JP6613082B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP6613082B2
JP6613082B2 JP2015174657A JP2015174657A JP6613082B2 JP 6613082 B2 JP6613082 B2 JP 6613082B2 JP 2015174657 A JP2015174657 A JP 2015174657A JP 2015174657 A JP2015174657 A JP 2015174657A JP 6613082 B2 JP6613082 B2 JP 6613082B2
Authority
JP
Japan
Prior art keywords
metal foil
laminate
insulating sheet
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015174657A
Other languages
Japanese (ja)
Other versions
JP2017050241A (en
Inventor
卓也 豊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2015174657A priority Critical patent/JP6613082B2/en
Publication of JP2017050241A publication Critical patent/JP2017050241A/en
Application granted granted Critical
Publication of JP6613082B2 publication Critical patent/JP6613082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、リチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery.

リチウムイオン二次電池は携帯情報端末や電気自動車等の広い用途に展開されており、エネルギー密度や出力を向上させるための研究開発が進められている。高エネルギー密度、高出力のリチウムイオン二次電池は、これを搭載する機器の利便性を向上させ得るので極めて魅力的であるが、安全性の確保がより一層重要になる。電池に強い衝撃が加わる、過充電した電池内部にガスが発生する等の異常事態によって、電池の一部が破損して正極と負極が局所的に短絡した場合、過大な電流が短時間に局所的に流れて発火する懸念がある。このため、リチウムイオン二次電池製造者には適正な安全確認試験を行い、発火が起こらないことを事前に検査することが求められている。   Lithium ion secondary batteries are used in a wide range of applications such as portable information terminals and electric vehicles, and research and development are being conducted to improve energy density and output. A high energy density, high output lithium ion secondary battery is extremely attractive because it can improve the convenience of a device in which it is mounted, but ensuring safety is even more important. If a part of the battery is damaged and the positive and negative electrodes are locally short-circuited due to an abnormal situation such as a strong impact on the battery or gas generation inside the overcharged battery, an excessive current will be locally applied in a short time. There is concern that it will flow and fire. For this reason, a lithium ion secondary battery manufacturer is required to perform an appropriate safety confirmation test and to inspect beforehand that no ignition occurs.

特許文献1には、意図的な過充電によるガス発生によって電池を変形させて破壊し、内部短絡を起こさせる試験において、内部短絡後の温度上昇が起きた後、発火する前に、安全な短絡経路を形成する機構を備えたリチウムイオン二次電池が提案されている。当該電池には、溶融温度の低いセパレータによって絶縁された、通常時は使用されない予備的な電極対が備えられている。内部短絡による初期の温度上昇によって当該セパレータが溶融し、電極対が導通接触し、正極と負極とが迅速に短絡する。この電極対の短絡によって、高抵抗の電極活物質が発火する温度に上昇する前に、低抵抗の電極対によって電池エネルギーを迅速に開放する機構となっている。   In Patent Document 1, in a test in which a battery is deformed and destroyed due to gas generation due to intentional overcharge and an internal short circuit occurs, a safe short circuit occurs after a temperature increase after the internal short circuit occurs and before a fire occurs. A lithium ion secondary battery having a mechanism for forming a path has been proposed. The battery is provided with a spare electrode pair which is normally not used, insulated by a separator having a low melting temperature. The initial temperature rise due to the internal short circuit melts the separator, the electrode pair is brought into conductive contact, and the positive electrode and the negative electrode are quickly short-circuited. This short circuit of the electrode pair provides a mechanism for quickly releasing battery energy by the low resistance electrode pair before the temperature rises to a temperature at which the high resistance electrode active material ignites.

特開2003−243037号公報JP 2003-243037 A

しかしながら、高エネルギー化が益々進んでいる近年のリチウムイオン二次電池においては、内部短絡後に電極活物質の急速な温度上昇が起こる。このため、特許文献1で提案された低融点セパレータの溶融と、電極活物質の発火までの時間差が極めて短くなっており、発火を防ぎ切れないことが懸念される。   However, in recent lithium ion secondary batteries, where energy is increasingly increased, the temperature of the electrode active material rapidly increases after an internal short circuit. For this reason, the time difference between the melting of the low melting point separator proposed in Patent Document 1 and the ignition of the electrode active material is extremely short, and there is a concern that the ignition cannot be completely prevented.

本発明は、上記事情に鑑みてなされたものであり、内部短絡後の温度上昇に依存せず、より積極的に安全機構としての短絡回路を作動させる機構を備えたリチウムイオン二次電池の提供を課題とする。   The present invention has been made in view of the above circumstances, and provides a lithium ion secondary battery provided with a mechanism for more actively operating a short circuit as a safety mechanism without depending on a temperature rise after an internal short circuit. Is an issue.

[1]正極集電体の少なくとも一方の面に活物質層が形成されてなる正極と、負極集電体の少なくとも一方の面に活物質層が形成されてなる負極と、が、絶縁体を介して積層されてなる電極積層体を備えたリチウムイオン二次電池であって、前記電極積層体の最外層部に、前記正極集電体に導通された第一金属箔と、前記負極集電体に導通された第二金属箔とが、絶縁シートを介して積層されてなる金属箔積層体が設置されており、前記絶縁シートの引張り強度が、最も大きいA方向で80MPa以下、該A方向に直交するB方向で20MPa以下、であり、且つ、前記絶縁シートの引張り伸度が、前記A方向で20%以下、前記B方向で20%以下である、リチウムイオン二次電池。
[2]前記絶縁シートの引張り強度及び引張り伸度が、前記A方向と前記B方向とでそれぞれ異なる、上記[1]に記載のリチウムイオン二次電池。
[3]前記第一金属箔は前記正極集電体と同じ金属からなり、前記第二金属箔は前記負極集電体と同じ金属からなる、上記[1]又は[2]に記載のリチウムイオン二次電池。
[4]前記電極積層体及び前記金属箔積層体がラミネートフィルムに収容されてなる、上記[1]〜[3]の何れか一項に記載のリチウムイオン二次電池。
[5]前記金属箔積層体が、前記電極積層体の第一端部と第二端部とにそれぞれ設置され、前記第一端部に設けられた前記金属箔積層体を構成する前記絶縁シートの前記A方向と、前記第二端部に設けられた前記金属箔積層体を構成する前記絶縁シートの前記方向と、が、前記電極積層体の厚み方向に見て、30〜90°の交差角となるように配置されている、上記[1]〜[4]の何れか一項に記載のリチウムイオン二次電池。
[6]前記絶縁体は、前記正極及び負極の少なくとも一方の活物質層の表面に形成された、無機粒子を含む絶縁層である、上記[1]〜[5]の何れか一項に記載のリチウムイオン二次電池。
[7]前記電極積層体のエネルギー密度が700Wh/L以上である、上記[1]〜[6]の何れか一項に記載のリチウムイオン二次電池。
[1] A positive electrode in which an active material layer is formed on at least one surface of a positive electrode current collector, and a negative electrode in which an active material layer is formed on at least one surface of a negative electrode current collector, A lithium ion secondary battery comprising an electrode laminate laminated via a first metal foil electrically connected to the positive electrode current collector at the outermost layer of the electrode laminate, and the negative electrode current collector A metal foil laminate is provided in which a second metal foil conducted to the body is laminated via an insulating sheet, and the tensile strength of the insulating sheet is 80 MPa or less in the largest A direction, the A direction. And a tensile elongation of the insulating sheet is 20% or less in the A direction and 20% or less in the B direction.
[2] The lithium ion secondary battery according to [1], wherein the insulating sheet has different tensile strength and tensile elongation in the A direction and the B direction.
[3] The lithium ion according to [1] or [2], wherein the first metal foil is made of the same metal as the positive electrode current collector, and the second metal foil is made of the same metal as the negative electrode current collector. Secondary battery.
[4] The lithium ion secondary battery according to any one of [1] to [3], wherein the electrode laminate and the metal foil laminate are accommodated in a laminate film.
[5] The insulating sheet, wherein the metal foil laminate is installed on each of the first end and the second end of the electrode laminate, and constitutes the metal foil laminate provided on the first end. of the the a direction, and the a direction of the insulating sheets constituting the metal foil laminated body provided on the second end portion, but, as viewed in the thickness direction of the electrode stack, of 30 to 90 ° The lithium ion secondary battery according to any one of [1] to [4], wherein the lithium ion secondary battery is disposed so as to have an intersection angle.
[6] The insulating material according to any one of [1] to [5], wherein the insulator is an insulating layer including inorganic particles formed on a surface of at least one of the positive electrode and the negative electrode. Lithium ion secondary battery.
[7] The lithium ion secondary battery according to any one of [1] to [6], wherein the energy density of the electrode stack is 700 Wh / L or more.

本発明のリチウムイオン二次電池によれば、外部から強い衝撃が加わった場合に、電極積層体の短絡に先んじて、安全機構として備えられた金属箔積層体の絶縁シートが裂けて正極と負極に接続された一対の金属箔同士が接触し、安全且つ迅速に短絡回路を形成することができる。つまり、電極活物質の温度上昇を待たずして、衝撃とほぼ同時に安全な短絡回路を形成することができる。この結果、発火に至ることを従来よりも確実に防ぐことができる。   According to the lithium ion secondary battery of the present invention, when a strong impact is applied from the outside, the insulating sheet of the metal foil laminate provided as a safety mechanism tears before the electrode laminate is short-circuited, and the positive electrode and the negative electrode A pair of metal foils connected to each other come into contact with each other, and a short circuit can be formed safely and quickly. That is, a safe short circuit can be formed almost simultaneously with the impact without waiting for the temperature of the electrode active material to rise. As a result, ignition can be prevented more reliably than before.

本発明のリチウムイオン二次電池の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the lithium ion secondary battery of this invention.

本発明の第一実施形態は、図1に示す様に、正極集電体2の少なくとも一方の面に活物質層(正極活物質層)3が形成されてなる正極4と、負極集電体5の少なくとも一方の面に活物質層(負極活物質層)6が形成されてなる負極7と、が、絶縁体8を介して積層されてなる電極積層体9を備えたリチウムイオン二次電池1である。
本実施形態においては、正極活物質層3が正極集電体2の一方の面及び他方の面に形成されており、負極活物質層6が負極集電体5の一方の面及び他方の面に形成されている。
In the first embodiment of the present invention, as shown in FIG. 1, a positive electrode 4 in which an active material layer (positive electrode active material layer) 3 is formed on at least one surface of a positive electrode current collector 2, and a negative electrode current collector A lithium ion secondary battery comprising an electrode laminate 9 in which an active material layer (negative electrode active material layer) 6 is formed on at least one surface of 5 and an insulator 8 is laminated via an insulator 8 1.
In the present embodiment, the positive electrode active material layer 3 is formed on one surface and the other surface of the positive electrode current collector 2, and the negative electrode active material layer 6 is formed on one surface and the other surface of the negative electrode current collector 5. Is formed.

電極積層体9においては、絶縁体8である多孔性セパレータ8を介して対向配置された正極4と負極7が4段組みで積層されている。正極活物質層3が両面に形成されたアルミ箔製の正極集電体2のそれぞれからリードタブ2aが引き出されており、互いに電気的に接続されている。同様に、負極活物質層6が両面に形成された銅箔製の負極集電体5のそれぞれからリードタブ5aが引き出されており、互いに電気的に接続されている。   In the electrode laminate 9, a positive electrode 4 and a negative electrode 7 that are arranged to face each other with a porous separator 8 that is an insulator 8 are laminated in a four-layer set. Lead tabs 2a are drawn out from each of the positive electrode current collectors 2 made of aluminum foil having the positive electrode active material layer 3 formed on both surfaces, and are electrically connected to each other. Similarly, lead tabs 5a are drawn out from the respective negative electrode current collectors 5 made of copper foil in which the negative electrode active material layers 6 are formed on both surfaces, and are electrically connected to each other.

電極積層体9には積層方向に見て第一端部と第二端部の2箇所の最外層部がある。本実施形態においては、便宜的に第一端部を最上部といい、第二端部を最下部という。
電極積層体9の最外層部である最上部と最下部の2箇所には、セパレータ8で隔てられた金属箔積層体11が設置されている。金属箔積層体11は、リードタブ2aを介して正極集電体2に導通されたアルミ箔である第一金属箔12と、リードタブ5aを介して負極集電体5に導通された銅箔である第二金属箔15とが、絶縁シート10を介して積層されてなる。第一金属箔12及び第二金属箔15の表面には電極活物質は積層されておらず、露出した金属面の間に絶縁シート10が挟持されている。
The electrode laminate 9 has two outermost layer portions of a first end portion and a second end portion as viewed in the stacking direction. In this embodiment, for convenience, the first end is referred to as the uppermost portion, and the second end is referred to as the lowermost portion.
Metal foil laminates 11 separated by separators 8 are installed at two places, the uppermost part and the lowermost part, which are the outermost layer parts of the electrode laminate 9. The metal foil laminate 11 is a first metal foil 12 which is an aluminum foil conducted to the positive electrode current collector 2 via the lead tab 2a, and a copper foil conducted to the negative electrode current collector 5 via the lead tab 5a. The second metal foil 15 is laminated via the insulating sheet 10. The electrode active material is not laminated on the surfaces of the first metal foil 12 and the second metal foil 15, and the insulating sheet 10 is sandwiched between the exposed metal surfaces.

金属箔積層体11はリチウムイオン二次電池1の最外層部である最上部及び最下部の少なくとも何れか一方に備えられていればよく、どちらか一方のみに備えられた構成であっても構わない。不慮の衝撃が上方と下方の両方から加わる可能性がある場合には、両方に備えられていることが好ましい。   The metal foil laminated body 11 should just be provided in at least any one of the uppermost part which is the outermost layer part of the lithium ion secondary battery 1, and the lowest part, and the structure provided only in either one may be sufficient. Absent. If there is a possibility that an unexpected impact may be applied from both above and below, it is preferable that both are provided.

金属箔積層体11が有する絶縁シート10の引張り強度が最も大きい方向をA方向と定義し、シート平面において該A方向に直交する方向をB方向と定義する。
絶縁シート10の引張り強度は、A方向で80MPa以下、B方向で20MPa以下、であり、且つ、その引張り伸度は、前記A方向で20%以下、前記B方向で20%以下である。
絶縁シート10がその製造時に延伸加工されている場合、そのMD方向(縦方向)がA方向となり、そのTD方向(横方向)がB方向となる場合が多い。
The direction in which the tensile strength of the insulating sheet 10 included in the metal foil laminate 11 is the largest is defined as the A direction, and the direction perpendicular to the A direction on the sheet plane is defined as the B direction.
The tensile strength of the insulating sheet 10 is 80 MPa or less in the A direction and 20 MPa or less in the B direction, and the tensile elongation is 20% or less in the A direction and 20% or less in the B direction.
When the insulating sheet 10 is stretched at the time of manufacture, the MD direction (longitudinal direction) is often the A direction, and the TD direction (lateral direction) is often the B direction.

上記物性を有する絶縁シート10を備えた金属箔積層体11に対して、外部から金属箔積層体11に衝撃が加わると、電極積層体9を構成する多孔性セパレータ8(絶縁体8)よりも優先的に、絶縁シート10が開裂して、第一金属箔12と第二金属箔15の露出した金属面同士が物理的に接触する。この接触により形成された、第一金属箔12と第二金属箔15の短絡回路を介して正極4と負極7とが短絡することにより、電池エネルギーが安全に開放される。第一金属箔12及び第二金属箔15の表面には、発火の原因となる電極活物質層は形成されていないため、電気抵抗が低く、過度な温度上昇が起こり難い。この結果、リチウムイオン二次電池1のエネルギー密度が700Wh/L以上である場合にも、発火に至ることなく、安全且つ迅速に電池エネルギーを発散させることができる。   When an impact is applied to the metal foil laminate 11 from the outside with respect to the metal foil laminate 11 provided with the insulating sheet 10 having the above physical properties, the porous separator 8 (insulator 8) constituting the electrode laminate 9 is more affected. Preferentially, the insulating sheet 10 is cleaved and the exposed metal surfaces of the first metal foil 12 and the second metal foil 15 are in physical contact with each other. When the positive electrode 4 and the negative electrode 7 are short-circuited through the short circuit of the first metal foil 12 and the second metal foil 15 formed by this contact, the battery energy is safely released. Since the electrode active material layer that causes ignition is not formed on the surfaces of the first metal foil 12 and the second metal foil 15, the electrical resistance is low, and an excessive temperature rise hardly occurs. As a result, even when the energy density of the lithium ion secondary battery 1 is 700 Wh / L or more, the battery energy can be dissipated safely and quickly without causing ignition.

外部からの衝撃が加えられた金属箔積層体11において安全な短絡経路を迅速に形成するためには、絶縁シート10が速やかに開裂することが望ましい。
この観点から、絶縁シート10は、A方向とこれに直交するB方向とで、その引張り強度及び引張り伸度がそれぞれ異なることが好ましい。また、絶縁シート10のA方向の引張り強度はB方向よりも大きいことがより好ましい。さらに、絶縁シート10のA方向の引張り強度はB方向よりも大きく、且つ、当該絶縁シート10のA方向の引張り伸度はB方向よりも大きいことが特に好ましい。
また、絶縁シート10の各物性は以下の通りであることが好ましい。
In order to quickly form a safe short-circuit path in the metal foil laminate 11 to which an external impact has been applied, it is desirable that the insulating sheet 10 is rapidly cleaved.
From this viewpoint, it is preferable that the insulating sheet 10 has different tensile strength and tensile elongation in the A direction and the B direction orthogonal thereto. The tensile strength in the A direction of the insulating sheet 10 is more preferably larger than that in the B direction. Furthermore, it is particularly preferable that the tensile strength in the A direction of the insulating sheet 10 is larger than that in the B direction, and the tensile elongation in the A direction of the insulating sheet 10 is larger than that in the B direction.
Moreover, it is preferable that each physical property of the insulating sheet 10 is as follows.

絶縁シート10のA方向の引張り強度及び引張り伸度は、
1MPa〜75MPa、且つ、1〜19%が好ましく、
30MPa〜70MPa、且つ、5〜18%がより好ましく、
40MPa〜65MPa、且つ、10〜17%がさらに好ましい。
上記範囲の下限値以上であると、通常の使用において頻繁に起こり得る弱い衝撃が加わった際に不必要に開裂することを防ぐことができる。上記範囲の上限値以下であると、異常な強い衝撃が加わった際に速やかに開裂することが容易になる。
The tensile strength and tensile elongation in the A direction of the insulating sheet 10 are
1 MPa to 75 MPa and 1 to 19% are preferable,
30 MPa to 70 MPa and 5 to 18% are more preferable,
More preferably, it is 40 MPa to 65 MPa and 10 to 17%.
When it is at least the lower limit of the above range, it is possible to prevent unnecessarily cleaving when a weak impact that frequently occurs in normal use is applied. When it is below the upper limit of the above range, it becomes easy to cleave quickly when an abnormally strong impact is applied.

絶縁シート10のB方向の引張り強度及び引張り伸度は、
0.1MPa〜18MPa、且つ、0.1〜15%が好ましく、
1MPa〜15MPa、且つ、1〜12%がより好ましく、
5MPa〜12MPa、且つ、2〜9%がさらに好ましい。
上記範囲の下限値以上であると、通常の使用において頻繁に起こり得る弱い衝撃が加わった際に不必要に開裂することを防ぐことができる。上記範囲の上限値以下であると、異常な強い衝撃が加わった際に速やかに開裂することが容易になる。
The tensile strength and tensile elongation in the B direction of the insulating sheet 10 are
0.1 MPa to 18 MPa and 0.1 to 15% are preferable,
1 MPa to 15 MPa and 1 to 12% are more preferable,
5 MPa to 12 MPa and 2 to 9% are more preferable.
When it is at least the lower limit of the above range, it is possible to prevent unnecessarily cleaving when a weak impact that frequently occurs in normal use is applied. When it is below the upper limit of the above range, it becomes easy to cleave quickly when an abnormally strong impact is applied.

絶縁シート10のA方向の引張り強度とB方向の引張り強度との差は、10MPa〜70MPaが好ましく、20MPa〜60MPaがより好ましく、30MPa〜50MPaがさらに好ましい。
上記範囲の下限値以上であると、通常の使用において頻繁に起こり得る弱い衝撃が加わった際に不必要に開裂することを防ぐことができる。上記範囲の上限値以下であると、異常な強い衝撃が加わった際に速やかに開裂することが容易になる。
The difference between the tensile strength in the A direction and the tensile strength in the B direction of the insulating sheet 10 is preferably 10 MPa to 70 MPa, more preferably 20 MPa to 60 MPa, and further preferably 30 MPa to 50 MPa.
When it is at least the lower limit of the above range, it is possible to prevent unnecessarily cleaving when a weak impact that frequently occurs in normal use is applied. When it is below the upper limit of the above range, it becomes easy to cleave quickly when an abnormally strong impact is applied.

絶縁シート10のA方向の引張り伸度とB方向の引張り伸度との差は、1%〜18%が好ましく、3%〜15%がより好ましく、6%〜12%がさらに好ましい。
上記範囲の下限値以上であると、通常の使用において頻繁に起こり得る弱い衝撃が加わった際に不必要に開裂することを防ぐことができる。上記範囲の上限値以下であると、異常な強い衝撃が加わった際に速やかに開裂することが容易になる。
The difference between the tensile elongation in the A direction and the tensile elongation in the B direction of the insulating sheet 10 is preferably 1% to 18%, more preferably 3% to 15%, and even more preferably 6% to 12%.
When it is at least the lower limit of the above range, it is possible to prevent unnecessarily cleaving when a weak impact that frequently occurs in normal use is applied. When it is below the upper limit of the above range, it becomes easy to cleave quickly when an abnormally strong impact is applied.

本発明において、絶縁シート10の引張り強度は、JIS K 7127に準拠した方法によって測定された数値であり、絶縁シート10の引張り伸度は、JIS K 7127に準拠した方法によって測定された数値である。   In the present invention, the tensile strength of the insulating sheet 10 is a numerical value measured by a method according to JIS K 7127, and the tensile elongation of the insulating sheet 10 is a numerical value measured by a method according to JIS K 7127. .

本発明において、絶縁シート10のA方向とB方向の決定方法は、まず、上記の引張り強度の測定によってA方向を確認し、当該シート平面を上方から見て、該A方向に直交する方向をB方向と定める。
引張り強度が同じである方向が複数ある場合、当該複数のうちの任意方向を暫定的にA’方向として、当該A’方向に直交するB方向が上記の引張り強度及び引張り伸度の条件を満たすことを確認できた場合に、当該A’方向を真のA方向であると決定する。
In the present invention, the method of determining the A direction and the B direction of the insulating sheet 10 first confirms the A direction by measuring the tensile strength, and when viewed from above the sheet plane, the direction orthogonal to the A direction is determined. B direction is defined.
When there are a plurality of directions in which the tensile strength is the same, an arbitrary direction of the plurality is temporarily set as the A ′ direction, and the B direction orthogonal to the A ′ direction satisfies the above-described conditions of the tensile strength and the tensile elongation. If this is confirmed, the A ′ direction is determined to be the true A direction.

絶縁シート10の材料は、上記の物性を有する絶縁性のシートを形成できる材料であればよく、例えば、合成樹脂、紙などが適用できる。合成樹脂としては、例えば、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリイミド系樹脂、アラミド系樹脂、等の公知の熱可塑性樹脂が挙げられる。この他、熱硬化性樹脂を用いてもよい。   The material of the insulating sheet 10 may be any material that can form an insulating sheet having the above physical properties, and for example, synthetic resin, paper, and the like can be applied. Examples of the synthetic resin include known thermoplastic resins such as polyolefin resins, polyester resins, polyimide resins, and aramid resins. In addition, a thermosetting resin may be used.

絶縁シート10の厚みは、上記物性を有する限り特に限定されず、例えば1μm〜100μm程度の厚みとすることができる。金属箔積層体11の厚みを低減して電池セルの薄型化を図る観点から、薄い方が好ましい。また、外部からの衝撃が加わった場合に絶縁体8よりも絶縁シート10が優先して開裂することが容易になる観点から、絶縁シート10の厚みは絶縁体8よりも薄いことが好ましい。   The thickness of the insulating sheet 10 is not particularly limited as long as it has the above physical properties, and can be set to a thickness of about 1 μm to 100 μm, for example. From the viewpoint of reducing the thickness of the metal foil laminate 11 and reducing the thickness of the battery cell, the thinner one is preferable. In addition, it is preferable that the thickness of the insulating sheet 10 is thinner than that of the insulator 8 from the viewpoint that the insulating sheet 10 is easily cleaved preferentially over the insulator 8 when an external impact is applied.

絶縁シート10の大きさは、通常時に第一金属箔12と第二金属箔15を絶縁できる大きさであればよく、例えば、第一金属箔12及び第二金属箔15よりも一回り大きい面積を有することが好ましい。
絶縁シート10は多孔性であってもよく、非多孔性であってもよい。
The size of the insulating sheet 10 may be a size that can insulate the first metal foil 12 and the second metal foil 15 in a normal state. For example, the area is slightly larger than the first metal foil 12 and the second metal foil 15. It is preferable to have.
The insulating sheet 10 may be porous or non-porous.

第一金属箔12は正極集電体2と同じ金属からなることが好ましい。第一金属箔12と正極集電体2が同じ金属であることにより、金属箔積層体11の短絡回路が形成された場合に、正極4の電気化学エネルギーを、金属箔積層体11を介して迅速に開放することができる。仮に、第一金属箔12が正極集電体2よりも電気抵抗の大きい金属であると、前記電気化学エネルギーを迅速に開放できない又は過度な発熱を生じる恐れがある。
第一金属箔12と正極集電体2とを電気的に接続するリードタブ2aについても同様に、第一金属箔12及び正極集電体2と同じ金属からなることが好ましい。
The first metal foil 12 is preferably made of the same metal as the positive electrode current collector 2. When the first metal foil 12 and the positive electrode current collector 2 are the same metal, when the short circuit of the metal foil laminate 11 is formed, the electrochemical energy of the positive electrode 4 is passed through the metal foil laminate 11. It can be opened quickly. If the first metal foil 12 is a metal having a higher electrical resistance than the positive electrode current collector 2, the electrochemical energy may not be released quickly or excessive heat may be generated.
Similarly, the lead tab 2 a that electrically connects the first metal foil 12 and the positive electrode current collector 2 is preferably made of the same metal as the first metal foil 12 and the positive electrode current collector 2.

電気抵抗が低いより安全な短絡回路を形成する観点から、第一金属箔12の厚み及び面積の少なくとも一方が正極集電体2と同等以上あることが好ましい。さらに、リードタブ2aの厚み及び面積の少なくとも一方が正極集電体2と同等以上であることが好ましい。   From the viewpoint of forming a safer short circuit with low electrical resistance, it is preferable that at least one of the thickness and area of the first metal foil 12 is equal to or greater than that of the positive electrode current collector 2. Furthermore, it is preferable that at least one of the thickness and area of the lead tab 2 a is equal to or greater than that of the positive electrode current collector 2.

上記と同様の観点から、第二金属箔15は負極集電体5と同じ金属からなることが好ましい。さらに、第二金属箔15と負極集電体5とを電気的に接続するリードタブ5aも同様に、第二金属箔15及び負極集電体5と同じ金属からなることが好ましい。
電気抵抗が低いより安全な短絡回路を形成する観点から、第二金属箔15の厚み及び面積の少なくとも一方が負極集電体5と同等以上であることが好ましい。さらに、リードタブ5aの厚み及び面積の少なくとも一方が負極集電体5と同等以上であることが好ましい。
From the same viewpoint as described above, the second metal foil 15 is preferably made of the same metal as the negative electrode current collector 5. Further, the lead tab 5 a that electrically connects the second metal foil 15 and the negative electrode current collector 5 is also preferably made of the same metal as the second metal foil 15 and the negative electrode current collector 5.
From the viewpoint of forming a safer short circuit with low electrical resistance, it is preferable that at least one of the thickness and area of the second metal foil 15 is equal to or greater than that of the negative electrode current collector 5. Furthermore, it is preferable that at least one of the thickness and area of the lead tab 5 a is equal to or greater than that of the negative electrode current collector 5.

リチウムイオン二次電池1においては、電極積層体9の最上部(第一端部)と最下部(第二端部)にそれぞれ金属箔積層体11が設置されており、更にこれらがラミネートフィルム16に収容されている。ラミネートフィルム16は金属箔積層体11を構成する第二金属箔15に密着しているため、外部からの衝撃が加わると、金属箔積層体11に当該衝撃が滞りなく伝わる。
なお、本実施形態に代えて、第一金属箔12と第二金属箔15の位置関係を逆にした構成を採用してもよい。この場合、第一金属箔12がラミネートフィルム16に密着する。
In the lithium ion secondary battery 1, metal foil laminates 11 are respectively installed at the uppermost part (first end part) and the lowermost part (second end part) of the electrode laminate 9, and these are further laminated films 16. Is housed in. Since the laminate film 16 is in close contact with the second metal foil 15 constituting the metal foil laminate 11, when an external impact is applied, the impact is transmitted to the metal foil laminate 11 without delay.
In addition, it may replace with this embodiment and the structure which reversed the positional relationship of the 1st metal foil 12 and the 2nd metal foil 15 may be employ | adopted. In this case, the first metal foil 12 adheres to the laminate film 16.

電極積層体9の最上部に設置された金属箔積層体11の平面視したA方向と、最下部に設置された金属箔積層体11の平面視したA方向との相対的な向きは、電極積層体9の厚み方向に見て、同じでもよく、異なってもよいが、異なっている方が好ましい。上記の物性を有する絶縁シート10は、A方向とB方向とで比べると、開裂し易さが異なる場合がある。このため、2箇所に設けた金属箔積層体11のA方向の向きが相対的に異なるように配置しておくことによって、外部の任意の方向から衝撃が加えられた場合、2箇所の金属箔積層体11の少なくとも一方が、他方よりも短絡回路をより速やかに形成することができる場合がある。この結果、特定の方向から衝撃が加えられた場合に限らず、任意方向からの衝撃に対する安全性をより一層高めることができる。   The relative orientation between the A direction in plan view of the metal foil laminate 11 installed at the top of the electrode laminate 9 and the A direction of plan view of the metal foil laminate 11 installed at the bottom is the electrode When viewed in the thickness direction of the laminate 9, they may be the same or different, but are preferably different. The insulating sheet 10 having the above physical properties may have different easiness of tearing when compared in the A direction and the B direction. For this reason, when an impact is applied from an external direction by arranging the metal foil laminates 11 provided at two locations so that the directions in the A direction are relatively different, the two metal foils are provided. At least one of the laminates 11 may be able to form a short circuit more quickly than the other. As a result, not only when an impact is applied from a specific direction, safety against an impact from an arbitrary direction can be further enhanced.

具体的には、例えば、前記最上部に設けられた金属箔積層体11を構成する絶縁シート10のA方向と、前記最下部に設けられた金属箔積層体11を構成する絶縁シート10のA方向と、が、電極積層体9の厚み方向に見て、30〜90°の交差角となるように配置されていることが好ましい。前記交差角は60〜90°がより好ましく、85〜90°がさらに好ましい。上記範囲の交差角であると、外部の任意方向からの衝撃に対する安全性をより一層高めることができる。   Specifically, for example, the A direction of the insulating sheet 10 constituting the metal foil laminate 11 provided at the uppermost portion and the A of the insulating sheet 10 constituting the metal foil laminate 11 provided at the lowermost portion. The direction is preferably arranged so as to have an intersection angle of 30 to 90 ° when viewed in the thickness direction of the electrode laminate 9. The crossing angle is more preferably 60 to 90 °, further preferably 85 to 90 °. When the crossing angle is in the above range, safety against an impact from an arbitrary external direction can be further enhanced.

ここで、上記の交差角は、上述した方法で各金属箔積層体11を構成する絶縁シート10のA方向を決定し、リチウムイオン二次電池1に設置された状態において、電極積層体9の厚み方向に見て、前記最上部の絶縁シート10のA方向と、前記最下部の絶縁シート10のA方向との交差角のうち、鋭角側を求めることによって測定される。   Here, the crossing angle determines the A direction of the insulating sheet 10 constituting each metal foil laminate 11 by the method described above, and in the state where the electrode laminate 9 is installed in the lithium ion secondary battery 1, It is measured by finding the acute angle side of the crossing angle between the A direction of the uppermost insulating sheet 10 and the A direction of the lowermost insulating sheet 10 when viewed in the thickness direction.

電極積層体9を構成する部材は特に限定されず、公知のリチウムイオン二次電池の部材が適用される。以下に具体例を示すが、本発明のリチウムイオン二次電池はこれらの部材を使用したものに限定されない。   The member which comprises the electrode laminated body 9 is not specifically limited, The member of a well-known lithium ion secondary battery is applied. Specific examples are shown below, but the lithium ion secondary battery of the present invention is not limited to those using these members.

負極7を構成する負極集電体5の材料、面積、及び厚みは特に制限されず、例えば、銅、チタン、ニッケル、ステンレス鋼等の金属からなるパンチング加工が施された、面積40×20cm、厚み5〜50μmの圧延金属箔等が挙げられる。   The material, area, and thickness of the negative electrode current collector 5 constituting the negative electrode 7 are not particularly limited. For example, an area of 40 × 20 cm subjected to punching processing made of a metal such as copper, titanium, nickel, stainless steel, Examples thereof include a rolled metal foil having a thickness of 5 to 50 μm.

負極集電体5の片面又は両面に形成される負極活物質層6の構成材料(負極材)としては、リチウムイオンを吸蔵及び放出可能な負極活物質が通常使用され、例えば、金属酸化物が挙げられる。前記金属酸化物としては、例えば酸化ケイ素等のリチウムと合金化可能な金属酸化物が挙げられる。酸化ケイ素は、粉末状又は粒子状であることが好ましく、その平均粒子径は、例えば1〜30μmが好ましい。   As a constituent material (negative electrode material) of the negative electrode active material layer 6 formed on one side or both sides of the negative electrode current collector 5, a negative electrode active material capable of occluding and releasing lithium ions is generally used. Can be mentioned. Examples of the metal oxide include metal oxides that can be alloyed with lithium such as silicon oxide. The silicon oxide is preferably in the form of powder or particles, and the average particle size is preferably, for example, 1 to 30 μm.

負極活物質層6の形成方法としては、例えば、負極集電体5上に負極活物質を含む負極材を5〜100μm程度の厚みで塗布した後、負極材に含まれる溶媒を乾燥除去する方法が挙げられる。負極材としては、酸化ケイ素等の前記負極活物質の他に、PVDF、SBR等のバインダー樹脂及び炭素材料、金属粒子等の導電助剤を含むことが好ましい。   As a method for forming the negative electrode active material layer 6, for example, after a negative electrode material containing a negative electrode active material is applied on the negative electrode current collector 5 with a thickness of about 5 to 100 μm, the solvent contained in the negative electrode material is removed by drying. Is mentioned. In addition to the negative electrode active material such as silicon oxide, the negative electrode material preferably contains a binder resin such as PVDF and SBR, and a conductive aid such as a carbon material and metal particles.

正極4を構成する正極集電体2の材料、面積、及び厚みは特に限定されず、例えば、アルミニウム、チタン、ニッケル、ステンレス鋼等の金属からなるパンチング加工が施された、面積40×20cm、厚み5〜50μmの圧延金属箔等が挙げられる。正極4と負極7の面積は等しいことが好ましい。   The material, area, and thickness of the positive electrode current collector 2 constituting the positive electrode 4 are not particularly limited. For example, an area of 40 × 20 cm subjected to punching processing made of a metal such as aluminum, titanium, nickel, stainless steel, Examples thereof include a rolled metal foil having a thickness of 5 to 50 μm. The areas of the positive electrode 4 and the negative electrode 7 are preferably equal.

正極集電体2の片面又は両面に形成される正極活物質層3の構成材料(正極材)としては、リチウムイオンを吸蔵及び放出可能な正極活物質が通常使用され、例えば、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)、三元系正極材(LiNi1/3Co1/3Mn1/3O2)等が挙げられる。 As a constituent material (positive electrode material) of the positive electrode active material layer 3 formed on one side or both sides of the positive electrode current collector 2, a positive electrode active material capable of inserting and extracting lithium ions is usually used. For example, lithium cobalt oxide ( LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), ternary positive electrode material (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) and the like.

正極活物質層3の形成方法としては、例えば、正極集電体2上に正極活物質を含む正極材を5〜100μm程度の厚みで塗布した後、正極材に含まれる溶媒を乾燥除去する方法が挙げられる。正極材としては、前記金属酸リチウム化合物等の正極活物質の他に、バインダー樹脂及び導電助剤を含むことが好ましい。   As a method for forming the positive electrode active material layer 3, for example, after a positive electrode material containing a positive electrode active material is applied on the positive electrode current collector 2 to a thickness of about 5 to 100 μm, the solvent contained in the positive electrode material is removed by drying. Is mentioned. The positive electrode material preferably contains a binder resin and a conductive additive in addition to the positive electrode active material such as the lithium metal acid compound.

絶縁体8としては、絶縁性を有し、電解液を保持又は通過させることが可能なものであれば特に限定されず、例えば、オレフィン系樹脂からなる公知の多孔質膜、不織布等の他、絶縁性粒子を含む多孔性絶縁層も挙げられる。   The insulator 8 is not particularly limited as long as it has insulating properties and can hold or pass the electrolytic solution, for example, a known porous film made of an olefin resin, a nonwoven fabric, etc. A porous insulating layer containing insulating particles is also included.

多孔性絶縁層は、正極活物質層3の表面又は負極活物質層6の表面に形成され、正極4と負極7を絶縁し、電解液を透過させることが可能な公知の薄層である。その形成方法として、例えば、二酸化ケイ素等の絶縁性の無機粒子を含む組成物を負極又は正極の表面に塗工して乾燥させる方法が知られている。絶縁体8としての多孔性絶縁層の厚みとしては、例えば0.5μm〜50μm程度が好ましい。   The porous insulating layer is a known thin layer that is formed on the surface of the positive electrode active material layer 3 or the surface of the negative electrode active material layer 6 and that can insulate the positive electrode 4 and the negative electrode 7 and allow the electrolyte solution to pass therethrough. As a forming method thereof, for example, a method in which a composition containing insulating inorganic particles such as silicon dioxide is applied to the surface of a negative electrode or a positive electrode and dried is known. The thickness of the porous insulating layer as the insulator 8 is preferably about 0.5 μm to 50 μm, for example.

本発明のリチウムイオン二次電池は常法により作成することができる。以下に一例を示す。まず、所望の段数、例えば1〜10段の正極4及び負極7の組を備えた電極積層体9を常法により積層し、電極積層体9の最外層部に、金属箔積層体11を設置した後、これらをラミネートアルミフィルム等の外装体16で仮封止したラミネートセルを得る。セルを仮封止する際、各正極集電体2及び第一金属箔12のリードタブ2aに接続された引出配線と、各負極集電体5及び第二金属箔15のリードタブ5aに接続された引出配線と、をそれぞれ外装体16の外部に突出させる。各引出配線は、外部回路へ接続するための電極端子として機能する。続いて、ラミネートセルの仮封止を部分的に解いて、公知の電解液を注入した後で完全に封止する。電解液はセル内でゲル化するゲル電解質であってもよい。以上の方法により、本発明のリチウムイオン二次電池が得られる。   The lithium ion secondary battery of the present invention can be prepared by a conventional method. An example is shown below. First, an electrode laminate 9 having a desired number of stages, for example, 1 to 10 pairs of positive electrode 4 and negative electrode 7 is laminated by a conventional method, and a metal foil laminate 11 is placed on the outermost layer portion of the electrode laminate 9. After that, a laminate cell is obtained in which these are temporarily sealed with an outer package 16 such as a laminated aluminum film. When the cells were temporarily sealed, the lead wires connected to the lead tabs 2a of the respective positive electrode current collectors 2 and the first metal foil 12, and the lead tabs 5a of the respective negative electrode current collectors 5 and the second metal foil 15 were connected. The lead-out wiring is protruded outside the exterior body 16. Each lead-out wiring functions as an electrode terminal for connecting to an external circuit. Subsequently, the temporary sealing of the laminate cell is partially released, and a known electrolytic solution is injected and then completely sealed. The electrolyte solution may be a gel electrolyte that gels in the cell. With the above method, the lithium ion secondary battery of the present invention is obtained.

以下、実施例を示して本発明についてさらに詳しく説明する。ただし、本発明は以下に示す実施例に何ら限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

[実施例1]
アルミ箔(厚み15μm)の両面に正極活物質層(片面の層厚み42.5μm)が塗工された矩形の正極電極(合計厚み100μm)を常法により作製した。
銅箔(厚み10μm)の両面に負極活物質層(片面の層厚み30μm)が塗工された矩形の負極電極(合計厚み70μm)を常法により作製した。
正極電極と負極電極を重ねて、その間に多孔性のポリエチレン製セパレータ(厚み10μm)を挟むことにより、電極積層体を得た。
[Example 1]
A rectangular positive electrode (total thickness: 100 μm) in which a positive electrode active material layer (layer thickness of 42.5 μm on one side) was coated on both surfaces of an aluminum foil (thickness: 15 μm) was produced by a conventional method.
A rectangular negative electrode (total thickness of 70 μm) in which a negative electrode active material layer (layer thickness of 30 μm on one side) was coated on both sides of a copper foil (thickness of 10 μm) was produced by a conventional method.
A positive electrode and a negative electrode were overlapped, and a porous polyethylene separator (thickness 10 μm) was sandwiched between them to obtain an electrode laminate.

この電極積層体の最外層である最上部に前記セパレータを載せ、さらに、前記アルミ箔、合成樹脂製の絶縁シート、前記銅箔をこの順で載せることによって、金属箔積層体を設置した。金属箔積層体を構成するアルミ箔及び銅箔には電極活物質層を形成していないので、対向する各箔の金属面は露出しているが、絶縁シートが間に挟まれているので絶縁状態が維持されている。
ここで使用した絶縁シートは、厚さ25μmのPP樹脂製の樹脂フィルム(積水化学工業社製)であり、その引張り強度は、A方向で62MPa、A方向に直交するB方向で10MPaであり、且つ、引張り伸度がMD方向で15%、TD方向で5%であった。なお、本実施例で使用した樹脂フィルムのA方向はMD方向(Machine-Direction)と一致しており、B方向はTD方向(Transverse-Direction)と一致していた。
The separator was placed on the uppermost portion which is the outermost layer of the electrode laminate, and the metal foil laminate was placed by placing the aluminum foil, the insulating sheet made of synthetic resin, and the copper foil in this order. Since the electrode active material layer is not formed on the aluminum foil and the copper foil constituting the metal foil laminate, the metal surfaces of the opposing foils are exposed, but the insulating sheet is sandwiched between them to insulate State is maintained.
The insulating sheet used here is a resin film made of PP resin with a thickness of 25 μm (manufactured by Sekisui Chemical Co., Ltd.), and its tensile strength is 62 MPa in the A direction and 10 MPa in the B direction orthogonal to the A direction. The tensile elongation was 15% in the MD direction and 5% in the TD direction. In addition, the A direction of the resin film used in this example coincided with the MD direction (Machine-Direction), and the B direction coincided with the TD direction (Transverse-Direction).

続いて、金属箔積層体を構成するアルミ箔のリードタブ(引出配線)と、正極電極を構成するアルミ箔のリードタブとを超音波で融着して、両アルミ箔を電気的に接続した。同様に、金属箔積層体を構成する銅箔のリードタブと、負極電極を構成する銅箔のリードタブとを超音波で融着して、両銅箔を電気的に接続した。
以上の方法により、電極積層体の最上部に第一の金属箔積層体を設置した。
Subsequently, the aluminum foil lead tab (lead-out wiring) constituting the metal foil laminate and the aluminum foil lead tab constituting the positive electrode were fused with ultrasonic waves to electrically connect both aluminum foils. Similarly, the lead tab of the copper foil constituting the metal foil laminate and the lead tab of the copper foil constituting the negative electrode were fused with an ultrasonic wave to electrically connect both the copper foils.
By the above method, the 1st metal foil laminated body was installed in the uppermost part of the electrode laminated body.

次に、上記電極積層体の最下部に第二の金属箔積層体を、第一の金属箔積層体の設置と同様の方法で設置した。この際、第二の金属箔積層体を構成する絶縁シートのA方向と、第一の金属箔積層体を構成する絶縁シートのA方向とを、電極積層体の厚み方向に見て、0°の交差角となるように設置した。
以上の方法により、電極積層体の最下部に第二の金属箔積層体を設置した。
Next, the 2nd metal foil laminated body was installed in the lowest method of the said electrode laminated body by the method similar to installation of a 1st metal foil laminated body. At this time, the A direction of the insulating sheet constituting the second metal foil laminate and the A direction of the insulating sheet constituting the first metal foil laminate are 0 ° when viewed in the thickness direction of the electrode laminate. It was installed so that it might become a crossing angle.
By the above method, the 2nd metal foil laminated body was installed in the lowest part of the electrode laminated body.

上記で得られた電極積層体の正極電極及び負極電極の各々にリードタブを融着した。続いて、電極積層体をアルミラミネート包装材の内部に収納し、さらに電解液を注入するとともに、正極リードタブ及び負極リードタブを端子として外部に突出させた状態で封止することによって、平面型の電池セルを作製した。このラミネートセルを常法により4.2Vまで満充電し、以下の衝突試験を行った。   Lead tabs were fused to each of the positive electrode and the negative electrode of the electrode laminate obtained above. Subsequently, the electrode laminate is housed inside the aluminum laminate packaging material, and further injected with an electrolyte, and sealed in a state where the positive electrode lead tab and the negative electrode lead tab are projected to the outside as terminals, thereby providing a flat battery. A cell was produced. The laminate cell was fully charged to 4.2 V by a conventional method, and the following collision test was performed.

<衝突試験>
米国のUL(Underwriters Laboratories Inc.)が定めるUL1642規格に準じて、ラミネートセルの上面の中央に直径15.8mmのステンレス棒をセットし、9.1kgの重りを61±2.5cmの高さから、ステンレス棒の上に落下させる衝突試験を行った。
衝突試験の結果、発火は無く、衝突後0.3秒でラミネートセルの電圧が降下した。
衝突試験後のラミネートセルを分解したところ、電極積層体の最上部に設置した第一の金属箔積層体を構成する絶縁シートが、衝突箇所で破れており、第一の金属箔積層体を構成するアルミ箔と銅箔とが接触することによって、正極と負極を安全に短絡させる回路が形成されていることが分かった。
<Collision test>
In accordance with the UL1642 standard established by UL (Underwriters Laboratories Inc.) in the United States, a stainless steel rod with a diameter of 15.8 mm is set at the center of the upper surface of the laminate cell, and a weight of 9.1 kg is set from a height of 61 ± 2.5 cm. A collision test was performed by dropping the stainless steel rod onto the stainless steel rod.
As a result of the collision test, there was no ignition and the voltage of the laminate cell dropped 0.3 seconds after the collision.
When the laminate cell after the collision test was disassembled, the insulating sheet constituting the first metal foil laminate installed on the uppermost part of the electrode laminate was torn at the collision location, constituting the first metal foil laminate It turned out that the circuit which short-circuits a positive electrode and a negative electrode safely is formed by the aluminum foil and copper foil to contact.

[実施例2]
第二の金属箔積層体を構成する絶縁シートのA方向と、第一の金属箔積層体を構成する絶縁シートのA方向とを、電極積層体の厚み方向に見て、90°の交差角となるように設置したこと以外は、実施例1と同様に電池セルを作成した。この電池セルについて衝突試験を行った結果を表1に示す。
[Example 2]
90 ° crossing angle when the A direction of the insulating sheet constituting the second metal foil laminate and the A direction of the insulating sheet constituting the first metal foil laminate are viewed in the thickness direction of the electrode laminate. A battery cell was prepared in the same manner as in Example 1 except that the battery cell was installed so as to be. Table 1 shows the result of a collision test performed on this battery cell.

[実施例3]
電極積層体を構成する多孔性セパレータを、負極電極に面する正極活物質層の表面に形成された、無機粒子を含む多孔質の絶縁層に代えたこと以外は、実施例2と同様に電池セルを作成した。この電池セルについて衝突試験を行った結果を表1に示す。
[Example 3]
A battery as in Example 2 except that the porous separator constituting the electrode laminate was replaced with a porous insulating layer containing inorganic particles formed on the surface of the positive electrode active material layer facing the negative electrode. Created a cell. Table 1 shows the result of a collision test performed on this battery cell.

前記絶縁層の形成は次のように行った。まず、無機粒子であるシリカ(平均粒子径0.3μm)を75質量部、バインダー樹脂であるポリビニルアルコールを25質量部で配合した組成物を調製した。次に、当該組成物をドクターブレード法で正極活物質層の表面に塗工した後、120℃で加熱し、乾燥させて、厚さ15μmの多孔質の絶縁層を形成した。   The insulating layer was formed as follows. First, the composition which mix | blended the silica (average particle diameter of 0.3 micrometer) which is inorganic particle by 75 mass parts, and the polyvinyl alcohol which is binder resin by 25 mass parts was prepared. Next, the composition was applied to the surface of the positive electrode active material layer by a doctor blade method, and then heated at 120 ° C. and dried to form a porous insulating layer having a thickness of 15 μm.

[比較例1]
金属箔積層体を構成する絶縁シートとして、厚さ25μmであり、その引張り強度は、縦方向(MD方向)で101MPa、横方向(TD方向)で11MPaであり、且つ、引張り伸度が縦方向(MD方向)で155%、横方向(TD方向)で56%である、PP樹脂製のセパレータ(積水化学工業社製)を使用したこと以外は、実施例1と同様に電池セルを作成した。この電池セルについて衝突試験を行った結果を表1に示す。
[Comparative Example 1]
As an insulating sheet constituting the metal foil laminate, the thickness is 25 μm, the tensile strength is 101 MPa in the longitudinal direction (MD direction), 11 MPa in the lateral direction (TD direction), and the tensile elongation is the longitudinal direction. A battery cell was prepared in the same manner as in Example 1 except that a separator made of PP resin (manufactured by Sekisui Chemical Co., Ltd.), which was 155% in the MD direction and 56% in the lateral direction (TD direction). . Table 1 shows the result of a collision test performed on this battery cell.

[比較例2]
金属箔積層体を構成する絶縁シートとして、比較例1で使用した絶縁シートを使用したこと以外は、実施例3と同様に電池セルを作成した。この電池セルについて衝突試験を行った結果を表1に示す。
[Comparative Example 2]
A battery cell was prepared in the same manner as in Example 3 except that the insulating sheet used in Comparative Example 1 was used as the insulating sheet constituting the metal foil laminate. Table 1 shows the result of a collision test performed on this battery cell.

Figure 0006613082
Figure 0006613082

以上の結果から、本発明にかかる実施例1〜3のリチウムイオン二次電池は、UL1642に準拠した強い衝撃が加えられた場合にも、発火せずに安全に短絡することが確認された。   From the above results, it was confirmed that the lithium ion secondary batteries of Examples 1 to 3 according to the present invention were safely short-circuited without firing even when a strong impact in accordance with UL1642 was applied.

本発明は、リチウムイオン二次電池の分野で広く利用可能である。   The present invention can be widely used in the field of lithium ion secondary batteries.

1…リチウムイオン二次電池、2…正極集電体、2a…リードタブ、3…電極活物質層(正極活物質層)、4…正極、5…負極集電体、5a…リードタブ、6…電極活物質層(負極活物質層)、7…負極、8…絶縁体(セパレータ)、9…電極積層体、10…絶縁シート、11…金属箔積層体、12…第一金属箔、15…第二金属箔、16…外装体(ラミネートフィルム) DESCRIPTION OF SYMBOLS 1 ... Lithium ion secondary battery, 2 ... Positive electrode collector, 2a ... Lead tab, 3 ... Electrode active material layer (positive electrode active material layer), 4 ... Positive electrode, 5 ... Negative electrode collector, 5a ... Lead tab, 6 ... Electrode Active material layer (negative electrode active material layer), 7 ... negative electrode, 8 ... insulator (separator), 9 ... electrode laminate, 10 ... insulating sheet, 11 ... metal foil laminate, 12 ... first metal foil, 15 ... first Two-metal foil, 16 ... exterior body (laminate film)

Claims (6)

正極集電体の少なくとも一方の面に活物質層が形成されてなる正極と、
負極集電体の少なくとも一方の面に活物質層が形成されてなる負極と、が、
絶縁体を介して積層されてなる電極積層体を備えたリチウムイオン二次電池であって、
前記電極積層体の最外層部に、
前記正極集電体に導通された第一金属箔と、前記負極集電体に導通された第二金属箔とが、絶縁シートを介して積層されてなる金属箔積層体が設置されており、
前記絶縁シートの引張り強度が、最も大きいA方向で80MPa以下、該A方向に直交するB方向で20MPa以下、であり、且つ、
前記絶縁シートの引張り伸度が、前記A方向で20%以下、前記B方向で20%以下であり、
前記絶縁シートの引張り強度及び引張り伸度が、前記A方向と前記B方向とでそれぞれ異なる、リチウムイオン二次電池。
A positive electrode in which an active material layer is formed on at least one surface of a positive electrode current collector;
A negative electrode having an active material layer formed on at least one surface of a negative electrode current collector,
A lithium ion secondary battery comprising an electrode laminate that is laminated via an insulator,
In the outermost layer part of the electrode laminate,
A metal foil laminate is provided in which a first metal foil conducted to the positive electrode current collector and a second metal foil conducted to the negative electrode current collector are laminated via an insulating sheet,
The tensile strength of the insulating sheet is 80 MPa or less in the largest A direction, 20 MPa or less in the B direction orthogonal to the A direction, and
The tensile elongation of the insulating sheet is, the more than 20% in the direction A state, and are 20% or less in the direction B,
The lithium ion secondary battery in which the tensile strength and tensile elongation of the insulating sheet are different in the A direction and the B direction, respectively .
前記第一金属箔は前記正極集電体と同じ金属からなり、
前記第二金属箔は前記負極集電体と同じ金属からなる、請求項1記載のリチウムイオン二次電池。
The first metal foil is made of the same metal as the positive electrode current collector,
The lithium ion secondary battery according to claim 1 , wherein the second metal foil is made of the same metal as the negative electrode current collector.
前記電極積層体及び前記金属箔積層体がラミネートフィルムに収容されてなる、請求項1又は2に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1 or 2 , wherein the electrode laminate and the metal foil laminate are accommodated in a laminate film. 前記金属箔積層体が、前記電極積層体の第一端部と第二端部とにそれぞれ設置され、
前記第一端部に設けられた前記金属箔積層体を構成する前記絶縁シートの前記A方向と、
前記第二端部に設けられた前記金属箔積層体を構成する前記絶縁シートの前記方向と、が、前記電極積層体の厚み方向に見て、30〜90°の交差角となるように配置されている、請求項1〜の何れか一項に記載のリチウムイオン二次電池。
The metal foil laminate is installed on each of the first end and the second end of the electrode laminate,
The A direction of the insulating sheet constituting the metal foil laminate provided at the first end; and
The A direction of the insulating sheet constituting the metal foil laminate provided at the second end is such that the crossing angle is 30 to 90 ° when viewed in the thickness direction of the electrode laminate. The lithium ion secondary battery as described in any one of Claims 1-3 arrange | positioned.
前記絶縁体は、前記正極及び負極の少なくとも一方の活物質層の表面に形成された、無機粒子を含む絶縁層である、請求項1〜の何れか一項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 4 , wherein the insulator is an insulating layer containing inorganic particles formed on a surface of at least one of the positive electrode and the negative electrode. . 前記電極積層体のエネルギー密度が700Wh/L以上である、請求項1〜の何れか一項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 5 , wherein an energy density of the electrode laminate is 700 Wh / L or more.
JP2015174657A 2015-09-04 2015-09-04 Lithium ion secondary battery Active JP6613082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015174657A JP6613082B2 (en) 2015-09-04 2015-09-04 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015174657A JP6613082B2 (en) 2015-09-04 2015-09-04 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2017050241A JP2017050241A (en) 2017-03-09
JP6613082B2 true JP6613082B2 (en) 2019-11-27

Family

ID=58280094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015174657A Active JP6613082B2 (en) 2015-09-04 2015-09-04 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6613082B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6939035B2 (en) * 2017-04-07 2021-09-22 トヨタ自動車株式会社 All solid state battery
JP2018181521A (en) * 2017-04-07 2018-11-15 トヨタ自動車株式会社 Laminate battery
JP6977300B2 (en) * 2017-04-07 2021-12-08 トヨタ自動車株式会社 All solid state battery
JP6575557B2 (en) * 2017-04-07 2019-09-18 トヨタ自動車株式会社 All-solid battery and method for producing all-solid battery
JP6669122B2 (en) * 2017-04-07 2020-03-18 トヨタ自動車株式会社 Stacked battery
JP6939685B2 (en) * 2018-04-12 2021-09-22 トヨタ自動車株式会社 Laminated battery
JP6852713B2 (en) * 2018-05-09 2021-03-31 トヨタ自動車株式会社 Laminated battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068156A (en) * 1999-08-24 2001-03-16 Hitachi Maxell Ltd Stacked polymer electrolyte battery
US7604895B2 (en) * 2004-03-29 2009-10-20 Lg Chem, Ltd. Electrochemical cell with two types of separators
JP2014075235A (en) * 2012-10-03 2014-04-24 Toyota Industries Corp Power storage device
JP5954139B2 (en) * 2012-11-29 2016-07-20 株式会社豊田自動織機 Power storage device

Also Published As

Publication number Publication date
JP2017050241A (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6613082B2 (en) Lithium ion secondary battery
US11437683B2 (en) Battery cell of venting structure using taping
EP2602840B1 (en) Secondary battery pouch having improved stability, pouch-type secondary battery using same, and medium- or large-sized battery pack
JP3497380B2 (en) Lithium secondary battery
KR101401102B1 (en) Electrode assembly for secondary battery and lithium secondary battery comprising the same
JP5906354B2 (en) Secondary battery, secondary battery component applied to the secondary battery, and secondary battery manufacturing method
KR101858317B1 (en) Pouch type secondary battery comprising a current interrupt electrode lead
KR101546545B1 (en) Pouch type lithium secondary battery
KR100914108B1 (en) Electrode assembly and rechargeable battery with the same
US6727021B1 (en) Lithium ion secondary battery
TW202339337A (en) Pouch-type secondary battery, pouch for secondary battery, battery module comprising the pouch-type secondary battery, battery pack, and device comprising the same
KR101841306B1 (en) Electrode assembly comprising dfferent kind of separator comprising taping part for improving safety and lithium secondary batteries comprising the same
KR101846050B1 (en) Pouch type secondary battery comprising a current interrupt electrode lead
US20180219208A1 (en) Lithium storage battery with integrated circuit-breaker for improved operating safety
JP2011192518A (en) Secondary battery
KR20140137603A (en) Pouch type battery case
KR101856822B1 (en) Pouch type secondary battery comprising a current interrupt electrode lead
JP4439870B2 (en) Nonaqueous electrolyte secondary battery
JP2001266812A (en) Nonaqueous secondary battery
WO2013157445A1 (en) Non-aqueous secondary battery
JP6360305B2 (en) Prismatic secondary battery
CN112563681B (en) Nonaqueous electrolyte secondary battery
US20240072391A1 (en) Secondary Battery
WO2023004830A1 (en) Battery pole, electrode assembly, battery cell, battery, and electrical apparatus
KR101616502B1 (en) Secondary battery having electrode lid and electrode tab connected by slit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191101

R151 Written notification of patent or utility model registration

Ref document number: 6613082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151