JP2012186135A - Secondary battery, and method for manufacturing the same - Google Patents

Secondary battery, and method for manufacturing the same Download PDF

Info

Publication number
JP2012186135A
JP2012186135A JP2011176221A JP2011176221A JP2012186135A JP 2012186135 A JP2012186135 A JP 2012186135A JP 2011176221 A JP2011176221 A JP 2011176221A JP 2011176221 A JP2011176221 A JP 2011176221A JP 2012186135 A JP2012186135 A JP 2012186135A
Authority
JP
Japan
Prior art keywords
electrode film
solid electrolyte
hard
hard body
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011176221A
Other languages
Japanese (ja)
Other versions
JP5845706B2 (en
Inventor
Katsuharu Hida
勝春 肥田
Tamotsu Yamamoto
保 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2011176221A priority Critical patent/JP5845706B2/en
Publication of JP2012186135A publication Critical patent/JP2012186135A/en
Application granted granted Critical
Publication of JP5845706B2 publication Critical patent/JP5845706B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance resistance to external impacts.SOLUTION: A secondary battery according to an embodiment comprises a negative electrode film 14 and a positive electrode film 10, and a plurality of hard bodies 20 disposed in at least one of the negative electrode film 14 and the positive electrode film 10 and harder than the at least one electrode film. A method for manufacturing a secondary battery according to another embodiment comprises the steps of applying a paste containing at least one of a negative electrode material and a positive electrode material, and a plurality of hard bodies 20 on a conductor plate 16, and squeegeeing the paste to form at least one corresponding electrode film of a negative electrode film 14 and a positive electrode film 10 on the conductor plate from the at least one material, and the plurality of hard bodies is harder than the at least one electrode film.

Description

本発明は、二次電池とその製造方法に関し、例えば、正極膜または負極膜に硬質体を含む二次電池とその製造方法に関する。   The present invention relates to a secondary battery and a manufacturing method thereof, for example, a secondary battery including a hard body in a positive electrode film or a negative electrode film and a manufacturing method thereof.

二次電池は、電気エネンルギーを蓄電し、供給可能である。このため、二次電池はハイブリット車や電気自動車などに応用されている。二次電池として、リチウム二次電池が注目されている。二次電池は、正極、電解質および負極が積層され形成されている。エネルギー密度の向上の観点から、各膜の薄膜化が進められている。また、全てが固体の薄膜二次電池を形成するため固体電解質を用いた二次電池が開発されている。固体電解質に酸化ジルコニウム粒子を組み込んだリチウム二次電池が知られている。電極の表面に絶縁性フィラーとしてジルコニアを多孔質耐熱層に含有させることが知られている。補強材を含む電解質が知られている。   The secondary battery can store and supply electric energy. For this reason, the secondary battery is applied to a hybrid vehicle, an electric vehicle, and the like. As a secondary battery, a lithium secondary battery has attracted attention. A secondary battery is formed by laminating a positive electrode, an electrolyte, and a negative electrode. From the viewpoint of improving the energy density, each film is being made thinner. Also, secondary batteries using solid electrolytes have been developed in order to form all-solid thin film secondary batteries. A lithium secondary battery in which zirconium oxide particles are incorporated in a solid electrolyte is known. It is known that a porous heat-resistant layer contains zirconia as an insulating filler on the surface of an electrode. An electrolyte including a reinforcing material is known.

特開2002−280072号公報JP 2002-280072 A 特開2007−42580号公報JP 2007-42580 A 国際公開第2007/13567号International Publication No. 2007/13567 国際公開第2007/63943号International Publication No. 2007/63943

正極、電解質および負極が薄膜化すると、外部からの衝撃等により、電池が破壊する恐れがある。例えば、二次電池全体を硬質な材料でパッケージすることも考えられる。しかしながら、柔軟性が犠牲となる。本二次電池とその製造方法は、外部からの耐衝撃性を向上させることを目的とする。   If the positive electrode, the electrolyte, and the negative electrode are thinned, the battery may be destroyed due to external impact or the like. For example, it is conceivable to package the entire secondary battery with a hard material. However, flexibility is sacrificed. The secondary battery and the manufacturing method thereof are intended to improve external impact resistance.

例えば、負極膜および正極膜と、前記負極膜および正極膜の少なくとも一方の電極膜内に設けられ、前記少なくとも一方の電極膜より硬い複数の硬質体と、を具備することを特徴とする二次電池を用いる。   For example, a secondary comprising: a negative electrode film and a positive electrode film; and a plurality of hard bodies provided in at least one electrode film of the negative electrode film and the positive electrode film and harder than the at least one electrode film Use batteries.

例えば、導電体板上に、負極材料および正極材料の少なくとも一方の材料を含み複数の硬質体を含むペーストを、塗布し、前記ペーストをスキージすることにより、前記導電体板上に前記少なくとも一方の材料から対応する負極膜および正極膜の少なくとも一方の電極膜を形成し、前記複数の硬質体は前記少なくとも一方の電極膜より硬いことを特徴とする二次電池の製造方法を用いる。   For example, by applying a paste containing a plurality of hard bodies including at least one of a negative electrode material and a positive electrode material on a conductor plate, and squeezing the paste, the at least one of the at least one material on the conductor plate is applied. A method of manufacturing a secondary battery is used, wherein at least one of a negative electrode film and a positive electrode film corresponding to a material is formed, and the plurality of hard bodies are harder than the at least one electrode film.

本二次電池とその製造方法によれば、外部からの耐衝撃性を向上させることができる。   According to this secondary battery and its manufacturing method, the impact resistance from the outside can be improved.

図1(a)は、実施例1に係る二次電池の断面図、図1(b)は、正極膜と硬質体とを示す平面図である。FIG. 1A is a cross-sectional view of the secondary battery according to Example 1, and FIG. 1B is a plan view showing the positive electrode film and the hard body. 図2(a)および図2(b)は、二次電池に物体が落下した場合を示す断面図である。FIG. 2A and FIG. 2B are cross-sectional views showing a case where an object falls on the secondary battery. 図3は、実施例2に係る二次電池の硬質体と正極膜の平面図である。FIG. 3 is a plan view of the hard body and the positive electrode film of the secondary battery according to Example 2. 図4(a)から図4(d)は、実施例3に係る二次電池の製造工程を示す断面図である。FIG. 4A to FIG. 4D are cross-sectional views illustrating the manufacturing process of the secondary battery according to the third embodiment. 図5(a)から図5(d)は、硬質体の製造方法を示す図である。FIG. 5A to FIG. 5D are diagrams showing a method for manufacturing a hard body. 図6(a)から図6(c)は、正極膜を形成する方法を示す図である。FIG. 6A to FIG. 6C are diagrams showing a method for forming a positive electrode film. 図7(a)は、実施例4に係る二次電池の断面図、図7(b)は、固体電解質膜と硬質体とを示す平面図である。FIG. 7A is a cross-sectional view of the secondary battery according to Example 4, and FIG. 7B is a plan view showing the solid electrolyte membrane and the hard body. 図8は、実施例5に係る二次電池の硬質体と固体電解質膜の平面図である。FIG. 8 is a plan view of a hard body and a solid electrolyte membrane of a secondary battery according to Example 5. 図9(a)から図9(c)は、実施例6に係る二次電池の製造工程を示す断面図である。FIG. 9A to FIG. 9C are cross-sectional views illustrating the manufacturing process of the secondary battery according to the sixth embodiment. 図10(a)から図10(e)は、硬質体20の製造方法を示す図である。FIG. 10A to FIG. 10E are diagrams showing a method for manufacturing the hard body 20. 図11(a)から図11(d)は、正極膜および固体電解質膜を形成する方法を示す図である。FIG. 11A to FIG. 11D are diagrams showing a method for forming a positive electrode film and a solid electrolyte film.

以下、図面を参照に実施例について説明する。   Embodiments will be described below with reference to the drawings.

実施例1は、リチウム二次電池の例である。図1(a)は、実施例1に係る二次電池の断面図、図1(b)は、正極膜と硬質体とを示す平面図である。図1(a)のように導電体板16上に硬質体20(第1硬質体)を含む正極膜10が設けられている。硬質体20は正極膜10より硬い。硬質体20は、例えば、酸化ジルコニウムまたは酸化アルミニウム等の絶縁体である。硬質体20は金属でもよい。正極膜10は、例えば、コバルト酸リチウム等の正極活物質を含む。正極膜10上には、例えば硫化物固体電解質を用いた固体電解質膜12が設けられている。固体電解質膜12上には負極膜14が設けられている。負極膜14は、例えば、リチウム金属または炭化リチウム等の負極活物質を含む。このように、固体電解質膜12を挟み負極膜14と正極膜10とが設けられている。負極膜14上に導電体板18が設けられている。導電体板16および18は、例えばNi−Cu合金等の金属から形成され、集電体として機能する。図1(b)のように、硬質体20は正極膜10内に周期的またはランダムに設けられている。   Example 1 is an example of a lithium secondary battery. FIG. 1A is a cross-sectional view of the secondary battery according to Example 1, and FIG. 1B is a plan view showing the positive electrode film and the hard body. As shown in FIG. 1A, the positive electrode film 10 including the hard body 20 (first hard body) is provided on the conductor plate 16. The hard body 20 is harder than the positive electrode film 10. The hard body 20 is an insulator such as zirconium oxide or aluminum oxide, for example. The hard body 20 may be a metal. The positive electrode film 10 includes, for example, a positive electrode active material such as lithium cobalt oxide. On the positive electrode film 10, for example, a solid electrolyte film 12 using a sulfide solid electrolyte is provided. A negative electrode film 14 is provided on the solid electrolyte film 12. The negative electrode film 14 includes, for example, a negative electrode active material such as lithium metal or lithium carbide. Thus, the negative electrode film 14 and the positive electrode film 10 are provided with the solid electrolyte film 12 interposed therebetween. A conductor plate 18 is provided on the negative electrode film 14. The conductor plates 16 and 18 are made of, for example, a metal such as a Ni—Cu alloy and function as current collectors. As shown in FIG. 1B, the hard body 20 is periodically or randomly provided in the positive electrode film 10.

図2(a)および図2(b)は、二次電池に物体が落下した場合を示す断面図である。図2(a)は、比較例に係る二次電池を示し、正極膜10内に硬質体20が含まれていない。図2(b)は、実施例1に係る二次電池の断面を示している。図2(a)のように、二次電池に、物体50が落下すると、その衝撃により、導電体板18、負極膜14、固体電解質膜12および正極膜10に窪み52が形成される。これにより、二次電池が破壊される。例えば、正極膜10と負極膜14とが電気的に短絡してしまう。   FIG. 2A and FIG. 2B are cross-sectional views showing a case where an object falls on the secondary battery. FIG. 2A shows a secondary battery according to a comparative example, in which the positive electrode film 10 does not include the hard body 20. FIG. 2B shows a cross section of the secondary battery according to the first embodiment. As shown in FIG. 2A, when the object 50 falls on the secondary battery, a recess 52 is formed in the conductor plate 18, the negative electrode film 14, the solid electrolyte film 12, and the positive electrode film 10 due to the impact. Thereby, the secondary battery is destroyed. For example, the positive electrode film 10 and the negative electrode film 14 are electrically short-circuited.

図2(b)のように、実施例1においては、正極膜10より硬い複数の硬質体20が正極膜10内に含まれている。このため、物体50が落下しても、窪み52が小さく、二次電池の破壊が抑制できる。このように、外部からの衝撃に強い二次電池を提供できる。さらに、複数の硬質体20が独立に設けられ、繋がっていないため、二次電池の柔軟性も維持できる。   As shown in FIG. 2B, in Example 1, a plurality of hard bodies 20 that are harder than the positive electrode film 10 are included in the positive electrode film 10. For this reason, even if the object 50 falls, the hollow 52 is small and the destruction of the secondary battery can be suppressed. In this way, a secondary battery that is resistant to external impact can be provided. Furthermore, since the plurality of hard bodies 20 are independently provided and not connected, the flexibility of the secondary battery can be maintained.

実施例2は、硬質体が貫通孔を備える例である。図3は、実施例2に係る二次電池の硬質体と正極膜の平面図である。図3のように、硬質体20には、正極膜10の膜厚方向に貫通する孔22(第1孔)が形成されている。孔22には正極膜10が充填されている。これにより、孔22内に正極膜10が形成される。よって、硬質体20により、正極膜10の面積が小さくなることを抑制できる。正極膜10の面積を確保するためには、硬質体20の孔22は大きいことが好ましい。例えば、孔22の大きさは、硬質体の大きさの1/2以上が好ましく、3/4以上がより好ましい。一方、孔22が大きすぎると、硬質体20の強度が低下する。よって、孔22の大きさは硬質体20の強度により設定できる。硬質体20の形状は実施例1および2のように四角形状以外にも、例えば円形、楕円形状または多角形状を用いることもできる。また、1つの硬質体20に複数の孔22が設けられていてもよい。   Example 2 is an example in which a hard body includes a through hole. FIG. 3 is a plan view of the hard body and the positive electrode film of the secondary battery according to Example 2. As shown in FIG. 3, the hard body 20 is formed with a hole 22 (first hole) penetrating in the film thickness direction of the positive electrode film 10. The hole 22 is filled with the positive electrode film 10. Thereby, the positive electrode film 10 is formed in the hole 22. Therefore, the hard body 20 can suppress the area of the positive electrode film 10 from being reduced. In order to ensure the area of the positive electrode film 10, it is preferable that the hole 22 of the hard body 20 is large. For example, the size of the hole 22 is preferably 1/2 or more of the size of the hard body, and more preferably 3/4 or more. On the other hand, if the hole 22 is too large, the strength of the hard body 20 is lowered. Therefore, the size of the hole 22 can be set by the strength of the hard body 20. The shape of the hard body 20 can be, for example, a circle, an ellipse, or a polygon other than the quadrangle as in the first and second embodiments. A plurality of holes 22 may be provided in one hard body 20.

実施例3は、二次電池の製造方法の例である。図4(a)から図4(d)は、実施例3に係る二次電池の製造工程を示す断面図である。図4(a)のように、例えば膜厚が約100μmのNi−Cu合金の導電体板16をプレスする。これにより、導電体の片面に突起24(第1突起)が形成される。突起24は、径が例えば100μm、高さが例えば35μm、間隔が、例えば1250μmとすることができる。   Example 3 is an example of a method for manufacturing a secondary battery. FIG. 4A to FIG. 4D are cross-sectional views illustrating the manufacturing process of the secondary battery according to the third embodiment. As shown in FIG. 4A, for example, a Ni—Cu alloy conductor plate 16 having a thickness of about 100 μm is pressed. Thereby, the protrusion 24 (first protrusion) is formed on one surface of the conductor. The protrusions 24 can have a diameter of, for example, 100 μm, a height of, for example, 35 μm, and an interval of, for example, 1250 μm.

図4(b)のように、導電体板16の片面に例えば膜厚が50μmの正極膜10を形成する。正極膜10内には、複数の硬質体20が設けられている。正極膜10は、例えば正極活物質としてコバルト酸リチウムを含む。図4(b)において、左2個の硬質体20は、孔22を含む断面を示している。硬質体20は、上面からみて例えば500μm×500μmであり、膜厚が例えば50μmである。孔22の大きさは例えば400μm×400μmである。   As shown in FIG. 4B, the positive electrode film 10 having a film thickness of, for example, 50 μm is formed on one surface of the conductor plate 16. A plurality of hard bodies 20 are provided in the positive electrode film 10. The positive electrode film 10 includes, for example, lithium cobalt oxide as a positive electrode active material. In FIG. 4B, the left two hard bodies 20 show cross sections including the holes 22. The hard body 20 has a thickness of, for example, 500 μm × 500 μm as viewed from above, and a film thickness of, for example, 50 μm. The size of the hole 22 is, for example, 400 μm × 400 μm.

図4(c)のように、正極膜10上に例えば膜厚が50μmの固体電解質膜12を例えば印刷法を用い形成する。固体電解質膜12は、例えば硫化物固体電解質等の固体電解質を97重量%およびポリフッ化ビニリデン等の樹脂を3重量%含む。なお、正極膜10と固体電解質膜12との間に、例えば膜厚が10μmの中間層を形成してもよい。中間層は、例えば正極材料を80重量%および固体電解質材料を20重量%含む材料を用いることができる。図4(d)のように、固体電解質膜12上に、例えば膜厚が50μmの負極膜14を形成する。負極膜14上に、導電体板18を形成する。   As shown in FIG. 4C, the solid electrolyte film 12 having a film thickness of, for example, 50 μm is formed on the positive electrode film 10 by using, for example, a printing method. The solid electrolyte membrane 12 contains 97% by weight of a solid electrolyte such as a sulfide solid electrolyte and 3% by weight of a resin such as polyvinylidene fluoride. An intermediate layer having a thickness of 10 μm may be formed between the positive electrode film 10 and the solid electrolyte film 12, for example. For the intermediate layer, for example, a material containing 80% by weight of the positive electrode material and 20% by weight of the solid electrolyte material can be used. As shown in FIG. 4D, the negative electrode film 14 having a film thickness of, for example, 50 μm is formed on the solid electrolyte film 12. A conductor plate 18 is formed on the negative electrode film 14.

図5(a)から図5(d)は、硬質体の製造方法を示す図である。図5(a)から図5(c)は平面図、図5(d)は斜視図である。図5(a)のように、例えば酸化ジルコニウム等の絶縁物を85重量%およびポリビニールアルコール等の樹脂を15重量%含むグリーンシート30を作製する。図5(b)のように、グリーンシート30にパンチング等で孔22を開ける。その後、グリーンシート30を焼成する。図5(c)のように、焼成したグリーンシートを、例えばダイシング法を用い切断線32において切断する。これにより、硬質体20が個片化される。図5(d)のように、硬質体20は、膜厚方向に貫通する孔22を備える。   FIG. 5A to FIG. 5D are diagrams showing a method for manufacturing a hard body. 5 (a) to 5 (c) are plan views, and FIG. 5 (d) is a perspective view. As shown in FIG. 5A, for example, a green sheet 30 containing 85% by weight of an insulator such as zirconium oxide and 15% by weight of a resin such as polyvinyl alcohol is manufactured. As shown in FIG. 5B, holes 22 are formed in the green sheet 30 by punching or the like. Thereafter, the green sheet 30 is fired. As shown in FIG. 5C, the fired green sheet is cut at the cutting line 32 using, for example, a dicing method. Thereby, the hard body 20 is separated into pieces. As shown in FIG. 5D, the hard body 20 includes a hole 22 penetrating in the film thickness direction.

図6(a)から図6(c)は、正極膜を形成する方法を示す図であり、図4(b)の工程に対応する。図6(b)は、図6(c)のA−A断面図、図6(c)は上面図である。正極材料には、正極活物質であるコバルト酸リチウムが90重量%、結合材が5重量%および導電材が5重量%含まれている。正極材料に有機溶剤を加え粘性を備えるペースト26(第1ペースト)とする。結合材としては、例えばポリフッ化ビニリデン、導電材としては、例えばアセチレンブラックまたはカーボンブラック、有機溶剤としては、例えばn−メチルピロリドンを用いることができる。ペースト26に硬質体20を含ませる。図6(a)のように、導電体板16上に硬質体20を含むペースト26を塗布する。例えば、印刷法を用いペースト26を塗布する。   FIG. 6A to FIG. 6C are diagrams showing a method for forming the positive electrode film, and correspond to the step of FIG. 4B. 6B is a cross-sectional view taken along the line AA in FIG. 6C, and FIG. 6C is a top view. The positive electrode material contains 90% by weight of lithium cobalt oxide as a positive electrode active material, 5% by weight of a binder, and 5% by weight of a conductive material. An organic solvent is added to the positive electrode material to obtain a paste 26 (first paste) having viscosity. For example, polyvinylidene fluoride can be used as the binder, acetylene black or carbon black can be used as the conductive material, and n-methylpyrrolidone can be used as the organic solvent, for example. The hard body 20 is included in the paste 26. As shown in FIG. 6A, a paste 26 including a hard body 20 is applied on the conductor plate 16. For example, the paste 26 is applied using a printing method.

図6(b)のように、ペースト26をスキージ板28を用いスキージする。硬質体20は上面から見た縦横の大きさに対し膜厚が小さいため、図6(b)のように、硬質体20は、膜厚方向が導電体板16の上面の法線方向となるように導電体板16上に配置される。これにより、硬質体20とほぼ同じ厚さの正極膜10が形成される。硬質体20はほぼ均一に正極膜10内に配置される。突起24による硬質体20の移動の規制は、図6(b)の一番左の硬質体20のように、突起24が孔22内に引っかかる場合と、図6(b)の中央の硬質体20のように、突起24が硬質体20の外側に引っかかる場合がある。   As shown in FIG. 6B, the paste 26 is squeezed using a squeegee plate 28. Since the thickness of the hard body 20 is smaller than the vertical and horizontal dimensions as viewed from the top surface, the thickness direction of the hard body 20 is the normal direction of the top surface of the conductor plate 16 as shown in FIG. Is disposed on the conductor plate 16. Thereby, the positive electrode film 10 having substantially the same thickness as the hard body 20 is formed. The hard body 20 is disposed in the positive electrode film 10 almost uniformly. The restriction of the movement of the hard body 20 by the protrusion 24 is such that the protrusion 24 is caught in the hole 22 as in the leftmost hard body 20 of FIG. 6B, and the center hard body of FIG. 6B. 20, the protrusion 24 may be caught on the outside of the hard body 20.

実施例3によれば、導電体板16の片面に正極膜10の膜厚より低い(例えば硬質体20の膜厚より低い)突起24を備える。これにより、突起24が正極膜10を突き抜けることを抑制できる。また、図6(b)のように、ペースト26をスキージする際に、突起24により硬質体20の移動が規制される。これにより、硬質体20をほぼ均一に正極膜10内に配置することができる。突起24による硬質体20の移動の規制は、孔22内に突起24が引っかかる場合と、硬質体20の外側に突起24が引っかかる場合がある。硬質体20を均一に配置するためには、硬質体20の移動をより規制するため、硬質体20に孔22が設けられ、導電体板16に突起24が設けられることが好ましい。   According to the third embodiment, the protrusion 24 that is lower than the film thickness of the positive electrode film 10 (for example, lower than the film thickness of the hard body 20) is provided on one surface of the conductor plate 16. Thereby, it can suppress that the protrusion 24 penetrates the positive electrode film 10. Further, as shown in FIG. 6B, when the paste 26 is squeegeeed, the movement of the hard body 20 is restricted by the protrusions 24. Thereby, the hard body 20 can be disposed in the positive electrode film 10 almost uniformly. The restriction of the movement of the hard body 20 by the protrusion 24 may be the case where the protrusion 24 is caught in the hole 22 or the protrusion 24 is caught outside the hard body 20. In order to uniformly arrange the hard bodies 20, it is preferable that holes 22 are provided in the hard body 20 and protrusions 24 are provided in the conductor plate 16 in order to further restrict the movement of the hard body 20.

硬質体20をより均一に配置するためには、突起24の間隔は、硬質体20の大きさ(例えば、硬質体20が長方形の場合長辺、楕円の場合長軸)より大きいことが好ましい。硬質体20の大きさより突起24の間隔が狭い場合、隣接する突起24にそれぞれ硬質体20が引っかかり、スキージの際に硬質体20が重なる可能性があるためである。さらに、突起24の間隔が大きすぎると、硬質体20が均一に配置されない可能性がある。硬質体20の均一化のためには、突起24の間隔内に硬質体20が2、3個入りことが好ましい。よって、突起24の間隔は、硬質体20の大きさの1.5倍〜4倍が好ましく、2倍〜3倍がより好ましい。   In order to arrange the hard bodies 20 more uniformly, the interval between the protrusions 24 is preferably larger than the size of the hard bodies 20 (for example, the long side when the hard body 20 is rectangular, and the long axis when the hard body 20 is elliptic). This is because, when the interval between the protrusions 24 is narrower than the size of the hard body 20, the hard bodies 20 may be caught by the adjacent protrusions 24, and the hard bodies 20 may overlap during the squeegee. Furthermore, if the interval between the protrusions 24 is too large, the hard bodies 20 may not be arranged uniformly. In order to make the hard body 20 uniform, it is preferable that two or three hard bodies 20 are included in the interval between the protrusions 24. Therefore, the interval between the protrusions 24 is preferably 1.5 to 4 times the size of the hard body 20, and more preferably 2 to 3 times.

また、図6(b)のように、硬質体20の正極膜10膜厚方向の両面は平坦である。これにより、正極膜10の膜厚をより均一にすることができる。さらに、複数の硬質体20の厚さは互いに同じである。これにより、正極膜10の膜厚をより均一にすることができる。   Further, as shown in FIG. 6B, both surfaces of the hard body 20 in the film thickness direction of the positive electrode film 10 are flat. Thereby, the film thickness of the positive electrode film | membrane 10 can be made more uniform. Further, the plurality of hard bodies 20 have the same thickness. Thereby, the film thickness of the positive electrode film | membrane 10 can be made more uniform.

実施例1から実施例3において、固体電解質膜12の代わりに、例えば、ポリエチレン多孔質セパレータ等のセパレータに有機電解液等の電解液を含ませた電解質を用いてもよい。全てが固体の薄膜二次電池を形成するためには、電解質は固体電解質膜であることが好ましい。   In Example 1 to Example 3, instead of the solid electrolyte membrane 12, for example, an electrolyte in which an electrolyte such as an organic electrolyte is included in a separator such as a polyethylene porous separator may be used. In order to form an all-solid thin-film secondary battery, the electrolyte is preferably a solid electrolyte membrane.

実施例4は、固体電解質膜が硬質体を含む例である。図7(a)は、実施例4に係る二次電池の断面図、図7(b)は、固体電解質膜と硬質体とを示す平面図である。図7(a)のように、正極膜10上に硬質体40(第2硬質体)を含む固体電解質膜12が設けられている。硬質体40は固体電解質膜12より硬い。硬質体40は、例えば、酸化ジルコニウムまたは酸化アルミニウム等の絶縁体である。硬質体40は、正極膜10と負極膜14と電気的短絡を抑制するため絶縁体であることが好ましい。固体電解質膜12は、例えば、例えば硫化物固体電解質である。図7(b)において、硬質体20は点線、硬質体40は実線で示している。図7(b)のように、硬質体40は固体電解質膜12内に周期的またはランダムに設けられている。その他の構成は、実施例1の図1(a)および図1(b)と同じであり説明を省略する。   Example 4 is an example in which the solid electrolyte membrane includes a hard body. FIG. 7A is a cross-sectional view of the secondary battery according to Example 4, and FIG. 7B is a plan view showing the solid electrolyte membrane and the hard body. As shown in FIG. 7A, the solid electrolyte film 12 including the hard body 40 (second hard body) is provided on the positive electrode film 10. The hard body 40 is harder than the solid electrolyte membrane 12. The hard body 40 is an insulator such as zirconium oxide or aluminum oxide, for example. The hard body 40 is preferably an insulator in order to suppress an electrical short circuit between the positive electrode film 10 and the negative electrode film 14. The solid electrolyte membrane 12 is, for example, a sulfide solid electrolyte. In FIG.7 (b), the hard body 20 is shown with the dotted line, and the hard body 40 is shown with the continuous line. As shown in FIG. 7B, the hard body 40 is periodically or randomly provided in the solid electrolyte membrane 12. Other configurations are the same as those in FIG. 1A and FIG. 1B of the first embodiment, and a description thereof will be omitted.

実施例4においては、正極膜10に加え固体電解質膜12も複数の硬質体40を含む。このため、図2(b)のように、二次電池に物体が落下しても、窪みが小さく、二次電池の破壊をより抑制できる。このように、外部からの衝撃に強い二次電池を提供できる。さらに、複数の硬質体40が独立に設けられ、繋がっていないため、二次電池の柔軟性も維持できる。   In Example 4, the solid electrolyte membrane 12 includes a plurality of hard bodies 40 in addition to the positive electrode membrane 10. For this reason, even if an object falls on the secondary battery as shown in FIG. 2B, the dent is small, and the destruction of the secondary battery can be further suppressed. In this way, a secondary battery that is resistant to external impact can be provided. Furthermore, since the plurality of hard bodies 40 are independently provided and not connected, the flexibility of the secondary battery can be maintained.

実施例5は、硬質体が貫通孔を備える例である。図8は、実施例5に係る二次電池の硬質体と固体電解質膜の平面図である。図8において、硬質体20は点線、硬質体40は実線で示している。図8のように、硬質体40には、固体電解質膜12の膜厚方向に貫通する孔42(第2孔)が形成されている。孔42には固体電解質膜12が充填されている。これにより、孔42内に固体電解質膜12が形成される。よって、硬質体40により、固体電解質膜12の面積が小さくなることを抑制できる。固体電解質膜12の面積を確保するためには、硬質体40の孔42は大きいことが好ましい。例えば、孔42の大きさは、硬質体40の大きさの1/2以上が好ましく、3/4以上がより好ましい。一方、孔42が大きすぎると、硬質体40の強度が低下する。よって、孔42の大きさは硬質体40の強度により設定できる。硬質体40の形状は実施例4および5のように四角形状以外にも、例えば円形、楕円形状または多角形状を用いることもできる。また、1つの硬質体40に複数の孔42が設けられていてもよい。   Example 5 is an example in which a hard body includes a through hole. FIG. 8 is a plan view of a hard body and a solid electrolyte membrane of a secondary battery according to Example 5. In FIG. 8, the hard body 20 is indicated by a dotted line, and the hard body 40 is indicated by a solid line. As shown in FIG. 8, a hole 42 (second hole) penetrating in the thickness direction of the solid electrolyte membrane 12 is formed in the hard body 40. The holes 42 are filled with the solid electrolyte membrane 12. Thereby, the solid electrolyte membrane 12 is formed in the hole 42. Therefore, the hard body 40 can suppress the area of the solid electrolyte membrane 12 from being reduced. In order to ensure the area of the solid electrolyte membrane 12, it is preferable that the hole 42 of the hard body 40 is large. For example, the size of the hole 42 is preferably 1/2 or more of the size of the hard body 40 and more preferably 3/4 or more. On the other hand, if the hole 42 is too large, the strength of the hard body 40 decreases. Therefore, the size of the hole 42 can be set by the strength of the hard body 40. The shape of the hard body 40 may be, for example, a circle, an ellipse, or a polygon other than the quadrangular shape as in the fourth and fifth embodiments. A plurality of holes 42 may be provided in one hard body 40.

実施例6は、二次電池の製造方法の例である。図9(a)から図9(c)は、実施例6に係る二次電池の製造工程を示す断面図である。図9(a)のように、実施例3の図3(a)と同様に、突起24を備える導電体板16を形成する。導電体板16の片面に例えば膜厚が50μmの正極膜10を形成する。正極膜10内には、複数の硬質体20が設けられている。複数の硬質体20は、正極膜10の膜厚方向または孔22の貫通方向に突起44を備えている。突起44は硬質体20の両面に形成されている。突起44の少なくとも一部は正極膜10から上面に突出している。   Example 6 is an example of a method for manufacturing a secondary battery. FIG. 9A to FIG. 9C are cross-sectional views illustrating the manufacturing process of the secondary battery according to the sixth embodiment. As shown in FIG. 9A, the conductor plate 16 including the protrusions 24 is formed in the same manner as in FIG. For example, the positive electrode film 10 having a film thickness of 50 μm is formed on one surface of the conductor plate 16. A plurality of hard bodies 20 are provided in the positive electrode film 10. The plurality of hard bodies 20 include protrusions 44 in the film thickness direction of the positive electrode film 10 or the penetration direction of the holes 22. The protrusions 44 are formed on both surfaces of the hard body 20. At least a part of the protrusion 44 protrudes from the positive electrode film 10 to the upper surface.

図9(b)のように、正極膜10上に例えば膜厚が50μmの固体電解質膜12を例えば印刷法を用い形成する。固体電解質膜12は、複数の硬質体40を含んでいる。硬質体40には、硬質体20のような突起44は形成されていなくともよい。なお、正極膜10と固体電解質膜12との間に、実施例3において説明した中間層が設けられていてもよい。この場合、突起44は少なくとも中間層の上面から突出している。図4(c)のように、固体電解質膜12上に、負極膜14を形成する。負極膜14上に、導電体板18を形成する。   As shown in FIG. 9B, the solid electrolyte film 12 having a film thickness of, for example, 50 μm is formed on the positive electrode film 10 by using, for example, a printing method. The solid electrolyte membrane 12 includes a plurality of hard bodies 40. The hard body 40 does not have to be formed with the projection 44 like the hard body 20. Note that the intermediate layer described in the third embodiment may be provided between the positive electrode film 10 and the solid electrolyte film 12. In this case, the protrusion 44 protrudes from at least the upper surface of the intermediate layer. As shown in FIG. 4C, the negative electrode film 14 is formed on the solid electrolyte film 12. A conductor plate 18 is formed on the negative electrode film 14.

図10(a)から図10(e)は、硬質体20の製造方法を示す図である。図10(a)、図10(b)および図10(d)は平面図、図10(c)は図10(b)のA−A断面図、図10(e)は斜視図である。図10(a)のように、実施例3の図5(b)と同様に、複数の孔22を備えるグリーンシート30を作製する。図10(b)のように、グリーンシート30の孔22の配列方向に例えばダイシングブレードを用い溝を形成する。領域62には、溝が形成され、表面が削れる。領域60には、溝は形成されず、突起が形成される。図10(c)のように、グリーンシート30の両面に突起を形成する。その後、グリーンシート30を焼成する。図10(d)のように、焼成したグリーンシートを、例えばダイシング法を用い切断線32において切断する。これにより、硬質体20が個片化される。図10(e)のように、硬質体20は、膜厚方向に貫通する孔22を備える。さらに、表裏両面の4角に突起44が形成される。硬質体40の形成は、実施例3と図5(a)から図5(d)と同様に行なう。これにより、硬質体40には、突起は形成されない。   FIG. 10A to FIG. 10E are diagrams showing a method for manufacturing the hard body 20. 10 (a), 10 (b) and 10 (d) are plan views, FIG. 10 (c) is a cross-sectional view taken along line AA of FIG. 10 (b), and FIG. 10 (e) is a perspective view. As shown in FIG. 10A, a green sheet 30 including a plurality of holes 22 is produced in the same manner as in FIG. As shown in FIG. 10B, grooves are formed in the arrangement direction of the holes 22 of the green sheet 30 using, for example, a dicing blade. A groove is formed in the region 62 and the surface is shaved. In the region 60, no groove is formed and a projection is formed. As shown in FIG. 10C, protrusions are formed on both sides of the green sheet 30. Thereafter, the green sheet 30 is fired. As shown in FIG. 10D, the fired green sheet is cut at the cutting line 32 using, for example, a dicing method. Thereby, the hard body 20 is separated into pieces. As shown in FIG. 10E, the hard body 20 includes a hole 22 penetrating in the film thickness direction. Further, protrusions 44 are formed on the four corners of the front and back surfaces. The formation of the hard body 40 is performed in the same manner as in Example 3 and FIGS. 5 (a) to 5 (d). Thereby, no protrusion is formed on the hard body 40.

図11(a)から図11(d)は、正極膜および固体電解質膜を形成する方法を示す図であり、図10(a)および図10(b)の工程に対応する。図11(a)を参照し、正極材料に有機溶剤を加え粘性を備えるペースト26(第1ペースト)とする。ペースト26に硬質体20を含ませる。導電体板16上に硬質体20を含むペースト26を塗布する。例えば、印刷法を用いペースト26を塗布する。図11(b)のように、ペースト26をスキージ板28を用いスキージする。硬質体20は上面から見た縦横の大きさに対し膜厚が小さいため、図11(b)のように、硬質体20は、膜厚方向が導電体板16の上面の法線方向となるように導電体板16上に配置される。これにより、硬質体20とほぼ同じ厚さの正極膜10が形成される。突起24により硬質体20の移動が規制されるため、硬質体20はほぼ均一に正極膜10内に配置される。突起24による硬質体20の移動の規制は、突起24が孔22内に引っかかる場合と、突起24が硬質体20の外側に引っかかる場合がある。   FIG. 11A to FIG. 11D are diagrams showing a method of forming the positive electrode film and the solid electrolyte film, and correspond to the steps of FIG. 10A and FIG. 10B. Referring to FIG. 11A, an organic solvent is added to the positive electrode material to obtain a paste 26 (first paste) having viscosity. The hard body 20 is included in the paste 26. A paste 26 including a hard body 20 is applied on the conductor plate 16. For example, the paste 26 is applied using a printing method. As shown in FIG. 11 (b), the paste 26 is squeezed using a squeegee plate 28. Since the thickness of the hard body 20 is smaller than the vertical and horizontal dimensions as viewed from the top surface, the thickness direction of the hard body 20 is the normal direction of the top surface of the conductor plate 16 as shown in FIG. Is disposed on the conductor plate 16. Thereby, the positive electrode film 10 having substantially the same thickness as the hard body 20 is formed. Since the movement of the hard body 20 is restricted by the protrusions 24, the hard body 20 is disposed in the positive electrode film 10 almost uniformly. The restriction of the movement of the hard body 20 by the protrusion 24 may be caused when the protrusion 24 is caught in the hole 22 or when the protrusion 24 is caught outside the hard body 20.

図11(c)を参照し、固体電解質に有機溶剤を加え粘性を備えるペースト46(第2ペースト)とする。固体電解質は、例えば硫化物固体電解質等の固体電解質を97重量%およびポリフッ化ビニリデン等の樹脂を3重量%含む。有機溶剤としては、例えばn−メチルピロリドンを用いることができる。ペースト46に硬質体40を含ませる。正極膜10上に硬質体20を含むペースト26を塗布する。ペースト26が乾燥することにより、正極膜10の体積が小さくなる。これにより、正極膜10の上面から突起44の少なくとも一部が突出する。例えば、印刷法を用いペースト46を塗布する。図11(e)のように、ペースト46をスキージ板28を用いスキージする。硬質体40は上面から見た縦横の大きさに対し膜厚が小さいため、図11(d)のように、硬質体40は、膜厚方向が正極膜10の上面の法線方向となるように正極膜10上に配置される。これにより、硬質体40とほぼ同じ厚さの固体電解質膜12が形成される。突起44により硬質体40の移動が規制されるため、硬質体40はほぼ均一に固体電解質膜12内に配置される。突起44による硬質体40の移動の規制は、突起44が孔42内に引っかかる場合と、突起44が硬質体40の外側に引っかかる場合がある。   Referring to FIG. 11C, an organic solvent is added to the solid electrolyte to obtain a paste 46 (second paste) having viscosity. The solid electrolyte contains 97% by weight of a solid electrolyte such as a sulfide solid electrolyte and 3% by weight of a resin such as polyvinylidene fluoride. For example, n-methylpyrrolidone can be used as the organic solvent. The hard body 40 is included in the paste 46. A paste 26 including a hard body 20 is applied on the positive electrode film 10. When the paste 26 is dried, the volume of the positive electrode film 10 is reduced. Thereby, at least a part of the protrusion 44 protrudes from the upper surface of the positive electrode film 10. For example, the paste 46 is applied using a printing method. As shown in FIG. 11 (e), the paste 46 is squeezed using the squeegee plate 28. Since the film thickness of the hard body 40 is smaller than the vertical and horizontal sizes as viewed from the top surface, the film thickness direction of the hard body 40 is the normal direction of the top surface of the positive electrode film 10 as shown in FIG. Is disposed on the positive electrode film 10. Thereby, the solid electrolyte membrane 12 having substantially the same thickness as the hard body 40 is formed. Since the movement of the hard body 40 is restricted by the protrusions 44, the hard body 40 is disposed in the solid electrolyte membrane 12 almost uniformly. The restriction of the movement of the hard body 40 by the protrusion 44 may be caused when the protrusion 44 is caught in the hole 42 or when the protrusion 44 is caught outside the hard body 40.

実施例6によれば、正極膜10に含まれる硬質体20は、固体電解質膜12の膜厚より低い(例えば硬質体40の膜厚より低い)突起44を備える。これにより、突起44が固体電解質膜12を突き抜けることを抑制できる。また、突起24は突起44より高い。これにより、図11(b)において、硬質体20は突起24に規制されやすくなる。さらに、図11(d)のように、ペースト46をスキージする際に、突起44により硬質体40の移動が規制される。これにより、硬質体40をほぼ均一に固体電解質膜12内に配置することができる。突起44による硬質体40の移動の規制は、突起44に孔42の内側が引っかかる場合と、突起44に硬質体40の外側が引っかかる場合とがある。硬質体40を均一に配置し、硬質体40の移動をより規制するためには、硬質体40に孔42が設けられ、硬質体20に突起44が設けられることが好ましい。また、突起44は硬質体20の上面と下面とのうち上面のみに形成されていてもよい。さらに、図10(e)では、突起44が硬質体20の片面に4個形成されているが、1または複数個形成されていればよい。   According to Example 6, the hard body 20 included in the positive electrode film 10 includes protrusions 44 that are lower than the film thickness of the solid electrolyte film 12 (for example, lower than the film thickness of the hard body 40). Thereby, it can suppress that the protrusion 44 penetrates the solid electrolyte membrane 12. FIG. Further, the protrusion 24 is higher than the protrusion 44. Thereby, in FIG.11 (b), the hard body 20 becomes easy to be controlled by the protrusion 24. FIG. Further, as shown in FIG. 11D, when the paste 46 is squeegeeed, the movement of the hard body 40 is restricted by the protrusions 44. Thereby, the hard body 40 can be disposed in the solid electrolyte membrane 12 almost uniformly. The restriction of the movement of the hard body 40 by the protrusion 44 may be caused when the inside of the hole 42 is caught by the protrusion 44 or when the outside of the hard body 40 is caught by the protrusion 44. In order to arrange the hard body 40 uniformly and further restrict the movement of the hard body 40, it is preferable that the hole 42 is provided in the hard body 40 and the protrusion 44 is provided in the hard body 20. Further, the protrusion 44 may be formed only on the upper surface of the upper surface and the lower surface of the hard body 20. Further, in FIG. 10 (e), four protrusions 44 are formed on one surface of the hard body 20, but one or a plurality of protrusions may be formed.

硬質体40をより均一に配置するためには、突起44の間隔は、硬質体40の大きさ(例えば、硬質体40が長方形の場合長辺、楕円の場合長軸)より大きいことが好ましい。硬質体40の大きさより突起44の間隔が狭い場合、隣接する突起44にそれぞれ硬質体20が引っかかり、スキージの際に硬質体40が重なる可能性があるためである。さらに、突起44の間隔が大きすぎると、硬質体40が均一に配置されない可能性がある。硬質体40の均一化のためには、突起44の間隔内に硬質体40が2、3個入ることが好ましい。   In order to arrange the hard bodies 40 more uniformly, the interval between the protrusions 44 is preferably larger than the size of the hard bodies 40 (for example, the long side when the hard body 40 is rectangular and the long axis when the hard body 40 is elliptic). This is because when the distance between the protrusions 44 is narrower than the size of the hard body 40, the hard bodies 20 may be caught by the adjacent protrusions 44, and the hard body 40 may overlap during the squeegee. Furthermore, if the interval between the protrusions 44 is too large, the hard bodies 40 may not be arranged uniformly. In order to make the hard body 40 uniform, it is preferable that two or three hard bodies 40 are included in the interval between the protrusions 44.

また、図11(d)のように、硬質体40の固体電解質膜12の膜厚方向の両面は平坦である。これにより、固体電解質膜12の膜厚をより均一にすることができる。さらに、複数の硬質体40の厚さは互いに同じである。これにより、固体電解質膜12の膜厚をより均一にすることができる。   Moreover, as shown in FIG. 11D, both surfaces of the solid electrolyte membrane 12 of the hard body 40 in the film thickness direction are flat. Thereby, the film thickness of the solid electrolyte membrane 12 can be made more uniform. Further, the thicknesses of the plurality of hard bodies 40 are the same. Thereby, the film thickness of the solid electrolyte membrane 12 can be made more uniform.

実施例1から実施例6において、硬質体20を含む膜として正極膜10を例に説明したが、負極膜14内に硬質体20が含まれてもよい。また、負極膜14および正極膜10の両方の電極膜内に硬質体20が設けられていてもよい。このように、負極膜14および正極膜10の少なくとも一方の電極膜内に複数の硬質体20が設けられていればよい。また、リチウム二次電池の例を説明したが、他の二次電池でもよい。   In the first to sixth embodiments, the positive electrode film 10 is described as an example of the film including the hard body 20, but the hard body 20 may be included in the negative electrode film 14. Further, the hard body 20 may be provided in both the negative electrode film 14 and the positive electrode film 10. As described above, it is sufficient that a plurality of hard bodies 20 are provided in at least one of the negative electrode film 14 and the positive electrode film 10. Moreover, although the example of the lithium secondary battery has been described, other secondary batteries may be used.

以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

実施例1〜6を含む実施形態に関し、さらに以下の付記を開示する。
付記1:
負極膜および正極膜と、前記負極膜および正極膜の少なくとも一方の電極膜内に設けられ、前記少なくとも一方の電極膜より硬い複数の第1硬質体と、を具備することを特徴とする二次電池。
付記2:
前記複数の第1硬質体は、それぞれ前記少なくとも一方の電極膜の膜厚方向に貫通し前記少なくとも一方の電極膜が充填された第1孔を具備することを特徴とする付記1記載の二次電池。
付記3:
片面に前記少なくとも一方の電極膜が形成され、前記片面に、前記少なくとも一方の電極膜の膜厚より低い第1突起を備える導電体板を具備することを特徴とする付記2記載の二次電池。
付記4:
前記複数の第1硬質体のそれぞれの前記少なくとも一方の電極膜の膜厚方向の両面は平坦であることを特徴とする付記1から3のいずれか一項記載の二次電池。
付記5:
前記負極膜および正極膜の間に設けられた固体電解質膜と、前記固体電解質膜内に設けられ、前記固体電解質より硬い複数の第2硬質体と、を具備する付記1記載の二次電池。
付記6:
前記負極膜および正極膜の間に設けられた固体電解質膜と、前記固体電解質膜内に設けられ、前記固体電解質膜より硬い複数の第2硬質体と、を具備し、前記第1硬質体は、前記第1孔の貫通方向に第2突起を備え、前記第2硬質体は、前記固体電解質膜の膜厚方向に貫通し、前記固体電解質膜が充填された第2孔を備えることを特徴とする付記3記載の二次電池。
付記7:
前記第1突起は前記第2突起より高いことを特徴とする付記6記載の二次電池。
付記8:
前記複数の第1硬質体のそれぞれの厚さは互いに同じであることを特徴とする付記4記載の二次電池。
付記9:
前記負極膜と前記正極膜とに挟まれた固体電解質膜を具備することを特徴とする付記1から4のいずれか一項記載の二次電池。
付記10:
前記複数の第2硬質体のそれぞれの前記少なくとも一方の電極膜の膜厚方向の両面は平坦であることを特徴とする付記5または6記載の二次電池。
付記11:
前記複数の第2硬質体のそれぞれの厚さは互いに同じであることを特徴とする付記5または6記載の二次電池。
付記12:
前記少なくとも一方の電極膜は、前記正極膜であることを特徴とする付記1から11のいずれか一項記載の二次電池。
付記13:
前記二次電池は、リチウム二次電池であることを特徴とする付記1から12のいずれか一項記載の二次電池。
付記14:
導電体板上に、負極材料および正極材料の少なくとも一方の材料を含み複数の第1硬質体を含む第1ペーストを、塗布し、前記第1ペーストをスキージすることにより、前記導電体板上に前記少なくとも一方の材料から対応する負極膜および正極膜の少なくとも一方の電極膜を形成し、前記複数の第1硬質体は前記少なくとも一方の電極膜より硬いことを特徴とする二次電池の製造方法。
付記15:
前記導電体板の片面には前記第1硬質体の膜厚より低い第1突起が形成され、前記第1ペーストを塗布する際、前記片面に前記第1ペーストを塗布し、前記少なくとも一方の電極膜を形成する際、前記複数の第1硬質体の移動が前記第1突起により規制されるように前記第1ペーストをスキージすることを特徴とする付記14記載の二次電池の製造方法。
付記16:
前記少なくとも一方の電極膜上に、固体電解質の材料を含み複数の第2硬質体を含む第2ペーストを、塗布し、前記第2ペーストをスキージすることにより、前記少なくとも一方の電極膜上に前記固体電解質膜を形成し、前記複数の第2硬質体は前記固体電解質膜より硬いことを特徴とする付記14記載の二次電池の製造方法。
付記17:
前記第1硬質体には、前記第2硬質体の膜厚より低い第2突起が形成され、前記固体電解質膜を形成する際、前記複数の第2硬質体の移動が前記第2突起により規制されるように前記第2ペーストをスキージすることを特徴とする付記16記載の二次電池の製造方法。
The following appendices are further disclosed with respect to the embodiments including Examples 1 to 6.
Appendix 1:
A secondary comprising: a negative electrode film and a positive electrode film; and a plurality of first hard bodies provided in at least one electrode film of the negative electrode film and the positive electrode film and harder than the at least one electrode film. battery.
Appendix 2:
The secondary according to claim 1, wherein each of the plurality of first hard bodies includes a first hole penetrating in a film thickness direction of the at least one electrode film and filled with the at least one electrode film. battery.
Appendix 3:
The secondary battery according to claim 2, wherein the at least one electrode film is formed on one side, and a conductive plate having a first protrusion lower than the film thickness of the at least one electrode film is provided on the one side. .
Appendix 4:
The secondary battery according to any one of supplementary notes 1 to 3, wherein both surfaces of the at least one electrode film of each of the plurality of first hard bodies are flat.
Appendix 5:
The secondary battery according to claim 1, further comprising: a solid electrolyte film provided between the negative electrode film and the positive electrode film; and a plurality of second hard bodies provided in the solid electrolyte film and harder than the solid electrolyte.
Appendix 6:
A solid electrolyte membrane provided between the negative electrode membrane and the positive electrode membrane; and a plurality of second hard bodies provided in the solid electrolyte membrane and harder than the solid electrolyte membrane, wherein the first hard body is The second hard body has a second hole filled with the solid electrolyte membrane, and has a second protrusion in the penetration direction of the first hole, and the second hard body penetrates in the film thickness direction of the solid electrolyte membrane. The secondary battery as set forth in Appendix 3.
Appendix 7:
The secondary battery according to appendix 6, wherein the first protrusion is higher than the second protrusion.
Appendix 8:
The secondary battery according to appendix 4, wherein each of the plurality of first hard bodies has the same thickness.
Appendix 9:
The secondary battery according to any one of appendices 1 to 4, further comprising a solid electrolyte membrane sandwiched between the negative electrode membrane and the positive electrode membrane.
Appendix 10:
The secondary battery according to appendix 5 or 6, wherein both surfaces of the at least one electrode film of each of the plurality of second hard bodies are flat.
Appendix 11:
The secondary battery according to appendix 5 or 6, wherein each of the plurality of second hard bodies has the same thickness.
Appendix 12:
The secondary battery according to any one of appendices 1 to 11, wherein the at least one electrode film is the positive electrode film.
Addendum 13:
The secondary battery according to any one of appendices 1 to 12, wherein the secondary battery is a lithium secondary battery.
Appendix 14:
A first paste containing at least one of a negative electrode material and a positive electrode material and including a plurality of first hard bodies is applied on the conductor plate, and the first paste is squeegeeed to squeeze the first paste on the conductor plate. A method for manufacturing a secondary battery, wherein at least one electrode film of a corresponding negative electrode film and positive electrode film is formed from the at least one material, and the plurality of first hard bodies are harder than the at least one electrode film. .
Appendix 15:
A first protrusion lower than the film thickness of the first hard body is formed on one surface of the conductor plate, and when applying the first paste, the first paste is applied to the one surface, and the at least one electrode 15. The method of manufacturing a secondary battery according to appendix 14, wherein when forming the film, the first paste is squeezed so that movement of the plurality of first hard bodies is restricted by the first protrusions.
Appendix 16:
On the at least one electrode film, a second paste containing a solid electrolyte material and including a plurality of second hard bodies is applied, and the second paste is squeezed to form the second paste on the at least one electrode film. 15. The method of manufacturing a secondary battery according to appendix 14, wherein a solid electrolyte membrane is formed, and the plurality of second hard bodies are harder than the solid electrolyte membrane.
Addendum 17:
The first hard body has second protrusions lower than the thickness of the second hard body, and when the solid electrolyte membrane is formed, movement of the plurality of second hard bodies is restricted by the second protrusions. The method of manufacturing a secondary battery according to appendix 16, wherein the second paste is squeegeeed as described above.

10 正極膜
12 固体電解質膜
14 負極膜
16 導電体板
20、40 硬質体
22、42 孔
24、44 突起
26、46 ペースト
DESCRIPTION OF SYMBOLS 10 Positive electrode film | membrane 12 Solid electrolyte membrane 14 Negative electrode film | membrane 16 Electric conductor board 20, 40 Hard body 22, 42 Hole 24, 44 Protrusion 26, 46 Paste

Claims (10)

負極膜および正極膜と、
前記負極膜および正極膜の少なくとも一方の電極膜内に設けられ、前記少なくとも一方の電極膜より硬い複数の第1硬質体と、
を具備することを特徴とする二次電池。
A negative electrode film and a positive electrode film;
A plurality of first hard bodies provided in at least one of the negative electrode film and the positive electrode film and harder than the at least one electrode film;
A secondary battery comprising:
前記複数の第1硬質体は、それぞれ前記少なくとも一方の電極膜の膜厚方向に貫通し前記少なくとも一方の電極膜が充填された第1孔を具備することを特徴とする請求項1記載の二次電池。   2. The plurality of first hard bodies each including a first hole penetrating in a film thickness direction of the at least one electrode film and filled with the at least one electrode film. Next battery. 片面に前記少なくとも一方の電極膜が形成され、前記片面に、前記少なくとも一方の電極膜の膜厚より低い第1突起を備える導電体板を具備することを特徴とする請求項2記載の二次電池。   3. The secondary according to claim 2, wherein the at least one electrode film is formed on one side, and a conductor plate having a first protrusion lower than the film thickness of the at least one electrode film is provided on the one side. battery. 前記負極膜および正極膜の間に設けられた固体電解質膜と、
前記固体電解質膜内に設けられ、前記固体電解質より硬い複数の第2硬質体と、
を具備する請求項1記載の二次電池。
A solid electrolyte membrane provided between the negative electrode membrane and the positive electrode membrane;
A plurality of second hard bodies provided in the solid electrolyte membrane and harder than the solid electrolyte;
The secondary battery according to claim 1, comprising:
前記負極膜および正極膜の間に設けられた固体電解質膜と、
前記固体電解質膜内に設けられ、前記固体電解質膜より硬い複数の第2硬質体と、
を具備し、
前記第1硬質体は、前記第1孔の貫通方向に第2突起を備え、
前記第2硬質体は、前記固体電解質膜の膜厚方向に貫通し、前記固体電解質膜が充填された第2孔を備えることを特徴とする請求項3記載の二次電池。
A solid electrolyte membrane provided between the negative electrode membrane and the positive electrode membrane;
A plurality of second hard bodies provided in the solid electrolyte membrane and harder than the solid electrolyte membrane;
Comprising
The first hard body includes a second protrusion in the penetrating direction of the first hole,
The secondary battery according to claim 3, wherein the second hard body includes a second hole penetrating in a film thickness direction of the solid electrolyte membrane and filled with the solid electrolyte membrane.
前記第1突起は前記第2突起より高いことを特徴とする請求項5記載の二次電池。   The secondary battery according to claim 5, wherein the first protrusion is higher than the second protrusion. 導電体板上に、負極材料および正極材料の少なくとも一方の材料を含み複数の第1硬質体を含む第1ペーストを、塗布し、
前記第1ペーストをスキージすることにより、前記導電体板上に前記少なくとも一方の材料から対応する負極膜および正極膜の少なくとも一方の電極膜を形成し、
前記複数の第1硬質体は前記少なくとも一方の電極膜より硬いことを特徴とする二次電池の製造方法。
On the conductor plate, a first paste including at least one of a negative electrode material and a positive electrode material and including a plurality of first hard bodies is applied,
By squeezing the first paste, a corresponding negative electrode film and a positive electrode film are formed on the conductor plate from the at least one material,
The method of manufacturing a secondary battery, wherein the plurality of first hard bodies are harder than the at least one electrode film.
前記導電体板の片面には前記第1硬質体の膜厚より低い第1突起が形成され、
前記第1ペーストを塗布する際、前記片面に前記第1ペーストを塗布し、
前記少なくとも一方の電極膜を形成する際、前記複数の第1硬質体の移動が前記第1突起により規制されるように前記第1ペーストをスキージすることを特徴とする請求項7記載の二次電池の製造方法。
A first protrusion lower than the thickness of the first hard body is formed on one surface of the conductor plate,
When applying the first paste, apply the first paste on the one side;
The secondary paste according to claim 7, wherein when forming the at least one electrode film, the first paste is squeezed so that movement of the plurality of first hard bodies is restricted by the first protrusions. Battery manufacturing method.
前記少なくとも一方の電極膜上に、固体電解質の材料を含み複数の第2硬質体を含む第2ペーストを、塗布し、
前記第2ペーストをスキージすることにより、前記少なくとも一方の電極膜上に前記固体電解質膜を形成し、
前記複数の第2硬質体は前記固体電解質膜より硬いことを特徴とする請求項7記載の二次電池の製造方法。
A second paste containing a solid electrolyte material and a plurality of second hard bodies is applied onto the at least one electrode film,
By squeezing the second paste, the solid electrolyte membrane is formed on the at least one electrode membrane,
The method for manufacturing a secondary battery according to claim 7, wherein the plurality of second hard bodies are harder than the solid electrolyte membrane.
前記第1硬質体には、前記第2硬質体の膜厚より低い第2突起が形成され、
前記固体電解質膜を形成する際、前記複数の第2硬質体の移動が前記第2突起により規制されるように前記第2ペーストをスキージすることを特徴とする請求項9記載の二次電池の製造方法。
Second protrusions lower than the film thickness of the second hard body are formed on the first hard body,
10. The secondary battery according to claim 9, wherein when forming the solid electrolyte membrane, the second paste is squeezed so that movement of the plurality of second hard bodies is restricted by the second protrusions. Production method.
JP2011176221A 2011-02-18 2011-08-11 Secondary battery and manufacturing method thereof Expired - Fee Related JP5845706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011176221A JP5845706B2 (en) 2011-02-18 2011-08-11 Secondary battery and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011033744 2011-02-18
JP2011033744 2011-02-18
JP2011176221A JP5845706B2 (en) 2011-02-18 2011-08-11 Secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012186135A true JP2012186135A (en) 2012-09-27
JP5845706B2 JP5845706B2 (en) 2016-01-20

Family

ID=47016016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011176221A Expired - Fee Related JP5845706B2 (en) 2011-02-18 2011-08-11 Secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5845706B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079700A1 (en) * 2019-10-23 2021-04-29 Tdk株式会社 All-solid-state battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140198A (en) * 1997-07-16 1999-02-12 Toshiba Battery Co Ltd Lithium secondary battery
JPH11329433A (en) * 1998-05-22 1999-11-30 Kao Corp Nonaqueous secondary battery negative electrode
JP2002260639A (en) * 2001-03-01 2002-09-13 Sony Corp Electrode-manufacturing device
JP2004134175A (en) * 2002-10-09 2004-04-30 Matsushita Electric Ind Co Ltd Electrode for battery and battery using the same
JP2009158476A (en) * 2007-12-03 2009-07-16 Seiko Epson Corp Sulfide-based lithium-ion-conducting solid electrolyte glass, all-solid lithium secondary battery, and method of manufacturing all-solid lithium secondary battery
JP2011103255A (en) * 2009-11-11 2011-05-26 Toyota Motor Corp Positive electrode for lithium secondary battery and method for preparing thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140198A (en) * 1997-07-16 1999-02-12 Toshiba Battery Co Ltd Lithium secondary battery
JPH11329433A (en) * 1998-05-22 1999-11-30 Kao Corp Nonaqueous secondary battery negative electrode
JP2002260639A (en) * 2001-03-01 2002-09-13 Sony Corp Electrode-manufacturing device
JP2004134175A (en) * 2002-10-09 2004-04-30 Matsushita Electric Ind Co Ltd Electrode for battery and battery using the same
JP2009158476A (en) * 2007-12-03 2009-07-16 Seiko Epson Corp Sulfide-based lithium-ion-conducting solid electrolyte glass, all-solid lithium secondary battery, and method of manufacturing all-solid lithium secondary battery
JP2011103255A (en) * 2009-11-11 2011-05-26 Toyota Motor Corp Positive electrode for lithium secondary battery and method for preparing thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079700A1 (en) * 2019-10-23 2021-04-29 Tdk株式会社 All-solid-state battery
CN114556615A (en) * 2019-10-23 2022-05-27 Tdk株式会社 All-solid-state battery

Also Published As

Publication number Publication date
JP5845706B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP6288057B2 (en) Stacked all-solid battery
JP5720779B2 (en) Bipolar all-solid battery
JP6128282B2 (en) Storage device manufacturing method and electrode manufacturing method
CN107305960B (en) Battery, battery manufacturing method, and battery manufacturing apparatus
KR102158246B1 (en) All solid battery
US10714789B2 (en) All-solid state battery
WO2020017467A1 (en) Positive electrode for solid-state battery, manufacturing method for positive electrode for solid-state battery, and solid-state battery
US10700338B2 (en) All-solid-state battery with layered current shunt part
KR20170131649A (en) Lithium ion secondary battery and manufacturing method thereof
KR20180113910A (en) Stacked battery
JP2011150974A (en) Electrode body, and method for manufacturing the same
JP2017041439A (en) battery
US20180159103A1 (en) Secondary battery, and method of manufacturing secondary battery
JP2017195076A (en) Bipolar type battery
JP5845706B2 (en) Secondary battery and manufacturing method thereof
JP2018181521A (en) Laminate battery
WO2020022111A1 (en) Positive electrode for solid-state battery, manufacturing method of positive electrode for solid-state battery, and solid-state battery
JP2014154486A (en) Power storage device
WO2018042942A1 (en) Electrode for stacked cells, and stacked cell
US20160351897A1 (en) High energy density and high rate li battery
JP5421151B2 (en) All solid-state lithium ion secondary battery
JP2018060699A (en) Manufacturing method for laminated secondary battery
JP5206657B2 (en) Batteries with stacked pole groups
JP2014175155A (en) Electrode for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
GB2554860A (en) Thin printed battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151109

R150 Certificate of patent or registration of utility model

Ref document number: 5845706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees