化影響TEWI(Total Equivalent Warming Impact)と呼ばれる地球温暖化の指標を用いて評価される。このTEWIは、冷媒の大気放出による影響(直接影響)と装置のエネルギー消費(間接影響)、並びに空気調和機を構成する素材を製造する際に消費されるエネルギーを作るために排出されるCOなどの総和で表される。 On the other hand, the demand for global warming prevention measures is increasing. In an air conditioner, evaluation is performed using a global warming index called a total equivalent warming impact (TEWI). This TEWI is the CO 2 that is emitted to produce the energy consumed when producing the materials that make up the air conditioner, as well as the effects (direct effects) due to the atmospheric release of the refrigerant and the energy consumption (indirect effects) of the device. It is expressed as the sum of

TEWIの算出には、冷媒の地球温暖化係数GWP(Global Warming Potential)、冷媒量、並びに空気調和機の効率を表す通年エネルギー消費効率APF(Annual Performance Factor)が用いられる。地球温暖化を防止するには、TEWIの値を小さくするべく、小さなGWP値と大きなAPF値とを持つ冷媒を選定する必要がある。   For the calculation of TEWI, the global warming potential GWP (Global Warming Potential) of refrigerant, the amount of refrigerant, and the annual energy consumption efficiency APF (Annual Performance Factor) representing the efficiency of the air conditioner are used. In order to prevent global warming, it is necessary to select a refrigerant having a small GWP value and a large APF value in order to reduce the TEWI value.

現在用いられているR410AのGWPは2090で、従来用いられていたR22の1810よりも大きな値となっている。そこで、地球温暖化防止のために、GWP値がゼロの冷媒として、炭化水素系のR290、GWPが50以下の低GWP冷媒としてHFO1234yfなどが開発されているが、可燃性や省エネ性の課題があるため、比較的GWPが低い冷媒としてR32(HFC32)が候補として挙げられている。   Currently used R410A has a GWP of 2090, which is larger than the conventionally used R22 of 1810. Therefore, in order to prevent global warming, hydrocarbon-based R290 has been developed as a refrigerant with a GWP value of zero, and HFO1234yf has been developed as a low GWP refrigerant with a GWP of 50 or less. However, there are problems with flammability and energy saving. Therefore, R32 (HFC32) is cited as a candidate as a refrigerant having a relatively low GWP.

このR32のGWP値は675であり、R22,R410AのGWP値と比較すると約1/3になり、地球温暖化への影響を軽減することが出来るが、R290やHFO1234yfと比べると低GWP冷媒とは言えないため、R32を使用する場合は冷媒量の削減が必要となる。   The GWP value of R32 is 675, which is about 1/3 of the GWP value of R22 and R410A, and can reduce the impact on global warming. Therefore, when using R32, it is necessary to reduce the amount of refrigerant.

省エネルギーについては、空気調和機を運転した際の電力消費により間接的にCOを排出するため、空気調和機の性能を高めて、省エネルギー化することにより、地球温暖化防止に寄与する。 As for energy saving, CO 2 is indirectly discharged by power consumption when the air conditioner is operated. Therefore, the performance of the air conditioner is enhanced to save energy, thereby contributing to the prevention of global warming.

家庭用空気調和機では、使用時の電力消費による間接的なCO排出量が占める割合が大きいため、省エネルギー化を進めることで、CO排出量の削減に結びつけることが出来る。冷媒にR32を使用する場合には、前述のように低GWP冷媒ではないため、地球温暖化への影響を減らすために、冷媒量を削減しつつ、同時に省エネルギー化を実現する必要がある。 In home air conditioners, the proportion of indirect CO 2 emissions due to power consumption during use accounts for a large proportion. Therefore, by promoting energy saving, it is possible to reduce CO 2 emissions. When R32 is used as the refrigerant, it is not a low GWP refrigerant as described above. Therefore, in order to reduce the influence on global warming, it is necessary to reduce the amount of refrigerant while simultaneously realizing energy saving.

1 密閉容器、1a 胴部、1b 上皿容器、1c 下皿容器、1d 接続部、1e 接続部、2 電動機、2a 固定子、2b 回転子、3 圧縮機構、4 クランク軸、4a 主軸、4b 副軸、4c 偏芯軸、4d 偏芯軸、5a 第1のベーン、6 主軸受、7 副軸受、8 第1のシリンダ、8b ベーン溝、9 第2のシリンダ、10 仕切板、11a 第1のピストン、11b 第2のピストン、11c 外周、20 アキュムレータ、22 吸入管、22a 連結管接続部、23 吸入管、23a 連結管接続部、25 吐出管、26 ガラス端子、27 リード線、30 室、30a 吸入室、30b 圧縮室、31 室、31a 吸入室、31b 圧縮室、40 吸入管、41 吸入管、50 吸入ポート、50a 圧入受入部、50b 吸入ポート縁、51 吸入ポート、51a 圧入受入部、60 連結管、60a 圧入部、60b 吸入管挿入部、60c 平坦部、60d 円弧部、60e 凸形状、61 連結管、61a 圧入部、61b 吸入管挿入部、70 吐出ポート、70a 吐出ポート縁、100 2気筒回転圧縮機、200 2気筒回転圧縮機。   DESCRIPTION OF SYMBOLS 1 Airtight container, 1a trunk | drum, 1b upper plate container, 1c lower plate container, 1d connection part, 1e connection part, 2 motor, 2a stator, 2b rotor, 3 compression mechanism, 4 crankshaft, 4a main shaft, 4b sub Shaft, 4c eccentric shaft, 4d eccentric shaft, 5a first vane, 6 main bearing, 7 auxiliary bearing, 8 first cylinder, 8b vane groove, 9 second cylinder, 10 partition plate, 11a first Piston, 11b 2nd piston, 11c outer circumference, 20 accumulator, 22 suction pipe, 22a connection pipe connection part, 23 suction pipe, 23a connection pipe connection part, 25 discharge pipe, 26 glass terminal, 27 lead wire, 30 chamber, 30a Suction chamber, 30b Compression chamber, 31 chamber, 31a Suction chamber, 31b Compression chamber, 40 Suction pipe, 41 Suction pipe, 50 Suction port, 50a Press-in receiving part, 50b Suction port edge 51 suction port, 51a press-fitting receiving part, 60 connecting pipe, 60a press-fitting part, 60b suction pipe inserting part, 60c flat part, 60d arc part, 60e convex shape, 61 connecting pipe, 61a press-fitting part, 61b suction pipe inserting part, 70 Discharge port, 70a Discharge port edge, 100 2-cylinder rotary compressor, 200 2-cylinder rotary compressor.

Claims (5)

密閉容器内にクランク軸を介して電動機で駆動される圧縮機構を備え、
前記圧縮機構は、
略円筒状の内部空間を有し、前記内部空間に冷凍サイクルの低圧流体を吸入する吸入ポートが径方向に穿設されたシリンダと、
前記吸入ポートと前記密閉容器外の吸入管とを連結する連結管と、を備え、
前記吸入ポート、前記連結管及び前記吸入管の断面形状が、前記クランク軸の軸方向寸法より回転方向寸法が大きい非円形形状であることを特徴とする回転圧縮機。
Provided with a compression mechanism driven by an electric motor through a crankshaft in a sealed container,
The compression mechanism is
A cylinder having a substantially cylindrical inner space, in which a suction port for sucking a low-pressure fluid of a refrigeration cycle is formed in the inner space in a radial direction;
A connecting pipe that connects the suction port and a suction pipe outside the sealed container;
A rotary compressor characterized in that cross-sectional shapes of the suction port, the connecting pipe, and the suction pipe are non-circular shapes having a rotational dimension larger than an axial dimension of the crankshaft.
アキュムレータと、前記アキュムレータに低圧流体を導入する導入管と、アキュムレータから低圧流体を排出し前記連結管に連結される前記吸入管と、を備え、
前記吸入管の断面形状が前記クランク軸の軸方向寸法より回転方向寸法が大きい非円形形状であり、前記導入管の断面形状が円形形状であることを特徴とする請求項1記載の回転圧縮機。
An accumulator, an introduction pipe for introducing a low-pressure fluid into the accumulator, and the suction pipe connected to the connection pipe by discharging the low-pressure fluid from the accumulator,
2. The rotary compressor according to claim 1, wherein a cross-sectional shape of the suction pipe is a non-circular shape having a rotational direction dimension larger than an axial dimension of the crankshaft, and the cross-sectional shape of the introduction pipe is a circular shape. .
アキュムレータと、前記アキュムレータに低圧流体を導入する導入管と、アキュムレータから低圧流体を排出し前記連結管に連結される前記吸入管と、を備え、
前記吸入管の連結管接続部の断面形状が前記クランク軸の軸方向寸法より回転方向寸法が大きい非円形形状であり、前記吸入管のアキュムレータ挿入部の断面形状が円形形状であり、前記導入管の断面形状が円形形状であることを特徴とする請求項1記載の回転圧縮機。
An accumulator, an introduction pipe for introducing a low-pressure fluid into the accumulator, and the suction pipe connected to the connection pipe by discharging the low-pressure fluid from the accumulator,
The cross-sectional shape of the connecting pipe connecting portion of the suction pipe is a non-circular shape whose rotational direction dimension is larger than the axial dimension of the crankshaft, and the cross-sectional shape of the accumulator insertion portion of the suction pipe is a circular shape, The rotary compressor according to claim 1, wherein the cross-sectional shape of the rotary compressor is a circular shape.
前記非円形断面形状が、楕円、長円、接続円、あるいは二つの円を短径で接続してなる形状のいずれかであることを特徴とする請求項1乃至3のいずれかに記載の回転圧縮機。   The rotation according to any one of claims 1 to 3, wherein the noncircular cross-sectional shape is any one of an ellipse, an ellipse, a connection circle, or a shape formed by connecting two circles with a short diameter. Compressor. 前記吸入ポートに圧入される前記連結管の非円形断面形状が長穴であり、前記長穴の二つの円を接続する平坦部を、前記吸入ポートと前記連結管の圧入代の範囲で外周側に凸形状にしたことを特徴とする請求項1乃至3のいずれかに記載の回転圧縮機。   The non-circular cross-sectional shape of the connecting pipe that is press-fitted into the suction port is a long hole, and a flat portion that connects two circles of the long hole is disposed on the outer peripheral side within the range of the press-fitting allowance between the suction port and the connecting pipe. The rotary compressor according to any one of claims 1 to 3, wherein the rotary compressor has a convex shape.
JP2011052484A 2011-03-10 2011-03-10 Rotary compressor Active JP5528379B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011052484A JP5528379B2 (en) 2011-03-10 2011-03-10 Rotary compressor
KR1020120015763A KR101335100B1 (en) 2011-03-10 2012-02-16 Rotary compressor
CZ2012-160A CZ306345B6 (en) 2011-03-10 2012-03-07 Rotary-piston compressor
CN201210061252.6A CN102678554B (en) 2011-03-10 2012-03-09 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011052484A JP5528379B2 (en) 2011-03-10 2011-03-10 Rotary compressor

Publications (2)

Publication Number Publication Date
JP2012188982A true JP2012188982A (en) 2012-10-04
JP5528379B2 JP5528379B2 (en) 2014-06-25

Family

ID=46810960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011052484A Active JP5528379B2 (en) 2011-03-10 2011-03-10 Rotary compressor

Country Status (4)

Country Link
JP (1) JP5528379B2 (en)
KR (1) KR101335100B1 (en)
CN (1) CN102678554B (en)
CZ (1) CZ306345B6 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190267A (en) * 2013-03-27 2014-10-06 Mitsubishi Electric Corp Rotary compressor
US20160102666A1 (en) * 2014-10-14 2016-04-14 Denso Corporation Vane pump and fuel vapor leakage detection device using the same
WO2022026474A1 (en) * 2020-07-28 2022-02-03 Emerson Climate Technologies, Inc. Compressor having shell fitting
US20220186731A1 (en) * 2019-09-04 2022-06-16 Samsung Electronics Co., Ltd. Rotary compressor and home appliance including same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5511769B2 (en) * 2011-11-04 2014-06-04 三菱電機株式会社 Compressor
JP6081315B2 (en) * 2013-08-20 2017-02-15 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Permanent magnet type electric motor, compressor using the same, and refrigeration cycle apparatus
CN105041661A (en) * 2015-07-09 2015-11-11 广东美芝制冷设备有限公司 Compressor and air conditioning system with same
CN104976125A (en) * 2015-07-09 2015-10-14 广东美芝制冷设备有限公司 Compressor of air conditioner system and air conditioner system with compressor
CN105156299B (en) * 2015-08-18 2018-08-10 珠海格力电器股份有限公司 Compressor and its assembly technology
CN106050620A (en) * 2016-07-08 2016-10-26 郑州凌达压缩机有限公司 Connecting pipe, compressor and air-conditioner
KR20190083665A (en) * 2017-02-01 2019-07-12 미쓰비시덴키 가부시키가이샤 compressor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599170A (en) * 1991-10-08 1993-04-20 Daikin Ind Ltd Rotary compressor
JPH07332271A (en) * 1994-06-01 1995-12-22 Toshiba Corp Rotary compressor
JPH0979161A (en) * 1995-09-12 1997-03-25 Toshiba Corp Rotary compressor
JP2001099083A (en) * 1999-09-30 2001-04-10 Sanyo Electric Co Ltd Two-cylinder rotary comperssor
JP2003214370A (en) * 2002-01-23 2003-07-30 Mitsubishi Heavy Ind Ltd Rotary compressor
JP2004239192A (en) * 2003-02-07 2004-08-26 Hitachi Home & Life Solutions Inc Double-cylinder rotary compressor
KR20060008558A (en) * 2004-07-21 2006-01-27 삼성전자주식회사 Variable capacity rotary compressor
KR101474019B1 (en) * 2008-07-25 2014-12-18 엘지전자 주식회사 Motor and compressor with it
JP2010038087A (en) * 2008-08-07 2010-02-18 Panasonic Corp Hermetic compressor
JP2010121481A (en) * 2008-11-18 2010-06-03 Mitsubishi Electric Corp Rotary compressor
JP5560807B2 (en) * 2010-03-23 2014-07-30 ダイキン工業株式会社 Compressor
JP5672855B2 (en) * 2010-08-25 2015-02-18 ダイキン工業株式会社 Compressor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190267A (en) * 2013-03-27 2014-10-06 Mitsubishi Electric Corp Rotary compressor
US20160102666A1 (en) * 2014-10-14 2016-04-14 Denso Corporation Vane pump and fuel vapor leakage detection device using the same
JP2016079838A (en) * 2014-10-14 2016-05-16 株式会社デンソー Vane type pump and fuel vapor leakage detection device using the same
US10422303B2 (en) 2014-10-14 2019-09-24 Denso Corporation Vane pump and fuel vapor leakage detection device using the same
US20220186731A1 (en) * 2019-09-04 2022-06-16 Samsung Electronics Co., Ltd. Rotary compressor and home appliance including same
WO2022026474A1 (en) * 2020-07-28 2022-02-03 Emerson Climate Technologies, Inc. Compressor having shell fitting

Also Published As

Publication number Publication date
CN102678554B (en) 2015-04-15
JP5528379B2 (en) 2014-06-25
CZ306345B6 (en) 2016-12-14
CN102678554A (en) 2012-09-19
KR20120103445A (en) 2012-09-19
KR101335100B1 (en) 2013-12-03
CZ2012160A3 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5528379B2 (en) Rotary compressor
JP6156697B2 (en) Rotary compressor with two cylinders
JP4909597B2 (en) Hermetic rotary compressor and refrigeration cycle apparatus
KR101375979B1 (en) Rotary compressor
JP6015055B2 (en) Rotary compressor
WO2016114016A1 (en) Rotary compressor
JP2010031785A (en) Refrigerant compressor
JP2017150425A (en) Two-cylinder type sealed compressor
WO2016139873A1 (en) Compressor
US10006460B2 (en) Hermetic compressor having enlarged suction inlet
JP2005307764A (en) Rotary compressor
JP5561421B1 (en) Rotary compressor
JP6274041B2 (en) Rotary compressor
JP6704555B1 (en) Compressor and refrigeration cycle device
JP5511769B2 (en) Compressor
WO2016016917A1 (en) Scroll compressor
JP6426645B2 (en) Rotary compressor
JP2006275033A (en) Two cylinder rotary compressor
JPWO2010013375A1 (en) Rotary compressor
JP6011647B2 (en) Rotary compressor
JP2015194093A (en) rotary compressor
JP5677196B2 (en) Rotary compressor
JP2013177857A (en) Small capacity rotary compressor
JP2019031949A (en) Rotary Compressor
JP2016089811A (en) Rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130708

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140415

R150 Certificate of patent or registration of utility model

Ref document number: 5528379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250