JP2018181521A - Laminate battery - Google Patents

Laminate battery Download PDF

Info

Publication number
JP2018181521A
JP2018181521A JP2017076952A JP2017076952A JP2018181521A JP 2018181521 A JP2018181521 A JP 2018181521A JP 2017076952 A JP2017076952 A JP 2017076952A JP 2017076952 A JP2017076952 A JP 2017076952A JP 2018181521 A JP2018181521 A JP 2018181521A
Authority
JP
Japan
Prior art keywords
layer
power generation
short circuit
current collector
circuit current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017076952A
Other languages
Japanese (ja)
Inventor
元 長谷川
Hajime Hasegawa
元 長谷川
祐貴 松下
Yuki Matsushita
祐貴 松下
満 立石
Mitsuru Tateishi
満 立石
英世 戎崎
Hideyo Ebisaki
英世 戎崎
英晃 西村
Hideaki Nishimura
英晃 西村
佑介 奥畑
Yusuke Okuhata
佑介 奥畑
重規 濱
Shigeki Hama
重規 濱
徳洋 尾瀬
Tokuhiro Ose
徳洋 尾瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017076952A priority Critical patent/JP2018181521A/en
Publication of JP2018181521A publication Critical patent/JP2018181521A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To disclose a laminate battery which can suppress the temperature rise of a power generation element adjacent to a short circuit current dispersion material without causing an excessive rise of the temperature of the short circuit current dispersion material in nail pricking.SOLUTION: A laminate battery comprises at least one heat-dissipation layer and at least one heat insulation layer between a short circuit current dispersion material and a power generation element. At least one of the at least one heat-dissipation layer is arranged between the short circuit current dispersion material and the heat insulation layer closest to the short circuit current dispersion material.SELECTED DRAWING: Figure 1

Description

本願は発電要素を複数積層した積層電池を開示する。   The present application discloses a stacked battery in which a plurality of power generation elements are stacked.

特許文献1には、積層電極群の外側に、絶縁体を介して2枚の金属板を配置してなる短絡形成兼放熱促進ユニットを備えた、積層型ポリマー電解質電池が開示されている。特許文献1に開示された電池によれば、電池の釘刺し試験時等において電極同士が短絡した場合に、短絡形成兼放熱促進ユニットに短絡電流を流すことで発電要素の電圧を低減することができ、且つ、当該ユニット等にて発生した熱を外部へとスムーズに放熱することができるものと考えられる。特許文献2〜4にも、釘刺し等の電池の内部短絡による熱の発生を抑制するための種々の技術が開示されている。   Patent Document 1 discloses a laminate type polymer electrolyte battery provided with a short circuit formation and heat radiation promotion unit in which two metal plates are disposed outside the laminate electrode group via an insulator. According to the battery disclosed in Patent Document 1, when the electrodes are short-circuited at the time of a nail penetration test of the battery or the like, the voltage of the power generation element can be reduced by flowing the short circuit current to the short circuit formation and heat radiation promotion unit. It is considered that the heat generated by the unit or the like can be dissipated to the outside smoothly. Patent Documents 2 to 4 also disclose various techniques for suppressing the generation of heat due to internal short circuiting of a battery such as a nail stick.

特開2001−068156号公報JP, 2001-068156, A 特開2001−068157号公報JP, 2001-068157, A 特開2015−018710号公報JP, 2015-018710, A 特開2009−087600号広報JP-A-2009-087600

発電要素を複数積層しつつ電気的に並列に接続した積層電池においては、釘刺し試験によって発電要素を短絡させると、一部の発電要素から他の発電要素へと電子が流れ込み(以下、これを「回り込み電流」という場合がある。)、一部の発電要素の温度が局所的に上昇してしまうという課題が生じる。このような課題に対し、発電要素とは別に短絡電流分散体を設け、釘刺し試験において一部の発電要素とともに短絡電流分散体も短絡させ、短絡抵抗が大きい発電要素からの回り込み電流を、短絡抵抗が小さい発電要素だけでなく、短絡抵抗が小さい短絡電流分散体へと分散させることで、一部の発電要素の温度のみが局所的に上昇することを防止できるものと考えられる(図4)。   In a laminated battery in which a plurality of power generation elements are electrically connected in parallel while the power generation elements are short-circuited by a nailing test, electrons flow from some of the power generation elements into the other power generation elements (hereinafter referred to as The problem may occur that the temperature of some of the power generation elements rises locally. To solve this problem, a short circuit current dispersion is provided separately from the power generation element, and in the nail penetration test, the short circuit current dispersion is also shorted together with some of the power generation elements. It can be considered that local temperature increase of only some of the power generation elements can be prevented by dispersing the power generation elements not only with low resistance but also into the short circuit current dispersion with low short circuit resistance (FIG. 4) .

ここで、本発明者らの知見では、上記した発電要素を複数積層しつつ電気的に並列に接続した積層電池において、短絡電流分散体を設けた場合、釘刺し等の短絡時の回り込み電流によるジュール発熱が大きく、短絡電流分散体そのものが過度に温度上昇してしまう場合がある。一方で、短絡電流分散体は、釘刺しによって適切に短絡させる観点、電池のエネルギー密度を向上させる観点等から、発電要素に隣接して設けられる。例えば、特許文献1に開示されているように、積層電極群(複数の発電要素)の外側に短絡電流分散体を隣接させるようにして積層する。しかしながら、短絡電流分散体を発電要素に隣接させた場合、釘刺し等による短絡時、上述のように短絡電流分散体の温度が過度に上昇することで、隣接する発電要素の温度も過度に上昇させてしまう虞がある。   Here, according to the findings of the present inventors, in the laminated battery in which a plurality of the above-described power generation elements are electrically connected in parallel, when the short circuit current dispersion is provided, it is Joule heat is large, and the short circuit current dispersion itself may be excessively heated. On the other hand, the short circuit current dispersion is provided adjacent to the power generation element from the viewpoint of appropriately shorting by nailing, the viewpoint of improving the energy density of the battery, and the like. For example, as disclosed in Patent Document 1, the short-circuit current dispersion is stacked adjacent to the outside of the stacked electrode group (a plurality of power generation elements). However, when the short-circuit current dispersion is made adjacent to the power generation element, the temperature of the adjacent power-generation element is also excessively increased by the excessive increase of the temperature of the short-circuit current dispersion as described above There is a risk of causing

短絡電流分散体から発電要素への伝熱を抑制するためには、例えば、特許文献4に開示されているように、短絡電流分散体と発電要素との間に断熱層を設けることが有効と考えられる。しかしながら、短絡電流分散体と発電要素との間に断熱層を設けただけでは、上述の短絡電流分散体そのものの過度な温度上昇を抑制できない。   In order to suppress the heat transfer from the short circuit current dispersion to the power generation element, it is effective to provide a heat insulating layer between the short circuit current dispersion and the power generation element, as disclosed in Patent Document 4, for example. Conceivable. However, simply providing the heat insulating layer between the short circuit current dispersion and the power generation element can not suppress the excessive temperature rise of the above short circuit current dispersion itself.

尚、特許文献4に開示されているように、短絡電流分散体と発電要素との間に吸熱層を設けることで、短絡電流分散体そのものの過度な温度上昇を抑制できるものとも考えられる。しかしながら、一般的な吸熱材料は、吸熱反応等によって副生成物を生じさせるものであり、これが電池を構成する材料(例えば電解質)を劣化させてしまう虞がある。   Incidentally, as disclosed in Patent Document 4, it is also considered that an excessive temperature rise of the short circuit current dispersion itself can be suppressed by providing the heat absorption layer between the short circuit current dispersion and the power generation element. However, general endothermic materials cause byproducts such as endothermic reaction, which may deteriorate the material (for example, the electrolyte) constituting the battery.

以上の通り、発電要素を複数積層しつつ電気的に並列に接続した積層電池に対して短絡電流分散体を設ける場合は、釘刺し試験時、短絡電流分散体から発電要素への伝熱を抑制するだけでは足りず、短絡電流分散体そのものの過度な温度上昇を抑制することが必要となる。   As described above, when a short circuit current dispersion is provided to a stacked battery in which a plurality of power generation elements are electrically connected in parallel while stacking a plurality of power generation elements, heat transfer from the short circuit current dispersion to the power generation elements is suppressed during a nail penetration test. However, it is necessary to suppress an excessive temperature rise of the short circuit current dispersion itself.

本願は上記課題を解決するための手段の一つとして、
少なくとも1つの短絡電流分散体と複数の発電要素とが積層された積層電池であって、前記短絡電流分散体において、第1の集電体層と第2の集電体層と前記第1の集電体層及び前記第2の集電体層の間に設けられた絶縁層とが積層されており、前記発電要素において、正極集電体層と正極材層と電解質層と負極材層と負極集電体層とが積層されており、前記第1の集電体層が前記正極集電体層と電気的に接続されており、前記第2の集電体層が前記負極集電体層と電気的に接続されており、複数の前記発電要素同士が電気的に並列に接続されており、前記短絡電流分散体と前記発電要素との間に、少なくとも一つの放熱層と少なくとも一つの断熱層とを備え、前記放熱層のうちの少なくとも一つが、前記短絡電流分散体と、該短絡電流分散体に最も近接する前記断熱層と、の間に備えられる、積層電池、を開示する。
The present application is one of means for solving the above problems.
A laminated battery in which at least one short circuit current dispersion and a plurality of power generation elements are stacked, and in the short circuit current dispersion, a first current collector layer, a second current collector layer, and the first current collector layer. A current collector layer and an insulating layer provided between the second current collector layers are stacked, and in the power generation element, a positive electrode current collector layer, a positive electrode material layer, an electrolyte layer, and a negative electrode material layer A negative electrode current collector layer is laminated, the first current collector layer is electrically connected to the positive electrode current collector layer, and the second current collector layer is the negative electrode current collector. A plurality of the power generation elements are electrically connected in parallel, and at least one heat dissipation layer and at least one heat dissipation layer between the short circuit current dispersion and the power generation element; A thermal insulation layer, at least one of the heat dissipation layers comprising the short circuit current dispersion, and the short circuit current dispersion Wherein a heat insulating layer, provided between the, cell stack, discloses closest to.

「少なくとも1つの短絡電流分散体と複数の発電要素とが積層された」とは、短絡電流分散体と発電要素とが、少なくとも放熱層と断熱層とを介して、積層されていることを意味する。
「短絡電流分散体に最も近接する断熱層」とは、断熱層が複数備えられる場合、当該複数の断熱層のうち最も短絡電流分散体側に設けられたものをいう。断熱層が1つのみ備えられる場合は、言うまでもなく、当該1つの断熱層そのものが「短絡電流分散体に最も近接する断熱層」である。
「放熱層」とは、短絡電流分散体の集電体層及び断熱層よりも熱伝導率及び/又は比熱が高い層をいう。
「断熱層」とは、短絡電流分散体の集電体層及び放熱層よりも熱伝導率が低い層をいう。
The phrase “at least one short circuit current dispersion and a plurality of power generation elements are stacked” means that the short circuit current dispersion and the power generation element are stacked via at least a heat dissipation layer and a heat insulation layer. Do.
The “heat insulating layer closest to the short circuit current dispersion” refers to the layer provided closest to the short circuit current dispersion among the plurality of heat insulating layers, when a plurality of heat insulating layers are provided. In the case where only one heat insulating layer is provided, it goes without saying that the one heat insulating layer itself is the “heat insulating layer closest to the short circuit current dispersion”.
The “heat dissipation layer” refers to a layer having a higher thermal conductivity and / or specific heat than the current collector layer and the heat insulating layer of the short circuit current dispersion.
The “heat insulation layer” refers to a layer having a thermal conductivity lower than that of the current collector layer and the heat dissipation layer of the short circuit current dispersion.

本開示の積層電池においては、釘刺し等の短絡時に短絡電流分散体に回り込み電流を流すことができ、発電要素の内部の温度上昇を抑えることができる。一方で、放熱層によって短絡電流分散体が効率的に除熱され、短絡電流分散体の過度な温度上昇を抑制することができる。さらに、放熱層と発電要素との間に断熱層が設けられており、短絡電流分散体から発電要素への伝熱を抑制することもできる。   In the laminated battery of the present disclosure, a wraparound current can be supplied to the short circuit current dispersion at the time of a short circuit such as a nail sticking, and the temperature rise inside the power generation element can be suppressed. On the other hand, the short circuit current dispersion can be efficiently removed by the heat dissipation layer, and an excessive temperature rise of the short circuit current dispersion can be suppressed. Furthermore, the heat insulating layer is provided between the heat dissipation layer and the power generation element, and the heat transfer from the short circuit current dispersion to the power generation element can also be suppressed.

積層電池100の層構成を説明するための概略図である。FIG. 2 is a schematic diagram for explaining a layer configuration of a stacked battery 100. 短絡電流分散体10の層構成を説明するための概略図である。(A)が外観斜視図であり、(B)がIIB−IIB断面図である。FIG. 2 is a schematic diagram for explaining a layer configuration of a short circuit current dispersion body 10; (A) is an external appearance perspective view, (B) is IIB-IIB sectional drawing. 発電要素20の層構成を説明するための概略図である。(A)が外観斜視図であり、(B)がIIIB−IIIB断面図である。FIG. 7 is a schematic view for explaining a layer configuration of the power generation element 20. (A) is an external appearance perspective view, (B) is a IIIB-IIIB sectional view. 発電要素を並列に接続した場合に、釘刺し時に生じる回り込み電流等について説明するための概略図である。FIG. 7 is a schematic view for explaining a wraparound current and the like generated at the time of nailing when power generation elements are connected in parallel.

1.積層電池100
図1に、積層電池100の層構成を概略的に示す。図1においては、説明の便宜上、集電体層同士(集電タブ同士)の接続部分や、電池ケース等を省略して示している。図2に、積層電池100を構成する短絡電流分散体10の層構成を概略的に示す。図2(A)が外観斜視図、図2(B)がIIB−IIB断面図である。図3に、積層電池100を構成する発電要素20の層構成を概略的に示す。図3(A)が外観斜視図、図3(B)がIIIB−IIIB断面図、である。
1. Stacked battery 100
The layer configuration of the laminated battery 100 is schematically shown in FIG. In FIG. 1, for convenience of description, connection portions between current collector layers (current collection tabs), a battery case, and the like are omitted. FIG. 2 schematically shows the layer configuration of the short circuit current dispersion 10 constituting the laminated battery 100. As shown in FIG. 2A is an external perspective view, and FIG. 2B is a cross-sectional view taken along the line IIB-IIB. FIG. 3 schematically shows the layer configuration of the power generation element 20 constituting the stacked battery 100. As shown in FIG. FIG. 3A is an external perspective view, and FIG. 3B is a cross-sectional view taken along the line IIIB-IIIB.

図1〜3に示すように、積層電池100は、少なくとも1つの短絡電流分散体10と複数の発電要素20、20、…とが積層されてなる。短絡電流分散体10において、第1の集電体層11と第2の集電体層12と第1の集電体層11及び第2の集電体層12の間に設けられた絶縁層13とが積層されている。発電要素20において、正極集電体層21と正極材層22と電解質層23と負極材層24と負極集電体層25とが積層されている。積層電池100においては、第1の集電体層11が正極集電体層21と電気的に接続されており、第2の集電体層12が負極集電体層25と電気的に接続されており、複数の発電要素20、20、…同士が電気的に並列に接続されている。ここで、積層電池100は、短絡電流分散体10と発電要素20との間に、少なくとも一つの放熱層30と少なくとも一つの断熱層40とを備えており、放熱層30のうちの少なくとも一つが、短絡電流分散体10と、短絡電流分散体10に最も近接する断熱層40と、の間に備えられている。   As shown in FIGS. 1 to 3, in the laminated battery 100, at least one short circuit current dispersion 10 and a plurality of power generation elements 20, 20,. In the short-circuit current dispersion 10, an insulating layer provided between the first current collector layer 11, the second current collector layer 12, the first current collector layer 11, and the second current collector layer 12 13 and are stacked. In the power generation element 20, the positive electrode current collector layer 21, the positive electrode material layer 22, the electrolyte layer 23, the negative electrode material layer 24, and the negative electrode current collector layer 25 are stacked. In the laminated battery 100, the first current collector layer 11 is electrically connected to the positive electrode current collector layer 21, and the second current collector layer 12 is electrically connected to the negative electrode current collector layer 25. The plurality of power generation elements 20, 20,... Are electrically connected in parallel. Here, the laminated battery 100 includes at least one heat dissipation layer 30 and at least one heat insulation layer 40 between the short circuit current dispersion 10 and the power generation element 20, and at least one of the heat dissipation layers 30 is , Between the short circuit current dispersion 10 and the heat insulating layer 40 closest to the short circuit current dispersion 10.

1.1.短絡電流分散体10
短絡電流分散体10は、第1の集電体層11と、第2の集電体層12と、第1の集電体層11及び第2の集電体層12の間に設けられる絶縁層13と、を備える。また、第1の集電体層11と絶縁層13との間及び第2の集電体層12と絶縁層13との間のうちの少なくとも一方に、PPCT層14を備えていても良い。このような構成を備えた短絡電流分散体10は、電池の通常使用時において第1の集電体層11と第2の集電体層12とが絶縁層13によって適切に絶縁される一方で、釘刺しによる短絡時には第1の集電体層11と第2の集電体層12とが接触して電気抵抗が小さくなる。
1.1. Short circuit current dispersion 10
The short circuit current dispersion 10 is an insulation provided between the first current collector layer 11, the second current collector layer 12, and the first current collector layer 11 and the second current collector layer 12. And a layer 13. Further, the PPCT layer 14 may be provided in at least one of the first current collector layer 11 and the insulating layer 13 and the second current collector layer 12 and the insulating layer 13. In the short-circuit current dispersion 10 having such a configuration, while the first current collector layer 11 and the second current collector layer 12 are appropriately insulated by the insulating layer 13 during normal use of the battery, At the time of a short circuit due to a nail sticking, the first current collector layer 11 and the second current collector layer 12 come into contact with each other to reduce the electrical resistance.

1.1.1.第1の集電体層11及び第2の集電体層12
第1の集電体層11及び第2の集電体層12は、金属箔や金属メッシュ等により構成すればよい。特に金属箔が好ましい。集電体層11、12を構成する金属としては、Cu、Ni、Al、Fe、Ti、Zn、Co、Cr、Au、Pt、ステンレス鋼等が挙げられる。
1.1.1. First current collector layer 11 and second current collector layer 12
The first current collector layer 11 and the second current collector layer 12 may be made of metal foil, metal mesh or the like. In particular, metal foils are preferred. As a metal which comprises the collector layers 11 and 12, Cu, Ni, Al, Fe, Ti, Zn, Co, Cr, Au, Pt, stainless steel etc. are mentioned.

第1の集電体層11及び第2の集電体層12の厚みは特に限定されるものではない。例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。集電体層11、12の厚みをこのような範囲とした場合、釘刺し時、集電体層11、12を互いにより適切に接触させることができ、短絡電流分散体10をより適切に短絡させることができる。   The thicknesses of the first current collector layer 11 and the second current collector layer 12 are not particularly limited. For example, the thickness is preferably 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 100 μm or less. When the thickness of the current collector layers 11 and 12 is in such a range, the current collector layers 11 and 12 can be more appropriately brought into contact with each other at the time of nailing, and the short circuit current dispersion 10 is more appropriately shorted. It can be done.

図2に示すように、第1の集電体層11は集電タブ11aを備えており、当該集電タブ11aを介して発電要素20の正極集電体層21に電気的に接続されている。一方、第2の集電体層12は集電タブ12aを備えており、当該集電タブ12aを介して発電要素20の負極集電体層25に電気的に接続されている。集電タブ11aは第1の集電体層11と同じ材質であってもよいし、異なる材質であってもよい。集電タブ12aは第2の集電体層12と同じ材質であってもよいし、異なる材質であってもよい。尚、釘刺し等の短絡時、短絡電流分散体10へとより多くの回り込み電流を流す観点から、集電タブ11a及び集電タブ12aにおける電気抵抗は、後述の正極集電タブ21a及び負極集電タブ25aにおける電気抵抗よりも小さいことが好ましい。   As shown in FIG. 2, the first current collector layer 11 includes a current collection tab 11a, and is electrically connected to the positive electrode current collector layer 21 of the power generation element 20 via the current collection tab 11a. There is. On the other hand, the second current collector layer 12 is provided with a current collection tab 12a, and is electrically connected to the negative electrode current collector layer 25 of the power generation element 20 via the current collection tab 12a. The current collection tab 11a may be the same material as the first current collector layer 11, or may be a different material. The current collection tab 12a may be the same material as the second current collector layer 12 or may be a different material. The electrical resistance of the current collecting tab 11a and the current collecting tab 12a is set to the positive electrode current collecting tab 21a and the negative electrode current collector, which will be described later, from the viewpoint of passing more sneak current to the short circuit current dispersion 10 at the time of short circuiting. Preferably, it is smaller than the electrical resistance of the electrical tab 25a.

1.1.2.絶縁層13
積層電池100において、絶縁層13は、電池の通常使用時において、第1の集電体層11と第2の集電体層12とを絶縁するものであればよい。絶縁層13は、有機材料からなる絶縁層であっても、無機材料からなる絶縁層であっても、有機材料と無機材料とが混在する絶縁層であってもよい。特に、(1)全固体電池の拘束の際に割れる等して短絡しないこと、(2)釘を刺した時に安定して短絡し続けること、(3)熱安定性が高いことの3点を満たす材料によって絶縁層13を構成することが好ましい。
1.1.2. Insulating layer 13
In the laminated battery 100, the insulating layer 13 may be any as long as it insulates the first current collector layer 11 and the second current collector layer 12 during normal use of the battery. The insulating layer 13 may be an insulating layer made of an organic material, an insulating layer made of an inorganic material, or an insulating layer in which an organic material and an inorganic material are mixed. In particular, there are three points of (1) no short circuit due to cracking or the like when all solid battery is restrained, (2) stable short circuit when pierced by nails, and (3) high thermal stability. Preferably, the insulating layer 13 is made of a material to be filled.

絶縁層13を構成し得る有機材料としては各種樹脂が挙げられる。例えば、各種熱可塑性樹脂や各種熱硬化性樹脂である。特にポリイミド等の熱硬化性樹脂が好ましい。通常、熱硬化性樹脂は、熱可塑性樹脂よりも硬質で脆く、さらには、熱安定性が高い。すなわち、熱硬化性樹脂により絶縁層13を構成した場合において、短絡電流分散体10の釘刺しを行った場合、絶縁層13が容易に破断し、第1の集電体層11や第2の集電体層12の変形に対して絶縁層13が追従することを抑制でき、第1の集電体層11と第2の集電体層12とをより容易に接触させることができる。また、絶縁層13の温度が上昇したとしても熱分解を抑制できる。   As an organic material which can constitute insulating layer 13, various resin is mentioned. For example, various thermoplastic resins and various thermosetting resins. In particular, thermosetting resins such as polyimide are preferable. In general, thermosetting resins are harder and more brittle than thermoplastic resins, and have high thermal stability. That is, in the case where the insulating layer 13 is formed of a thermosetting resin, when the short circuiting current dispersion 10 is nailed, the insulating layer 13 is easily broken, and the first current collector layer 11 or the second current collector layer 11 is formed. It can be suppressed that the insulating layer 13 follows the deformation of the current collector layer 12, and the first current collector layer 11 and the second current collector layer 12 can be more easily brought into contact with each other. Moreover, even if the temperature of the insulating layer 13 rises, thermal decomposition can be suppressed.

絶縁層13を構成し得る無機材料としては各種セラミックが挙げられる。例えば、無機酸化物である。尚、表面に酸化物被膜を有する金属箔によって絶縁層13を構成してもよい。例えば、アルマイト処理によって、アルミニウム箔の表面に陽極酸化皮膜を形成することで、表面に酸化アルミニウム被膜を有するアルミニウム箔が得られる。この場合、酸化皮膜の厚みは0.01μm以上5μm以下であることが好ましい。下限がより好ましくは0.1μm以上であり、上限がより好ましくは1μm以下である。   As an inorganic material which can constitute insulating layer 13, various ceramics are mentioned. For example, it is an inorganic oxide. The insulating layer 13 may be formed of a metal foil having an oxide film on the surface. For example, by forming an anodic oxide film on the surface of aluminum foil by alumite treatment, an aluminum foil having an aluminum oxide film on the surface can be obtained. In this case, the thickness of the oxide film is preferably 0.01 μm to 5 μm. The lower limit is more preferably 0.1 μm or more, and the upper limit is more preferably 1 μm or less.

絶縁層13の厚みは特に限定されるものではない。例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。絶縁層13の厚みをこのような範囲とした場合、電池の通常使用時、第1の集電体層11と第2の集電体層12とをより適切に絶縁することができるとともに、釘刺し等の外部応力による変形によって第1の集電体層11と第2の集電体層12とをより適切に導通させて、内部短絡させることができる。   The thickness of the insulating layer 13 is not particularly limited. For example, the thickness is preferably 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 100 μm or less. When the thickness of the insulating layer 13 is in such a range, the first current collector layer 11 and the second current collector layer 12 can be more appropriately insulated during normal use of the battery, and the nail The first current collector layer 11 and the second current collector layer 12 can be more properly conducted to cause an internal short circuit by deformation due to external stress such as piercing.

1.2.発電要素20
発電要素20は、正極集電体層21と正極材層22と電解質層23と負極材層24と負極集電体層25とが積層されてなる。すなわち、発電要素20は単電池として機能し得る。
1.2. Power generation element 20
The power generation element 20 is formed by laminating the positive electrode current collector layer 21, the positive electrode material layer 22, the electrolyte layer 23, the negative electrode material layer 24, and the negative electrode current collector layer 25. That is, the power generation element 20 can function as a single battery.

1.2.1.正極集電体層21
正極集電体層21は、金属箔や金属メッシュ等により構成すればよい。特に金属箔が好ましい。正極集電体層21を構成する金属としては、Ni、Cr、Au、Pt、Al、Fe、Ti、Zn、ステンレス鋼等が挙げられる。正極集電体層21は、その表面に、接触抵抗を調整するための何らかのコート層を有していてもよい。例えば、炭素コート等である。正極集電体層21の厚みは特に限定されるものではない。例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。
1.2.1. Positive electrode current collector layer 21
The positive electrode current collector layer 21 may be made of metal foil, metal mesh or the like. In particular, metal foils are preferred. As a metal which comprises the positive electrode collector layer 21, Ni, Cr, Au, Pt, Al, Fe, Ti, Zn, stainless steel etc. are mentioned. The positive electrode current collector layer 21 may have on the surface thereof any coating layer for adjusting the contact resistance. For example, a carbon coat or the like. The thickness of the positive electrode current collector layer 21 is not particularly limited. For example, the thickness is preferably 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 100 μm or less.

図3に示すように、正極集電体層21は外縁の一部に正極集電タブ21aを備えることが好ましい。タブ21aにより、第1の集電体層11と正極集電体層21とを容易に電気的に接続することができるとともに、正極集電体層21同士を容易に電気的に並列に接続することができる。   As shown in FIG. 3, the positive electrode current collector layer 21 is preferably provided with a positive electrode current collection tab 21 a at a part of the outer edge. The first current collector layer 11 and the positive electrode current collector layer 21 can be easily electrically connected by the tab 21a, and the positive electrode current collector layers 21 are easily electrically connected in parallel. be able to.

1.2.2.正極材層22
正極材層22は、少なくとも活物質を含む層である。積層電池100を全固体電池とする場合は、活物質に加えて、さらに任意に固体電解質、バインダー及び導電助剤等を含ませることができる。また、積層電池100を電解液系の電池とする場合は、活物質に加えて、さらに任意にバインダー及び導電助剤等を含ませることができる。活物質は公知の活物質を用いればよい。公知の活物質のうち、所定のイオンを吸蔵放出する電位(充放電電位)の異なる2つの物質を選択し、貴な電位を示す物質を正極活物質とし、卑な電位を示す物質を後述の負極活物質として、それぞれ用いることができる。例えば、リチウムイオン電池を構成する場合は、正極活物質としてコバルト酸リチウム、ニッケル酸リチウム、LiNi1/3Co1/3Mn1/3、マンガン酸リチウム、スピネル系リチウム化合物等の各種のリチウム含有複合酸化物を用いることができる。積層電池100を全固体電池とする場合は、正極活物質は表面がニオブ酸リチウム層やチタン酸リチウム層やリン酸リチウム層等の酸化物層で被覆されていてもよい。また、積層電池100を全固体電池とする場合、固体電解質は無機固体電解質が好ましい。有機ポリマー電解質と比較してイオン伝導度が高いためである。また、有機ポリマー電解質と比較して、耐熱性に優れるためである。さらに、有機ポリマー電解質と比較して、釘刺し時に発電要素20に加わる圧力が高圧となり、本開示の積層電池100による効果が顕著とためである。例えば、ランタンジルコン酸リチウム等の酸化物固体電解質やLiS−P等の硫化物固体電解質が挙げられる。特に、LiS−Pを含む硫化物固体電解質が好ましく、LiS−Pを50モル%以上含む硫化物固体電解質がより好ましい。バインダーはブタジエンゴム(BR)、アクリレートブタジエンゴム(ABR)、ポリフッ化ビニリデン(PVdF)等の種々のバインダーを用いることができる。導電助剤としてはアセチレンブラックやケッチェンブラック等の炭素材料やニッケル、アルミニウム、ステンレス鋼等の金属材料を用いることができる。正極材層22における各成分の含有量は従来と同様とすればよい。正極材層22の形状も従来と同様とすればよい。特に、積層電池100を容易に構成できる観点から、シート状の正極材層22が好ましい。この場合、正極材層22の厚みは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上150μm以下であることがより好ましい。
1.2.2. Positive electrode layer 22
The positive electrode material layer 22 is a layer containing at least an active material. In the case where the laminated battery 100 is an all solid battery, in addition to the active material, a solid electrolyte, a binder, a conductive auxiliary agent, and the like can be optionally added. Moreover, when using the laminated battery 100 as a battery of electrolyte solution type | system | group, in addition to an active material, a binder, a conductive support agent, etc. can be included arbitrarily. A known active material may be used as the active material. Among the known active materials, two substances having different potentials (charge / discharge potentials) for occluding and releasing predetermined ions are selected, a substance showing a noble potential is used as a positive electrode active material, and a substance showing a false potential is described later. Each can be used as a negative electrode active material. For example, when configuring a lithium ion battery, various types of cathode active materials such as lithium cobaltate, lithium nickelate, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , lithium manganate, spinel lithium compounds, etc. Lithium-containing composite oxides can be used. When the laminated battery 100 is an all-solid battery, the surface of the positive electrode active material may be coated with an oxide layer such as a lithium niobate layer, a lithium titanate layer, or a lithium phosphate layer. When the laminated battery 100 is an all solid battery, the solid electrolyte is preferably an inorganic solid electrolyte. This is because the ion conductivity is higher than that of the organic polymer electrolyte. Moreover, it is because it is excellent in heat resistance compared with the organic polymer electrolyte. Furthermore, compared with the organic polymer electrolyte, the pressure applied to the power generation element 20 at the time of nailing is high, and the effect of the laminated battery 100 of the present disclosure is remarkable. For example, oxide solid electrolytes such as lithium lanthanum zirconate and sulfide solid electrolytes such as Li 2 S-P 2 S 5 can be mentioned. In particular, a sulfide solid electrolyte containing Li 2 S-P 2 S 5 is preferable, and a sulfide solid electrolyte containing 50 mol% or more of Li 2 S-P 2 S 5 is more preferable. As the binder, various binders such as butadiene rubber (BR), acrylate butadiene rubber (ABR) and polyvinylidene fluoride (PVdF) can be used. As the conductive additive, carbon materials such as acetylene black and ketjen black, and metal materials such as nickel, aluminum and stainless steel can be used. The content of each component in the positive electrode material layer 22 may be the same as that in the prior art. The shape of the positive electrode material layer 22 may be the same as that in the prior art. In particular, the sheet-like positive electrode material layer 22 is preferable from the viewpoint that the laminated battery 100 can be easily configured. In this case, the thickness of the positive electrode material layer 22 is, for example, preferably 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 150 μm or less.

1.2.3.電解質層23
電解質層23は、少なくとも電解質を含む層である。積層電池100を全固体電池とする場合、電解質層23は、固体電解質と任意にバインダーとを含ませることができる。固体電解質は上述した無機固体電解質が好ましい。バインダーは正極材層22に用いられるバインダーと同様のものを適宜選択して用いることができる。固体電解質層23における各成分の含有量は従来と同様とすればよい。固体電解質層23の形状も従来と同様とすればよい。特に、積層電池100を容易に構成できる観点から、シート状の固体電解質層23が好ましい。この場合、固体電解質層23の厚みは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。一方で、積層電池100を電解液系電池とする場合、電解質層23は電解液とセパレータとを含む。これら電解液やセパレータについては当業者にとって自明であることから、ここでは詳細な説明を省略する。
1.2.3. Electrolyte layer 23
The electrolyte layer 23 is a layer containing at least an electrolyte. When the stacked battery 100 is an all solid battery, the electrolyte layer 23 can contain a solid electrolyte and optionally a binder. The solid electrolyte is preferably the above-mentioned inorganic solid electrolyte. As the binder, one similar to the binder used for the positive electrode material layer 22 can be appropriately selected and used. The content of each component in the solid electrolyte layer 23 may be the same as that in the prior art. The shape of the solid electrolyte layer 23 may be the same as in the prior art. In particular, the sheet-like solid electrolyte layer 23 is preferable from the viewpoint that the laminated battery 100 can be easily configured. In this case, the thickness of the solid electrolyte layer 23 is, for example, preferably 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 100 μm or less. On the other hand, in the case where the stacked battery 100 is an electrolyte battery, the electrolyte layer 23 includes an electrolyte and a separator. The electrolyte solution and the separator are obvious to those skilled in the art, and thus the detailed description is omitted here.

1.2.4.負極材層24
負極材層24は、少なくとも活物質を含む層である。積層電池100を全固体電池とする場合は、活物質に加えて、さらに任意に固体電解質、バインダー及び導電助剤等を含ませることができる。また、積層電池100を電解液系の電池とする場合は、活物質に加えて、さらに任意にバインダー及び導電助剤等を含ませることができる。活物質は公知の活物質を用いればよい。公知の活物質のうち、所定のイオンを吸蔵放出する電位(充放電電位)の異なる2つの物質を選択し、貴な電位を示す物質を上述の正極活物質とし、卑な電位を示す物質を負極活物質として、それぞれ用いることができる。例えば、リチウムイオン電池を構成する場合は、負極活物質としてグラファイトやハードカーボン等の炭素材料や、チタン酸リチウム等の各種酸化物、SiやSi合金、或いは、金属リチウムやリチウム合金を用いることができる。固体電解質、バインダー及び導電助剤は正極材層22に用いられる固体電解質と同様のものを適宜選択して用いることができる。負極材層24における各成分の含有量は従来と同様とすればよい。負極材層24の形状も従来と同様とすればよい。特に、積層電池100を容易に構成できる観点から、シート状の負極材層24が好ましい。この場合、負極材層24の厚みは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。ただし、負極の容量が正極の容量よりも大きくなるように、負極材層24の厚みを決定することが好ましい。
1.2.4. Negative electrode material layer 24
The negative electrode material layer 24 is a layer containing at least an active material. In the case where the laminated battery 100 is an all solid battery, in addition to the active material, a solid electrolyte, a binder, a conductive auxiliary agent, and the like can be optionally added. Moreover, when using the laminated battery 100 as a battery of electrolyte solution type | system | group, in addition to an active material, a binder, a conductive support agent, etc. can be included arbitrarily. A known active material may be used as the active material. Among the known active materials, two substances having different potentials (charge / discharge potentials) for occluding and releasing predetermined ions are selected, a substance exhibiting a noble potential is used as the above-mentioned positive electrode active substance, and a substance showing a negative potential is selected. Each can be used as a negative electrode active material. For example, when constructing a lithium ion battery, carbon materials such as graphite and hard carbon, various oxides such as lithium titanate, Si and Si alloys, metallic lithium and lithium alloys may be used as the negative electrode active material. it can. The solid electrolyte, the binder, and the conductive auxiliary agent can be appropriately selected and used as the solid electrolyte used for the positive electrode material layer 22. The content of each component in the negative electrode material layer 24 may be the same as that in the prior art. The shape of the negative electrode material layer 24 may be the same as in the prior art. In particular, the sheet-like negative electrode material layer 24 is preferable from the viewpoint that the laminated battery 100 can be easily configured. In this case, the thickness of the negative electrode material layer 24 is, for example, preferably 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 100 μm or less. However, it is preferable to determine the thickness of the negative electrode material layer 24 so that the capacity of the negative electrode is larger than the capacity of the positive electrode.

1.2.5.負極集電体層25
負極集電体層25は、金属箔や金属メッシュ等により構成すればよい。特に金属箔が好ましい。負極集電体層25を構成する金属としては、Cu、Ni、Fe、Ti、Co、Zn、ステンレス鋼等が挙げられる。負極集電体層25は、その表面に、接触抵抗を調整するための何らかのコート層を有していてもよい。例えば、炭素コート等である。負極集電体層25の厚みは特に限定されるものではない。負極集電体25の厚みは特に限定されるものではない。例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。
1.2.5. Negative electrode current collector layer 25
The negative electrode current collector layer 25 may be made of metal foil, metal mesh or the like. In particular, metal foils are preferred. As a metal which comprises the negative electrode collector layer 25, Cu, Ni, Fe, Ti, Co, Zn, stainless steel etc. are mentioned. The negative electrode current collector layer 25 may have any coating layer on its surface for adjusting the contact resistance. For example, a carbon coat or the like. The thickness of the negative electrode current collector layer 25 is not particularly limited. The thickness of the negative electrode current collector 25 is not particularly limited. For example, the thickness is preferably 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 100 μm or less.

図3に示すように、負極集電体層25は外縁の一部に負極集電タブ25aを備えることが好ましい。タブ25aにより、第2の集電体層12と負極集電体層25とを容易に電気的に接続することができるとともに、負極集電体層25同士を容易に電気的に並列に接続することができる。   As shown in FIG. 3, it is preferable that the negative electrode current collector layer 25 be provided with a negative electrode current collection tab 25 a at a part of the outer edge thereof. The second current collector layer 12 and the negative electrode current collector layer 25 can be easily electrically connected by the tab 25a, and the negative electrode current collector layers 25 are easily electrically connected in parallel. be able to.

1.3.放熱層30
図1に示すように、積層電池100において、短絡電流分散体10と発電要素20との間には、放熱層30が備えられる。放熱層30は、短絡電流分散体10に最も近接する断熱層40よりも短絡電流分散体10側に設けられており、短絡電流分散体10にて発生した熱が放熱層30へと効率的に除去される。すなわち、放熱層30によって短絡電流分散体10の過度な温度上昇を抑制できる。尚、図1においては、短絡電流分散体10と発電要素20との間に放熱層30が1つのみ備えられる形態について示しているが、放熱層30の数は1つに限定されず、複数備えられていてもよい。
1.3. Heat dissipation layer 30
As shown in FIG. 1, in the laminated battery 100, a heat dissipation layer 30 is provided between the short circuit current dispersion 10 and the power generation element 20. The heat radiation layer 30 is provided closer to the short circuit current dispersion 10 than the heat insulating layer 40 closest to the short circuit current dispersion 10, and the heat generated by the short circuit current dispersion 10 is efficiently transmitted to the heat radiation layer 30. It is removed. That is, the heat dissipation layer 30 can suppress an excessive temperature rise of the short circuit current dispersion body 10. Although FIG. 1 shows a mode in which only one heat dissipation layer 30 is provided between the short circuit current dispersion 10 and the power generation element 20, the number of heat dissipation layers 30 is not limited to one, and a plurality of heat dissipation layers 30 are provided. It may be provided.

放熱層30は、短絡電流分散体10の集電体層11、12及び後述の断熱層40よりも熱伝導率及び/又は比熱が高い層である。一般的に温度上昇量ΔTは「ΔT=(発熱量−放熱量)/熱容量」として求められる。発熱量を一定として考えると、放熱量(熱伝導率)及び熱容量(比熱)共に大きなものが好ましい。すなわち、放熱層30は、熱伝導率及び比熱の双方が高い層であることが好ましい。熱伝導率及び/又は比熱が高い材料としては、各種金属や各種セラミックが挙げられる。熱伝導率が高い金属としては、例えば、アルミニウム、銅、銀、これらの合金等が挙げられる。熱伝導率が高いセラミックとしては、例えば、窒化アルミニウム、窒化珪素等が挙げられる。比熱が高い金属としては、例えば、アルミニウム、銅、銀、鉄、チタン、ニッケル、これらの合金等が挙げられる。比熱が高いセラミックとしては、例えば、アルミナ等が挙げられる。放熱層30は1種類の材料からなる層であってもよいし、複数種類の材料からなる層であってもよい。   The heat dissipation layer 30 is a layer having higher thermal conductivity and / or specific heat than the current collector layers 11 and 12 of the short circuit current dispersion 10 and the heat insulating layer 40 described later. Generally, the temperature rise amount ΔT is obtained as “ΔT = (heat generation amount−heat release amount) / heat capacity”. Considering the amount of heat generation as constant, it is preferable that both the amount of heat release (heat conductivity) and the heat capacity (specific heat) be large. That is, it is preferable that the heat dissipation layer 30 be a layer having high thermal conductivity and high specific heat. Materials having high thermal conductivity and / or specific heat include various metals and various ceramics. As a metal with high thermal conductivity, aluminum, copper, silver, these alloys etc. are mentioned, for example. Examples of the ceramic having a high thermal conductivity include aluminum nitride and silicon nitride. As a metal with high specific heat, aluminum, copper, silver, iron, titanium, nickel, these alloys etc. are mentioned, for example. As a ceramic with a high specific heat, alumina etc. are mentioned, for example. The heat dissipation layer 30 may be a layer made of one kind of material or a layer made of plural kinds of materials.

放熱層30は、短絡電流分散体10を効率的に除熱する観点等からはできるだけ厚く大きいことが好ましいが、一方で、電池のエネルギー密度を高める観点等からはできるだけ薄く小さいことが好ましい。この点、求められる電池の性能に応じて、放熱層30の厚みや大きさを決定することが好ましい。   The heat dissipation layer 30 is preferably as thick and large as possible from the viewpoint of efficiently removing heat from the short circuit current dispersion 10, and preferably as thin and small as possible from the viewpoint of increasing the energy density of the battery. In this respect, it is preferable to determine the thickness and the size of the heat dissipation layer 30 in accordance with the required performance of the battery.

放熱層30は、電池ケース(不図示)等と接触していることが好ましい。電池内の熱を電池外へと効率的に除去できるためである。   It is preferable that the heat dissipation layer 30 be in contact with a battery case (not shown) or the like. This is because the heat in the battery can be efficiently removed to the outside of the battery.

1.4.断熱層40
図1に示すように、積層電池100において、短絡電流分散体10に最も近接する放熱層30と、発電要素20との間には、断熱層40が備えられる。断熱層40によって、短絡電流分散体10から発電要素20への伝熱を抑制できる。尚、図1においては、短絡電流分散体10と発電要素20との間に断熱層40が1つのみ備えられる形態について示しているが、断熱層40の数は1つに限定されず、複数備えられていてもよい。
1.4. Thermal insulation layer 40
As shown in FIG. 1, in the laminated battery 100, a heat insulating layer 40 is provided between the heat dissipation layer 30 closest to the short circuit current dispersion 10 and the power generation element 20. The heat insulating layer 40 can suppress the heat transfer from the short circuit current dispersion body 10 to the power generation element 20. Although FIG. 1 shows a mode in which only one heat insulating layer 40 is provided between the short circuit current dispersion 10 and the power generation element 20, the number of the heat insulating layers 40 is not limited to one, It may be provided.

断熱層40は、短絡電流分散体10の集電体層11、12及び放熱層30よりも熱伝導率が低い層である。熱伝導率が低い材料としては、ジルコニア、ムライト、フォルステライト、コージライト、ステアタイト、ジルコンといった酸化物系のセラミックや、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトンといったスーパーエンジニアリングプラスチック等が挙げられる。断熱層40は1種類の材料からなる層であってもよいし、複数種類の材料からなる層であってもよい。或いは、ガラスウールやロックウールのように空隙を有する材料を用いて断熱層40を構成してもよい。或いは、断熱層40を空気層(空間)とすることも有り得る。   The heat insulating layer 40 is a layer having a thermal conductivity lower than that of the current collector layers 11 and 12 and the heat dissipation layer 30 of the short circuit current dispersion 10. Materials having a low thermal conductivity include oxide-based ceramics such as zirconia, mullite, forsterite, cordierite, steatite, and zircon, and super engineering plastics such as polyimide, polyamide imide, and polyether ether ketone. The heat insulating layer 40 may be a layer made of one type of material, or may be a layer made of multiple types of materials. Alternatively, the heat insulating layer 40 may be configured using a material having a void, such as glass wool or rock wool. Alternatively, the heat insulating layer 40 may be an air layer (space).

断熱層40は、短絡電流分散体10から発電要素20への伝熱を効率的に抑制できる観点等からはできるだけ厚く大きいことが好ましいが、一方で、電池のエネルギー密度を高める観点等からはできるだけ薄く小さいことが好ましい。この点、求められる電池の性能に応じて、断熱層40の厚みや大きさを決定することが好ましい。   The heat insulating layer 40 is preferably as thick and large as possible from the viewpoint of effectively suppressing heat transfer from the short circuit current dispersion 10 to the power generation element 20. On the other hand, from the viewpoint of increasing the energy density of the battery, etc. Thin and small is preferable. In this respect, it is preferable to determine the thickness and size of the heat insulating layer 40 in accordance with the required performance of the battery.

1.5.その他の層
積層電池100においては、上記課題を解決できる範囲内で、短絡電流分散体10と放熱層30との間、放熱層30と断熱層40との間、及び、断熱層40と発電要素20との間に、何らかの層が備えられていてもよい。ただし、放熱層30による短絡電流分散体10の除熱効果をより顕著とする観点等から、短絡電流分散体10と少なくとも一つの放熱層30とが直接接触していることが好ましい。
1.5. Other Layers In the laminated battery 100, between the short circuit current dispersion 10 and the heat dissipation layer 30, between the heat dissipation layer 30 and the heat insulation layer 40, and between the heat insulation layer 40 and the power generation element Between 20 and 20, some layer may be provided. However, from the viewpoint of making the heat removal effect of the short circuit current dispersion 10 more remarkable by the heat dissipation layer 30, etc., it is preferable that the short circuit current dispersion 10 and the at least one heat dissipation layer 30 be in direct contact.

放熱層30及び断熱層40以外の層としては吸熱層が挙げられる。短絡電流分散体10と放熱層30との間や放熱層30と断熱層40との間に吸熱層を設けることで、短絡電流分散体10に過度の温度上昇をより一層抑制できるものと考えられる。特に、放熱層30と断熱層40との間に吸熱層を設けるとよい。ただし、吸熱層を用いる場合、吸熱反応において生じる生成物によって電池材料が劣化してしまう虞がある。この点、吸熱層からの生成物を断熱層40によって遮断する等して、発電要素20へと到達しないように工夫することが好ましい。或いは、吸熱層の材質そのものを工夫することも有り得る。例えば、本発明者らの知見では、マンニトールやキシリトールといった糖アルコールやアントラセンといった炭化水素を用いた場合、これらはいずれも、(I)融解により吸熱可能であって、吸熱時に電池材料を劣化させるような生成物を生じさせず、(II)塑性変形が可能で容易に層状とすることができ、(III)ある程度の熱安定性を有し、電池作動温度においても電池材料を劣化させるような生成物を生じさせないことから、吸熱層として好適に適用可能である。   As layers other than the heat dissipation layer 30 and the heat insulating layer 40, a heat absorption layer may be mentioned. By providing the heat absorption layer between the short circuit current dispersion 10 and the heat dissipation layer 30 or between the heat radiation layer 30 and the heat insulation layer 40, it is considered that an excessive temperature rise in the short circuit current dispersion 10 can be further suppressed. . In particular, a heat absorption layer may be provided between the heat dissipation layer 30 and the heat insulation layer 40. However, in the case of using the endothermic layer, there is a possibility that the battery material may be deteriorated by the product generated in the endothermic reaction. In this respect, it is preferable to devise that the product from the endothermic layer is blocked by the heat insulating layer 40 so as not to reach the power generation element 20. Alternatively, it may be possible to devise the material of the heat absorption layer itself. For example, according to the findings of the present inventors, when a sugar alcohol such as mannitol or xylitol or a hydrocarbon such as anthracene is used, any of them can absorb heat by (I) melting and degrade the battery material at the time of heat absorption. (II) capable of plastic deformation and capable of being easily layered, (III) having a certain degree of thermal stability, and causing deterioration of battery materials even at battery operating temperatures Since it does not produce a thing, it can apply suitably as an endothermic layer.

また、断熱層40と発電要素20との間に上記した放熱層や吸熱層を設けることも可能である。これにより、釘刺し時等に、万が一、発電要素20が発熱したとしても、発電要素20を適切に除熱することができる。   Moreover, it is also possible to provide the above-mentioned heat dissipation layer and heat absorption layer between the heat insulation layer 40 and the power generation element 20. As a result, even if the power generation element 20 generates heat at the time of nailing or the like, the power generation element 20 can be appropriately removed.

1.6.短絡電流分散体、放熱層、断熱層及び発電要素の配置や接続形態
1.6.1.発電要素の配置
積層電池100において、発電要素20の積層数は特に限定されるものではなく、目的とする電池の出力に応じて、適宜決定すればよい。この場合、複数の発電要素20が互いに直接接触するように積層されていてもよいし、複数の発電要素20が何らかの層(例えば絶縁層)や間隔(空気層)を介して積層されていてもよい。電池の出力密度を向上させる観点からは、図1に示すように、複数の発電要素20が互いに直接接触するように積層されていることが好ましい。また、図1、3に示すように、2つの発電要素20a、20bが、負極集電体25を共用していることが好ましい。このようにすることで、電池の出力密度が一層向上する。さらに、図1に示すように、積層電池100においては、複数の発電要素20の積層方向と、発電要素20における各層21〜25の積層方向とを一致させることが好ましい。このようにすることで、積層電池100の拘束が容易となり、電池の出力密度が一層向上する。
1.6. Arrangement and connection form of short circuit current dispersion, heat dissipation layer, heat insulating layer and power generation element 1.6.1. Arrangement of Power Generation Elements In the laminated battery 100, the number of stacked power generation elements 20 is not particularly limited, and may be appropriately determined according to the output of the target battery. In this case, the plurality of power generation elements 20 may be stacked so as to be in direct contact with each other, or even if the plurality of power generation elements 20 are stacked via some layer (for example, insulating layer) or spacing (air layer) Good. From the viewpoint of improving the power density of the battery, as shown in FIG. 1, it is preferable that the plurality of power generation elements 20 be stacked so as to be in direct contact with each other. Further, as shown in FIGS. 1 and 3, it is preferable that the two power generation elements 20 a and 20 b share the negative electrode current collector 25. By doing this, the power density of the battery is further improved. Furthermore, as shown in FIG. 1, in the stacked battery 100, it is preferable to make the stacking direction of the plurality of power generation elements 20 coincide with the stacking direction of the layers 21 to 25 in the power generation element 20. By so doing, restraint of the stacked battery 100 is facilitated, and the output density of the battery is further improved.

1.6.2.発電要素同士の電気的接続
積層電池100においては、複数の発電要素20、20、…同士が電気的に並列に接続される。このように並列に接続された発電要素においては、一の発電要素が短絡した場合に、他の発電要素から当該一の発電要素へと集中して電子が流れ込む。すなわち、電池短絡時にジュール発熱が大きくなり易い。言い換えれば、このように並列接続された複数の発電要素20、20、…を備える積層電池100において、短絡電流分散体10を設けることによる効果がより顕著となる。発電要素20同士を電気的に接続するための部材としては、従来公知の部材を用いればよい。例えば、上述したように、正極集電体層21に正極集電タブ21aを設け、負極集電体層25に負極集電タブ25aを設け、当該タブ21a、25aを介して発電要素20同士を電気的に並列に接続することができる。
1.6.2. Electrical Connection of Power Generation Elements In the laminated battery 100, the plurality of power generation elements 20, 20,... Are electrically connected in parallel. In such power generation elements connected in parallel, when one power generation element is shorted, electrons flow from the other power generation element to the one power generation element in a concentrated manner. That is, Joule heat is likely to increase at the time of battery short circuit. In other words, in the laminated battery 100 including the plurality of power generation elements 20, 20,... Connected in parallel in this manner, the effect by providing the short circuit current dispersion 10 becomes more remarkable. A conventionally known member may be used as a member for electrically connecting the power generation elements 20 with each other. For example, as described above, the positive electrode current collector layer 21 is provided with the positive electrode current collector tab 21a, the negative electrode current collector layer 25 is provided with the negative electrode current collector tab 25a, and the power generation elements 20 are connected to each other through the tabs 21a and 25a. It can be electrically connected in parallel.

1.6.3.短絡電流分散体と発電要素との電気的接続
積層電池100において、短絡電流分散体10の第1の集電体層11が発電要素20の正極集電体層21と電気的に接続されており、短絡電流分散体10の第2の集電体層12が発電要素20の負極集電体層25と電気的に接続されている。このように、短絡電流分散体10と発電要素20とを電気的に接続することで、例えば、短絡電流分散体10及び一部の発電要素(例えば、発電要素20a)の短絡時に、他の発電要素(例えば発電要素20b)からの回り込み電流を短絡電流分散体10へと分散させることができる。短絡電流分散体10と発電要素20とを電気的に接続するための部材としては、従来公知の部材を用いればよい。例えば、上述したように、第1の集電体層11に第1の集電タブ11aを設け、第2の集電体層12に第2の集電タブ12aを設け、当該タブ11a、12aを介して短絡電流分散体10と発電要素20とを電気的に接続することができる。
1.6.3. Electrical Connection Between Short-Circuit Current Dispersion and Power Generation Element In the laminated battery 100, the first current collector layer 11 of the short-circuit current dispersion 10 is electrically connected to the positive electrode current collector layer 21 of the power generation element 20. The second current collector layer 12 of the short circuit current dispersion 10 is electrically connected to the negative electrode current collector layer 25 of the power generation element 20. Thus, by electrically connecting the short circuit current dispersion body 10 and the power generation element 20, for example, when the short circuit current dispersion body 10 and some of the power generation elements (eg, the power generation element 20a) are shorted, other power generation is performed. A sneaking current from an element (e.g., the power generation element 20b) can be distributed to the short circuit current dispersion 10. As a member for electrically connecting the short circuit current dispersion body 10 and the power generation element 20, a conventionally known member may be used. For example, as described above, the first current collector tab 11a is provided on the first current collector layer 11, and the second current collector tab 12a is provided on the second current collector layer 12, and the tabs 11a and 12a are provided. Can electrically connect the short circuit current dispersion body 10 and the power generation element 20.

1.6.4.短絡電流分散体と発電要素との位置関係
短絡電流分散体10と発電要素20、20、…とは、上述したように、放熱層30や断熱層40を介して、互いに積層されていればよい。また、上記の課題を解決できる範囲において他の層(絶縁層等)がさらに積層されていてもよい。また、短絡電流分散体10は、複数の発電要素20、20、…の外側に積層されていてもよいし、複数の発電要素20、20、…の間に積層されていてもよいし、複数の発電要素20、20、…の外側と複数の発電要素20、20、…の間との双方に積層されていてもよい。言うまでもないが、短絡電流分散体10を複数の発電要素20、20、…の間に積層する場合でも、当該短絡電流分散体10と発電要素20との間には少なくとも放熱層30及び断熱層40を介在させる。特に、図1に示すように、短絡電流分散体10と複数の発電要素20、20、…とを積層した場合において、短絡電流分散体10が複数の発電要素20、20、…よりも外側に少なくとも設けられていることが好ましい。これにより、釘刺し時、短絡電流分散体10が発電要素20、20、…よりも先に短絡し、発電要素20から短絡電流分散体10へと回り込み電流を発生させることができ、さらには、発電要素20の内部における発熱を一層抑制できる。
1.6.4. The positional relationship between the short circuit current dispersion and the power generation element As described above, the short circuit current dispersion 10 and the power generation elements 20, 20, ... may be stacked on each other via the heat dissipation layer 30 and the heat insulating layer 40. . In addition, another layer (such as an insulating layer) may be further stacked within the range in which the above-mentioned problems can be solved. In addition, the short-circuit current dispersion 10 may be stacked outside the plurality of power generation elements 20, 20, ..., or may be stacked between the plurality of power generation elements 20, 20, ... Of both of the power generating elements 20, 20,... And between the plurality of power generating elements 20, 20,. Needless to say, even when the short circuit current dispersion 10 is stacked between the plurality of power generation elements 20, 20, ..., at least the heat dissipation layer 30 and the heat insulation layer 40 between the short circuit current dispersion 10 and the power generation element 20. Intervene. In particular, as shown in FIG. 1, when the short circuit current dispersion 10 and the plurality of power generation elements 20, 20,... Are stacked, the short circuit current dispersion 10 is outside the plurality of power generation elements 20, 20,. It is preferable to at least provide. As a result, at the time of nailing, the short circuit current dispersion 10 can be short circuited earlier than the power generation elements 20, 20, ..., and a wraparound current can be generated from the power generation element 20 to the short circuit current dispersion 10. Heat generation inside the power generation element 20 can be further suppressed.

釘刺しによる電池の短絡が発生し易いのは、釘が発電要素20の正極集電体層21から負極集電体層25に向かって(或いは、負極集電体層25から正極集電体層21に向かって)刺された場合である。この点、積層電池100においては、釘刺し方向と、各層の積層方向とが一致することが好ましい。より具体的には、積層電池100において、発電要素20における正極集電体層21と正極材層22と電解質層23と負極材層24と負極集電体層25との積層方向、複数の発電要素20の積層方向、短絡電流分散体10における第1の集電体層11と絶縁層13と第2の集電体層12との積層方向、及び、短絡電流分散体10と複数の発電要素20、20、…との積層方向、が同じ方向であることが好ましい。   A short circuit of the battery due to nail penetration is likely to occur because the nail is directed from the positive electrode current collector layer 21 of the power generation element 20 to the negative electrode current collector layer 25 (or from the negative electrode current collector layer 25 to the positive electrode current collector layer 21) It is a case where it is stabbed. In this respect, in the laminated battery 100, it is preferable that the nailing direction and the laminating direction of each layer coincide with each other. More specifically, in the laminated battery 100, stacking direction of the positive electrode current collector layer 21, the positive electrode material layer 22, the electrolyte layer 23, the negative electrode material layer 24, and the negative electrode current collector layer 25 in the power generation element 20; Laminating direction of the element 20, laminating direction of the first current collector layer 11, the insulating layer 13 and the second current collector layer 12 in the short circuit current dispersion 10, and the short circuit current dispersion 10 and a plurality of power generation elements It is preferable that the stacking direction of 20, 20,... Be the same direction.

1.6.5.短絡電流分散体と発電要素との大きさの関係
積層電池100においては、短絡電流分散体10が、発電要素20のできるだけ多くの部分を覆っていることで、釘刺し時に、発電要素20よりも先に短絡電流分散体10を短絡させ易くなる。この観点からは、例えば、積層電池100においては、短絡電流分散体10と複数の発電要素20、20、…との積層方向から見た時に、短絡電流分散体10の外縁が発電要素20、20、…の外縁よりも外側に存在していることが好ましい。或いは、図1に示すように、複数の発電要素20、20、…の積層方向と発電要素20における各層21〜25の積層方向とが同じである場合において、短絡電流分散体10と複数の発電要素20、20、…との積層方向から見た時に、短絡電流分散体10の外縁が正極材層22、電解質層23及び負極材層24の外縁よりも外側に存在することが好ましい。ただし、この場合、短絡電流分散体10の第1の集電体層11と発電要素20の負極集電体層25とが短絡しないようにする。すなわち、短絡電流分散体10と発電要素20との間に絶縁体等を設け、短絡電流分散体10を大きくしても、短絡電流分散体10と発電要素20との短絡を防止可能とする。
1.6.5. Relationship Between Size of Short-Circuit Current Dispersion and Power Generation Element In the laminated battery 100, the short-circuit current dispersion 10 covers as much of the power generation element 20 as possible, so that the nailing is performed more than the power generation element 20. It becomes easy to short-circuit the short circuit current dispersion 10 first. From this point of view, for example, in the laminated battery 100, the outer edge of the short circuit current dispersion 10 corresponds to the power generating elements 20, 20 when viewed from the stacking direction of the short circuit current dispersion 10 and the plurality of power generating elements 20, 20,. It is preferable to exist outside the outer edge of. Alternatively, as shown in FIG. 1, when the stacking direction of the plurality of power generation elements 20, 20,... And the stacking direction of each layer 21 to 25 in the power generation element 20 are the same, the short circuit current dispersion 10 and the plurality of power generation When viewed in the stacking direction of the elements 20, 20, ..., it is preferable that the outer edge of the short circuit current dispersion 10 be present outside the outer edges of the positive electrode material layer 22, the electrolyte layer 23, and the negative electrode material layer 24. However, in this case, the first current collector layer 11 of the short circuit current dispersion 10 and the negative electrode current collector layer 25 of the power generation element 20 are prevented from short circuiting. That is, even if an insulator or the like is provided between the short circuit current dispersion 10 and the power generation element 20 to enlarge the short circuit current dispersion 10, the short circuit between the short circuit current dispersion 10 and the power generation element 20 can be prevented.

一方で、電池のエネルギー密度をより高める観点及び上記した短絡電流分散体10と発電要素20との短絡を容易に防止できる観点からは、短絡電流分散体10をできるだけ小さくするとよい。すなわち、この観点からは、積層電池100においては、短絡電流分散体10と複数の発電要素20、20、…との積層方向から見た時に、短絡電流分散体10の外縁が発電要素20、20、…の外縁よりも内側に存在することが好ましい。或いは、複数の発電要素20、20、…の積層方向と発電要素20における各層21〜25の積層方向とが同じである場合において、短絡電流分散体10と複数の発電要素20、20、…との積層方向から見た時に、短絡電流分散体10の外縁が正極材層22、電解質層23及び負極材層24の外縁よりも内側に存在することが好ましい。   On the other hand, from the viewpoint of further increasing the energy density of the battery and from the viewpoint of easily preventing the short circuit between the short circuit current dispersion 10 and the power generation element 20 described above, the short circuit current dispersion 10 may be made as small as possible. That is, from this viewpoint, in the laminated battery 100, the outer edge of the short circuit current dispersion 10 is the power generating elements 20, 20 when viewed from the stacking direction of the short circuit current dispersion 10 and the plurality of power generating elements 20, 20,. It is preferable to exist inside the outer edge of. Alternatively, in the case where the stacking direction of the plurality of power generation elements 20, 20,... And the stacking direction of the layers 21 to 25 in the power generation element 20 are the same, the short circuit current dispersion 10 and the plurality of power generation elements 20, 20,. It is preferable that the outer edge of the short circuit current dispersion 10 exists inside the outer edges of the positive electrode material layer 22, the electrolyte layer 23 and the negative electrode material layer 24 when viewed from the stacking direction of the above.

以上の通り、積層電池100においては、釘刺し等の短絡時に短絡電流分散体10に回り込み電流を流すことができ、発電要素20の内部の温度上昇を抑えることができる。一方で、放熱層30によって短絡電流分散体10が効率的に除熱され、短絡電流分散体10の過度な温度上昇を抑制することができる。さらに、放熱層30と発電要素20との間に断熱層40が設けられており、短絡電流分散体から発電要素への伝熱を抑制することもできる。   As described above, in the laminated battery 100, the sneak current can flow in the short circuit current dispersion 10 at the time of a short circuit such as a nail sticking, and the temperature rise inside the power generation element 20 can be suppressed. On the other hand, the short circuit current dispersion 10 can be efficiently removed by the heat dissipation layer 30, and an excessive temperature rise of the short circuit current dispersion 10 can be suppressed. Furthermore, the heat insulating layer 40 is provided between the heat dissipation layer 30 and the power generation element 20, and the heat transfer from the short circuit current dispersion to the power generation element can also be suppressed.

2.積層電池の製造方法
短絡電流分散体10は、第1の集電体層11(例えば、金属箔)と第2の集電体層12(例えば、金属箔)との間に絶縁層13(例えば、絶縁フィルム)を配置することで、容易に作製できる。図2に示すように、第2の集電体層12の両面に絶縁層13、13を配置し、さらに絶縁層13、13の第2の集電体層12とは反対側の面に第1の集電体層11、11を配置してもよい。ここで、短絡電流分散体10は、その形状を保持するために、接着剤や樹脂などを用いて各層を互いに貼り合わせてもよい。この場合、接着剤等は、各層の全面に塗布する必要はなく、各層の表面の一部に塗布すればよい。
2. Method of Manufacturing Laminated Battery The short-circuit current dispersion 10 has an insulating layer 13 (eg, metal foil) between a first current collector layer 11 (eg, metal foil) and a second current collector layer 12 (eg, metal foil). , And the insulating film can be easily manufactured. As shown in FIG. 2, the insulating layers 13 and 13 are disposed on both sides of the second current collector layer 12, and the surfaces of the insulating layers 13 and 13 opposite to the second current collector layer 12 are further One current collector layer 11 may be disposed. Here, in order to maintain the shape of the short circuit current dispersion 10, the layers may be bonded to each other using an adhesive, a resin, or the like. In this case, the adhesive or the like does not have to be applied to the entire surface of each layer, and may be applied to part of the surface of each layer.

発電要素20については、公知の方法により作製できる。例えば、全固体電池を製造する場合は、正極集電体層21の表面に正極材を湿式にて塗工して乾燥させることで正極材層22を形成し、負極集電体層25の表面に負極材を湿式にて塗工して乾燥させることで負極材層24を形成し、正極材層21と負極材層24との間に固体電解質等を含む電解質層23を転写し、プレス成形して一体化することで発電要素20を作製できる。この時のプレス圧は特に限定されるものではないが、例えば2ton/cm以上とすることが好ましい。尚、これらの作製手順はあくまでも一例であり、これ以外の手順によっても発電要素20を作製可能である。例えば、湿式法に替えて乾式法によって正極材層等を形成することも可能である。 The power generation element 20 can be manufactured by a known method. For example, in the case of manufacturing an all solid battery, the positive electrode material is wet coated on the surface of the positive electrode current collector layer 21 and dried to form the positive electrode material layer 22, and the surface of the negative electrode current collector layer 25 The negative electrode material is wet coated and dried to form the negative electrode material layer 24, and the electrolyte layer 23 containing a solid electrolyte or the like is transferred between the positive electrode material layer 21 and the negative electrode material layer 24, and press-formed. The power generation element 20 can be manufactured by integrating the two. The pressing pressure at this time is not particularly limited, but is preferably, for example, 2 ton / cm 2 or more. In addition, these preparation procedures are just an example to the last, and the power generation element 20 can be manufactured also by procedures other than this. For example, it is possible to form the positive electrode material layer or the like by a dry method instead of the wet method.

放熱層30や断熱層40としては、例えば、上記したような材料からなるシートやフィルムを用意すればよい。これらの作製方法自体は公知であることから、ここでは詳細な説明を省略する。   As the heat radiation layer 30 and the heat insulation layer 40, for example, a sheet or a film made of the above-described material may be prepared. Since these production methods themselves are known, detailed description is omitted here.

このようにして作製した短絡電流分散体10を放熱層30や断熱層40を介して複数の発電要素20に対して積層するとともに、第1の集電体層11に設けられたタブ11aを正極集電体層21のタブ21aと接続し、第2の集電体層12に設けられたタブ12aを負極集電体層25のタブ25aと接続し、正極集電体層21のタブ21a同士を接続し、負極集電体層25のタブ25a同士を接続することで、短絡電流分散体10と発電要素20とを電気的に接続するとともに、複数の発電要素20同士を電気的に並列に接続することができる。このようにして電気的に接続された積層体をラミネートフィルムやステンレス鋼缶等の電池ケース内に真空封入することによって、積層電池として全固体電池を作製できる。尚、これらの作製手順はあくまでも一例であり、これ以外の手順によっても全固体電池を作製可能である。   The short-circuit current dispersion 10 thus produced is stacked on the plurality of power generation elements 20 via the heat dissipation layer 30 and the heat insulating layer 40, and the tab 11a provided on the first current collector layer 11 is used as a positive electrode. The tab 12 a of the current collector layer 21 is connected, the tab 12 a provided on the second current collector layer 12 is connected to the tab 25 a of the negative electrode collector layer 25, and the tabs 21 a of the positive electrode collector layer 21 By electrically connecting the short-circuit current dispersion body 10 and the power generation element 20, and electrically connecting the plurality of power generation elements 20 in parallel. It can be connected. An all-solid battery can be manufactured as a laminated battery by vacuum-sealing the electrically connected laminate in a battery case such as a laminate film or a stainless steel can. Note that these preparation procedures are merely an example, and all-solid-state batteries can be prepared by other procedures.

或いは、上記の固体電解質層に替えてセパレータを配置し、上記と同様にして電気的に接続された積層体を作製したうえで、当該積層体を電解液が充填された電池ケース内に封入すること等によって、積層電池として電解液系電池を製造することもできる。電解液系電池の製造の際は、各層のプレス成形は省略してもよい。   Alternatively, instead of the solid electrolyte layer described above, a separator is disposed, and a laminated body electrically connected in the same manner as described above is manufactured, and then the laminated body is enclosed in a battery case filled with an electrolytic solution. As a result, an electrolytic solution battery can be manufactured as a laminated battery. In the production of the electrolyte battery, pressing of each layer may be omitted.

以上の通り、従来の積層電池の製造方法を応用することで、本開示の積層電池100を容易に製造することができる。   As mentioned above, the laminated battery 100 of this indication can be easily manufactured by applying the manufacturing method of the conventional laminated battery.

3.補足事項
上記説明においては、2つの第1の集電体層と2つの絶縁層と1つの第2の集電体層とによって短絡電流分散体が構成される形態について示したが、本開示の積層電池はこの形態に限定されるものではない。短絡電流分散体は、第1の集電体層と第2の集電体層との間に絶縁層を有するものであればよく、各層の数は特に限定されない。
3. Supplementary Matters In the above description, the form in which the short circuit current dispersion is configured by the two first current collector layers, the two insulating layers, and the one second current collector layer has been described. The laminated battery is not limited to this form. The short-circuit current dispersion may be any one having an insulating layer between the first current collector layer and the second current collector layer, and the number of each layer is not particularly limited.

上記説明においては、2つの発電要素が、1つの負極集電体層を共用する形態について示したが、本開示の積層電池はこの形態に限定されるものではない。発電要素は単電池として機能するものであればよく、正極集電体層と正極材層と電解質層と負極材層と負極集電体層とが積層されていればよい。   In the above description, the two power generation elements are shown to share one negative electrode current collector layer, but the laminated battery of the present disclosure is not limited to this form. The power generation element only needs to function as a unit cell, and the positive electrode current collector layer, the positive electrode material layer, the electrolyte layer, the negative electrode material layer, and the negative electrode current collector layer may be stacked.

上記説明においては、積層電池において短絡電流分散体が複数の発電要素の積層方向の両外側に1つずつ備えられる形態について示したが、短絡電流分散体の数はこれに限定されるものではない。積層電池において外側に複数の短絡電流分散体が備えられていてもよい。また、複数の発電要素の積層方向外側に限らず、短絡電流分散体が複数の発電要素の間に設けられていてもよい。   In the above description, although the short circuit current dispersions are provided one by one on both sides in the stacking direction of the plurality of power generating elements in the laminated battery, the number of the short circuit current dispersions is not limited thereto . A plurality of short circuit current dispersions may be provided on the outer side of the laminated battery. In addition, the short circuit current dispersion may be provided between the plurality of power generation elements as well as the outside in the stacking direction of the plurality of power generation elements.

上記説明においては、複数の発電要素が積層された形態について示したが、積層電池において発電要素が複数積層されていない形態(単電池のみからなる形態)においても、ある程度の効果が奏されるものと考えられる。ただし、釘刺し時等の短絡によるジュール発熱は、一つの発電要素よりも、複数の発電要素が積層された形態において大きくなりやすい。すなわち、複数の発電要素が積層された形態において、短絡電流分散体を設けることによる効果がより顕著となるといえ、この点が、本開示の積層電池における優位な点の一つである。   In the above description, although a form in which a plurality of power generation elements are stacked is described, some effects can be achieved even in a form in which a plurality of power generation elements are not stacked in a stacked battery it is conceivable that. However, Joule heat due to a short circuit at the time of nailing or the like tends to be larger in a form in which a plurality of power generation elements are stacked than one power generation element. That is, in the form in which the plurality of power generation elements are stacked, it can be said that the effect by providing the short circuit current dispersion becomes more remarkable, which is one of the advantageous points in the stacked battery of the present disclosure.

上記説明においては、放熱層と断熱層とが、短絡電流分散体と発電要素との間のみに備えられた形態について説明した。しかしながら、本開示の積層電池においては、短絡電流分散体と発電要素との間に加えて、それ以外の位置にも放熱層や断熱層が備えられていてもよい。例えば、図1に示すような積層電池において、短絡電流分散体の外側(発電要素とは反対側)に放熱層等を追加で設置すること等も可能である。   In the above description, the heat dissipation layer and the heat insulation layer are provided only between the short circuit current dispersion and the power generation element. However, in the laminated battery of the present disclosure, a heat dissipation layer and a heat insulating layer may be provided at other positions in addition to between the short circuit current dispersion and the power generation element. For example, in the laminated battery as shown in FIG. 1, it is also possible to additionally install a heat dissipation layer or the like outside the short circuit current dispersion (on the side opposite to the power generation element).

上記説明においては、短絡電流分散体や発電要素から集電タブが突出するものとして説明した。しかしながら、本開示の積層電池において集電タブはなくてもよい。例えば、面積の大きな集電体層を用い、短絡電流分散体と発電要素との積層体において、複数の集電体層の外縁を突出させるものとし、当該突出させた集電層の間に導電材を挟みこむことで、タブを設けずとも、集電体層同士の電気的な接続が可能である。或いは、タブではなく、導線等によって集電体層同士を電気的に接続してもよい。   In the above description, it has been described that the current collection tab protrudes from the short circuit current dispersion body or the power generation element. However, in the laminated battery of the present disclosure, the current collection tab may be absent. For example, in the laminate of the short-circuit current dispersion and the power generation element, the outer edges of the plurality of current collector layers are made to project by using the current collector layer having a large area, and conduction is performed between the projected current collector layers. By sandwiching the material, it is possible to electrically connect the current collector layers without providing a tab. Alternatively, the current collector layers may be electrically connected to each other by conducting wires or the like instead of the tabs.

上記説明においては、電解液系電池及び全固体電池のいずれをも含む積層電池について示した。ただし、本開示の技術は、全固体電池とした場合に、より大きな効果を発揮するものと考えられる。全固体電池は電解液系電池に比べて発電要素内の隙間が少なく、釘刺し時に釘が発電要素を貫通する際、発電要素にかかる圧力が高い。よって、発電要素の短絡抵抗が小さくなり、一部の発電要素へと多くの回り込み電流が流れ込むこととなると考えられる。さらに、全固体電池においては、発電要素内の内部抵抗を低減すべく、発電要素に対して拘束圧力を付与する場合がある。この場合、発電要素の積層方向(正極集電体層が負極集電体層に向かう方向)に拘束圧力が付与されることとなり、釘刺し時、釘による圧力と拘束圧力とが加算されて発電要素に印加されることから、正極集電体層と負極集電体層とが接触して短絡し易く、また、発電要素の短絡抵抗が小さくなり易いものと考えられる。そのため、短絡電流分散体を設けて回りこみ電流を分散させることによる効果が顕著となるものと考えられる。一方、電解液系電池は、通常、電池ケース内が電解液で満たされ、各層が電解液に浸漬されて、各層の隙間に電解液が供給されるものであり、釘刺し時に釘によって印加される圧力が、全固体電池の場合と比較して小さくなる。そのため、短絡電流分散体を設ける効果が、全固体電池の場合と比べて、相対的に小さくなるものと考えられる。   In the above description, a laminated battery including both an electrolyte solution battery and an all solid battery has been described. However, it is considered that the technology of the present disclosure exerts a greater effect in the case of an all-solid-state battery. The all-solid-state battery has a smaller gap in the power generation element compared to the electrolyte battery, and the pressure applied to the power generation element is high when the nail penetrates the power generation element when nailing. Therefore, it is considered that the short circuit resistance of the power generation element is reduced, and a large amount of sneak current flows into some of the power generation elements. Furthermore, in the all-solid-state battery, in order to reduce internal resistance in the power generation element, a restraint pressure may be applied to the power generation element. In this case, the restraint pressure is applied in the stacking direction of the power generation element (the direction in which the positive electrode current collector layer is directed to the negative electrode current collector layer), and when nailing, the pressure by the nail and the restraint pressure are added to generate power. It is considered that since the positive electrode current collector layer and the negative electrode current collector layer are in contact with each other to cause a short circuit easily because the voltage is applied to the element, the short circuit resistance of the power generation element tends to be small. Therefore, it is considered that the effect of providing the short circuit current dispersion to disperse the wraparound current becomes remarkable. On the other hand, in the case of an electrolyte battery, the inside of the battery case is usually filled with the electrolyte, and each layer is immersed in the electrolyte so that the electrolyte is supplied to the gap between the layers. The pressure is reduced compared to the case of the all solid state battery. Therefore, the effect of providing the short circuit current dispersion is considered to be relatively smaller than in the case of the all solid battery.

尚、バイポーラ電極を介して発電要素同士を電気的に直列に接続した場合は、一部の発電要素に釘を刺すと、他の発電要素から当該一部の発電要素へと釘を介して回り込み電流が流れるものと考えられる。すなわち、接触抵抗の高い釘を介して回り込むこととなり、その電流量は小さい。また、バイポーラ電極を介して発電要素同士を電気的に直列に接続した場合、発電要素のすべてに釘が刺さった場合に回り込み電流が最も大きくなると考えられるが、このような場合、発電要素の放電が既に十分に進行しているものと考えられ、一部の発電要素の温度が局所的に上昇するといったことは生じ難い。この点、発電要素を電気的に並列に接続した場合と比較して、短絡電流分散体による効果が小さくなるものと考えられる。よって、本開示の技術は、発電要素同士を電気的に並列に接続した電池において特に顕著な効果を発揮するものといえる。   In addition, when the power generation elements are electrically connected in series via the bipolar electrode, when a nail is pierced to a part of the power generation elements, it wraps around from the other power generation element to the power generation element. It is considered that current flows. That is, it will turn around via a nail with high contact resistance, and the amount of current is small. In addition, when the power generation elements are electrically connected in series via the bipolar electrode, it is considered that the sneaking current is largest when all the power generation elements are pierced, but in such a case, the discharge of the power generation elements However, it is unlikely that the temperature of some of the power generating elements will rise locally. In this respect, it is considered that the effect of the short circuit current dispersion is reduced as compared with the case where the power generation elements are electrically connected in parallel. Therefore, it can be said that the technology of the present disclosure exerts a particularly remarkable effect in a battery in which power generation elements are electrically connected in parallel.

本発明に係る積層電池は、例えば、車搭載用の大型電源として好適に利用できる。   The laminated battery according to the present invention can be suitably used, for example, as a large power source for vehicle mounting.

10 短絡電流分散体
11 第1の集電体層
11a 第1の集電タブ
12 第2の集電体層
12a 第2の集電タブ
13 絶縁層
20 発電要素
21 正極集電体層
21a 正極集電タブ
22 正極材層
23 電解質層
24 負極材層
25 負極集電体層
25a 負極集電タブ
100 積層電池
DESCRIPTION OF SYMBOLS 10 short circuit current dispersion 11 1st current collection layer 11a 1st current collection tab 12 2nd current collection layer 12a 2nd current collection tab 13 insulating layer 20 electric power generation element 21 positive electrode current collection layer 21a positive electrode current collection layer Charge tab 22 Positive electrode material layer 23 Electrolyte layer 24 Negative electrode material layer 25 Negative electrode current collector layer 25a Negative electrode current collector tab 100 Laminated battery

Claims (1)

少なくとも1つの短絡電流分散体と複数の発電要素とが積層された積層電池であって、
前記短絡電流分散体において、第1の集電体層と第2の集電体層と前記第1の集電体層及び前記第2の集電体層の間に設けられた絶縁層とが積層されており、
前記発電要素において、正極集電体層と正極材層と電解質層と負極材層と負極集電体層とが積層されており、
前記第1の集電体層が前記正極集電体層と電気的に接続されており、
前記第2の集電体層が前記負極集電体層と電気的に接続されており、
複数の前記発電要素同士が電気的に並列に接続されており、
前記短絡電流分散体と前記発電要素との間に、少なくとも一つの放熱層と少なくとも一つの断熱層とを備え、
前記放熱層のうちの少なくとも一つが、前記短絡電流分散体と、該短絡電流分散体に最も近接する前記断熱層と、の間に備えられる、
積層電池。
A stacked battery in which at least one short circuit current dispersion and a plurality of power generation elements are stacked,
In the short-circuit current dispersion, a first current collector layer, a second current collector layer, and an insulating layer provided between the first current collector layer and the second current collector layer Are stacked,
In the power generation element, a positive electrode current collector layer, a positive electrode material layer, an electrolyte layer, a negative electrode material layer, and a negative electrode current collector layer are laminated,
The first current collector layer is electrically connected to the positive electrode current collector layer;
The second current collector layer is electrically connected to the negative electrode current collector layer;
The plurality of power generation elements are electrically connected in parallel,
At least one heat dissipation layer and at least one heat insulation layer between the short circuit current dispersion and the power generation element;
At least one of the heat dissipation layers is provided between the short circuit current dispersion and the heat insulation layer closest to the short circuit current dispersion.
Stacked battery.
JP2017076952A 2017-04-07 2017-04-07 Laminate battery Pending JP2018181521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017076952A JP2018181521A (en) 2017-04-07 2017-04-07 Laminate battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017076952A JP2018181521A (en) 2017-04-07 2017-04-07 Laminate battery

Publications (1)

Publication Number Publication Date
JP2018181521A true JP2018181521A (en) 2018-11-15

Family

ID=64275652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017076952A Pending JP2018181521A (en) 2017-04-07 2017-04-07 Laminate battery

Country Status (1)

Country Link
JP (1) JP2018181521A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130711A1 (en) * 2017-12-28 2019-07-04 積水化学工業株式会社 Lithium-ion rechargeable battery
US10714789B2 (en) 2017-11-07 2020-07-14 Toyota Jidosha Kabushiki Kaisha All-solid state battery
KR20200106588A (en) 2019-03-04 2020-09-15 주식회사 엘지화학 The Pouch For Secondary Battery And The Pouch Type Secondary Battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068156A (en) * 1999-08-24 2001-03-16 Hitachi Maxell Ltd Stacked polymer electrolyte battery
JP2001297795A (en) * 2000-04-11 2001-10-26 Mitsubishi Chemicals Corp Battery
JP2005056655A (en) * 2003-08-01 2005-03-03 Nec Lamilion Energy Ltd Flat type secondary battery and battery pack
JP2007018746A (en) * 2005-07-05 2007-01-25 Toyota Motor Corp Film-coated lithium cell
JP2009087600A (en) * 2007-09-28 2009-04-23 Mitsubishi Heavy Ind Ltd Lithium secondary battery
US20110159340A1 (en) * 2009-12-25 2011-06-30 Industrial Technology Research Institute Protection structure forthermal dissipation and preventing thermal runaway diffusion in battery system
JP2015053141A (en) * 2013-09-05 2015-03-19 株式会社豊田自動織機 Power storage device
JP2017050241A (en) * 2015-09-04 2017-03-09 積水化学工業株式会社 Lithium ion secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068156A (en) * 1999-08-24 2001-03-16 Hitachi Maxell Ltd Stacked polymer electrolyte battery
JP2001297795A (en) * 2000-04-11 2001-10-26 Mitsubishi Chemicals Corp Battery
JP2005056655A (en) * 2003-08-01 2005-03-03 Nec Lamilion Energy Ltd Flat type secondary battery and battery pack
JP2007018746A (en) * 2005-07-05 2007-01-25 Toyota Motor Corp Film-coated lithium cell
JP2009087600A (en) * 2007-09-28 2009-04-23 Mitsubishi Heavy Ind Ltd Lithium secondary battery
US20110159340A1 (en) * 2009-12-25 2011-06-30 Industrial Technology Research Institute Protection structure forthermal dissipation and preventing thermal runaway diffusion in battery system
JP2015053141A (en) * 2013-09-05 2015-03-19 株式会社豊田自動織機 Power storage device
JP2017050241A (en) * 2015-09-04 2017-03-09 積水化学工業株式会社 Lithium ion secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10714789B2 (en) 2017-11-07 2020-07-14 Toyota Jidosha Kabushiki Kaisha All-solid state battery
WO2019130711A1 (en) * 2017-12-28 2019-07-04 積水化学工業株式会社 Lithium-ion rechargeable battery
JP2019121442A (en) * 2017-12-28 2019-07-22 積水化学工業株式会社 Lithium ion secondary battery
JP7065600B2 (en) 2017-12-28 2022-05-12 積水化学工業株式会社 Lithium ion secondary battery
KR20200106588A (en) 2019-03-04 2020-09-15 주식회사 엘지화학 The Pouch For Secondary Battery And The Pouch Type Secondary Battery

Similar Documents

Publication Publication Date Title
JP6288057B2 (en) Stacked all-solid battery
JP6669122B2 (en) Stacked battery
US10651456B2 (en) All-solid-state battery and method for producing all-solid-state battery
US10714789B2 (en) All-solid state battery
CN109314281B (en) All-solid-state battery
US10700338B2 (en) All-solid-state battery with layered current shunt part
JP2018195528A (en) All-solid battery
JP2019186102A (en) Laminated battery
KR20180113157A (en) Stacked battery
KR102217190B1 (en) Stacked battery
JP2018181521A (en) Laminate battery
JP6939035B2 (en) All solid state battery
JP6977300B2 (en) All solid state battery
CN108808096B (en) Laminated battery
JP2019140079A (en) Stacked battery
CN110474105B (en) Laminated battery
JP7000975B2 (en) All solid state battery
JP2021111589A (en) battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220222