WO2019130711A1 - Lithium-ion rechargeable battery - Google Patents

Lithium-ion rechargeable battery Download PDF

Info

Publication number
WO2019130711A1
WO2019130711A1 PCT/JP2018/037510 JP2018037510W WO2019130711A1 WO 2019130711 A1 WO2019130711 A1 WO 2019130711A1 JP 2018037510 W JP2018037510 W JP 2018037510W WO 2019130711 A1 WO2019130711 A1 WO 2019130711A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode sheet
positive electrode
lithium ion
secondary battery
Prior art date
Application number
PCT/JP2018/037510
Other languages
French (fr)
Japanese (ja)
Inventor
智輝 國川
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2019130711A1 publication Critical patent/WO2019130711A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to, for example, a lithium ion secondary battery in which safety measures have been taken against the application of external stress or the like.
  • lithium ion batteries are widely used as secondary batteries in portable information terminals and the like represented by mobile phones.
  • lithium ion batteries are widely used as cell batteries that constitute a battery module that is a power supply of vehicles such as electric vehicles (EVs).
  • EVs electric vehicles
  • Lithium ion batteries are required to have safety that does not cause rupture, ignition or the like.
  • Patent Document 1 discloses one or more conductive sheet layers between specific layers in a unit cell for a lithium ion secondary battery in order to reduce the risk of ignition or explosion due to electric impact in the lithium ion secondary battery. Discloses a configuration additionally provided with In the case where a short circuit occurs in the battery due to physical or electrical impact or the like, this conductive sheet layer conducts short circuit current to the outside of the electrode laminate to minimize heat generation.
  • Patent Document 1 assumes a short circuit between electrodes due to the fact that a needle body made of metal (steel) penetrates a lithium ion secondary battery and the separation membrane (separator) between the anode electrode and the cathode electrode is damaged. There is. Therefore, considering the internal short circuit caused by breakage of the separator due to mechanical impact from the outside of the battery, which is different from penetration, it takes time for the separator to be damaged by such impact, etc. The configuration of Document 1 can not quickly cope with heat generation and the like caused by an internal short circuit.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to ensure the safety of a lithium ion secondary battery in response to temperature rise and external stress of the external environment.
  • a laminate including a positive electrode, a negative electrode and a separator is sealed by an outer package together with an electrolytic solution, and each of the positive electrode and the negative electrode has a positive electrode terminal and a negative electrode terminal protruding outside the outer package.
  • the negative electrode sheet constituting the negative electrode is bifurcated into a first negative electrode sheet having a substantially rectangular shape in plan view and a second negative electrode sheet at a site where the negative electrode terminal is joined.
  • a negative electrode active material layer is provided on the negative electrode sheet, and a first modifying member is interposed between the second negative electrode sheet and the positive electrode sheet constituting the positive electrode, and the first modifying member It is characterized in that it is a member capable of electrically shorting the negative electrode sheet of No. 2 and the positive electrode sheet.
  • the first modifying member is a porous member or a crystalline member made of a thermosetting resin, and is a member which can be brittlely broken and electrically short-circuited when an external stress is applied. It is characterized by For example, the external stress is equal to or less than the tensile strength of the separator. Further, for example, the first modifying member is made of a thermoplastic resin, and is a member which can be melted and electrically short-circuited when the environmental temperature rises. For example, the ambient temperature is equal to or less than the heat resistance temperature of the separator. Furthermore, for example, the first modifying member is disposed in the vicinity of the inner wall of the outer package.
  • the positive electrode sheet is composed of a first positive electrode sheet and a second positive electrode sheet in a substantially rectangular shape in plan view, which are bifurcated at a site where the positive electrode terminal is joined, and the first positive electrode sheet A layer is provided, and a second modifying member is interposed between the second positive electrode sheet and the first negative electrode sheet, and the second modifying member comprises the second positive electrode sheet and the first negative electrode sheet. It is a member capable of electrically shorting with the negative electrode sheet.
  • the second modifying member is a porous member or a crystalline member made of a thermosetting resin, and is a member capable of causing a brittle fracture and causing the electrical short circuit when an external stress is applied. It is characterized by For example, the external stress is equal to or less than the tensile strength of the separator.
  • the second modifying member is made of a thermoplastic resin, and is a member that can be melted and electrically shorted when the ambient temperature rises. Further, for example, the environmental temperature is equal to or lower than the heat resistance temperature of the separator.
  • the first modifying member is disposed in the vicinity of one inner wall of the outer package, and the second modifying member is disposed in the vicinity of the other inner sidewall of the outer package. Do.
  • lithium reacts quickly with external stress such as physical or mechanical impact, temperature rise of the external environment, etc. to avoid the danger of ignition and explosion due to internal short circuit, and improves safety.
  • An ion secondary battery can be provided.
  • FIG. 1 is an external view of a lithium ion secondary battery according to a first embodiment and the like of the present invention. It is a vertical sectional view in the longitudinal direction of a lithium ion secondary battery concerning a 1st embodiment. It is a figure which shows typically a mode that external stress was added to the lithium ion secondary battery which concerns on 1st Embodiment, the characteristic of the modification member changed, and the negative electrode sheet and the positive electrode sheet short-circuited. It is a vertical sectional view in the longitudinal direction of the lithium ion secondary battery concerning a 2nd embodiment.
  • FIG. 1 is an external view of a lithium ion secondary battery according to a first embodiment of the present invention.
  • the lithium ion secondary battery (battery cell) 1 according to the present embodiment has a rectangular shape in plan view, and has a thickness of, for example, about 1 to 10 mm. It is a next battery (film type lithium ion single battery).
  • the lithium ion secondary battery 1 has the positive electrode terminal 2 exposed to the outside of the exterior body 7 as a terminal tab from the positive electrode plate described later on one end side in the longitudinal direction (longitudinal direction), and the other end in the longitudinal direction
  • the side has a structure in which the negative electrode terminal 3 is exposed to the outside of the exterior body 7 as a terminal tab from the negative electrode plate described later.
  • FIG. 2 shows the internal structure of the lithium ion secondary battery 1 according to this embodiment, and is vertical when the lithium ion secondary battery 1 is cut in the longitudinal direction along the line XX ′ in FIG. FIG.
  • the lithium ion secondary battery 1 includes a foil-like positive electrode plate (for example, made of aluminum foil and also referred to as a positive electrode sheet) 4 as an electrode plate and a negative electrode plate (for example, made of copper foil and also referred to as a negative electrode sheet)
  • An electrode stack body 8 having a separator 9 interposed between the positive electrode plate 4 and the negative electrode plate 5 is provided.
  • the laminated body 8 is sealed by the exterior body 7 with the electrolytic solution.
  • the exterior body 7 is made of, for example, a sheet-like member made of an aluminum material, a polymer film or the like, and has flexibility.
  • the positive electrode plate 4 has a substantially rectangular shape in plan view, and includes the positive electrode active material 14 applied to one surface of a positive electrode current collector (not shown).
  • the negative electrode plate 5 also has a substantially rectangular shape in plan view, and includes the negative electrode active material 15 applied to one surface of a negative electrode current collector (not shown).
  • One end of the positive electrode terminal 2 is joined to the end of the positive electrode plate 4, and one end of the negative electrode terminal 3 is joined to the end of the negative electrode plate 5.
  • the other end side of the positive electrode terminal 2 and the other end side of the negative electrode terminal 3 are drawn out of the exterior body 7 respectively.
  • the positive electrode active material is a material capable of reversibly introducing and releasing lithium ions.
  • the positive electrode active material for example, transition metal oxides such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), olivine-type lithium iron phosphate (LiFePO 4 ), etc. is there.
  • the negative electrode also has a negative electrode active material capable of reversibly introducing and releasing lithium ions. Examples of the negative electrode active material include metal lithium, a lithium alloy, a carbon-based material capable of inserting and extracting lithium, and a metal oxide.
  • the separator 9 has an insulating property, and has a function of preventing a short circuit between the positive electrode and the negative electrode and a function of holding an electrolytic solution.
  • the separator is not particularly limited as long as it can hold or pass the electrolytic solution, but, for example, a microporous polymer film (for example, a thin film resin film such as PP (polypropylene) or PE (polyethylene)), non-woven fabric, It consists of glass fiber etc.
  • the thickness of the separator 9 is, for example, preferably about 1 to 75 ⁇ m, and more preferably about 1 to 50 ⁇ m. With the separator 6 of such thickness, sufficient insulation can be ensured.
  • the electrolytic solution is a liquid obtained by dissolving an electrolyte in a solvent.
  • a non-aqueous solvent substantially free of water eg, less than 100 ppm
  • non-aqueous solvents include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, ⁇ -butyrolactone, methyl acetate, methyl formate, toluene, hexane and the like, and one of them is The species can be used alone or in combination of two or more.
  • the electrolyte for example, lithium hexafluorophosphate, lithium perchlorate, lithium salts such as lithium tetrafluoroborate, and the like can be suitably used.
  • the concentration of the electrolyte in the electrolytic solution is not particularly limited, but is preferably about 0.01 to 1 M.
  • the negative electrode sheet 5 constituting the negative electrode is the lower negative electrode sheet 5a located on the side on which the negative electrode active material 15 is applied (the lower surface side of the laminate 8 in FIG. 2).
  • an upper negative electrode sheet 5b having a substantially rectangular shape in a plan view and extending to the opposite side (upper surface side of the laminate 8 in FIG. 2) of the position where the lower negative electrode sheet 5a is disposed.
  • the negative electrode sheet 5 has a structure in which the lower and upper negative electrode sheets 5a and 5b are bifurcated into a planar shape in two directions of the upper surface side and the lower surface side of the laminate 8 from the above connection portion.
  • One end of the negative electrode terminal 3 is joined to a portion where the lower side negative electrode sheet 5a and the upper side negative electrode sheet 5b are connected.
  • the modified member 6 in a normal state where the modified member 6 is not subjected to impact or the like or lower than the heat resistance temperature, the modified member 6 maintains the electrical insulation (non-conduction) while maintaining the shape at the time of molding of the member.
  • the whole member collapses almost in the form of particles almost uniformly, or when it exceeds the heat resistance temperature, the whole member melts.
  • the modifying member 6 collapses or dissolves, the upper negative electrode sheet 5b and the positive electrode plate (positive electrode sheet) 4 are in surface contact with each other over a wide range as shown in FIG. Do.
  • the modifying member 6 in the vicinity of the inner wall of the outer package 7, reactivity against mechanical impact from the outside of the battery and change in environmental temperature is obtained. I am improving.
  • lithium ion batteries are dropped vertically from a predetermined height, or specified from the outside of lithium ion batteries Collision tests such as adding a load of For example, in the collision test of UL1642, a weight of 9.1 ⁇ 0.46 kg is dropped from a height of 610 ⁇ 25 mm on a round bar ( ⁇ 15.8 ⁇ 0.1 mm) passing through the center of the test object.
  • FIG. 3 shows that in the lithium ion secondary battery 1 according to the present embodiment, physical and mechanical impacts (external stress) shown by white arrows are applied to the flat portion P of FIG. It shows schematically how the properties of the modifying member 6 change as the 7 is deformed.
  • the modifying member 6 is a porous or crystalline thermosetting resin, for example, a phenol resin (PF), an epoxy resin (EP), a melamine resin (MF), a urea resin (urea resin) (UF), an unsaturated polyester Made of resin (UP), diallyl phthalate resin (PDAP), polyurethane resin (PUR), silicone resin (SI), etc., it is fragile to mechanical impact, and the entire member is broken almost uniformly when it receives external stress It has the property of becoming particulate.
  • PF phenol resin
  • EP epoxy resin
  • MF melamine resin
  • UF urea resin
  • UP unsaturated polyester Made of resin
  • PDAP diallyl phthalate resin
  • PUR polyurethane resin
  • SI silicone resin
  • the modifying member 6 is preferably made of a material having a predetermined hardness and exhibiting a brittle property in order to react to the external stress applied to the lithium ion secondary battery. Therefore, as a member other than the above, it is possible to use a material which is hard but weak to impact and is easily broken, such as hard and brittle materials such as glass, stone and ceramics.
  • the modifying member 6 when a mechanical impact is externally applied to the lithium ion secondary battery, the modifying member 6 is broken in a short time, and a wide range of the positive electrode plate (positive electrode sheet) 4 and the upper negative electrode sheet 5b
  • heat generation due to the short circuit is suppressed.
  • the separator 9 is deformed, fractured, or broken due to external stress to form an electrical conduction path in the separator 9, and the positive electrode active material and the negative electrode current collector are in electrical contact, or the negative electrode active material and the positive electrode
  • the heat generation due to the short circuit caused by the contact state can be suppressed before the current contact with the current collector.
  • the tensile strength of the separator 9 of the lithium ion secondary battery 1 is, for example, 1200 Kgf / cm 2 or more
  • the tensile strength of the modified member 6 made of a brittle material weak to impact is And preferably less than 1200 kgf / cm 2 .
  • the initial temperature of the oven containing the test object is 20 ⁇ 5 ° C
  • the temperature is raised and heated to 130 ⁇ 2 ° C., held for 10 minutes, and then the test subject is returned to room temperature (20 ⁇ 5 ° C.) for evaluation.
  • the heating temperature should be from 130 ⁇ 2 ° C. to 30 ⁇ 2 ° C. above the manufacturer's specified maximum temperature. In the case of lithium metal batteries, it is specified to increase the condition temperature to a maximum of 170 ⁇ 2 ° C.
  • the modification member 6 is melted when the temperature reaches a predetermined temperature to cope with the temperature rise of the installation environment, and the positive electrode plate (positive electrode sheet) 4 and the upper negative electrode sheet 5b It achieves a wide range of surface contact with the Therefore, the heat resistance temperature of the modification member 6 is lower than the heat resistance temperature of the separator 9, and the whole modification member 6 is melted in a short time before the separator 9 reaches a fracture due to the increased environmental temperature.
  • a gap is formed by melting the modifying member 6 and diffusing it between the positive electrode plate (positive electrode sheet) 4 and the upper negative electrode sheet 5b, and the upper negative electrode sheet 5b and the positive electrode plate (positive electrode sheet) 4 are shown in FIG. As shown, they are in plane contact with each other over a wide range, and become electrically conductive (shorted). Also in this case, the positive electrode sheet and the negative electrode sheet are short-circuited in a wide area as in the case of the mechanical impact described above, so the conduction resistance (short circuit resistance) between the sheets is reduced, and heat generation due to the short circuit current can be suppressed. .
  • the separator 9 of a lithium ion secondary battery is made of, for example, high density polyethylene, and the heat resistant temperature thereof is about 90 to about 110 ° C. It is desirable to be made of a material lower than the heat resistance temperature of the separator 9.
  • a material satisfying such conditions for example, low density polyethylene (heat resistant temperature about 70 to about 90 ° C.), polyvinyl chloride (heat resistant temperature about 60 to about 80 ° C.), polystyrene (heat resistant temperature about 70 to about 90 ° C.)
  • thermoplastic resins such as non-oriented polyethylene terephthalate (heat resistant temperature about 60 ° C. or less), methacrylic resin (heat resistant temperature about 70 to about 90 ° C.), polyvinyl alcohol resin (heat resistant temperature about 40 to about 80 ° C.) .
  • a lithium ion secondary battery having an electrode laminate including a positive electrode plate (positive electrode sheet), a negative electrode plate (negative electrode sheet), and a separator interposed therebetween
  • the negative electrode plate (negative electrode sheet) is bifurcated at a portion joined to one end side of the negative electrode terminal, and is formed of two rectangular sheets of an upper negative electrode sheet and a lower negative electrode sheet.
  • a negative electrode active material is apply
  • a denatured member which melts and diffuses when the temperature of the installation environment rises is disposed.
  • the positive electrode plate (positive electrode sheet) is formed through the gaps formed between the particulate matter of the denatured member broken into particles or the gaps formed in the melted and diffused denatured member.
  • the upper negative electrode sheet make many surface contact with each other over a wide area, leading to an electrical short circuit condition. That is, not a local short circuit but a wide short circuit state is realized between the positive electrode sheet and the negative electrode sheet, the conduction resistance between the sheets is reduced, and heat generation due to the short circuit current flowing between both sheets can be largely suppressed. , And can prevent the battery from firing and bursting.
  • FIG. 4 is an internal structure of a lithium ion secondary battery according to a second embodiment of the present invention.
  • the appearance of the lithium ion secondary battery according to the second embodiment is the same as that of the lithium ion secondary battery according to the first embodiment shown in FIG. 1, and FIG. 4 is a lithium ion secondary battery according to the present embodiment.
  • FIG. 5 is a vertical cross-sectional view of the battery, as in the first embodiment, cut in the longitudinal direction along the line XX ′ of FIG. 1;
  • the same reference numerals as in FIG. 2 denote the same parts in FIG.
  • a positive electrode plate (positive electrode sheet) 24 and a negative electrode plate (negative electrode sheet) 25 which are foil-like electrode plates are interposed between these sheets.
  • An electrode laminate 18 having the above-described separator 9 is provided, and the laminate 18 is sealed by an outer package 17 together with an electrolytic solution.
  • the exterior body 17 is made of, for example, a sheet-like member made of an aluminum material, a polymer film or the like, and has flexibility.
  • the positive electrode plate 24 has a substantially rectangular shape in plan view, includes the positive electrode active material 14 coated on one side of a positive electrode current collector (not shown), and the negative electrode plate 25 also has a substantially rectangular shape in plan view It comprises the negative electrode active material 15 applied on one side of a current collector (not shown).
  • One end of the positive electrode terminal 12 is joined to the positive electrode plate 24, and one end of the negative electrode terminal 13 is connected to the negative electrode plate 25.
  • the other end of the positive electrode terminal 12 and the other end of the negative electrode 13 are It is pulled out of the exterior body 17.
  • the configurations of the positive electrode active material 14, the negative electrode active material 15, the separator 9, and the like are the same as those of the lithium ion secondary battery according to the first embodiment.
  • the negative electrode sheet 25 is a foil-like sheet constituting the negative electrode, and the side on which the negative electrode active material 15 is applied (the lower surface side of the laminate 18 in FIG. 4)
  • the first negative electrode sheet 25a located on the side and the opposite side to the position where the first negative electrode sheet 25a is disposed (the upper surface side of the laminated body 18 in FIG. 4), substantially rectangular in plan view And the negative electrode sheet 25b.
  • the negative electrode sheet 25 has a structure in which the first and second negative electrode sheets 25a and 25b are bifurcated in a planar shape in two directions of the upper surface side and the lower surface side of the laminated body 18 from the connection portion. Then, one end of the negative electrode terminal 13 is joined to a portion (a bifurcated portion) where the end portions of the first negative electrode sheet 25a and the second negative electrode sheet 25b are connected to each other.
  • the foil-like positive electrode sheet 24 constituting the positive electrode of the lithium ion secondary battery 21 is a first positive electrode sheet 24 a positioned on the side on which the positive electrode active material 14 is applied (the upper surface side of the laminate 18 in FIG. 4). And a second positive electrode sheet 24b having a substantially rectangular shape in a plan view extending to the opposite side to the position where the first positive electrode sheet 24a is disposed (the lower surface side of the laminated body 18 in FIG. 4) Ru.
  • the first positive electrode sheet 24 a and the second positive electrode sheet 24 b are attached (connected) to each other at one end portions of the two sheets in a portion indicated by a symbol C in FIG. 4.
  • the positive electrode sheet 14 has a bifurcated structure in which the first and second positive electrode sheets 24a and 24b are planar in two directions of the upper surface side and the lower surface side of the laminate 18 from the connection portion described above. . Then, one end of the positive electrode terminal 12 is joined to a portion (a portion divided into two parts) where the end portions of the first positive electrode sheet 24 a and the second positive electrode sheet 24 b are connected to each other.
  • the physical properties are the same.
  • a changing (brittle breaking) first modifying member 16 is interposed. Specifically, in a normal state where no impact or the like is received, the modifying member 16 maintains electrical insulation (non-conduction) while maintaining the shape of the member at the time of molding, but mechanical impact or the like The entire member collapses into particles almost uniformly.
  • the particulate matter formed by the deformation of the modifying member 16 is diffused between the second negative electrode sheet 25b and the first positive electrode sheet 24a, the second negative electrode sheet 25b and the first positive electrode sheet 24a Surface contact is made over a wide area through the gap formed between these particulates.
  • the conduction resistance (short circuit resistance) between the sheets is reduced, and heat generation due to the short circuit current can be suppressed.
  • the physical A second modifying member 26 of varying properties is interposed. Specifically, in an environment equal to or lower than the heat resistance temperature of the member, the modification member 26 maintains electrical insulation (non-conduction) while maintaining the shape at the time of molding of the member, but the heat resistance temperature is exceeded , The entire member melts.
  • the upper negative electrode sheet 5b and the positive electrode plate (positive electrode sheet) 4 are in plane contact with each other over a wide area as shown in FIG. It becomes.
  • the positive electrode sheet and the negative electrode sheet are short-circuited in a wide area as in the case of the mechanical impact described above, so the conduction resistance (short circuit resistance) between the sheets is reduced and heat generation due to the short circuit current is suppressed. .
  • the negative electrode plate (negative electrode sheet) is bifurcated from the portion where the negative electrode sheet and one end of the negative electrode terminal are connected, and the upper negative electrode sheet And the lower side negative electrode sheet, the positive electrode plate (positive electrode sheet) is also branched into two from the portion where the positive electrode sheet and one end of the positive electrode terminal are connected, It consists of two rectangular-shaped sheets of an upper side positive electrode sheet and a lower side positive electrode sheet.
  • the first modification member When the first modification member is inserted between the upper negative electrode sheet and the lower positive electrode sheet in the vicinity of the inner wall of the lithium ion secondary battery at one side, and mechanical impact or the like is received.
  • the first modified member is almost uniformly broken into particles, and the positive electrode sheet and the negative electrode sheet are brought into plane contact with a wide area through the gaps formed between the particles.
  • a second modification member is interposed between the upper positive electrode sheet and the lower negative electrode sheet in the vicinity of the other inner wall of the outer package of the lithium ion secondary battery, and the temperature of the installation environment rises. In this case, the second modifying member melts and diffuses, and the positive electrode sheet and the negative electrode sheet are brought into plane contact with a wide area through the gap formed thereby.
  • the separator in a single lithium ion secondary battery, when external stress such as mechanical impact is received, the separator is deformed, broken, broken, etc., to thereby operate the positive electrode / negative electrode active material and the negative electrode.
  • the first modification member Before the short circuit occurs due to the contact with the positive electrode current collector, the first modification member is collapsed in a short time to generate a forced short circuit due to the wide area surface contact between the positive electrode sheet and the negative electrode sheet.
  • the second modifying member disposed in the vicinity of the other inner wall of the battery case is melted in a short time, and extensive surface contact between the positive electrode sheet and the negative electrode sheet Cause a forced short circuit.
  • the positive electrode sheet and the negative electrode sheet are in wide contact with each other in a wide range before the internal short circuit occurs due to deformation or breakage of the separator of the lithium ion secondary battery, the internal short circuit occurs.
  • the reactivity of the battery can be easily controlled against both mechanical impact and temperature rise.
  • the lithium ion secondary battery of the present invention is not limited to the above embodiment, and various modifications are possible.
  • a lithium ion secondary battery for example, an electrode lamination formed by laminating a plurality of laminated bodies in which a positive electrode (positive electrode sheet) and a negative electrode (negative electrode sheet) are laminated via a separator in a single lithium ion secondary battery It may be configured to have a body.
  • the first modifying member 16 which is brittlely fractured by external stress is interposed between the second negative electrode sheet 25b and the first positive electrode sheet 24a.
  • the second modifying member 26 which dissolves due to the rise of the environmental temperature is interposed, but the arrangement configuration of the modifying member is not limited to this .
  • both the first modifying member 16 and the second modifying member 26 as members that cause brittle fracture due to external stress, the reactivity to external stress in the lithium ion secondary battery is further improved, and the positive electrode sheet and the negative electrode Forced short circuit between sheets can be realized reliably and quickly.
  • both of the first modifying member 16 and the second modifying member 26 with a member that dissolves by a temperature rise, the reactivity to the temperature rise in the lithium ion secondary battery is improved, and the positive electrode sheet and the negative electrode It is possible to realize a forced short circuit between sheets reliably and quickly.
  • a sublimable substance which functions as a modifying member is filled in between the positive electrode sheet and the negative electrode sheet, and the temperature of the installation environment of the lithium ion secondary battery reaches a predetermined value or more. It may be configured to be sublimated. By such sublimation, a space is formed between the positive electrode sheet and the negative electrode sheet, and the wide area surface contact between the positive electrode sheet and the negative electrode sheet can be realized by the space.
  • the modifying member is made of a material having a shape memory effect, and is formed so as to be able to be placed between the positive electrode sheet and the negative electrode sheet, and the temperature of the installation environment of the lithium ion secondary battery
  • the configuration may be such that a wide area surface contact state between the sheets is realized by reducing or removing the modifying member itself between the positive electrode sheet and the negative electrode sheet by the shape memory effect.
  • metal hydroxide As a modification member which responds to the temperature rise of the installation environment of a lithium ion secondary battery in each embodiment mentioned above, aluminum hydroxide (Al (OH) 3 ), magnesium hydroxide (Mg (OH) 2 ), for example You may use the member which consists of metal hydroxides, such as.
  • metal hydroxide releases water (vapor) at the time of thermal decomposition by heating, so when the environmental temperature of the lithium ion secondary battery rises to a predetermined temperature or higher, it is released from the metal hydroxide constituting the modifying member Water, together with lithium ions in the electrolyte, exerts conductivity to electrically short between the positive electrode sheet and the negative electrode sheet.
  • the metal hydroxide has excellent fire resistance and releases water by being heated, thereby suppressing the temperature rise of the lithium ion secondary battery and preventing ignition (combustion) in the battery, or In the case where ignition occurs in the battery, there is also an effect of extinguishing with water released from the metal hydroxide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

[Problem] To provide a lithium-ion rechargeable battery for which safety is ensured against an external stress and/or temperature rise. [Solution] A negative electrode sheet 5 is segmented into two rectangular sheets that serve as an upper negative electrode sheet 5b and a lower negative electrode sheet 5a, and a modifiable member 6 that breaks evenly into particles on a mechanical impact or other such force is disposed between the upper negative electrode sheet 5b and a positive electrode sheet 4. With the modifiable member broken into particles, the positive electrode sheet 4 and the upper negative electrode sheet 5b come into surface contact with each other at many points over a wide range via gaps created between said particles, whereby a short circuit is caused such that the conductive resistance between the sheets is reduced and heat generation by a short-circuit current is limited.

Description

リチウムイオン二次電池Lithium ion secondary battery
 本発明は、例えば外部応力等の付加に対して安全対策を施したリチウムイオン二次電池に関する。 The present invention relates to, for example, a lithium ion secondary battery in which safety measures have been taken against the application of external stress or the like.
 近年における情報通信技術の進展により、携帯電話機に代表される可搬型の情報端末等における二次電池としてリチウムイオン電池が多用されている。また、リチウムイオン電池は、電気自動車(EV)等の車両の動力電源である電池モジュールを構成するセル電池として汎用化されている。リチウムイオン電池には、破裂、発火等が生じない安全性が要求される。 2. Description of the Related Art With the development of information communication technology in recent years, lithium ion batteries are widely used as secondary batteries in portable information terminals and the like represented by mobile phones. In addition, lithium ion batteries are widely used as cell batteries that constitute a battery module that is a power supply of vehicles such as electric vehicles (EVs). Lithium ion batteries are required to have safety that does not cause rupture, ignition or the like.
 例えば特許文献1は、リチウムイオン二次電池における電気的衝撃による発火や爆発の危険性を低減させるため、リチウムイオン二次電池用単位セル内の特定層の間に一つ以上の導電性シート層を追加的に備えた構成を開示している。この導電性シート層は、物理的、電気的な衝撃等により電池内で短絡が発生した場合、短絡電流を電極積層体の外側に通電させ、発熱を最小化している。 For example, Patent Document 1 discloses one or more conductive sheet layers between specific layers in a unit cell for a lithium ion secondary battery in order to reduce the risk of ignition or explosion due to electric impact in the lithium ion secondary battery. Discloses a configuration additionally provided with In the case where a short circuit occurs in the battery due to physical or electrical impact or the like, this conductive sheet layer conducts short circuit current to the outside of the electrode laminate to minimize heat generation.
特開2011-9182号公報JP, 2011-9182, A
 上述した公的な安全規格に対しては、リチウムイオン電池における内部短絡の評価が十分でない点が指摘されている。特許文献1は、金属製(鋼鉄)の針状体がリチウムイオン二次電池を貫通して陽極電極と陰極電極間の分離膜(セパレータ)が損傷されることによる電極間の短絡を想定している。そのため、貫通とは異なる、電池外部からの機械的な衝撃等によるセパレータの破損等に伴う内部短絡を考慮すると、そのような衝撃等によってセパレータが破損等に至るには時間を要することから、特許文献1の構成では、内部短絡に起因する発熱等に迅速に対応できない。 It is pointed out that the evaluation of the internal short circuit in the lithium ion battery is not sufficient for the public safety standards mentioned above. Patent Document 1 assumes a short circuit between electrodes due to the fact that a needle body made of metal (steel) penetrates a lithium ion secondary battery and the separation membrane (separator) between the anode electrode and the cathode electrode is damaged. There is. Therefore, considering the internal short circuit caused by breakage of the separator due to mechanical impact from the outside of the battery, which is different from penetration, it takes time for the separator to be damaged by such impact, etc. The configuration of Document 1 can not quickly cope with heat generation and the like caused by an internal short circuit.
 また、特許文献1の構成において内部短絡が発生した場合、その短絡箇所が導電性シート上において限定的となり、導通抵抗の高い部位に短絡電流が集中することになる。そのため、高抵抗の部位に発生したジュール熱により電池の温度が上昇するという問題がある。その結果、温度上昇によってリチウムイオン二次電池に発火、発煙等が生じることが想定される。 In addition, when an internal short circuit occurs in the configuration of Patent Document 1, the short circuit location becomes limited on the conductive sheet, and the short circuit current concentrates in the region where the conduction resistance is high. Therefore, there is a problem that the temperature of the battery rises due to Joule heat generated at the high resistance portion. As a result, it is assumed that ignition and smoke occur in the lithium ion secondary battery due to temperature rise.
 なお、リチウムイオン二次電池の内部に異物が混入することでセパレータが破損し、正極活物質と負極活物質間、正極活物質と負極集電箔間、あるいは負極活物質と正極集電箔間で内部短絡する異常モードにおいても、上記のような短絡電流の集中が起こるが、特許文献1を含む従来技術において、セパレータが破損に至る前段階で内部短絡による発熱に対処する構成は提案されていない。 In addition, when a foreign material mixes in the inside of a lithium ion secondary battery, a separator is damaged, and between a positive electrode active material and a negative electrode active material, between a positive electrode active material and a negative electrode current collector foil, or between a negative electrode active material and a positive electrode current collector foil Even in the abnormal mode in which internal short-circuiting occurs, concentration of short-circuit current occurs as described above, but in the prior art including Patent Document 1, a configuration has been proposed to cope with heat generation due to internal shorting before the separator is damaged. Absent.
 本発明は、上述した課題に鑑みてなされたものであり、その目的とするところは、外部環境の昇温や外部応力に対応してリチウムイオン二次電池の安全性を確保することである。 The present invention has been made in view of the above-described problems, and an object of the present invention is to ensure the safety of a lithium ion secondary battery in response to temperature rise and external stress of the external environment.
 上記の目的を達成し、上述した課題を解決する一手段として以下の構成を備える。すなわち本発明は、正極、負極およびセパレータを備える積層体が電解液とともに外装体で封止され、該正極と負極それぞれが、該外装体の外部に突出する正極端子と負極端子を有するリチウムイオン二次電池であって、前記負極を構成する負極シートは前記負極端子が接合された部位において平面視略矩形状の第1の負極シートと第2の負極シートとに二股に分岐し、該第1の負極シートに負極活物質層が設けられ、該第2の負極シートと前記正極を構成する正極シートとの間に第1の変性部材が介挿され、該第1の変性部材は、これら第2の負極シートと正極シートとを電気的に短絡させることが可能となる部材であることを特徴とする。 The following configuration is provided as means for achieving the above object and solving the problems described above. That is, according to the present invention, a laminate including a positive electrode, a negative electrode and a separator is sealed by an outer package together with an electrolytic solution, and each of the positive electrode and the negative electrode has a positive electrode terminal and a negative electrode terminal protruding outside the outer package. The negative electrode sheet constituting the negative electrode is bifurcated into a first negative electrode sheet having a substantially rectangular shape in plan view and a second negative electrode sheet at a site where the negative electrode terminal is joined. A negative electrode active material layer is provided on the negative electrode sheet, and a first modifying member is interposed between the second negative electrode sheet and the positive electrode sheet constituting the positive electrode, and the first modifying member It is characterized in that it is a member capable of electrically shorting the negative electrode sheet of No. 2 and the positive electrode sheet.
 例えば前記第1の変性部材は熱硬化性樹脂からなる多孔質部材あるいは結晶質部材であり、外部応力が印加された場合、脆性破壊して前記電気的に短絡させることが可能となる部材であることを特徴とする。例えば前記外部応力は、前記セパレータの引張強度以下であることを特徴とする。また、例えば前記第1の変性部材は熱可塑性樹脂からなり、環境温度が上昇した場合、溶解して前記電気的に短絡させることが可能となる部材であることを特徴とする。例えば前記環境温度は、前記セパレータの耐熱温度以下であることを特徴とする。さらには、例えば前記第1の変性部材は前記外装体の内壁近傍に配置されていることを特徴とする。 For example, the first modifying member is a porous member or a crystalline member made of a thermosetting resin, and is a member which can be brittlely broken and electrically short-circuited when an external stress is applied. It is characterized by For example, the external stress is equal to or less than the tensile strength of the separator. Further, for example, the first modifying member is made of a thermoplastic resin, and is a member which can be melted and electrically short-circuited when the environmental temperature rises. For example, the ambient temperature is equal to or less than the heat resistance temperature of the separator. Furthermore, for example, the first modifying member is disposed in the vicinity of the inner wall of the outer package.
 さらに例えば、前記正極シートは前記正極端子が接合された部位において二股に分岐した平面視略矩形状の第1の正極シートと第2の正極シートからなり、前記第1の正極シートに正極活物質層が設けられ、前記第2の正極シートと前記第1の負極シートとの間に第2の変性部材が介挿され、該第2の変性部材は、これら第2の正極シートと第1の負極シートとを電気的に短絡させることが可能となる部材であることを特徴とする。 Furthermore, for example, the positive electrode sheet is composed of a first positive electrode sheet and a second positive electrode sheet in a substantially rectangular shape in plan view, which are bifurcated at a site where the positive electrode terminal is joined, and the first positive electrode sheet A layer is provided, and a second modifying member is interposed between the second positive electrode sheet and the first negative electrode sheet, and the second modifying member comprises the second positive electrode sheet and the first negative electrode sheet. It is a member capable of electrically shorting with the negative electrode sheet.
 例えば前記第2の変性部材は熱硬化性樹脂からなる多孔質部材あるいは結晶質部材であり、外部応力が印加された場合、脆性破壊して前記電気的に短絡させることが可能となる部材であることを特徴とする。例えば前記外部応力は前記セパレータの引張強度以下であることを特徴とする。例えば前記第2の変性部材は熱可塑性樹脂からなり、環境温度が上昇した場合、溶解して前記電気的に短絡させることが可能となる部材であることを特徴とする。また、例えば、前記環境温度は前記セパレータの耐熱温度以下であることを特徴とする。また、例えば前記第1の変性部材は、前記外装体の一方側内壁の近傍に配置され、前記第2の変性部材は、前記外装体の他方側内壁の近傍に配置されていることを特徴とする。 For example, the second modifying member is a porous member or a crystalline member made of a thermosetting resin, and is a member capable of causing a brittle fracture and causing the electrical short circuit when an external stress is applied. It is characterized by For example, the external stress is equal to or less than the tensile strength of the separator. For example, the second modifying member is made of a thermoplastic resin, and is a member that can be melted and electrically shorted when the ambient temperature rises. Further, for example, the environmental temperature is equal to or lower than the heat resistance temperature of the separator. Further, for example, the first modifying member is disposed in the vicinity of one inner wall of the outer package, and the second modifying member is disposed in the vicinity of the other inner sidewall of the outer package. Do.
 本発明によれば、物理的、機械的な衝撃等の外部応力、外部環境の昇温等に迅速に反応して、内部短絡による発火、爆発の危険を回避し、安全性を向上させたリチウムイオン二次電池を提供できる。 According to the present invention, lithium reacts quickly with external stress such as physical or mechanical impact, temperature rise of the external environment, etc. to avoid the danger of ignition and explosion due to internal short circuit, and improves safety. An ion secondary battery can be provided.
本発明の第1の実施形態等に係るリチウムイオン二次電池の外観図である。FIG. 1 is an external view of a lithium ion secondary battery according to a first embodiment and the like of the present invention. 第1の実施形態に係るリチウムイオン二次電池の長手方向における垂直断面図である。It is a vertical sectional view in the longitudinal direction of a lithium ion secondary battery concerning a 1st embodiment. 第1の実施形態に係るリチウムイオン二次電池に外部応力が加わり、変性部材の性状が変化して負極シートと正極シートとが短絡した様子を模式的に示す図である。It is a figure which shows typically a mode that external stress was added to the lithium ion secondary battery which concerns on 1st Embodiment, the characteristic of the modification member changed, and the negative electrode sheet and the positive electrode sheet short-circuited. 第2の実施形態に係るリチウムイオン二次電池の長手方向における垂直断面図である。It is a vertical sectional view in the longitudinal direction of the lithium ion secondary battery concerning a 2nd embodiment.
 以下、本発明の実施形態について添付図面を参照して詳細に説明する。
<第1の実施形態>
 図1は、本発明の第1の実施形態に係るリチウムイオン二次電池の外観図である。図1に示すように、本実施形態に係るリチウムイオン二次電池(電池セル)1は、平面視したときの形状が長方形であり、厚さが例えば1~10mm程度のシート積層型リチウムイオン二次電池(フィルム型リチウムイオン単電池)である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings.
First Embodiment
FIG. 1 is an external view of a lithium ion secondary battery according to a first embodiment of the present invention. As shown in FIG. 1, the lithium ion secondary battery (battery cell) 1 according to the present embodiment has a rectangular shape in plan view, and has a thickness of, for example, about 1 to 10 mm. It is a next battery (film type lithium ion single battery).
 リチウムイオン二次電池1は、その長尺方向(長手方向)の一方端側において、後述する正極板より端子用タブとして正極端子2が外装体7の外部に露出し、長尺方向の他方端側には、後述する負極板より端子用タブとして負極端子3が外装体7の外部に露出した構造を有する。 The lithium ion secondary battery 1 has the positive electrode terminal 2 exposed to the outside of the exterior body 7 as a terminal tab from the positive electrode plate described later on one end side in the longitudinal direction (longitudinal direction), and the other end in the longitudinal direction The side has a structure in which the negative electrode terminal 3 is exposed to the outside of the exterior body 7 as a terminal tab from the negative electrode plate described later.
 図2は、本実施形態に係るリチウムイオン二次電池1の内部構造を示しており、図1のX-X´矢視線に沿ってリチウムイオン二次電池1を長手方向に切断したときの垂直断面図である。リチウムイオン二次電池1は、電極板としての箔状の正極板(例えばアルミニウム箔からなり、正極シートともいう)4、および負極板(例えば銅箔からなり、負極シートともいう)5と、これら正極板4と負極板5との間に介挿されたセパレータ9とを有してなる電極積層体8を備える。積層体8は電解液とともに外装体7で封止されている。外装体7は、例えば、アルミニウム材料、ポリマーフィルム等からなるシート状の部材で構成され、可撓性を有する。 FIG. 2 shows the internal structure of the lithium ion secondary battery 1 according to this embodiment, and is vertical when the lithium ion secondary battery 1 is cut in the longitudinal direction along the line XX ′ in FIG. FIG. The lithium ion secondary battery 1 includes a foil-like positive electrode plate (for example, made of aluminum foil and also referred to as a positive electrode sheet) 4 as an electrode plate and a negative electrode plate (for example, made of copper foil and also referred to as a negative electrode sheet) An electrode stack body 8 having a separator 9 interposed between the positive electrode plate 4 and the negative electrode plate 5 is provided. The laminated body 8 is sealed by the exterior body 7 with the electrolytic solution. The exterior body 7 is made of, for example, a sheet-like member made of an aluminum material, a polymer film or the like, and has flexibility.
 正極板4は、平面視で略矩形状をなしており、不図示の正極集電体の片面に塗布した正極活物質14を含む。同様に負極板5も、平面視で略矩形状をなし、不図示の負極集電体の片面に塗布した負極活物質15を含む。正極板4の端部には正極端子2の一方端が接合され、負極板5の端部には負極端子3の一方端が接合されている。これら正極端子2の他端側および負極端子3の他端側は、それぞれ外装体7の外部に引き出されている。 The positive electrode plate 4 has a substantially rectangular shape in plan view, and includes the positive electrode active material 14 applied to one surface of a positive electrode current collector (not shown). Similarly, the negative electrode plate 5 also has a substantially rectangular shape in plan view, and includes the negative electrode active material 15 applied to one surface of a negative electrode current collector (not shown). One end of the positive electrode terminal 2 is joined to the end of the positive electrode plate 4, and one end of the negative electrode terminal 3 is joined to the end of the negative electrode plate 5. The other end side of the positive electrode terminal 2 and the other end side of the negative electrode terminal 3 are drawn out of the exterior body 7 respectively.
 正極において、正極活物質はリチウムイオンを可逆的に導入および放出可能な物質である。正極活物質として、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、オリビン型リン酸鉄リチウム(LiFePO)等の遷移金属酸化物がある。負極もまた、リチウムイオンを可逆的に導入および放出可能な負極活物質を有する。負極活物質として、例えば金属リチウム、リチウム合金、リチウムを吸蔵、放出し得る炭素系材料、金属酸化物等を挙げることができる。 In the positive electrode, the positive electrode active material is a material capable of reversibly introducing and releasing lithium ions. As the positive electrode active material, for example, transition metal oxides such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), olivine-type lithium iron phosphate (LiFePO 4 ), etc. is there. The negative electrode also has a negative electrode active material capable of reversibly introducing and releasing lithium ions. Examples of the negative electrode active material include metal lithium, a lithium alloy, a carbon-based material capable of inserting and extracting lithium, and a metal oxide.
 セパレータ9は絶縁性を有し、正極と負極との短絡を防止する機能および電解液を保持する機能を有する。セパレータは、電解液を保持または通過させることが可能であれば特に限定されないが、例えば高分子の微多孔性膜(例えば、PP(ポリプロピレン)、PE(ポリエチレン)等の薄膜樹脂フィルム)、不織布、ガラスファイバー等からなる。セパレータ9の厚さは、例えば1~75μm程度が好ましく、1~50μm程度であることがより好ましい。かかる厚さのセパレータ6であれば、絶縁性を十分に確保することができる。 The separator 9 has an insulating property, and has a function of preventing a short circuit between the positive electrode and the negative electrode and a function of holding an electrolytic solution. The separator is not particularly limited as long as it can hold or pass the electrolytic solution, but, for example, a microporous polymer film (for example, a thin film resin film such as PP (polypropylene) or PE (polyethylene)), non-woven fabric, It consists of glass fiber etc. The thickness of the separator 9 is, for example, preferably about 1 to 75 μm, and more preferably about 1 to 50 μm. With the separator 6 of such thickness, sufficient insulation can be ensured.
 電解液は、電解質を溶媒に溶解してなる液体である。電解液溶媒には、水分を実質的に含まない(例えば、100ppm未満)非水系溶媒が好適に用いられる。非水系溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γ-ブチロラクトン、酢酸メチル、蟻酸メチル、トルエン、ヘキサン等が挙げられ、これらのうちの1種を単独でまたは2種以上を組み合わせて用いることができる。 The electrolytic solution is a liquid obtained by dissolving an electrolyte in a solvent. A non-aqueous solvent substantially free of water (eg, less than 100 ppm) is preferably used as the electrolyte solvent. Examples of non-aqueous solvents include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyrolactone, methyl acetate, methyl formate, toluene, hexane and the like, and one of them is The species can be used alone or in combination of two or more.
 電解質としては、例えば、六フッ化リン酸リチウム、過塩素酸リチウム、四フッ化ホウ酸リチウムのようなリチウム塩等を好適に使用することができる。電解液中の電解質の濃度は、特に限定されないが、0.01~1M程度であることが好ましい。 As the electrolyte, for example, lithium hexafluorophosphate, lithium perchlorate, lithium salts such as lithium tetrafluoroborate, and the like can be suitably used. The concentration of the electrolyte in the electrolytic solution is not particularly limited, but is preferably about 0.01 to 1 M.
 本実施形態に係るリチウムイオン二次電池1において、負極を構成する負極シート5は、負極活物質15が塗布された側(図2において積層体8の下面側)に位置する下側負極シート5aと、その下側負極シート5aが配された位置と反対側(図2において積層体8の上面側)に延出する、平面視で略矩形状の上側負極シート5bとで構成される。 In the lithium ion secondary battery 1 according to the present embodiment, the negative electrode sheet 5 constituting the negative electrode is the lower negative electrode sheet 5a located on the side on which the negative electrode active material 15 is applied (the lower surface side of the laminate 8 in FIG. 2). And an upper negative electrode sheet 5b having a substantially rectangular shape in a plan view and extending to the opposite side (upper surface side of the laminate 8 in FIG. 2) of the position where the lower negative electrode sheet 5a is disposed.
 より詳細には、下側負極シート5aと上側負極シート5bの一方端部同士が、図2において符号Aで示す部分において互いに接続(付着)されている。そのため負極シート5は、これら下側および上側負極シート5a,5bが、上記の接続部より積層体8の上面側と下面側の2方向に平面状をなして二股に分岐した構造を有する。下側負極シート5aと上側負極シート5bとが接続された部位には、負極端子3の一方端が接合されている。 More specifically, one end portions of the lower side negative electrode sheet 5a and the upper side negative electrode sheet 5b are connected (adhered) to each other at a portion indicated by a symbol A in FIG. Therefore, the negative electrode sheet 5 has a structure in which the lower and upper negative electrode sheets 5a and 5b are bifurcated into a planar shape in two directions of the upper surface side and the lower surface side of the laminate 8 from the above connection portion. One end of the negative electrode terminal 3 is joined to a portion where the lower side negative electrode sheet 5a and the upper side negative electrode sheet 5b are connected.
 さらに、上側負極シート5bと正極板(正極シート)4との間には、後述するように、例えば機械的な衝撃を受けたり、あるいは外部温度の上昇等により、所定の性状を維持できなくなり、その物理的な性状が変化する変性部材6が介挿されている。 Furthermore, between the upper negative electrode sheet 5b and the positive electrode plate (positive electrode sheet) 4, as described later, for example, due to mechanical shock or an increase in the external temperature, it becomes impossible to maintain the predetermined property. A modifying member 6 whose physical properties change is inserted.
 すなわち変性部材6は、衝撃等を受けていない、あるいは耐熱温度以下の通常の状態では、その部材の成形時の形状を維持しながら電気的絶縁性(非導通性)を保持するが、機械的な衝撃等を受けると部材全体がほぼ均等に粒子状に崩壊し、あるいは耐熱温度を超えると部材全体が溶解する性質を有している。そして、変性部材6が崩壊あるいは溶解すると、上側負極シート5bと正極板(正極シート)4とが、図3に示すように互いに広範囲にわたって面接触し、それらが相互に電気的に導通(短絡)する。 That is, in a normal state where the modified member 6 is not subjected to impact or the like or lower than the heat resistance temperature, the modified member 6 maintains the electrical insulation (non-conduction) while maintaining the shape at the time of molding of the member. When it receives an impact etc., it has the property that the whole member collapses almost in the form of particles almost uniformly, or when it exceeds the heat resistance temperature, the whole member melts. Then, when the modifying member 6 collapses or dissolves, the upper negative electrode sheet 5b and the positive electrode plate (positive electrode sheet) 4 are in surface contact with each other over a wide range as shown in FIG. Do.
 また、本実施形態に係るリチウムイオン二次電池1では、変性部材6を外装体7の内壁近傍に配置することで、電池の外部からの機械的な衝撃や、環境温度の変化に対する反応性を向上させている。 Further, in the lithium ion secondary battery 1 according to the present embodiment, by arranging the modifying member 6 in the vicinity of the inner wall of the outer package 7, reactivity against mechanical impact from the outside of the battery and change in environmental temperature is obtained. I am improving.
 次に、上述した機械的な衝撃および環境温度の上昇に対する、本実施形態に係るリチウムイオン二次電池の具体的な態様について説明する。なお、以下に示す機械的な衝撃力(外部応力)、環境温度等に関する数値は一例であり、リチウムイオン二次電池の仕様、使用環境等に応じて適宜、設定することができる。 Next, specific aspects of the lithium ion secondary battery according to the present embodiment will be described with respect to the above-described mechanical shock and environmental temperature rise. In addition, the numerical value regarding the mechanical impact force (external stress), environmental temperature etc. which are shown below is an example, and it can set suitably according to the specification of lithium ion secondary battery, use environment, etc.
 機械的な衝撃等に対する安全対策の観点から考察すると、リチウムイオン電池に対する公的な安全規格では、安全性試験として、リチウムイオン電池を所定高から垂直に落下させる、あるいはリチウムイオン電池の外部から所定の荷重を付加する等の衝突試験を行っている。例えば、UL1642の衝突試験では、試験対象の中央を通る丸棒(φ15.8±0.1mm)の上に9.1±0.46Kgの重りを610±25mmの高さから落下させている。 Considering from the viewpoint of safety measures against mechanical impact etc., according to the official safety standards for lithium ion batteries, as a safety test, lithium ion batteries are dropped vertically from a predetermined height, or specified from the outside of lithium ion batteries Collision tests such as adding a load of For example, in the collision test of UL1642, a weight of 9.1 ± 0.46 kg is dropped from a height of 610 ± 25 mm on a round bar (φ15.8 ± 0.1 mm) passing through the center of the test object.
 図3は、本実施形態に係るリチウムイオン二次電池1において、図1の平坦部Pに対して、白抜き矢印で示す物理的、機械的な衝撃(外部応力)が加わり、それにより外装体7が変形するとともに変性部材6の性状が変化したときの様子を模式的に示している。 FIG. 3 shows that in the lithium ion secondary battery 1 according to the present embodiment, physical and mechanical impacts (external stress) shown by white arrows are applied to the flat portion P of FIG. It shows schematically how the properties of the modifying member 6 change as the 7 is deformed.
 変性部材6は、多孔質あるいは結晶質を有する熱硬化性樹脂、例えば、フェノール樹脂(PF)、エポキシ樹脂(EP)、メラミン樹脂(MF)、尿素樹脂(ユリア樹脂)(UF)、不飽和ポリエステル樹脂(UP)、ジアリルフタレート樹脂(PDAP)、ポリウレタン樹脂(PUR)、シリコン樹脂(SI)等からなり、機械的な衝撃に対して脆く、外部応力を受けると部材全体がほぼ均等に破壊して粒子状になる性質を有する。 The modifying member 6 is a porous or crystalline thermosetting resin, for example, a phenol resin (PF), an epoxy resin (EP), a melamine resin (MF), a urea resin (urea resin) (UF), an unsaturated polyester Made of resin (UP), diallyl phthalate resin (PDAP), polyurethane resin (PUR), silicone resin (SI), etc., it is fragile to mechanical impact, and the entire member is broken almost uniformly when it receives external stress It has the property of becoming particulate.
 変性部材6は、リチウムイオン二次電池に印加された外部応力に反応させるため、所定の硬さを有し、かつ脆い性質を呈する材料で構成することが望ましい。そこで、上記以外の部材として、硬いが衝撃に弱く、割れやすい素材、例えば、ガラス、石材、セラミックス等の硬脆材料を使用することができる。 The modifying member 6 is preferably made of a material having a predetermined hardness and exhibiting a brittle property in order to react to the external stress applied to the lithium ion secondary battery. Therefore, as a member other than the above, it is possible to use a material which is hard but weak to impact and is easily broken, such as hard and brittle materials such as glass, stone and ceramics.
 よって、図3に示すように、変性部材6の全体のみならず一部に所定以上の外部応力が付加されると、部材全体がほぼ均等に粒子状に破壊し、その粒子状物が正極板(正極シート)4と上側負極シート5bとの間で拡散する。その結果、正極板(正極シート)4と上側負極シート5bは、図3において符号a~dで示すように、粒子状物の間に形成された隙間を介して広範囲にわたって面接触し、これらのシート相互が電気的な短絡状態に至る。このように広い領域で正極シートと負極シートが短絡することで、シート間の導通抵抗(短絡抵抗)が小さくなるので、短絡電流による発熱(発生熱量)を抑制できる。 Therefore, as shown in FIG. 3, when a predetermined amount or more of external stress is applied not only to the whole but also to a part of the modifying member 6, the whole member is almost uniformly broken into particles, and the particles are positive electrode plate It diffuses between the (positive electrode sheet) 4 and the upper side negative electrode sheet 5b. As a result, the positive electrode plate (positive electrode sheet) 4 and the upper negative electrode sheet 5b are in surface contact over a wide range through the gaps formed between the particulate matter, as shown by symbols a to d in FIG. The sheets mutually lead to an electrical short. Since the positive electrode sheet and the negative electrode sheet are short-circuited in such a wide area, the conduction resistance (short circuit resistance) between the sheets is reduced, so that heat generation (heat generation amount) due to the short circuit current can be suppressed.
 上記の構成により、リチウムイオン二次電池に外部から機械的な衝撃が印加されると、変性部材6が短時間に破壊に至り、正極板(正極シート)4と上側負極シート5bとの広範囲な面接触による強制的な電気的短絡を実現して瞬時に短絡電流を流すことで、短絡による発熱を抑制する。これにより、外部応力によってセパレータ9が変形、破断、断裂等してセパレータ9に電気的導通路が形成され、正極活物質と負極集電体とが電気的な接触状態、あるいは負極活物質と正極集電体とが電気的な接触状態となる前段階で、これらの接触状態に起因した短絡による発熱を抑えることができる。 According to the above configuration, when a mechanical impact is externally applied to the lithium ion secondary battery, the modifying member 6 is broken in a short time, and a wide range of the positive electrode plate (positive electrode sheet) 4 and the upper negative electrode sheet 5b By realizing a forced electrical short circuit due to surface contact and instantaneously passing a short circuit current, heat generation due to the short circuit is suppressed. As a result, the separator 9 is deformed, fractured, or broken due to external stress to form an electrical conduction path in the separator 9, and the positive electrode active material and the negative electrode current collector are in electrical contact, or the negative electrode active material and the positive electrode The heat generation due to the short circuit caused by the contact state can be suppressed before the current contact with the current collector.
 このような強制的な短絡状態を実現するため、リチウムイオン二次電池1のセパレータ9の引張強度が例えば1200Kgf/cm以上の場合、衝撃に弱く、脆い材料からなる変性部材6の引張強度は、1200Kgf/cmよりも小さいことが望ましい。 In order to realize such a forced short circuit condition, when the tensile strength of the separator 9 of the lithium ion secondary battery 1 is, for example, 1200 Kgf / cm 2 or more, the tensile strength of the modified member 6 made of a brittle material weak to impact is And preferably less than 1200 kgf / cm 2 .
 一方、環境温度の上昇に対する安全対策の観点からは、リチウムイオン二次電池の加熱試験として、例えばUL1642では、試験対象を入れるオーブンの初期温度を20±5℃とし、5±2℃/分で温度上昇させて130±2℃まで加熱して、10分間保持し、その後、試験対象を室温(20±5℃)に戻して評価することが規定されている。100℃を超える仕様の電池に対しては、加熱温度を130±2℃から、製造者の指定する最高温度よりも30±2℃超えた温度とする。リチウム金属電池の場合には、条件温度を最高170±2℃に増加させることを規定している。 On the other hand, from the viewpoint of safety measures against the rise of environmental temperature, as the heating test of the lithium ion secondary battery, for example, in UL1642, the initial temperature of the oven containing the test object is 20 ± 5 ° C, It is specified that the temperature is raised and heated to 130 ± 2 ° C., held for 10 minutes, and then the test subject is returned to room temperature (20 ± 5 ° C.) for evaluation. For batteries with specifications exceeding 100 ° C., the heating temperature should be from 130 ± 2 ° C. to 30 ± 2 ° C. above the manufacturer's specified maximum temperature. In the case of lithium metal batteries, it is specified to increase the condition temperature to a maximum of 170 ± 2 ° C.
 本実施形態に係るリチウムイオン二次電池は、設置環境の温度上昇に対応するため、所定の温度に達したときに変性部材6が溶融して、正極板(正極シート)4と上側負極シート5bとの広範囲な面接触状態を実現している。そのため、変性部材6の耐熱温度はセパレータ9の耐熱温度よりも低く、セパレータ9が、上昇した環境温度により断裂等に至る前に、変性部材6の全体が短時間に溶融する。 In the lithium ion secondary battery according to the present embodiment, the modification member 6 is melted when the temperature reaches a predetermined temperature to cope with the temperature rise of the installation environment, and the positive electrode plate (positive electrode sheet) 4 and the upper negative electrode sheet 5b It achieves a wide range of surface contact with the Therefore, the heat resistance temperature of the modification member 6 is lower than the heat resistance temperature of the separator 9, and the whole modification member 6 is melted in a short time before the separator 9 reaches a fracture due to the increased environmental temperature.
 変性部材6が溶融して正極板(正極シート)4と上側負極シート5bとの間に拡散することにより隙間が形成され、上側負極シート5bと正極板(正極シート)4とが、図3に示すように互いに広範囲にわたって面接触し、電気的な導通(短絡)状態となる。この場合においても、上記の機械的な衝撃を受けた場合と同様、広い領域で正極シートと負極シートが短絡するのでシート間の導通抵抗(短絡抵抗)が小さくなり、短絡電流による発熱を抑制できる。 A gap is formed by melting the modifying member 6 and diffusing it between the positive electrode plate (positive electrode sheet) 4 and the upper negative electrode sheet 5b, and the upper negative electrode sheet 5b and the positive electrode plate (positive electrode sheet) 4 are shown in FIG. As shown, they are in plane contact with each other over a wide range, and become electrically conductive (shorted). Also in this case, the positive electrode sheet and the negative electrode sheet are short-circuited in a wide area as in the case of the mechanical impact described above, so the conduction resistance (short circuit resistance) between the sheets is reduced, and heat generation due to the short circuit current can be suppressed. .
 このような変性部材6の具体例を挙げると、リチウムイオン二次電池のセパレータ9は、例えば高密度ポリエチレンからなり、その耐熱温度は約90~約110℃であることから、変性部材6は、セパレータ9の耐熱温度よりも低い材料からなることが望ましい。そのような条件を満たす材料として、例えば、低密度ポリエチレン(耐熱温度約70~約90℃)、ポリ塩化ビニル(耐熱温度約60~約80℃)、ポリスチレン(耐熱温度約70~約90℃)、無延伸ポリエチレンテレフタレート(耐熱温度約60℃以下)、メタクリル樹脂(耐熱温度約70~約90℃)、ポリビニルアルコール樹脂(耐熱温度約40~約80℃)等の熱可塑性樹脂を挙げることができる。 As a specific example of such a modifying member 6, the separator 9 of a lithium ion secondary battery is made of, for example, high density polyethylene, and the heat resistant temperature thereof is about 90 to about 110 ° C. It is desirable to be made of a material lower than the heat resistance temperature of the separator 9. As a material satisfying such conditions, for example, low density polyethylene (heat resistant temperature about 70 to about 90 ° C.), polyvinyl chloride (heat resistant temperature about 60 to about 80 ° C.), polystyrene (heat resistant temperature about 70 to about 90 ° C.) And thermoplastic resins such as non-oriented polyethylene terephthalate (heat resistant temperature about 60 ° C. or less), methacrylic resin (heat resistant temperature about 70 to about 90 ° C.), polyvinyl alcohol resin (heat resistant temperature about 40 to about 80 ° C.) .
 以上説明した第1の実施形態では、正極板(正極シート)と、負極板(負極シート)と、これらの間に介挿されたセパレータとを備える電極積層体を有するリチウムイオン二次電池において、負極板(負極シート)を、負極端子の一方端側と接合された部位で二股に分岐させ、上側負極シートと下側負極シートの2枚の矩形状シートからなる構成とする。そして、積層体の下面側に位置する下側負極シートに負極活物質を塗布し、積層体の上面側に延出した上側負極シートと正極板(正極シート)との間に、機械的な衝撃等を受けた場合に全体がほぼ均等に粒子状に破壊する変性部材、あるいは、設置環境の温度が上昇した場合に溶融して拡散する変性部材を配置する。 In the first embodiment described above, in a lithium ion secondary battery having an electrode laminate including a positive electrode plate (positive electrode sheet), a negative electrode plate (negative electrode sheet), and a separator interposed therebetween, The negative electrode plate (negative electrode sheet) is bifurcated at a portion joined to one end side of the negative electrode terminal, and is formed of two rectangular sheets of an upper negative electrode sheet and a lower negative electrode sheet. And a negative electrode active material is apply | coated to the lower side negative electrode sheet located in the lower surface side of a laminated body, A mechanical impact is carried out between the upper side negative electrode sheet and positive electrode plate (positive electrode sheet) extended to the upper surface side of a laminated body. In the case where the temperature of the installation environment rises, a denatured member which melts and diffuses when the temperature of the installation environment rises is disposed.
 このような構成とすることで、粒子状に破壊した変性部材の粒子状物間に形成された隙間、あるいは溶融して拡散した変性部材に形成された隙間を介して、正極板(正極シート)と上側負極シートとが多点かつ広範囲にわたり面接触し、電気的な短絡状態に至る。すなわち、正極シートと負極シート間において、局所的な短絡ではなく、広範囲にわたる短絡状態が実現されてシート間の導通抵抗が小さくなり、両シート間に流れる短絡電流による発熱の大幅な抑制が可能となり、電池の発火、破裂等の発生を抑止できる。 With such a configuration, the positive electrode plate (positive electrode sheet) is formed through the gaps formed between the particulate matter of the denatured member broken into particles or the gaps formed in the melted and diffused denatured member. And the upper negative electrode sheet make many surface contact with each other over a wide area, leading to an electrical short circuit condition. That is, not a local short circuit but a wide short circuit state is realized between the positive electrode sheet and the negative electrode sheet, the conduction resistance between the sheets is reduced, and heat generation due to the short circuit current flowing between both sheets can be largely suppressed. , And can prevent the battery from firing and bursting.
 その結果、例えば、リチウムイオン二次電池への重量物の落下、所定値を超える衝撃力等の印加、金属製の針状あるいは釘状の物体の貫通、あるいはリチウムイオン二次電池の設置環境の温度が上昇したとき、セパレータの変形、断裂等による内部短絡が生じる前に、正極シートと負極シート同士を接触させることにより電気的に導通状態となって内部短絡が発生するので、機械的な衝撃、環境温度の上昇等に対する電池の反応性を容易に制御して安全性を向上できる。 As a result, for example, dropping of a heavy object to a lithium ion secondary battery, application of an impact force exceeding a predetermined value, penetration of a metal needle or nail object, or installation environment of a lithium ion secondary battery When the temperature rises, the positive electrode sheet and the negative electrode sheet are brought into contact with each other before the internal short circuit due to the deformation or breakage of the separator, etc., and the internal short circuit is generated, so that mechanical impact is caused. The safety of the battery can be easily controlled by easily controlling the reactivity of the battery to an increase in environmental temperature.
<第2の実施形態>
 図4は、本発明の第2の実施形態に係るリチウムイオン二次電池の内部構造である。第2の実施形態に係るリチウムイオン二次電池の外観は、図1に示す第1の実施形態に係るリチウムイオン二次電池と同じであり、図4は、本実施形態に係るリチウムイオン二次電池を、第1の実施形態と同様、図1のX-X´矢視線に沿って長手方向に切断したときの垂直断面図である。なお、図4において、図2と同一構成には同一符号を付してある。
Second Embodiment
FIG. 4 is an internal structure of a lithium ion secondary battery according to a second embodiment of the present invention. The appearance of the lithium ion secondary battery according to the second embodiment is the same as that of the lithium ion secondary battery according to the first embodiment shown in FIG. 1, and FIG. 4 is a lithium ion secondary battery according to the present embodiment. FIG. 5 is a vertical cross-sectional view of the battery, as in the first embodiment, cut in the longitudinal direction along the line XX ′ of FIG. 1; The same reference numerals as in FIG. 2 denote the same parts in FIG.
 図4に示すように第2の実施形態に係るリチウムイオン電池21は、箔状の電極板である正極板(正極シート)24および負極板(負極シート)25と、これらのシート間に介挿されたセパレータ9とを有してなる電極積層体18を備え、この積層体18は電解液とともに外装体17で封止されている。外装体17は、例えば、アルミニウム材料、ポリマーフィルム等からなるシート状の部材で構成され、可撓性を有する。 As shown in FIG. 4, in the lithium ion battery 21 according to the second embodiment, a positive electrode plate (positive electrode sheet) 24 and a negative electrode plate (negative electrode sheet) 25 which are foil-like electrode plates are interposed between these sheets. An electrode laminate 18 having the above-described separator 9 is provided, and the laminate 18 is sealed by an outer package 17 together with an electrolytic solution. The exterior body 17 is made of, for example, a sheet-like member made of an aluminum material, a polymer film or the like, and has flexibility.
 正極板24は、平面視で略矩形状をなしており、正極集電体(不図示)の片面に塗布した正極活物質14を含み、負極板25も平面視で略矩形状をなし、負極集電体(不図示)の片面に塗布した負極活物質15を含んで構成される。正極板24には正極端子12の一方端が接合され、負極板25には負極端子13の一方端が接続されており、正極端子12の他端側および負極端子13の他端側は、それぞれ外装体17の外部に引き出されている。なお、正極活物質14、負極活物質15、セパレータ9等の構成は、第1の実施形態に係るリチウムイオン二次電池と同様である。 The positive electrode plate 24 has a substantially rectangular shape in plan view, includes the positive electrode active material 14 coated on one side of a positive electrode current collector (not shown), and the negative electrode plate 25 also has a substantially rectangular shape in plan view It comprises the negative electrode active material 15 applied on one side of a current collector (not shown). One end of the positive electrode terminal 12 is joined to the positive electrode plate 24, and one end of the negative electrode terminal 13 is connected to the negative electrode plate 25. The other end of the positive electrode terminal 12 and the other end of the negative electrode 13 are It is pulled out of the exterior body 17. The configurations of the positive electrode active material 14, the negative electrode active material 15, the separator 9, and the like are the same as those of the lithium ion secondary battery according to the first embodiment.
 第2の実施形態に係るリチウムイオン二次電池21において、負極シート25は、負極を構成する箔状シートであり、負極活物質15が塗布された側(図4において積層体18の下面側)に位置する第1の負極シート25aと、その第1の負極シート25aが配された位置と反対側(図4において積層体18の上面側)に延出する、平面視で略矩形状の第2の負極シート25bとで構成される。 In the lithium ion secondary battery 21 according to the second embodiment, the negative electrode sheet 25 is a foil-like sheet constituting the negative electrode, and the side on which the negative electrode active material 15 is applied (the lower surface side of the laminate 18 in FIG. 4) The first negative electrode sheet 25a located on the side and the opposite side to the position where the first negative electrode sheet 25a is disposed (the upper surface side of the laminated body 18 in FIG. 4), substantially rectangular in plan view And the negative electrode sheet 25b.
 より詳細には、これら第1の負極シート25aと第2の負極シート25bは、図4において符号Bで示す部分において、両シートの一方端部同士が互いに付着(接続)されている。そのため負極シート25は、第1および第2の負極シート25a,25bが、上記の接続部より積層体18の上面側と下面側の2方向に平面状をなして二股に分岐した構造を有する。そして、第1の負極シート25aと第2の負極シート25bの端部同士が接続された部位(二股に分かれた部位)に、負極端子13の一方端が接合されている。 More specifically, the first negative electrode sheet 25a and the second negative electrode sheet 25b are attached (connected) to each other at one end portions of the two sheets in a portion indicated by reference numeral B in FIG. Therefore, the negative electrode sheet 25 has a structure in which the first and second negative electrode sheets 25a and 25b are bifurcated in a planar shape in two directions of the upper surface side and the lower surface side of the laminated body 18 from the connection portion. Then, one end of the negative electrode terminal 13 is joined to a portion (a bifurcated portion) where the end portions of the first negative electrode sheet 25a and the second negative electrode sheet 25b are connected to each other.
 さらに、リチウムイオン二次電池21の正極を構成する箔状の正極シート24は、正極活物質14が塗布された側(図4において積層体18の上面側)に位置する第1の正極シート24aと、その第1の正極シート24aが配された位置と反対側(図4において積層体18の下面側)に延出する、平面視で略矩形状の第2の正極シート24bとで構成される。 Furthermore, the foil-like positive electrode sheet 24 constituting the positive electrode of the lithium ion secondary battery 21 is a first positive electrode sheet 24 a positioned on the side on which the positive electrode active material 14 is applied (the upper surface side of the laminate 18 in FIG. 4). And a second positive electrode sheet 24b having a substantially rectangular shape in a plan view extending to the opposite side to the position where the first positive electrode sheet 24a is disposed (the lower surface side of the laminated body 18 in FIG. 4) Ru.
 第1の正極シート24aと第2の正極シート24bは、図4において符号Cで示す部分において、両シートの一方端部同士が互いに付着(接続)されている。これにより正極シート14は、第1および第2の正極シート24a,24bが、上記の接続部より積層体18の上面側と下面側の2方向に平面状をなして二股に分岐した構造を有する。そして、第1の正極シート24aと第2の正極シート24bの端部同士が接続された部位(二股に分かれた部位)に、正極端子12の一方端が接合されている。 The first positive electrode sheet 24 a and the second positive electrode sheet 24 b are attached (connected) to each other at one end portions of the two sheets in a portion indicated by a symbol C in FIG. 4. Thus, the positive electrode sheet 14 has a bifurcated structure in which the first and second positive electrode sheets 24a and 24b are planar in two directions of the upper surface side and the lower surface side of the laminate 18 from the connection portion described above. . Then, one end of the positive electrode terminal 12 is joined to a portion (a portion divided into two parts) where the end portions of the first positive electrode sheet 24 a and the second positive electrode sheet 24 b are connected to each other.
 第2の実施形態に係るリチウムイオン二次電池21では、第2の負極シート25bと第1の正極シート24aとの間に、例えば機械的な衝撃を受けた場合に、その物理的な性状が変化する(脆性破壊する)第1の変性部材16が介挿されている。具体的には変性部材16は、衝撃等を受けていない通常の状態では、その部材の成形時の形状を維持しながら電気的絶縁性(非導通性)を保持するが、機械的な衝撃等を受けると部材全体がほぼ均等に粒子状に崩壊する。 In the lithium ion secondary battery 21 according to the second embodiment, for example, when mechanical impact is received between the second negative electrode sheet 25 b and the first positive electrode sheet 24 a, the physical properties are the same. A changing (brittle breaking) first modifying member 16 is interposed. Specifically, in a normal state where no impact or the like is received, the modifying member 16 maintains electrical insulation (non-conduction) while maintaining the shape of the member at the time of molding, but mechanical impact or the like The entire member collapses into particles almost uniformly.
 変性部材16が崩壊してなる粒子状物は、第2の負極シート25bと第1の正極シート24aとの間に拡散するので、これら第2の負極シート25bと第1の正極シート24aは、これら粒子状物の間に形成された隙間を介して広範囲にわたって面接触する。その結果、これらの正極シートと負極シートが広い領域で相互に電気的に導通することで、シート間の導通抵抗(短絡抵抗)が小さくなり、短絡電流による発熱を抑制できる。 Since the particulate matter formed by the deformation of the modifying member 16 is diffused between the second negative electrode sheet 25b and the first positive electrode sheet 24a, the second negative electrode sheet 25b and the first positive electrode sheet 24a Surface contact is made over a wide area through the gap formed between these particulates. As a result, when the positive electrode sheet and the negative electrode sheet are electrically conducted to each other in a wide area, the conduction resistance (short circuit resistance) between the sheets is reduced, and heat generation due to the short circuit current can be suppressed.
 さらに、第2の正極シート24bと第1の負極シート25aとの間には、リチウムイオン二次電池の設置された環境温度が上昇し、それが所定温度に達したときに、その物理的な性状が変化する第2の変性部材26が介挿されている。具体的には、変性部材26は、その部材の耐熱温度以下の環境では、部材の成形時の形状を維持しながら電気的絶縁性(非導通性)を保持するが、耐熱温度を超えた場合、部材全体が溶解する。この溶解によりシート間に形成された隙間を介して、上側負極シート5bと正極板(正極シート)4とが、図3に示すように互いに広範囲にわたって面接触し、電気的な導通(短絡)状態となる。この場合も、上記の機械的な衝撃を受けた場合と同様、広い領域で正極シートと負極シートが短絡するのでシート間の導通抵抗(短絡抵抗)が小さくなり、短絡電流による発熱が抑制される。 Furthermore, when the environment temperature at which the lithium ion secondary battery is installed rises between the second positive electrode sheet 24b and the first negative electrode sheet 25a and reaches a predetermined temperature, the physical A second modifying member 26 of varying properties is interposed. Specifically, in an environment equal to or lower than the heat resistance temperature of the member, the modification member 26 maintains electrical insulation (non-conduction) while maintaining the shape at the time of molding of the member, but the heat resistance temperature is exceeded , The entire member melts. The upper negative electrode sheet 5b and the positive electrode plate (positive electrode sheet) 4 are in plane contact with each other over a wide area as shown in FIG. It becomes. Also in this case, the positive electrode sheet and the negative electrode sheet are short-circuited in a wide area as in the case of the mechanical impact described above, so the conduction resistance (short circuit resistance) between the sheets is reduced and heat generation due to the short circuit current is suppressed. .
 このように第2の実施形態に係るリチウムイオン二次電池は、負極板(負極シート)を、その負極シートと負極端子の一方端側とが接続された部位より二股に分岐させ、上側負極シートと下側負極シートの2枚の矩形状シートからなる構成とするとともに、正極板(正極シート)についても、その正極シートと正極端子の一方端側とが接続された部位より二股に分岐させ、上側正極シートと下側正極シートの2枚の矩形状シートからなる構成とする。 Thus, in the lithium ion secondary battery according to the second embodiment, the negative electrode plate (negative electrode sheet) is bifurcated from the portion where the negative electrode sheet and one end of the negative electrode terminal are connected, and the upper negative electrode sheet And the lower side negative electrode sheet, the positive electrode plate (positive electrode sheet) is also branched into two from the portion where the positive electrode sheet and one end of the positive electrode terminal are connected, It consists of two rectangular-shaped sheets of an upper side positive electrode sheet and a lower side positive electrode sheet.
 そして、リチウムイオン二次電池の外装体の一方側内壁の近傍であって上側負極シートと下側正極シートとの間に第1の変性部材を介挿させ、機械的な衝撃等を受けた場合にその第1の変性部材がほぼ均等に粒子状に破壊して、粒子状物間にできる隙間を介して正極シートと負極シートとを広範囲に面接触させる。さらに、リチウムイオン二次電池の外装体の他方側内壁の近傍であって、上側正極シートと下側負極シートとの間には第2の変性部材を介挿させて、設置環境の温度が上昇した場合には、その第2の変性部材が溶融して拡散し、それにより形成された隙間を介して正極シートと負極シートとを広範囲に面接触させる。 When the first modification member is inserted between the upper negative electrode sheet and the lower positive electrode sheet in the vicinity of the inner wall of the lithium ion secondary battery at one side, and mechanical impact or the like is received. The first modified member is almost uniformly broken into particles, and the positive electrode sheet and the negative electrode sheet are brought into plane contact with a wide area through the gaps formed between the particles. Furthermore, a second modification member is interposed between the upper positive electrode sheet and the lower negative electrode sheet in the vicinity of the other inner wall of the outer package of the lithium ion secondary battery, and the temperature of the installation environment rises. In this case, the second modifying member melts and diffuses, and the positive electrode sheet and the negative electrode sheet are brought into plane contact with a wide area through the gap formed thereby.
 このような構成とすることで、単一のリチウムイオン二次電池において、機械的な衝撃等の外部応力を受けた場合、セパレータの変形、破断、断裂等することで正極/負極活物質と負極/正極集電体とが接触して短絡が生じる前に、第1の変性部材を短時間に崩壊させて、正極シートと負極シートとの広範囲な面接触による強制的な短絡を発生させる。一方、設置環境の温度が上昇した場合には、電池の外装体の他方側内壁の近傍に配置した第2の変性部材を短時間に溶融させて、正極シートと負極シートとの広範囲な面接触による強制的な短絡を発生させる。 With such a configuration, in a single lithium ion secondary battery, when external stress such as mechanical impact is received, the separator is deformed, broken, broken, etc., to thereby operate the positive electrode / negative electrode active material and the negative electrode. Before the short circuit occurs due to the contact with the positive electrode current collector, the first modification member is collapsed in a short time to generate a forced short circuit due to the wide area surface contact between the positive electrode sheet and the negative electrode sheet. On the other hand, when the temperature of the installation environment rises, the second modifying member disposed in the vicinity of the other inner wall of the battery case is melted in a short time, and extensive surface contact between the positive electrode sheet and the negative electrode sheet Cause a forced short circuit.
 その結果、リチウムイオン二次電池のセパレータの変形、断裂等による内部短絡が生じる前段階で、正極シートと負極シート同士が広範囲に接触して電気的に導通状態となって内部短絡が発生するので、単一のリチウムイオン二次電池において機械的な衝撃と昇温のいずれに対しても電池の反応性を容易に制御できる。 As a result, since the positive electrode sheet and the negative electrode sheet are in wide contact with each other in a wide range before the internal short circuit occurs due to deformation or breakage of the separator of the lithium ion secondary battery, the internal short circuit occurs. In a single lithium ion secondary battery, the reactivity of the battery can be easily controlled against both mechanical impact and temperature rise.
<変形例>
 本発明のリチウムイオン二次電池は、上述した実施形態に限定されず、種々の変形が可能である。リチウムイオン二次電池において、例えば、正極(正極シート)と負極(負極シート)がセパレータを介して積層された積層体を、単一のリチウムイオン二次電池内に複数層積層させてなる電極積層体を有する構成としてもよい。
<Modification>
The lithium ion secondary battery of the present invention is not limited to the above embodiment, and various modifications are possible. In a lithium ion secondary battery, for example, an electrode lamination formed by laminating a plurality of laminated bodies in which a positive electrode (positive electrode sheet) and a negative electrode (negative electrode sheet) are laminated via a separator in a single lithium ion secondary battery It may be configured to have a body.
 また、上記第2の実施形態に係るリチウムイオン二次電池では、第2の負極シート25bと第1の正極シート24aとの間に、外部応力により脆性破壊する第1の変性部材16を介挿し、第2の正極シート24bと第1の負極シート25aとの間には、環境温度の上昇により溶解する第2の変性部材26を介挿しているが、変性部材の配置構成はこれに限定されない。 Further, in the lithium ion secondary battery according to the second embodiment, the first modifying member 16 which is brittlely fractured by external stress is interposed between the second negative electrode sheet 25b and the first positive electrode sheet 24a. Between the second positive electrode sheet 24b and the first negative electrode sheet 25a, the second modifying member 26 which dissolves due to the rise of the environmental temperature is interposed, but the arrangement configuration of the modifying member is not limited to this .
 例えば、第1の変性部材16と第2の変性部材26の双方を外部応力により脆性破壊する部材とすることで、リチウムイオン二次電池における外部応力に対する反応性をさらに向上させ、正極シートと負極シート間の強制短絡を確実かつ迅速に実現できる。また、第1の変性部材16と第2の変性部材26の双方を温度上昇により溶解する部材で構成することによっても、リチウムイオン二次電池における温度上昇に対する反応性が向上し、正極シートと負極シート間の強制短絡を確実かつ迅速に実現可能となる。 For example, by using both the first modifying member 16 and the second modifying member 26 as members that cause brittle fracture due to external stress, the reactivity to external stress in the lithium ion secondary battery is further improved, and the positive electrode sheet and the negative electrode Forced short circuit between sheets can be realized reliably and quickly. In addition, by configuring both of the first modifying member 16 and the second modifying member 26 with a member that dissolves by a temperature rise, the reactivity to the temperature rise in the lithium ion secondary battery is improved, and the positive electrode sheet and the negative electrode It is possible to realize a forced short circuit between sheets reliably and quickly.
 一方、正極シートと負極シートとの間に、変性部材として機能する昇華性の物質を充填しておき、リチウムイオン二次電池の設置環境の温度が所定値以上に達したときに昇華性物質を昇華させる構成としてもよい。かかる昇華によって、正極シートと負極シート間に空隙ができ、その空隙によって正極シートと負極シートとの広範囲な面接触状態を実現できる。 On the other hand, a sublimable substance which functions as a modifying member is filled in between the positive electrode sheet and the negative electrode sheet, and the temperature of the installation environment of the lithium ion secondary battery reaches a predetermined value or more. It may be configured to be sublimated. By such sublimation, a space is formed between the positive electrode sheet and the negative electrode sheet, and the wide area surface contact between the positive electrode sheet and the negative electrode sheet can be realized by the space.
 さらには、変性部材を形状記憶効果を有する物質で構成し、それを正極シートと負極シートとの間に載置可能に成形して、リチウムイオン二次電池の設置環境の温度が所定温度以上となったとき、形状記憶効果により変性部材そのものが正極シートと負極シート間において縮減する、あるいはシート間から抜去されることで、シート間の広範囲な面接触状態を実現する構成にしてもよい。 Furthermore, the modifying member is made of a material having a shape memory effect, and is formed so as to be able to be placed between the positive electrode sheet and the negative electrode sheet, and the temperature of the installation environment of the lithium ion secondary battery When this occurs, the configuration may be such that a wide area surface contact state between the sheets is realized by reducing or removing the modifying member itself between the positive electrode sheet and the negative electrode sheet by the shape memory effect.
 また、上述した各実施形態における、リチウムイオン二次電池の設置環境の温度上昇に反応する変性部材として、例えば、水酸化アルミニウム(Al(OH))、水酸化マグネシウム(Mg(OH))等の金属水酸化物からなる部材を使用してもよい。かかる金属水酸化物は、加熱による熱分解時に水(蒸気)を放出するので、リチウムイオン二次電池の環境温度が所定温度以上に上昇した場合、変性部材を構成する金属水酸化物より放出された水が、電解液中のリチウムイオンと相俟って電導性を発揮し、正極シートと負極シート間が電気的に短絡する。 Moreover, as a modification member which responds to the temperature rise of the installation environment of a lithium ion secondary battery in each embodiment mentioned above, aluminum hydroxide (Al (OH) 3 ), magnesium hydroxide (Mg (OH) 2 ), for example You may use the member which consists of metal hydroxides, such as. Such metal hydroxide releases water (vapor) at the time of thermal decomposition by heating, so when the environmental temperature of the lithium ion secondary battery rises to a predetermined temperature or higher, it is released from the metal hydroxide constituting the modifying member Water, together with lithium ions in the electrolyte, exerts conductivity to electrically short between the positive electrode sheet and the negative electrode sheet.
 なお、上記金属水酸化物は、優れた耐火性を有するとともに加熱されることによる水の放出により、リチウムイオン二次電池の温度上昇を抑えて電池内での発火(燃焼)を防ぎ、あるいは、電池内で発火が生じた場合には、金属水酸化物より放出された水により消火されるという効果もある。 The metal hydroxide has excellent fire resistance and releases water by being heated, thereby suppressing the temperature rise of the lithium ion secondary battery and preventing ignition (combustion) in the battery, or In the case where ignition occurs in the battery, there is also an effect of extinguishing with water released from the metal hydroxide.
1,21 リチウムイオン二次電池
2 正極端子
3,13 負極端子
4,24 正極板(正極シート)
5,25 負極板(負極シート)
5a 下側負極シート
5b 上側負極シート
6 変性部材
7,17 外装体
8,18 積層体
9 セパレータ
14 正極活物質
15 負極活物質
16 第1の変性部材
24a 第1の正極シート
24b 第2の正極シート
25a 第1の負極シート
25b 第2の負極シート
26 第2の変性部材
 
 
1, 21 lithium ion secondary battery 2 positive electrode terminal 3, 13 negative electrode terminal 4, 24 positive electrode plate (positive electrode sheet)
5, 25 Negative electrode plate (negative electrode sheet)
5a lower side negative electrode sheet 5b upper side negative electrode sheet 6 modified member 7, 17 exterior body 8, 18 laminate 9 separator 14 positive electrode active material 15 negative electrode active material 16 first modified member 24a first positive electrode sheet 24b second positive electrode sheet 25a first negative electrode sheet 25b second negative electrode sheet 26 second modified member

Claims (12)

  1.  正極、負極およびセパレータを備える積層体が電解液とともに外装体で封止され、該正極と負極それぞれが、該外装体の外部に突出する正極端子と負極端子を有するリチウムイオン二次電池であって、
     前記負極を構成する負極シートは前記負極端子が接合された部位において平面視略矩形状の第1の負極シートと第2の負極シートとに二股に分岐し、該第1の負極シートに負極活物質層が設けられ、該第2の負極シートと前記正極を構成する正極シートとの間に第1の変性部材が介挿され、該第1の変性部材は、これら第2の負極シートと正極シートとを電気的に短絡させることが可能となる部材であることを特徴とするリチウムイオン二次電池。
    A lithium ion secondary battery in which a laminate including a positive electrode, a negative electrode and a separator is sealed together with an electrolytic solution in an outer package, and each of the positive electrode and the negative electrode has a positive electrode terminal and a negative electrode terminal protruding outside the outer package. ,
    The negative electrode sheet constituting the negative electrode is bifurcated into a first negative electrode sheet having a substantially rectangular shape in plan view and a second negative electrode sheet at a site where the negative electrode terminal is joined, and the negative electrode active in the first negative electrode sheet A material layer is provided, and a first modifying member is interposed between the second negative electrode sheet and a positive electrode sheet constituting the positive electrode, and the first modifying member comprises the second negative electrode sheet and the positive electrode. A lithium ion secondary battery characterized in that it is a member capable of electrically shorting a sheet.
  2.  前記第1の変性部材は熱硬化性樹脂からなる多孔質部材あるいは結晶質部材であり、外部応力が印加された場合、脆性破壊して前記電気的に短絡させることが可能となる部材であることを特徴とする請求項1に記載のリチウムイオン二次電池。 The first modifying member is a porous member or a crystalline member made of a thermosetting resin, and is a member capable of causing a brittle fracture and causing the electrical short circuit when an external stress is applied. The lithium ion secondary battery according to claim 1, characterized in that
  3.  前記外部応力は、前記セパレータの引張強度以下であることを特徴とする請求項2に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 2, wherein the external stress is equal to or less than the tensile strength of the separator.
  4.  前記第1の変性部材は熱可塑性樹脂からなり、環境温度が上昇した場合、溶解して前記電気的に短絡させることが可能となる部材であることを特徴とする請求項1に記載のリチウムイオン二次電池。 The lithium ion according to claim 1, wherein the first modifying member is made of a thermoplastic resin, and is a member which can be melted and electrically short-circuited when the environmental temperature rises. Secondary battery.
  5.  前記環境温度は、前記セパレータの耐熱温度以下であることを特徴とする請求項4に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 4, wherein the environmental temperature is equal to or less than a heat resistance temperature of the separator.
  6.  前記第1の変性部材は前記外装体の内壁近傍に配置されていることを特徴とする請求項1~5のいずれか1項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 5, wherein the first modifying member is disposed in the vicinity of an inner wall of the outer package.
  7.  前記正極シートは前記正極端子が接合された部位において二股に分岐した平面視略矩形状の第1の正極シートと第2の正極シートからなり、
     前記第1の正極シートに正極活物質層が設けられ、前記第2の正極シートと前記第1の負極シートとの間に第2の変性部材が介挿され、該第2の変性部材は、これら第2の正極シートと第1の負極シートとを電気的に短絡させることが可能となる部材であることを特徴とする請求項1に記載のリチウムイオン二次電池。
    The positive electrode sheet is composed of a first positive electrode sheet and a second positive electrode sheet which are substantially rectangular in a plan view and which are bifurcated at a portion where the positive electrode terminal is joined.
    A positive electrode active material layer is provided on the first positive electrode sheet, a second modifying member is interposed between the second positive electrode sheet and the first negative electrode sheet, and the second modifying member is The lithium ion secondary battery according to claim 1, which is a member capable of electrically shorting the second positive electrode sheet and the first negative electrode sheet.
  8.  前記第2の変性部材は熱硬化性樹脂からなる多孔質部材あるいは結晶質部材であり、外部応力が印加された場合、脆性破壊して前記電気的に短絡させることが可能となる部材であることを特徴とする請求項7に記載のリチウムイオン二次電池。 The second modifying member is a porous member or a crystalline member made of a thermosetting resin, and is a member that can be brittlely broken and electrically short-circuited when an external stress is applied. The lithium ion secondary battery according to claim 7, characterized in that
  9.  前記外部応力は前記セパレータの引張強度以下であることを特徴とする請求項8に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 8, wherein the external stress is equal to or less than the tensile strength of the separator.
  10.  前記第2の変性部材は熱可塑性樹脂からなり、環境温度が上昇した場合、溶解して前記電気的に短絡させることが可能となる部材であることを特徴とする請求項7に記載のリチウムイオン二次電池。 8. The lithium ion according to claim 7, wherein the second modifying member is made of a thermoplastic resin, and is a member which can be melted and electrically short-circuited when the environmental temperature rises. Secondary battery.
  11.  前記環境温度は、前記セパレータの耐熱温度以下であることを特徴とする請求項10に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 10, wherein the environmental temperature is equal to or less than a heat resistance temperature of the separator.
  12.  前記第1の変性部材は、前記外装体の一方側内壁の近傍に配置され、前記第2の変性部材は、前記外装体の他方側内壁の近傍に配置されていることを特徴とする請求項7~請求項11のいずれか1項に記載のリチウムイオン二次電池。
     
     
    Said 1st modification member is arrange | positioned in the vicinity of one side inner wall of said exterior body, Said 2nd modification member is arrange | positioned in the vicinity of the other side inner wall of said exterior body. A lithium ion secondary battery according to any one of 7 to 11.

PCT/JP2018/037510 2017-12-28 2018-10-09 Lithium-ion rechargeable battery WO2019130711A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-253529 2017-12-28
JP2017253529A JP7065600B2 (en) 2017-12-28 2017-12-28 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
WO2019130711A1 true WO2019130711A1 (en) 2019-07-04

Family

ID=67066969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037510 WO2019130711A1 (en) 2017-12-28 2018-10-09 Lithium-ion rechargeable battery

Country Status (2)

Country Link
JP (1) JP7065600B2 (en)
WO (1) WO2019130711A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009182A (en) * 2009-06-24 2011-01-13 Enertech Internatl Inc Unit cell for secondary battery equipped with conductive sheet layer and lithium ion secondary battery using the same
JP2016189300A (en) * 2015-03-30 2016-11-04 パナソニックIpマネジメント株式会社 Thin battery
JP2018181521A (en) * 2017-04-07 2018-11-15 トヨタ自動車株式会社 Laminate battery
JP2018181461A (en) * 2017-04-05 2018-11-15 トヨタ自動車株式会社 Laminate battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009182A (en) * 2009-06-24 2011-01-13 Enertech Internatl Inc Unit cell for secondary battery equipped with conductive sheet layer and lithium ion secondary battery using the same
JP2016189300A (en) * 2015-03-30 2016-11-04 パナソニックIpマネジメント株式会社 Thin battery
JP2018181461A (en) * 2017-04-05 2018-11-15 トヨタ自動車株式会社 Laminate battery
JP2018181521A (en) * 2017-04-07 2018-11-15 トヨタ自動車株式会社 Laminate battery

Also Published As

Publication number Publication date
JP7065600B2 (en) 2022-05-12
JP2019121442A (en) 2019-07-22

Similar Documents

Publication Publication Date Title
KR100906253B1 (en) Secondary Battery Having Electrode With Self Cutting Part To Be Destructed On Application Of Over-Current
CN109844996B (en) Battery module, battery pack including the same, and vehicle
KR101037042B1 (en) Pouch type secondary battery with enhanced stability
CN213692271U (en) Battery cell, battery and power consumption device
WO2007023609A1 (en) Battery pack
CN214589171U (en) Battery and power consumption device
JP6613082B2 (en) Lithium ion secondary battery
CN113013503A (en) Battery and power consumption device
WO2013046712A1 (en) Sealed secondary battery
JP2015510673A (en) Battery cell assembly with improved safety and battery module including the same
JP6472539B2 (en) Electrode lead and secondary battery including the same
US9843032B2 (en) Battery module
EP2922116B1 (en) Secondary battery
JP4348492B2 (en) Non-aqueous secondary battery
EP2122740A1 (en) Stacked-type lithium ion battery
KR20220145395A (en) Batteries, electrical devices, manufacturing methods and manufacturing devices for batteries
KR101154884B1 (en) Secondary Battery Having Top Insulator Combined with Jelly-Roll Type Electrode Assembly
KR20210050255A (en) Busbar Having Dissimilar Metals and Manufacturing Method Thereof
KR101576597B1 (en) Secondary battery and battery pack including the same
WO2019130711A1 (en) Lithium-ion rechargeable battery
KR102263470B1 (en) Battery Cell Comprising Hot-melting Adhesive Part
KR20190049206A (en) The Secondary Battery And The Insulator For Secondary Battery
JP4594478B2 (en) Non-aqueous secondary battery
KR100553215B1 (en) Lithium secondary battery with supporting bar for safety
CN220510174U (en) Battery, electric equipment and energy storage equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893489

Country of ref document: EP

Kind code of ref document: A1