JP2001266812A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JP2001266812A
JP2001266812A JP2000074551A JP2000074551A JP2001266812A JP 2001266812 A JP2001266812 A JP 2001266812A JP 2000074551 A JP2000074551 A JP 2000074551A JP 2000074551 A JP2000074551 A JP 2000074551A JP 2001266812 A JP2001266812 A JP 2001266812A
Authority
JP
Japan
Prior art keywords
secondary battery
battery
aqueous secondary
container
deformation preventing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000074551A
Other languages
Japanese (ja)
Other versions
JP4428796B2 (en
Inventor
Shiro Kato
史朗 加藤
Hajime Kinoshita
肇 木下
Shizukuni Yada
静邦 矢田
Haruo Kikuta
治夫 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2000074551A priority Critical patent/JP4428796B2/en
Publication of JP2001266812A publication Critical patent/JP2001266812A/en
Application granted granted Critical
Publication of JP4428796B2 publication Critical patent/JP4428796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a big-sized and flat nonaqueous secondary battery with high safety. SOLUTION: The flat nonaqueous secondary battery, composed of a cathode, an anode, a separator and nonaqueous electrolyte including lithium salt, sealed in a case, has a pressure releasing structure 72 operating with low pressure at the marginal area 71 of flat surface part, and a thin wall thickness part 82 restraining the deformation caused by expansion at the outer side of the marginal area.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系二次電池に
関し、特に、蓄電システム用非水系二次電池に関する。
The present invention relates to a non-aqueous secondary battery, and more particularly to a non-aqueous secondary battery for a power storage system.

【0002】[0002]

【従来の技術】近年、省資源を目指したエネルギーの有
効利用及び地球環境問題の観点から、深夜電力貯蔵及び
太陽光発電の電力貯蔵を目的とした家庭用分散型蓄電シ
ステム、電気自動車のための蓄電システム等が注目を集
めている。例えば、特開平6−86463号公報には、
エネルギー需要者に最適条件でエネルギーを供給できる
システムとして、発電所から供給される電気、ガスコー
ジェネレーション、燃料電池、蓄電池等を組み合わせた
トータルシステムが提案されている。このような蓄電シ
ステムに用いられる二次電池は、エネルギー容量が10
Wh以下の携帯機器用小型二次電池と異なり、容量が大
きい大型のものが必要とされる。このため、上記の蓄電
システムでは、複数の二次電池を直列に積層し、電圧が
例えば50〜400Vの組電池として用いるのが常であ
り、ほとんどの場合、鉛電池を用いていた。
2. Description of the Related Art In recent years, from the viewpoint of effective use of energy for resource saving and global environmental problems, a home-use decentralized power storage system for late-night power storage and power storage for photovoltaic power generation has been developed. Power storage systems are attracting attention. For example, JP-A-6-86463 discloses that
As a system capable of supplying energy to an energy consumer under optimum conditions, a total system combining electricity supplied from a power plant, gas cogeneration, a fuel cell, a storage battery, and the like has been proposed. A secondary battery used in such a power storage system has an energy capacity of 10
Unlike small secondary batteries for portable devices of Wh or less, large batteries having large capacities are required. For this reason, in the above-described power storage system, a plurality of secondary batteries are stacked in series, and usually used as a battery pack having a voltage of, for example, 50 to 400 V. In most cases, a lead battery is used.

【0003】一方、携帯機器用小型二次電池の分野で
は、小型及び高容量のニーズに応えるべく、新型電池と
してニッケル水素電池、リチウム二次電池の開発が進展
し、180Wh/l以上の体積エネルギー密度を有する
電池が市販されている。特に、リチウムイオン電池は、
350Wh/lを超える体積エネルギー密度の可能性を
有すること、及び、安全性、サイクル特性等の信頼性が
金属リチウムを負極に用いたリチウム二次電池に比べ優
れることから、その市場を飛躍的に延ばしている。
On the other hand, in the field of small rechargeable batteries for portable equipment, nickel-metal hydride batteries and lithium rechargeable batteries have been developed as new types of batteries in order to meet the needs of small size and high capacity, and volume energy of 180 Wh / l or more has been developed. Batteries having a density are commercially available. In particular, lithium-ion batteries
It has the potential of a volume energy density exceeding 350 Wh / l, and its reliability, such as safety and cycle characteristics, is superior to a lithium secondary battery using lithium metal as a negative electrode. Prolonged.

【0004】これを受け、蓄電システム用大型電池の分
野においても、高エネルギー密度電池の候補として、リ
チウムイオン電池をターゲットとし、リチウム電池電力
貯蔵技術研究組合(LIBES)等で精力的に開発が進
められている。
[0004] In response to this, in the field of large-sized batteries for power storage systems, lithium-ion batteries have been targeted as candidates for high-energy density batteries, and lithium battery power storage technology research associations (LIBES) and others have been vigorously developing them. Have been.

【0005】これら大型リチウムイオン電池のエネルギ
ー容量は、100Whから400Wh程度であり、体積
エネルギー密度は、200〜300Wh/lと携帯機器
用小型二次電池並のレベルに達している。その形状は、
直径50mm〜70mm、長さ250mm〜450mm
の円筒型、厚さ35mm〜50mmの角形又は長円角形
等の扁平角柱形が代表的なものである。
The energy capacity of these large lithium ion batteries is about 100 Wh to 400 Wh, and the volume energy density is 200 to 300 Wh / l, which is at the level of a small secondary battery for portable equipment. Its shape is
Diameter 50mm-70mm, length 250mm-450mm
And a rectangular prism having a thickness of 35 mm to 50 mm or an oblong prism or the like are typical.

【0006】また、薄型のリチウム二次電池について
は、薄型の外装に、例えば、金属とプラスチックをラミ
ネートした厚さ1mm以下のフィルムを収納したフィル
ム電池(特開平5−159757号公報、特開平7−5
7788号公報等)、厚さ2mm〜15mm程度の小型
角型電池(特開平8−195204号公報、特開平8−
138727号公報、特開平9−213286号公報
等)が知られている。これらのリチウム二次電池は、い
ずれも、その目的が携帯機器の小型化及び薄型化に対応
するものであり、例えば携帯用パソコンの底面に収納で
きる厚さ数mmでJIS A4サイズ程度の面積を有す
る薄型電池も開示されているが(特開平5−28310
5号公報)、エネルギー容量が10Wh以下であるた
め、蓄電システム用二次電池としては容量が小さ過ぎ
る。
[0006] As for the thin lithium secondary battery, for example, a film battery (for example, Japanese Patent Application Laid-Open Nos. Hei 5-159575 and Hei 7-15975) in which a thin film having a thickness of 1 mm or less in which metal and plastic are laminated is accommodated in a thin exterior. -5
No. 7788), a small rectangular battery having a thickness of about 2 mm to 15 mm (JP-A-8-195204, JP-A-8-195204).
138727, JP-A-9-213286, etc.) are known. The purpose of these lithium secondary batteries is to respond to the miniaturization and thinning of portable devices. For example, an area of about JIS A4 size with a thickness of several mm that can be stored on the bottom surface of a portable personal computer. Japanese Patent Application Laid-Open No. 5-28310 discloses a thin battery.
No. 5), since the energy capacity is 10 Wh or less, the capacity is too small for a secondary battery for a power storage system.

【0007】[0007]

【発明が解決しようとする課題】扁平形状の電池の場
合、放熱性を向上させる目的から電池の厚みを薄くする
に従い、電池表裏面積は大きくなる。又高いエネルギー
密度を維持するためには、特に、蓄電システムに用いら
れる大型リチウム二次電池(エネルギー容量30Wh以
上)において扁平形状の電池を試作する場合は、その傾
向が強く、例えば、100Wh級の厚さ6mmのリチウ
ムイオン電池の場合、電池表裏面の大きさは、600c
2(片面)と非常に大きい。
In the case of a flat battery, as the thickness of the battery is reduced for the purpose of improving heat dissipation, the front and back area of the battery increases. In addition, in order to maintain a high energy density, the tendency is particularly strong when a flat lithium battery (energy capacity of 30 Wh or more) used in a power storage system is prototyped, for example, a 100 Wh class battery. In the case of a lithium ion battery having a thickness of 6 mm, the size of the front and back surfaces of the battery is 600 c.
m 2 (one side), very large.

【0008】一般的に携帯機器用の小型リチウムイオン
電池においては、機器の故障による誤作動や使用者側の
誤用によって過充電や外部短絡といった状態になると、
電池内部が加熱されて電解液が分解されたり蒸発したり
することにより内部でガスが発生する。よって内圧上昇
に伴う事故を防止するためには、例えば特開平6−36
752に記載されている様に動作圧が高い範囲1〜2M
Paで設計されている安全弁が容器の蓋や底に備えられ
ている。
In general, in a small lithium ion battery for a portable device, when a malfunction occurs due to a failure of the device or an abuse of a user causes an overcharge or an external short circuit,
When the inside of the battery is heated and the electrolytic solution is decomposed or evaporated, gas is generated inside. Therefore, in order to prevent an accident due to an increase in internal pressure, for example, Japanese Patent Application Laid-Open No. 6-36
High operating pressure range 1-2M as described in 752
A safety valve designed for Pa is provided on the lid and bottom of the container.

【0009】しかしながら電池表裏面が大きくかつ容器
厚さが薄い大型電池に上述のような一般的な安全機構を
設けた場合、電池内部でガスが発生し内圧が上昇するよ
うな異常事態において小型電池では問題にならない低い
圧力であっても容器、特にその表裏面が容易に膨らみ、
安全機構が充分に働かないまま発火や爆発を誘発しかね
ない危険な状態におちいるという問題があった。
However, when the above-mentioned general safety mechanism is provided for a large battery having a large front and back surface of the battery and a small container thickness, the small battery may be used in an abnormal situation in which gas is generated inside the battery and the internal pressure rises. Even at low pressures that do not matter, the container, especially its front and back, easily swells,
There has been a problem in that the safety mechanism has not been fully operated, and has fallen into a dangerous state that may cause ignition or explosion.

【0010】本発明の目的は、上記問題点を解決すべ
く、異常時に発火や爆発といった事故を確実に防止でき
る安全性の高い扁平形状の非水系二次電池を提供するこ
とにある。
An object of the present invention is to provide a highly safe, flat non-aqueous secondary battery capable of reliably preventing an accident such as ignition or explosion in the event of an abnormality in order to solve the above problems.

【0011】本発明の更なる目的は、30Wh以上の大
容量且つ180Wh/l以上の体積エネルギー密度を有
し、放熱特性に優れた安全性の高い非水系二次電池を提
供する事にある。
A further object of the present invention is to provide a highly safe non-aqueous secondary battery having a large capacity of 30 Wh or more and a volume energy density of 180 Wh / l or more and excellent in heat radiation characteristics.

【0012】[0012]

【課題を解決するための手段】本発明の上記目的は、正
極、負極、セパレータ、及びリチウム塩を含む非水系電
解質を備える扁平形状の電池容器にて密閉されエネルギ
ー容量が30Wh以上且つ体積エネルギー密度が180
Wh/l以上で作動圧が5kPa以上500kPa未満
である非水系二次電池であって、前記扁平形状をなす電
池容器の広平面部に配置され容器外周から該広平面部の
重心に至る距離の60%以内の外周寄りの範囲に少なく
ともその一部分を含み前記作動圧により破断する薄肉部
と、前記広平面部の重心と前記薄肉部両端の各々とを通
る2本の直線で区画された広平面内部の内、前記薄肉部
を含む領域内であって該薄肉部より外側の範囲に少なく
ともその一部分が含まれるように形成された変形防止部
とを有することを特徴とする非水系二次電池により達成
される。
SUMMARY OF THE INVENTION The object of the present invention is to provide a flat battery container having a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte containing a lithium salt, having an energy capacity of 30 Wh or more and a volume energy density of at least 30 Wh. Is 180
A non-aqueous secondary battery having an operating pressure of 5 kPa or more and less than 500 kPa at Wh / l or more, wherein the non-aqueous secondary battery is disposed on a wide flat portion of the flat battery container and has a distance from the outer periphery of the container to the center of gravity of the wide flat portion. A thin portion which includes at least a portion thereof in a range close to the outer periphery within 60% and which is broken by the operating pressure, and a wide plane defined by two straight lines passing through the center of gravity of the wide flat portion and both ends of the thin portion. A non-aqueous secondary battery, comprising : a deformation preventing portion formed so that at least a part thereof is included in a region including the thin portion and outside the thin portion in the inside. good Ri is achieved.

【0013】前記変形防止部は、前記領域内であって容
器外周から前記広平面の重心に至る距離の30%以内の
外周寄りの範囲に少なくともその一部が形成されている
ことが好ましい。
It is preferable that at least a part of the deformation preventing portion is formed in a region near an outer periphery within 30% of a distance from the outer periphery of the container to the center of gravity of the wide plane within the region.

【0014】前記薄肉部は、少なくとも一つの直線状又
は曲線状の溝で形成されていることが好ましい。
It is preferable that the thin portion is formed by at least one linear or curved groove.

【0015】前記変形防止部は、電池容器の一部を薄肉
とすることにより形成されていることが好ましく、少な
くとも一つの直線状又は曲線状の溝により形成されてい
ることが好ましい。
[0015] The deformation preventing portion is preferably formed by thinning a part of the battery container, and is preferably formed by at least one linear or curved groove.

【0016】前記変形防止部は、電池容器に設けられた
直線状又は曲線状のリブにより形成しても良い。
The deformation preventing portion may be formed by a linear or curved rib provided on the battery container.

【0017】前記電池容器が多角形の扁平形状をなし、
前記薄肉部を構成する溝は、該多角形の重心と角部とを
結ぶ仮想直線を横切るように配置されており、前記溝の
なす曲線の接線又は直線と、前記仮想直線の垂線との交
角が±60度の範囲内に設定されていることが好まし
い。
The battery container has a polygonal flat shape,
The groove forming the thin portion is disposed so as to intersect a virtual straight line connecting the center of gravity and the corner of the polygon, and an intersection angle between a tangent or a straight line of a curve formed by the groove and a perpendicular to the virtual straight line Is preferably set within a range of ± 60 degrees.

【0018】前記変形防止部を構成する曲線状溝の接線
又は直線状溝が、前記扁平平面の外周線に対して±20
度以内の角度をなすように設けられていることが好まし
い。
The tangent line or the straight groove of the curved groove constituting the deformation preventing portion is ± 20 with respect to the outer peripheral line of the flat plane.
It is preferable that they are provided so as to form an angle within degrees.

【0019】前記変形防止部は、前記仮想直線を挟んで
対向配置され、且つ、対向配置された変形防止部同士が
互いに離隔配置されるとともに、各々の変形防止部が前
記薄肉部とも離隔配置されていることが好ましい。
The deformation preventing portions are arranged to face each other with the virtual straight line interposed therebetween, and the deformation preventing portions arranged to face each other are spaced apart from each other, and each of the deformation preventing portions is also spaced from the thin portion. Is preferred.

【0020】前記電池容器の広平面の形状は、矩形であ
ることが好ましい。
Preferably, the shape of the wide plane of the battery container is rectangular.

【0021】前記非水系二次電池は、厚さが12mm未
満の扁平形状であることが好ましい。
It is preferable that the non-aqueous secondary battery has a flat shape with a thickness of less than 12 mm.

【0022】前記電池容器の板厚は、0.2mm以上1
mm以下であることが好ましい。
The thickness of the battery container is 0.2 mm or more and 1
mm or less.

【0023】[0023]

【発明の実施の形態】以下、本発明の一実施の形態の非
水系二次電池について図面を参照しながら説明する。図
1は、本発明の一実施の形態の扁平な矩形(ノート型)
の蓄電システム用非水系二次電池の平面図及び側面図を
示す図であり、図2は、図1に示す電池の内部に収納さ
れる電極積層体の構成を示す側面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A non-aqueous secondary battery according to one embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a flat rectangle (note type) according to an embodiment of the present invention.
FIG. 2 is a plan view and a side view of the non-aqueous secondary battery for a power storage system of FIG. 1, and FIG. 2 is a side view showing a configuration of an electrode laminate housed inside the battery shown in FIG.

【0024】図1及び図2に示すように、本実施の形態
の非水系二次電池は、上蓋1及び底容器2からなる電池
ケース(電池容器)と、該電池ケースの中に収納されて
いる複数の正極101a、負極101b、101c、及
びセパレータ104からなる電極積層体とを備えてい
る。本実施の形態のような扁平型非水系二次電池の場
合、正極101a、負極101b(又は積層体の両外側
に配置された負極101c)は、例えば、図2に示すよ
うに、セパレータ104を介して交互に配置されて積層
されるが、本発明は、この配置に特に限定されず、積層
数等は、必要とされる容量等に応じて種々の変更が可能
である。
As shown in FIGS. 1 and 2, the non-aqueous secondary battery according to the present embodiment has a battery case (battery container) including an upper lid 1 and a bottom container 2, and is housed in the battery case. And an electrode stack including a plurality of positive electrodes 101a, negative electrodes 101b and 101c, and a separator 104. In the case of a flat nonaqueous secondary battery as in this embodiment, the positive electrode 101a and the negative electrode 101b (or the negative electrode 101c disposed on both outer sides of the stacked body) are provided with, for example, a separator 104 as shown in FIG. However, the present invention is not particularly limited to this arrangement, and the number of layers and the like can be variously changed according to required capacity and the like.

【0025】各正極101aの正極集電体105aは、
正極端子3に電気的に接続され、同様に、各負極101
b、101cの負極集電体105bは、負極端子4に電
気的に接続されている。正極端子3及び負極端子4は、
電池ケースすなわち上蓋1と絶縁された状態で取り付け
られている。上蓋1及び底容器2は、図1中の拡大図に
示したA点で全周を上蓋を溶かし込み、溶接されてい
る。上蓋1には、電解液の注液口5が開けられており、
電解液注液後、アルミニウム-変性ポリプロピレンラミ
ネートフィルム、アルミニウム-変性ポリエチレンラミ
ネートフィルムに代表される水分透過率の低い熱可塑性
フィルム6を用いて、熱融着にて封口される。
The positive electrode current collector 105a of each positive electrode 101a is:
Each of the negative electrodes 101 is electrically connected to the positive electrode terminal 3.
The negative electrode current collectors 105b of b and 101c are electrically connected to the negative electrode terminal 4. The positive terminal 3 and the negative terminal 4 are
It is attached in a state insulated from the battery case, that is, the top cover 1. The upper lid 1 and the bottom container 2 are welded by melting the upper lid all around at a point A shown in the enlarged view in FIG. An electrolyte injection port 5 is opened in the upper lid 1.
After the injection of the electrolytic solution, the film is sealed by heat fusion using a thermoplastic film 6 having a low moisture permeability represented by an aluminum-modified polypropylene laminated film and an aluminum-modified polyethylene laminated film.

【0026】封口工程においては、電池内の圧力を大気
圧未満とすることが好ましい。好ましくは650tor
r以下、更に好ましくは550torr以下で行う。こ
の圧力は、使用するセパレータ、電解液の種類、電池缶
の素材、厚み、電池の形状を加味して決定されるもので
ある。内圧が大気圧以上の場合、電池が設計厚みより大
きくなる、あるいは、厚みバラツキが大きくなり、電池
の内部抵抗、容量がばらつく原因となる。
In the closing step, it is preferable that the pressure inside the battery is lower than the atmospheric pressure. Preferably 650 torr
r or less, more preferably 550 torr or less. This pressure is determined in consideration of the separator used, the type of electrolyte, the material and thickness of the battery can, and the shape of the battery. When the internal pressure is equal to or higher than the atmospheric pressure, the battery becomes larger than the designed thickness or the thickness variation becomes large, which causes the internal resistance and the capacity of the battery to vary.

【0027】図1及び図2に示す非水系二次電池の形状
は、例えば縦300mm×横210mm×厚さ6mmで
あり、正極101aにLiMn24、負極101b、1
01cに炭素材料を用いるリチウム二次電池の場合、例
えば、蓄電システムに用いることができる。
The shape of the non-aqueous secondary battery shown in FIGS. 1 and 2 is, for example, 300 mm in length × 210 mm in width × 6 mm in thickness, and LiMn 2 O 4 , negative electrode 101 b,
In the case of a lithium secondary battery using a carbon material for 01c, for example, it can be used for a power storage system.

【0028】正極101aに用いられる正極活物質とし
ては、リチウム系の正極材料であれば、特に限定され
ず、リチウム複合コバルト酸化物、リチウム複合ニッケ
ル酸化物、リチウム複合マンガン酸化物、或いはこれら
の混合物、更にはこれら複合酸化物に異種金属元素を一
種以上添加した系等を用いることができ、高電圧、高容
量の電池が得られることから、好ましい。また、安全性
を重視する場合、熱分解温度が高いマンガン酸化物が好
ましい。このマンガン酸化物としてはLiMn24に代
表されるリチウム複合マンガン酸化物、更にはこれら複
合酸化物に異種金属元素を一種以上添加した系、さらに
はリチウム、酸素等を量論比よりも過剰にしたLiMn
24が挙げられる。
The positive electrode active material used for the positive electrode 101a is not particularly limited as long as it is a lithium-based positive electrode material. A lithium composite cobalt oxide, a lithium composite nickel oxide, a lithium composite manganese oxide, or a mixture thereof is used. Further, a system in which one or more different metal elements are added to these composite oxides can be used, and a battery with high voltage and high capacity can be obtained, which is preferable. When importance is placed on safety, a manganese oxide having a high thermal decomposition temperature is preferable. Examples of the manganese oxide include a lithium composite manganese oxide represented by LiMn 2 O 4 , a system in which one or more different metal elements are added to these composite oxides, and an excess of lithium, oxygen, etc. in excess of the stoichiometric ratio. LiMn
2 O 4 .

【0029】負極101b、101cに用いられる負極
活物質としては、リチウム系の負極材料であれば、特に
限定されず、リチウムをドープ及び脱ドープ可能な材料
であることが、安全性、サイクル寿命などの信頼性が向
上し好ましい。リチウムをドープ及び脱ドープ可能な材
料としては、公知のリチウムイオン電池の負極材として
使用されている黒鉛系物質、炭素系物質、錫酸化物系、
ケイ素酸化物系等の金属酸化物、或いはポリアセン系有
機半導体に代表される導電性高分子等が挙げられる。特
に、安全性の観点から、150℃前後の発熱が小さいポ
リアセン系物質又はこれを含んだ材料が望ましい。
The negative electrode active material used for the negative electrodes 101b and 101c is not particularly limited as long as it is a lithium-based negative electrode material. A material capable of doping and undoping lithium can be used for safety and cycle life. This is preferable because the reliability of the device improves. As a material capable of doping and undoping lithium, a graphite-based material, a carbon-based material, a tin oxide-based material, which is used as a negative electrode material of a known lithium ion battery,
Examples thereof include metal oxides such as silicon oxides, and conductive polymers typified by polyacene-based organic semiconductors. In particular, from the viewpoint of safety, a polyacene-based substance that generates a small amount of heat at about 150 ° C. or a material containing the same is desirable.

【0030】セパレータ104の構成は、特に限定され
るものではないが、単層又は複層のセパレータを用いる
ことができ、少なくとも1枚は不織布を用いることが好
ましく、サイクル特性が向上する。また、セパレータ1
04の材質は、特に限定されるものではないが、例えば
ポリエチレン、ポリプロピレンなどのポリオレフィン、
ポリアミド、クラフト紙、ガラス等が挙げられるが、ポ
リエチレン、ポリプロピレンが、コスト、含水などの観
点から好ましい。また、セパレータ104として、ポリ
エチレン、ポリプロピレンを用いる場合、セパレータの
目付量は、好ましくは5g/m2以上30g/m2以下で
あり、より好ましくは5g/m2以上20g/m2以下で
あり、さらに好ましくは8g/m2以上20g/m2以下
である。セパレータの目付量が30g/m2を越える場
合、セパレータが厚くなり過ぎたり、又は気孔率が低下
し、電池の内部抵抗が高くなるので好ましくなく、5g
/m2未満の場合、実用的な強度が得られないので好ま
しくない。
Although the structure of the separator 104 is not particularly limited, a single-layer or multi-layer separator can be used, and at least one sheet is preferably made of a nonwoven fabric, thereby improving cycle characteristics. Separator 1
04 is not particularly limited, for example, polyethylene, polyolefin such as polypropylene,
Polyamide, kraft paper, glass and the like can be mentioned, and polyethylene and polypropylene are preferred from the viewpoint of cost, water content and the like. When polyethylene or polypropylene is used as the separator 104, the basis weight of the separator is preferably 5 g / m 2 or more and 30 g / m 2 or less, more preferably 5 g / m 2 or more and 20 g / m 2 or less. More preferably, it is 8 g / m 2 or more and 20 g / m 2 or less. If the basis weight of the separator exceeds 30 g / m 2 , the separator becomes too thick or the porosity decreases, and the internal resistance of the battery increases.
If it is less than / m 2 , it is not preferable because practical strength cannot be obtained.

【0031】本実施の形態の非水系二次電池の電解質と
しては、公知のリチウム塩を含む非水系電解質を使用す
ることができ、正極材料、負極材料、充電電圧等の使用
条件により適宜決定され、より具体的にはLiPF6
LiBF4、LiClO4等のリチウム塩を、プロピレン
カーボネート、エチレンカーボネート、ジエチルカーボ
ネート、ジメチルカーボネート、メチルエチルカーボネ
ート、ジメトキシエタン、γーブチルラクトン、酢酸メ
チル、蟻酸メチル、或いはこれら2種以上の混合溶媒等
の有機溶媒に溶解したもの等が例示される。また、電解
液の濃度は特に限定されるものではないが、一般的に
0.5mol/lから2mol/lが実用的であり、該
電解液は当然のことながら、水分が100ppm以下の
ものを用いることが好ましい。なお、本明細書で使用す
る非水系電解質とは、非水系電解液、有機電解液を含む
概念を意味するものであり、また、ゲル状又は固体の電
解質も含む概念を意味するものである。
As the electrolyte of the non-aqueous secondary battery of the present embodiment, a known non-aqueous electrolyte containing a lithium salt can be used, which is appropriately determined according to the conditions of use such as a positive electrode material, a negative electrode material, and a charging voltage. , More specifically LiPF 6 ,
LiBF 4 , LiClO 4 and other lithium salts are converted to organic solvents such as propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyl lactone, methyl acetate, methyl formate, or a mixed solvent of two or more of these. Examples thereof include those dissolved in a solvent. Further, the concentration of the electrolytic solution is not particularly limited, but is generally practically 0.5 mol / l to 2 mol / l. Naturally, the electrolytic solution has a water content of 100 ppm or less. Preferably, it is used. In addition, the non-aqueous electrolyte used in this specification means a concept including a non-aqueous electrolyte and an organic electrolyte, and also a concept including a gel or solid electrolyte.

【0032】上記のように構成された非水系二次電池
は、家庭用蓄電システム(夜間電力貯蔵、コージェネレ
ション、太陽光発電等)、電気自動車等の蓄電システム
等に用いることができ、大容量且つ高エネルギー密度を
有することができる。この場合、エネルギー容量は、好
ましくは30Wh以上、より好ましくは50Wh以上で
あり、且つエネルギー密度は、好ましくは180Wh/
l以上、より好ましくは200Wh/lである。エネル
ギー容量が30Wh未満の場合、或いは、体積エネルギ
ー密度が180Wh/l未満の場合は、蓄電システムに
用いるには容量が小さく、充分なシステム容量を得るた
めに電池の直並列数を増やす必要があること、また、コ
ンパクトな設計が困難となることから蓄電システム用と
しては好ましくない。
The non-aqueous secondary battery configured as described above can be used for home power storage systems (nighttime power storage, cogeneration, solar power generation, etc.), power storage systems for electric vehicles, etc. It can have capacity and high energy density. In this case, the energy capacity is preferably 30 Wh or more, more preferably 50 Wh or more, and the energy density is preferably 180 Wh /
1 or more, more preferably 200 Wh / l. When the energy capacity is less than 30 Wh or when the volume energy density is less than 180 Wh / l, the capacity is small for use in a power storage system, and it is necessary to increase the number of series-parallel batteries in order to obtain a sufficient system capacity. In addition, it is not preferable for a power storage system because a compact design is difficult.

【0033】ところで、一般に、蓄電システム用の大型
リチウム二次電池(エネルギー容量30Wh以上)にお
いては、高エネルギー密度が得られるものの、その電池
設計が携帯機器用小型電池の延長にあることから、直径
又は厚さが携帯機器用小型電池の3倍以上の円筒型、角
型等の電池形状とされる。この場合には、充放電時の電
池の内部抵抗によるジュール発熱、或いはリチウムイオ
ンの出入りによって活物質のエントロピーが変化するこ
とによる電池の内部発熱により、電池内部に熱が蓄積さ
れやすい。このため、電池内部の温度と電池表面付近の
温度差が大きく、これに伴って内部抵抗が異なる。その
結果、充電量、電圧のバラツキを生じ易い。また、この
種の電池は複数個を組電池にして用いるため、システム
内での電池の設置位置によっても蓄熱されやすさが異な
って各電池間のバラツキが生じ、組電池全体の正確な制
御が困難になる。更には、高率充放電時等に放熱が不十
分な為、電池温度が上昇し、電池にとって好ましくない
状態におかれることから、電解液の分解等よる寿命の低
下、更には電池の熱暴走の誘起など信頼性、特に、安全
性に問題が残されていた。
By the way, in general, a large lithium secondary battery (energy capacity of 30 Wh or more) for a power storage system can obtain a high energy density, but its battery design is an extension of a small battery for a portable device. Alternatively, the battery has a cylindrical shape, a square shape, or the like having a thickness three times or more that of a small battery for a portable device. In this case, heat easily accumulates inside the battery due to Joule heat generated by the internal resistance of the battery during charge / discharge or internal heat generated by the battery due to a change in entropy of the active material due to the entrance and exit of lithium ions. For this reason, the difference between the temperature inside the battery and the temperature near the battery surface is large, and the internal resistance differs accordingly. As a result, the charge amount and the voltage are likely to vary. Also, since a plurality of batteries of this type are used as assembled batteries, the heat storage easiness varies depending on the installation position of the batteries in the system, causing variations among the batteries, and accurate control of the entire assembled battery. It becomes difficult. Furthermore, the battery temperature rises due to insufficient heat radiation during high-rate charging and discharging, etc., and the battery is put in an unfavorable state. Problems such as induction of reliability and, in particular, safety remain.

【0034】本実施の形態の扁平形状の非水系二次電池
は、放熱面積が大きくなり、放熱に有利であるため、上
記のような問題も解決することができる。すなわち、本
実施の形態の非水系二次電池は、扁平形状をしており、
その厚さは、好ましくは12mm未満、より好ましくは
10mm未満、さらに好ましくは8mm未満である。厚
さの下限については電極の充填率、電池サイズ(薄くな
れば同容量を得るためには面積が大きくなる)を考慮し
た場合、2mm以上が実用的である。電池の厚さが12
mm以上になると、電池内部の発熱を充分に外部に放熱
することが難しくなること、或いは電池内部と電池表面
付近での温度差が大きくなり、内部抵抗が異なる結果、
電池内での充電量、電圧のバラツキが大きくなる。な
お、具体的な厚さは、電池容量、エネルギー密度に応じ
て適宜決定されるが、期待する放熱特性が得られる最大
厚さで設計するのが、好ましい。
The flat non-aqueous secondary battery of the present embodiment has a large heat radiation area and is advantageous for heat radiation, so that the above-mentioned problems can be solved. That is, the non-aqueous secondary battery of the present embodiment has a flat shape,
Its thickness is preferably less than 12 mm, more preferably less than 10 mm, even more preferably less than 8 mm. The lower limit of the thickness is practically 2 mm or more in consideration of the filling rate of the electrode and the battery size (the smaller the thickness, the larger the area for obtaining the same capacity). Battery thickness is 12
mm or more, it becomes difficult to sufficiently radiate the heat generated inside the battery to the outside, or the temperature difference between the inside of the battery and the vicinity of the battery surface increases, resulting in a difference in internal resistance.
Variations in the amount of charge and voltage in the battery increase. Although the specific thickness is appropriately determined according to the battery capacity and the energy density, it is preferable to design the thickness so as to obtain the expected heat radiation characteristics.

【0035】また、本実施の形態の非水系二次電池の形
状としては、例えば、扁平形状の表裏面が角形、円形、
長円形等の種々の形状とすることができ、角形の場合
は、一般に矩形であるが、三角形、六角形等の多角形と
することもできる。さらに、肉厚の薄い円筒等の筒形に
することもできる。筒形の場合は、筒の肉厚がここでい
う厚さとなる。また、製造の容易性の観点から、電池の
扁平形状の表裏面が矩形であり、図1に示すようなノー
ト型の形状が好ましい。
The shape of the non-aqueous secondary battery of the present embodiment is, for example, that the flat front and back surfaces are square, circular,
Various shapes such as an oval shape can be used. In the case of a square shape, the shape is generally a rectangle, but it can also be a polygon such as a triangle or a hexagon. Further, it may be a cylindrical shape such as a thin-walled cylinder. In the case of a cylindrical shape, the thickness of the cylinder is the thickness referred to here. Further, from the viewpoint of ease of production, the flat front and back surfaces of the battery are preferably rectangular, and a notebook-type shape as shown in FIG. 1 is preferable.

【0036】電池ケースとなる上蓋1及び底容器2に用
いられる材質は、電池の用途、形状により適宜選択さ
れ、特に限定されるものではなく、鉄、ステンレス鋼、
アルミニウム等が一般的であり、実用的である。また、
電池ケースの厚さも電池の用途、形状或いは電池ケース
の材質により適宜決定され、特に限定されるものではな
い。好ましくは、その電池表面積の80%以上の部分の
厚さ(電池ケースを構成する一番面積が広い部分の厚
さ)が0.2mm以上である。上記厚さが0.2mm未
満では、電池の製造に必要な強度が得られないことから
望ましくなく、この観点から、より好ましくは0.3m
m以上である。また、同部分の厚さは、1mm以下であ
ることが望ましい。この厚さが1mmを超えると、電極
面を押さえ込む力は大きくなるが、電池の内容積が減少
し充分な容量が得られないこと、或いは、重量が重くな
ることから望ましくなく、この観点からより好ましくは
0.7mm以下である。
The material used for the top lid 1 and the bottom container 2 serving as the battery case is appropriately selected depending on the use and shape of the battery, and is not particularly limited.
Aluminum and the like are common and practical. Also,
The thickness of the battery case is also appropriately determined depending on the use and shape of the battery or the material of the battery case, and is not particularly limited. Preferably, the thickness of the portion of 80% or more of the battery surface area (the thickness of the portion having the largest area constituting the battery case) is 0.2 mm or more. When the thickness is less than 0.2 mm, the strength required for battery production cannot be obtained, which is not desirable.
m or more. Further, it is desirable that the thickness of the portion is 1 mm or less. When the thickness exceeds 1 mm, the force for pressing down the electrode surface increases, but it is not desirable because the internal volume of the battery is reduced and a sufficient capacity cannot be obtained, or the weight increases, which is not desirable. Preferably it is 0.7 mm or less.

【0037】上記のように、非水系二次電池の厚さを1
2mm未満に設計することにより、例えば、該電池が3
0Wh以上の大容量且つ180Wh/lの高エネルギー
密度を有する場合、高率充放電時等においても、電池温
度の上昇が小さく、優れた放熱特性を有することができ
る。従って、内部発熱による電池の蓄熱が低減され、結
果として電池の熱暴走も抑止することが可能となり信頼
性、安全性に優れた非水系二次電池を提供することがで
きる。
As described above, the thickness of the non-aqueous secondary battery is set to 1
By designing it to be less than 2 mm, for example,
When the battery has a large capacity of 0 Wh or more and a high energy density of 180 Wh / l, the battery temperature rise is small even during high-rate charging and discharging, and excellent heat radiation characteristics can be obtained. Therefore, heat storage of the battery due to internal heat generation is reduced, and as a result, thermal runaway of the battery can be suppressed, and a non-aqueous secondary battery excellent in reliability and safety can be provided.

【0038】次に、上記の様に構成された本発明の非水
系二次電池に具備する安全機構について詳細に説明す
る。安全機構は電池容器に形成された薄肉部を有してお
り、この薄肉部は、電池容器に一定以上の内部圧力が生
じると破断する安全弁として作用する。この安全弁の作
動圧(電池内部の上昇した圧力と大気圧との差)は、下
限が、好ましくは、5kPa以上、より好ましくは20
kPa以上、上限が、好ましくは500kPa未満、よ
り好ましくは120kPa未満、特に好ましくは80k
Pa未満である。この作動圧は、電池の形状、厚み、電
池容器の素材、電池の容量、使用するセパレータ、電解
液の種類等により適宜設計されるが、作動圧が上記下限
未満であると通常使用時にも作動してしまう可能性があ
り好ましくない。又作動圧が上記上限以上の場合、電池
内部にガスが発生する異常事態においても安全弁が働か
ず容易に膨張変形し発火や爆発を誘発させる危険性があ
る。本発明において安全弁の個数は、少なくとも1個以
上であればよく、特に2個以上の複数の安全弁を設けて
もよい。
Next, a safety mechanism provided in the non-aqueous secondary battery of the present invention configured as described above will be described in detail. The safety mechanism has a thin portion formed in the battery container, and the thin portion acts as a safety valve that is broken when an internal pressure exceeding a certain level is generated in the battery container. The lower limit of the operating pressure of this safety valve (the difference between the increased pressure inside the battery and the atmospheric pressure) is preferably 5 kPa or more, more preferably 20 kPa or more.
kPa or more, the upper limit is preferably less than 500 kPa, more preferably less than 120 kPa, particularly preferably 80 kPa.
It is less than Pa. The operating pressure is appropriately designed depending on the shape and thickness of the battery, the material of the battery container, the capacity of the battery, the type of separator used, the type of electrolyte, and the like. It is not preferable because it may be done. If the operating pressure is equal to or higher than the above upper limit, there is a danger that even in an abnormal situation where gas is generated inside the battery, the safety valve does not operate and easily expands and deforms, causing ignition or explosion. In the present invention, the number of safety valves may be at least one or more, and in particular, two or more safety valves may be provided.

【0039】安全弁を配置させる場所については、図3
(a)の斜線領域51に示す様に扁平形状をなす電池容
器の広平面部内に配置し、広平面の外周から所定距離の
範囲に少なくともその一部分を含むように設けるのが望
ましい。その外周寄りの範囲は、容器外周から該広平面
部の重心に至る距離の60%以内の外周寄りの範囲とす
るのが望ましく、40%以内の範囲とするのがさらに望
ましい。電池の広平面が大きくかつ容器厚さが薄い場
合、上述の通り容器は膨らみ安い。その度合いは使用す
る電池の形状、厚み、電池容器の素材に依存するが、特
に外周から広平面部の重心に至る距離の60%以内の外
周寄りの範囲に容器の膨らみに伴う歪みが発生し易い。
この歪みは、外周から重心に至る距離の40%以内の外
周寄りの範囲においてさらに大きくなる傾向を示す。こ
れは、上記範囲において、容器壁を変形させる力が大き
く作用していることを意味する。また、内圧の上昇に伴
って容器壁全体に作用する応力が、この範囲に伝搬して
集中的に作用しているとも言える。したがって、これら
の範囲に安全弁を設けると、容器内圧が低圧でも、安全
弁を設けた箇所には集中した大きな応力が作用し、確実
に作動させることができる。逆に、上記範囲より重心よ
りの範囲にのみ安全弁を設けると、その範囲は、容器が
膨らんだときにあまり変形せずにそのまま持ち上げられ
る傾向を示し、変形曲率が小さく平らに近い状態を保つ
ため、安全弁を作動させる力が作用し難い。
The place where the safety valve is arranged is shown in FIG.
It is preferable that the battery case is disposed in a wide flat portion of the battery container having a flat shape as shown by a hatched region 51 in (a), and is provided so as to include at least a part thereof within a predetermined distance from the outer periphery of the wide flat surface. The range near the outer periphery is preferably within 60% of the distance from the outer periphery of the container to the center of gravity of the wide plane portion, more preferably within 40%. When the battery has a large flat surface and a small container thickness, the container swells and is inexpensive as described above. Although the degree depends on the shape and thickness of the battery used and the material of the battery container, distortion accompanying the bulging of the container occurs particularly in a range close to the outer periphery within 60% of the distance from the outer periphery to the center of gravity of the wide flat portion. easy.
This distortion tends to be greater in a range closer to the outer periphery within 40% of the distance from the outer periphery to the center of gravity. This means that the force for deforming the container wall is largely acting in the above range. In addition, it can be said that the stress acting on the entire container wall as the internal pressure rises propagates in this range and acts intensively. Therefore, if a safety valve is provided in these ranges, even if the internal pressure of the container is low, a concentrated large stress acts on the portion where the safety valve is provided, and the device can be reliably operated. Conversely, if a safety valve is provided only in the range from the center of gravity to the above range, the range will tend to be lifted as it is without much deformation when the container is inflated, and the deformation curvature will be small and almost flat. , The force to operate the safety valve is hard to act.

【0040】電池容器の広平面部の形状が矩形等、多角
形の場合には、そのコーナー部近傍に設けると、そこに
歪みが集中するので、その歪みを有効に利用でき、確実
な作動を得る上で好ましい。また、このように、電池容
器の内圧の集中による歪みを利用して作動さる安全弁で
あるので、内部ガスにより容器が膨らむというような異
常事態でない通常状態においては、多少の外圧によって
は不用意な開口は起こらない。
In the case where the shape of the wide plane portion of the battery container is a polygon such as a rectangle or the like, if it is provided near the corner, the distortion will concentrate there, so that the distortion can be used effectively and reliable operation can be achieved. It is preferable for obtaining. In addition, since the safety valve is operated by utilizing the distortion due to the concentration of the internal pressure of the battery container, in a normal state where the container is not swelled by the internal gas and there is no abnormal situation, carelessness may be caused by some external pressure. No opening occurs.

【0041】さらに、図4に示すように、広平面部の重
心と前記薄肉部(64)両端の各々とを通る2本の直線
m、nで区画された広平面内部の内、前記薄肉部を含む
領域内であって該薄肉部より外側の範囲に少なくともそ
の一部分が含まれるように形成された変形防止部(6
5)とを備え、該変形防止部は、図3(b)の斜線領域
52に示す様に前記扁平形状をなす電池容器の広平面部
に配置され、容器外周から該広平面の重心に至る距離の
30%以内の外周寄りの範囲に少なくともその一部分を
含んだ前記薄肉部とは異なる少なくとも一つ以上の薄肉
により形成した変形防止部が形成されていると、内圧が
上昇し前記電池容器の中央部が持ち上がるように膨らん
だときに、より外周側の変形を抑制する効果がある。膨
張する部分と外周側の変形歪み度合いの差が大きい程、
前記安全弁の開口面積を広くさせ、異常時内部の蓄熱を
素早く外部へ放出させることができより好ましい。この
抑制効果は、外周から重心に至る距離の20%以内の外
周寄りの範囲においてさらに大きい。変形防止部は、前
記薄肉部と同様の薄肉により形成することができ、或い
は、リブを設けることにより形成することができる。
Further, as shown in FIG. 4, the thin portion is defined by two straight lines m and n passing through the center of gravity of the wide flat portion and both ends of the thin portion (64). And a deformation preventing portion (6) formed so as to include at least a part thereof in a region outside the thin portion in a region including
5), and the deformation preventing portion is arranged on a wide flat portion of the flat battery container as shown by a hatched region 52 in FIG. 3B, and extends from the outer periphery of the container to the center of gravity of the wide flat surface. When a deformation preventing portion formed by at least one thin wall different from the thin wall portion including at least a part thereof is formed in a range close to the outer periphery within 30% of the distance, the internal pressure increases, and the battery container becomes When the central portion expands so as to be lifted, there is an effect of suppressing deformation on the outer peripheral side. The larger the difference between the degree of deformation distortion on the expanding part and the outer peripheral side,
This is more preferable because the opening area of the safety valve can be widened and the internal heat storage can be quickly released to the outside in the event of an abnormality. This suppression effect is even greater in a range closer to the outer periphery within 20% of the distance from the outer periphery to the center of gravity. The deformation preventing portion can be formed by the same thin portion as the thin portion, or can be formed by providing a rib.

【0042】薄肉部を備えた安全弁としては、薄い金属
箔を冷間圧接させたラプチャーディスク部品を取り付け
る方式や、容器の一部を薄肉加工して弱くさせる方法等
を採用することができるが、好ましくは前記薄肉部が、
容器広平面部側に形成された少なくとも一つの直線又は
曲線の溝とされる。この溝は、例えば切溝加工により形
成することができる。
As a safety valve having a thin portion, a method of mounting a rupture disk component formed by cold-pressing a thin metal foil, a method of thinning a part of a container to make it weaker, and the like can be adopted. Preferably, the thin portion is
At least one straight or curved groove formed on the container wide flat surface side. This groove can be formed, for example, by kerf processing.

【0043】図4を用いて、線状溝の配置を説明する。
図4に示す電池容器は広平面が矩形形状であり、直線状
溝64又は曲線状溝64の接線64aは、矩形の重心
(中心)G及び角部とを結ぶ仮想直線61を横切るよう
に配置されており、前記溝のなす直線又は曲線の接線
が、前記仮想直線の垂線に対して±60度以内の角度を
なすように設けられているのが望ましい。これは、容器
が膨らむときに生じる広平面部での歪みは、仮想直線6
1を横切る方向において大きいからである。したがっ
て、角62を上記範囲とすることにより、大きな歪みが
生じる方向に溝を沿わすことができ、その結果低い容器
内圧で破断開口し易い安全弁とすることができるのであ
る。溝のなす角62が30度未満では、容器が膨らむと
きに大きな歪みを生じずに持ちあがることとなり、低圧
で確実に作動させることが難しい。この例のように容器
広平面が矩形の場合は、その重心と角部とを結ぶ仮想直
線は、勿論対角線となる。なお、容器広平面部が、矩形
以外の多角形の場合でも、直線状溝又は曲線状溝の接線
が、多角形の重心(中心)及び角部を結ぶ仮想直線を横
切るように配置され、前溝のなす直線又は曲線の接線
が、前記仮想直線の垂線に対して±60度以内の角度を
なすように設けられることにより、上記と同様の作用が
得られる。
The arrangement of the linear grooves will be described with reference to FIG.
The battery container shown in FIG. 4 has a rectangular wide surface, and the tangent line 64a of the linear groove 64 or the curved groove 64 is arranged so as to cross the virtual straight line 61 connecting the center of gravity (center) G and the corner of the rectangle. It is preferable that a tangent to a straight line or a curve formed by the groove is provided at an angle within ± 60 degrees with respect to a perpendicular to the virtual straight line. This is because the distortion in the wide flat area that occurs when the container expands is caused by the virtual straight line 6.
This is because it is large in the direction crossing 1. Therefore, by setting the corner 62 in the above range, the groove can be formed along the direction in which large distortion occurs, and as a result, a safety valve that can be easily broken and opened with a low internal pressure of the container can be obtained. If the angle 62 formed by the groove is less than 30 degrees, the container will be lifted up without causing large distortion when it expands, and it will be difficult to operate reliably at low pressure. When the wide plane of the container is rectangular as in this example, the virtual straight line connecting the center of gravity and the corner is, of course, a diagonal. In addition, even if the container wide plane portion is a polygon other than a rectangle, the tangent of the linear groove or the curved groove is disposed so as to cross a virtual straight line connecting the center of gravity (center) and the corner of the polygon. tangential eggplant straight or curved in serial grooves, by being provided at an angle of within ± 60 degrees with respect to normal of the virtual straight line, the same effect as the above can be obtained.

【0044】前述のように広平面部側に上記の角度範囲
内で安全弁の溝を形成することにより、弁開放時に電池
内容物が周囲へ飛散することも防止できる。安全弁の溝
は、その形状、薄肉部厚さの設計により予め決定された
前記所定圧力の範囲で開口させることができる。また、
安全弁を容器広平面部側に設けることにより大きな開口
面積を持たせて素早く内部ガスを抜き出すことが可能と
なる。さらに、保護カバーが必要でかつ設備投資も大き
いラプチャーディスクと比較して、コストを低減するこ
とができる点でもより好ましい。
As described above, by forming the groove of the safety valve within the above-mentioned angle range on the wide plane portion side, it is possible to prevent the battery contents from scattering around when the valve is opened. The groove of the safety valve can be opened in the range of the predetermined pressure which is predetermined by the design of the shape and the thickness of the thin portion. Also,
By providing the safety valve on the side of the container wide flat surface side, it is possible to have a large opening area and quickly extract internal gas. Further, it is more preferable in that the cost can be reduced as compared with a rupture disk which requires a protective cover and requires a large capital investment.

【0045】また前記薄肉部とは異なる少なくとも一つ
以上の歪みを抑制させるための変形防止部は、前記容器
扁平平面側に少なくとも一つの直線状又は曲線状の溝で
あることが望ましい。さらには歪みを抑制させる効果の
ある前記一つの直線状溝又は曲線状溝の接線が、前記扁
平平面の外周線に対して±20度以内の角度をなすよう
に設けられていることがより好ましい。なぜならば外周
線に対して20度以上の角度をなすと、前記容器が膨れ
てきたときに膨れを抑制する効果がなくそのまま持ち上
げられ、開口面積を大きくすることができないからであ
る。図4を用いて、前記歪みを抑制させるための線状溝
の配置を説明する。図4に示す電池容器は広平面が矩形
形状であり、直線状溝65又は曲線状溝65の接線65
aは、前記安全弁より角部側の外周に沿う位置にあり、
前記溝のなす直線又は曲線の接線が、前記外周線との平
行線に対して±20度以内の角度をなすように設けられ
ている。
Preferably, the deformation preventing portion for suppressing at least one distortion different from the thin portion is at least one linear or curved groove on the flat side of the container. Furthermore, it is more preferable that the tangent of the one linear groove or the curved groove having the effect of suppressing distortion is provided so as to form an angle within ± 20 degrees with respect to the outer peripheral line of the flat plane. . This is because if the angle of the container is more than 20 degrees with respect to the outer peripheral line, when the container is swollen, there is no effect of suppressing the swollenness, the container is lifted as it is, and the opening area cannot be increased. The arrangement of the linear grooves for suppressing the distortion will be described with reference to FIG. The battery container shown in FIG. 4 has a rectangular wide surface, and a tangent 65 of the linear groove 65 or the curved groove 65.
a is at a position along the outer periphery on the corner side of the safety valve,
A tangent to a straight line or a curve formed by the groove is provided so as to form an angle within ± 20 degrees with respect to a parallel line with the outer peripheral line.

【0046】安全弁の製造方法は特に限定されないが、
前述した切溝加工方式の場合エッチングやプレスなどの
方式により、任意の形状で所定の厚さを残し薄肉部の切
り溝加工を行う事が出来る。図5には溝加工式の安全弁
と歪みを抑制させる溝部とを組み合せた種々の例を示
す。上蓋1表面の周囲近傍でかつコーナー付近71に大
きな薄肉部切り溝加工部72を設けより外周側に外周線
に沿った溝加工部82を設けると、低い圧力でかつ大き
な開口面積を持つ安全弁となる。図中72aは直線状、
72bは円弧状、72cは円の一部のみ残した形状、7
2dはX印形状の溝方式安全弁である。
The method of manufacturing the safety valve is not particularly limited.
In the case of the above-described kerf processing method, kerf processing of a thin portion can be performed by a method such as etching or pressing while leaving a predetermined thickness in an arbitrary shape. FIG. 5 shows various examples in which a grooved safety valve and a groove for suppressing distortion are combined. By providing a large thin-walled grooving portion 72 near the periphery of the surface of the upper lid 1 and near the corner 71 and providing a grooving portion 82 along the outer peripheral line on the outer peripheral side, a safety valve having low pressure and a large opening area Become. 72a in the figure is linear,
72b is an arc shape, 72c is a shape leaving only a part of a circle, 7
2d is an X-marked groove type safety valve.

【0047】[0047]

【実施例】以下、本発明の実施例を示し、本発明をさら
に具体的に説明する。 (実施例1) (1)図1に示すように、底容器2は、0.5mmのS
US304製薄板を深さ5mmに絞り作成し、電池の上
蓋1も厚さ0.5mmのSUS304製薄板で作成し
た。電池外形寸法は短辺側で210mm、長辺側で30
0mmとおよそJIS規格A4サイズと同等とした。該
上蓋には、アルミ製の正極端子及び銅製の負極端子3、
4(6mmφ、先M3のねじ切り)を取り付けた。正極
及び負極端子3、4は、ポリプロピレン製ガスケットで
上蓋1と絶縁した。該底容器2内へ電極積層体を挿入せ
ずに上蓋1を配置し、図1の角部Aを全周に亘りレーザ
ー溶接して電池外装体のみの組立品を作製した。
The present invention will be described more specifically below with reference to examples of the present invention. (Example 1) (1) As shown in FIG.
A thin plate made of US304 was drawn down to a depth of 5 mm, and the top cover 1 of the battery was also made of a thin plate made of SUS304 having a thickness of 0.5 mm. Battery external dimensions are 210 mm on the short side and 30 mm on the long side.
0 mm, which is approximately equivalent to JIS A4 size. The upper lid has a positive electrode terminal made of aluminum and a negative electrode terminal 3 made of copper,
4 (6 mmφ, M3 thread cutting) was attached. The positive and negative terminals 3 and 4 were insulated from the upper lid 1 by a polypropylene gasket. The upper lid 1 was arranged without inserting the electrode laminate into the bottom container 2, and the corner A of FIG. 1 was laser-welded over the entire circumference to produce an assembly having only the battery outer package.

【0048】(2)該上蓋1のコーナー部(図5のコー
ナー部71)に図5に溝72aとしてした形状及び幅
0.5mm深さ0.04mm長さ60mmの寸法の直線
状溝をエッチング加工により形成し安全弁とした。この
溝は、コーナー部の両辺より10mmずつ内側を結び、
矩形状上蓋の重心及び角部を結ぶ直線を横切るように形
成されており、前記直線状溝が、前記直線(対角線)の
垂線に対して短辺側で角部の方へ10度の角度をなすよ
うに設けられている。また該上蓋1のコーナー部(図5
のコーナー部71部のより外周側)に図5に溝82とし
て形状及び幅0.5mm深さ0.03mm長さ20mm
の寸法の直線状溝2本をエッチング加工により歪みを抑
制させる溝を形成させた。この溝はコーナーより8mm
ずつ入った内側から両辺に並行に形成された直線状溝で
ある。
(2) Etching a straight groove having a shape of the groove 72a in FIG. 5, a width of 0.5 mm, a depth of 0.04 mm, and a length of 60 mm in the corner portion (corner portion 71 in FIG. 5) of the upper lid 1 A safety valve formed by processing. This groove connects the inside by 10 mm from both sides of the corner,
The straight groove is formed so as to cross a straight line connecting the center of gravity and the corner of the rectangular upper lid, and the straight groove forms an angle of 10 degrees toward the corner on the short side with respect to the perpendicular of the straight line (diagonal). It is provided so as to make it easier. In addition, a corner portion of the upper cover 1 (FIG. 5)
5 is formed as a groove 82 in FIG. 5 on the outer peripheral side of the corner portion 71), the width is 0.5 mm, the depth is 0.03 mm, and the length is 20 mm
Two linear grooves having the following dimensions were formed by etching to form grooves for suppressing distortion. This groove is 8mm from the corner
It is a linear groove formed in parallel on both sides from the inside into which each is inserted.

【0049】(3)上記のようにして得られた電池外装
体のみの組立品に、注液口5を使って電池内圧を上昇さ
せていき安全弁の開口試験を行ったところ、40kPa
と低い圧力で素早く作動し電池の膨張後厚さも18mm
でとどまった。また開口部の幅は2mmと大きかった。
尚前記歪みを抑制させる溝を形成させずに同様の電池外
装体のみの組立品を作製し、注液口5を使って電池内圧
を上昇させていき安全弁の開口試験を行ったところ、同
様に40kPaと低い圧力で素早く作動し電池の膨張後
厚さも18mmでとどまった。しかし開口部の幅は0.
5mmであった。
(3) When the internal pressure of the battery was increased using the injection port 5 and the opening test of the safety valve was performed on the assembly having only the battery outer body obtained as described above, the pressure was 40 kPa.
It operates quickly at low pressure and the battery thickness after expansion is 18mm
Stayed at. The width of the opening was as large as 2 mm.
In addition, a similar assembly having only the battery exterior body was produced without forming the groove for suppressing the distortion, and the internal pressure of the battery was increased using the liquid inlet 5, and the opening test of the safety valve was performed. The battery was quickly operated at a low pressure of 40 kPa, and the thickness of the battery after expansion was 18 mm. However, the width of the opening is 0.
5 mm.

【0050】(実施例2)実施例1の(2)の安全弁構
造以外は実施例1と同様に電池外装体のみの組立品を作
製した。電池上蓋1のコーナー部に、図5のコーナー部
71部における溝72bのような位置及び形状、幅0.
5mm、深さ0.04mmの寸法で、両辺より50mm
内側の点を中心とし半径40mm内角90度の、コーナ
ー側への凸をなす円弧状切溝をエッチング加工して安全
弁を作製した。上記のようにして得られた電池外装体の
みの組立品に、注液口5を使って電池内圧を上昇させ安
全弁の開口試験を行ったところ、50kPaと低い圧力
で素早く作動し電池の膨張後厚さも22mmでとどまっ
た。また開口部の幅は1.5mmであった。
(Example 2) An assembly having only a battery exterior body was manufactured in the same manner as in Example 1 except for the safety valve structure of (2) of Example 1. At the corner of the battery cover 1, the position and shape of the groove 72b at the corner 71 of FIG.
5mm, depth 0.04mm, 50mm from both sides
An arcuate kerf having a radius of 40 mm and an inner angle of 90 degrees and protruding toward the corner with an inner point at the center was etched to produce a safety valve. When the internal pressure of the battery was increased using the injection port 5 and an opening test of the safety valve was performed on the assembly having only the battery outer body obtained as described above, the battery was quickly operated at a low pressure of 50 kPa, and the battery was expanded. The thickness also stayed at 22 mm. The width of the opening was 1.5 mm.

【0051】(実施例3)実施例1の(2)の安全弁構
造及び歪みを抑制させる溝を電池上蓋1のコーナー部に
作製して実際の電池を以下の様に組み立てた。
(Example 3) The safety valve structure of Example 1 (2) and a groove for suppressing distortion were formed in the corner portion of the battery upper lid 1, and an actual battery was assembled as follows.

【0052】(1)LiCo2O4100重量部、アセ
チレンブラック8重量部、ポリビニリデンフルオライド
(PVDF)3重量部をN−メチルピロリドン(NM
P)100重量部と混合し正極合材スラリーを得た。該
スラリーを集電体となる厚さ20μmのアルミ箔の両面
に塗布、乾燥した後、プレスを行い、正極を得た。図4
は電極の説明図である。本実施例において正極101a
の塗布面積(W1×W2)は、262.5×192mm2であ
り、20μmの集電体105aの両面に103μmの厚さで
塗布されている。その結果、電極厚さtは226μmとな
っている。また、電極の短辺側には電極が塗布されてい
ない耳部分があり、φ3の穴が開けられている。
(1) 100 parts by weight of LiCo 2 O 4, 8 parts by weight of acetylene black, and 3 parts by weight of polyvinylidene fluoride (PVDF) were mixed with N-methylpyrrolidone (NM)
P) to obtain a positive electrode mixture slurry. The slurry was applied to both sides of a 20 μm-thick aluminum foil serving as a current collector, dried, and then pressed to obtain a positive electrode. FIG.
Is an explanatory diagram of an electrode. In this embodiment, the positive electrode 101a
Has an application area (W1 × W2) of 262.5 × 192 mm 2, and is applied to both surfaces of a 20 μm current collector 105 a with a thickness of 103 μm. As a result, the electrode thickness t is 226 μm. Further, on the short side of the electrode, there is an ear portion where the electrode is not applied, and a hole of φ3 is formed.

【0053】(2)黒鉛化メソカーボンマイクロビーズ
(MCMB、大阪ガスケミカル製、品番6−28)10
0重量部、PVDF10重量部をNMP90重量部と混
合し、負極合材スラリーを得た。該スラリーを集電体と
なる厚さ14μmの銅箔の両面に塗布、乾燥した後、プ
レスを行い、負極を得た。図4を用いて説明する。負極
101b又は101cの塗布面積(W1×W2)は、267×
195mm2であり、18μmの集電体105bの両面に108
μmの厚さで塗布されている。その結果、電極厚さtは
234μmとなっている。また、電極の短辺側には電極
が塗布されていない耳部分があり、φ3の穴が開けられ
ている。更に、同様の手法で片面だけに塗布し、それ以
外は同様の方法で厚さ126μmの片面電極を作成した。
片面電極は(3)項の電極積層体において外側に配置さ
れる(図2中101c)。
(2) Graphitized mesocarbon microbeads (MCMB, manufactured by Osaka Gas Chemicals, product number 6-28) 10
0 parts by weight and 10 parts by weight of PVDF were mixed with 90 parts by weight of NMP to obtain a negative electrode mixture slurry. The slurry was applied on both sides of a 14 μm-thick copper foil serving as a current collector, dried, and then pressed to obtain a negative electrode. This will be described with reference to FIG. The application area (W1 × W2) of the negative electrode 101b or 101c is 267 ×
195 mm2, 108 μm on both sides of 18 μm current collector 105 b
It is applied with a thickness of μm. As a result, the electrode thickness t is 234 μm. Further, on the short side of the electrode, there is an ear portion where the electrode is not applied, and a hole of φ3 is formed. Further, a single-sided electrode having a thickness of 126 μm was formed in the same manner except that the coating was performed on only one side.
The single-sided electrode is disposed outside in the electrode laminate of item (3) (101c in FIG. 2).

【0054】(3)上記(1)項で得られた正極8枚、
負極9枚(内片面2枚)を図2に示すようにセパレータ
104a(ポリプロピレン不織布:ニッポン高度紙工業、
MP1050、目付10g/m2)とセパレータ104b(ポリエ
チレン製微孔膜;旭化成工業HIPORE6022,目付13.3g/m
2)を介して(図2中104として標記されている)、交互に
積層し電極積層体を作成した。セパレータ104bは正極
側に配置した。また、容器との絶縁の為、積層体の外側
の負極板101cの更に外側にセパレーター104bを配置し
た。
(3) Eight positive electrodes obtained in the above (1),
As shown in FIG. 2, a separator 104a (polypropylene non-woven fabric: Nippon Kogyo Paper Industries,
MP1050, basis weight 10g / m2) and separator 104b (polyethylene microporous membrane; Asahi Kasei Corporation HIPORE6022, basis weight 13.3g / m2)
2) (indicated as 104 in FIG. 2), and alternately laminated to form an electrode laminate. The separator 104b was arranged on the positive electrode side. Further, for insulation from the container, a separator 104b was arranged further outside the negative electrode plate 101c outside the laminate.

【0055】(4)電池の底容器2(図1参照)は、
0.5mmのSUS304製薄板を深さ5mmに絞り作
成した。また、電池の上蓋1も厚さ0.5mmのSUS
304製薄板で作成した。該上蓋には、アルミ製の正極
端子及び銅製の負極端子3、4(6mmφ、先M3のね
じ切り)を取り付けるた。正極及び負極端子3、4は、
ポリプロピレン製ガスケットで上蓋1と絶縁されてい
る。
(4) The battery bottom container 2 (see FIG. 1)
A SUS304 thin plate of 0.5 mm was drawn to a depth of 5 mm. Also, the top cover 1 of the battery is made of SUS of 0.5 mm thickness.
It was made of 304 thin plate. An aluminum positive electrode terminal and a copper negative electrode terminal 3 and 4 (6 mmφ, M3 threaded) were attached to the upper lid. The positive and negative terminals 3, 4
It is insulated from the upper lid 1 by a polypropylene gasket.

【0056】(5)上記(3)項で作成した電極積層体
の各正極耳の穴を正極端子3に、各負極耳1の穴を負極
端子4に入れ、それぞれ、アルミ、銅のボルトで接続し
た。電極積層体を絶縁テープで固定し、図1の角部Aを
全周に亘りレーザー溶接した。その後、電解液注液孔5
(6mmφ)から電解液としてエチレンカーボネートと
ジエチルカーボネートを1:1重量比で混合した溶媒に
1mol/lの濃度にLiPF6を溶解した溶液を注液
した。この電池を、12mmφに打ち抜いた厚さ0.08m
mのアルミ箔-変性ポリプロピレンラミネートフィルム
を300torrの減圧下で熱融着する事により、電解液注液
孔5を封口した。 (6)上記のようにして得られた電池を5Aの電流で
4.1Vまで充電し、その後4.1Vの定電圧を印加す
る定電流定電圧充電を12時間行い、続いて5Aの低電
流で2.5Vまで放電したところ、放電容量は23.5
Ahであり、エネルギー容量は85Whであった。容量
を確認後再び上記同様の充電を行い充電末状態とした。
次に安全性を確認するため、10Aの定電流充電での過
充電試験を社団法人電池工業会指針SBA G1101
に準じて行った。約70%分過充電した時点で電池内部
でのガス発生によるためか電池容器が膨張し出したが、
図5中71部の安全弁72aが広く開口し蒸気が素早く
放出され、大容量型電池であるにもかかわらず発熱発火
等には至らず安全性の高いことがわかった。電池の膨張
後厚さも18mmでとどまっていた。
(5) The holes of the respective positive electrode lugs of the electrode laminate prepared in the above item (3) are inserted into the positive electrode terminal 3 and the holes of the respective negative electrode ears 1 are inserted into the negative electrode terminal 4, and are respectively bolted with aluminum and copper. Connected. The electrode laminate was fixed with an insulating tape, and the corner A of FIG. 1 was laser-welded over the entire circumference. Then, fill the electrolyte injection hole 5
(6 mmφ), a solution in which LiPF6 was dissolved at a concentration of 1 mol / l into a solvent in which ethylene carbonate and diethyl carbonate were mixed at a weight ratio of 1: 1 was injected as an electrolytic solution. This battery was punched out to 12mmφ and had a thickness of 0.08m
The electrolyte injection hole 5 was sealed by heat-sealing an aluminum foil-modified polypropylene laminated film having a thickness of 300 m under a reduced pressure of 300 torr. (6) The battery obtained as described above is charged up to 4.1 V with a current of 5 A, and thereafter, a constant current constant voltage charge of applying a constant voltage of 4.1 V is performed for 12 hours, followed by a low current of 5 A Discharge to 2.5 V at a discharge capacity of 23.5
Ah, and the energy capacity was 85 Wh. After confirming the capacity, the battery was charged again in the same manner as described above, and the battery was brought to a charged state.
Next, in order to confirm safety, an overcharge test at a constant current charge of 10 A was conducted by the Battery Association of Japan Guideline SBA G1101.
It went according to. When the battery was overcharged for about 70%, the battery container started to expand due to gas generation inside the battery,
It was found that the safety valve 72a at 71 in FIG. 5 was opened widely, steam was quickly released, and even though the battery was a large-capacity type battery, it did not generate heat or ignite or the like, and was highly safe. The thickness of the battery after expansion was 18 mm.

【0057】(比較例1)実施例3で使用した安全弁構
造以外は実施例3と同様に電池を作製した。該上蓋1の
コーナー部に、図5のコーナー部71における溝72a
のような位置及び形状、幅1mm深さ0.048mm長
さ60mmの直線状溝をエッチング加工により形成し
た。この溝は、コーナー部の両辺より10mmずつ内側
を結び、矩形状上蓋の重心及び角部を結ぶ仮想直線(対
角線)を横切るように形成されており、前記直線状溝
が、前記直線の垂線に対して短辺側で角部の方へ10度
の角度をなすように設けられ、作動圧1kPaの安全弁
を形成した。しかしレーザ溶接工程において、取り付け
ていた放熱板などの冶具を脱着する際に既に安全弁の一
部が破損して開口していた。作動圧がこの様に低すぎる
と、通常使用時にも容易に開口してしまうことが予想さ
れた。
Comparative Example 1 A battery was manufactured in the same manner as in Example 3 except for the safety valve structure used in Example 3. A groove 72a in a corner 71 of FIG.
A linear groove having a position and shape as described above, a width of 1 mm, a depth of 0.048 mm, and a length of 60 mm was formed by etching. This groove is formed so as to connect 10 mm inside from both sides of the corner portion and to cross a virtual straight line (diagonal line) connecting the center of gravity and the corner portion of the rectangular upper lid, and the straight groove is perpendicular to the straight line. On the other hand, a safety valve having an operating pressure of 1 kPa was provided so as to form an angle of 10 degrees toward the corner on the short side. However, in the laser welding process, a part of the safety valve had already been damaged and opened when the attached jig such as a heat sink was detached. It was expected that if the operating pressure was too low, it would open easily during normal use.

【0058】(比較例2)実施例3で使用した安全弁構
造以外は実施例3と同様に電池を作製した。該上蓋1の
コーナー部に、図5のコーナー部71における溝72a
のような位置及び形状、幅0.8mm深さ0.046m
m長さ60mmの直線状溝をエッチング加工により形成
した。この溝は、コーナー部の両辺より10mmずつ内
側を結び、矩形状上蓋の重心及び角部を結ぶ仮想直線
(対角線)を横切るように形成されており、前記直線状
溝が、前記直線の垂線に対して短辺側で角部の方へ10
度の角度をなすように設けられ、作動圧2kPaの安全
弁を形成した。しかし注液工程において、減圧状態から
常圧に戻すことにより電解液を注入される際に安全弁の
一部から液漏れし開口していることがわかった。作動圧
がこの様に低すぎると一般的な製造工程においても容易
に開口してしまうことが予想された。
Comparative Example 2 A battery was manufactured in the same manner as in Example 3 except for the safety valve structure used in Example 3. A groove 72a in a corner 71 of FIG.
Like position and shape, width 0.8mm depth 0.046m
A linear groove having an m length of 60 mm was formed by etching. This groove is formed so as to connect 10 mm inside from both sides of the corner portion and to cross a virtual straight line (diagonal line) connecting the center of gravity and the corner portion of the rectangular upper lid, and the straight groove is perpendicular to the straight line. 10 on the short side toward the corner
A safety valve provided at an angle of degree and having an operating pressure of 2 kPa was formed. However, in the injection step, it was found that when the electrolytic solution was injected by returning the pressure from the reduced pressure to the normal pressure, the liquid leaked from a part of the safety valve and opened. If the operating pressure is too low, it is expected that the opening will easily occur even in a general manufacturing process.

【0059】(比較例3)実施例1の(2)の安全弁構
造以外は実施例1と同様に電池外装体のみの組立品を作
製した。図に示すように、底容器2の上部側面81に
示すような幅0.5mm、深さ0.4mmで短辺5mm
長辺40mmで十字刻印状の安全弁82を作製した。上
記のようにして得られた電池外装体のみの組立品に、注
液口5を使って電池内圧を上昇させ安全弁の開口試験を
行ったところ、低圧では安全弁が作動せず500kPa
に到達した時点で厚さ120mmまで大きく膨張して変
形歪みのためか突然溶接部の一部が開口した。電池内容
物を含んでいた場合非常に危険な事態が予想された。
(Comparative Example 3) An assembly having only the battery exterior body was manufactured in the same manner as in Example 1 except for the safety valve structure of (2) of Example 1. As shown in FIG. 6 , the width is 0.5 mm, the depth is 0.4 mm, and the short side is 5 mm as shown on the upper side surface 81 of the bottom container 2.
A cross-sealed safety valve 82 having a long side of 40 mm was produced. When the internal pressure of the battery was increased using the liquid inlet 5 and an opening test of the safety valve was performed on the assembly having only the battery outer body obtained as described above, the safety valve did not operate at a low pressure and the pressure was 500 kPa.
At the time of reaching, a large portion was expanded to a thickness of 120 mm, and a part of the weld was suddenly opened due to deformation distortion. A very dangerous situation was expected if the battery contents were included.

【0060】[0060]

【発明の効果】以上から明らかな通り、本発明によれ
ば、扁平型電池、特に、大容量且つ高体積エネルギー密
度を有する扁平型電池において、低い内部圧力上昇によ
って開口する安全機構を具備し、安全性が高い非水系二
次電池を提供することができる。
As is apparent from the above, according to the present invention, a flat battery, particularly a flat battery having a large capacity and a high volume energy density, has a safety mechanism which is opened by a low internal pressure rise, A highly safe non-aqueous secondary battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態の蓄電システム用非水系
二次電池の平面図(上)及び側面図(下)を示す図であ
る。
FIG. 1 is a plan view (top) and a side view (bottom) of a non-aqueous secondary battery for a power storage system according to an embodiment of the present invention.

【図2】図1に示す電池の内部に収納される電極積層体
の構成を示す側面図である。
FIG. 2 is a side view showing a configuration of an electrode laminate housed inside the battery shown in FIG.

【図3】本発明の構成要素である(a)薄肉部及び
(b)変形防止部の配置領域を示す説明図である。
FIGS. 3A and 3B are explanatory views showing the arrangement areas of (a) a thin portion and (b) a deformation preventing portion which are components of the present invention.

【図4】本発明の切溝加工方式安全弁及び歪みを抑制さ
せる溝の配置角度を示す説明図である。
FIG. 4 is an explanatory view showing an arrangement angle of a kerf processing type safety valve of the present invention and grooves for suppressing distortion.

【図5】本発明の非水系二次電池の実施例に用いた安全
弁及び歪みを抑制させる溝の説明図である。
FIG. 5 is an explanatory view of a safety valve and a groove for suppressing distortion used in the embodiment of the non-aqueous secondary battery of the present invention.

【図6】比較例としての非水系二次電池に用いた安全弁
の説明図であり、(a)は平面図、(b)は側面図、
(c)は側面の拡大図、(d)は(c)のE−E線断面
図である。
6A and 6B are explanatory views of a safety valve used for a non-aqueous secondary battery as a comparative example, where FIG. 6A is a plan view, FIG.
(C) is an enlarged view of a side surface, and (d) is a sectional view taken along line EE of (c).

【符号の説明】 1 上蓋 2 底容器 3 正極端子 4 負極端子 5 注液口 6 封口フィルム 51 安全弁配置範囲 61 仮想直線(対角線) 62 直線状切溝式安全弁例 63 対角線と直線状切溝式安全弁で挟まれた狭角 71 上蓋コーナー部 72a、72b,72c,72d 安全弁 81 底容器上部側面側 82 安全弁 101a 正極(両面) 101b 負極(両面) 101c 負極(片面) 104、104a、104b セパレータ 105a 正極集電体 105b 負極集電体[Description of Signs] 1 Top lid 2 Bottom container 3 Positive electrode terminal 4 Negative terminal 5 Injection port 6 Sealing film 51 Safety valve arrangement range 61 Virtual straight line (diagonal line) 62 Example of linear grooved safety valve 63 Diagonal and linear grooved safety valve Narrow 71 sandwiched by the above 71 Upper lid corner 72a, 72b, 72c, 72d Safety valve 81 Bottom container upper side surface 82 Safety valve 101a Positive electrode (both sides) 101b Negative electrode (both sides) 101c Negative electrode (one side) 104, 104a, 104b Separator 105a Positive electrode collection Electric body 105b Negative electrode current collector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢田 静邦 大阪府大阪市中央区平野町4丁目1−2 株式会社関西新技術研究所内 (72)発明者 菊田 治夫 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 Fターム(参考) 5H011 AA10 AA13 CC06 DD13 FF02 JJ04 KK01 KK02 5H012 AA03 BB01 DD05 EE04 FF01 5H029 AJ01 AJ12 AK03 AL06 AM03 AM04 AM05 AM07 BJ04 BJ15 DJ02 DJ12 DJ14 HJ01 HJ04 HJ15 HJ19  ──────────────────────────────────────────────────続 き Continued on the front page (72) Shizukuni Yada 4-1-2 Hirano-cho, Chuo-ku, Osaka-shi, Osaka Prefecture Inside Kansai New Technology Research Institute Co., Ltd. (72) Haruo Kikuta, Hirano-cho, Chuo-ku, Osaka-shi, Osaka 4-chome 1-2-2 Osaka Gas Co., Ltd. F-term (reference) 5H011 AA10 AA13 CC06 DD13 FF02 JJ04 KK01 KK02 5H012 AA03 BB01 DD05 EE04 FF01 5H029 AJ01 AJ12 AK03 AL06 AM03 AM04 AM05 AM07 BJ04 HJ14 DJ01

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極、セパレータ、及びリチウム
塩を含む非水系電解質を備える扁平形状の電池容器にて
密閉されエネルギー容量が30Wh以上且つ体積エネル
ギー密度が180Wh/l以上で作動圧が5kPa以上
500kPa未満である非水系二次電池であって、前記
扁平形状をなす電池容器の広平面部に配置され容器外周
から該広平面部の重心に至る距離の60%以内の外周寄
りの範囲に少なくともその一部分を含み前記作動圧によ
り破断する薄肉部と、前記広平面部の重心と前記薄肉部
両端の各々とを通る2本の直線で区画された広平面内部
の内、前記薄肉部を含む領域内であって該薄肉部より外
側の範囲に少なくともその一部分が含まれるように形成
された変形防止部とを有することを特徴とする非水系二
次電池。
1. A sealed, flat battery container comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt, having an energy capacity of 30 Wh or more, a volume energy density of 180 Wh / l or more, and an operating pressure of 5 kPa or more. A non-aqueous secondary battery having a pressure of less than 500 kPa, wherein the non-aqueous secondary battery is disposed on a wide flat portion of the flat battery container, and is at least in a range close to the outer periphery within 60% of a distance from the outer periphery of the container to the center of gravity of the wide flat portion. A region including the thin portion, the thin portion including a part thereof and breaking by the operating pressure, and the inside of the wide plane divided by two straight lines passing through the center of gravity of the wide flat portion and both ends of the thin portion. A non-aqueous secondary battery comprising: a deformation preventing portion formed so as to include at least a part thereof in a range outside the thin portion.
【請求項2】 前記変形防止部が、前記領域内であって
容器外周から該広平面の重心に至る距離の30%以内の
外周寄りの範囲に少なくとも一部が含まれるよう形成さ
れていることを特徴とする請求項1記載の非水系二次電
池。
2. The deformation preventing portion is formed so as to be at least partially included in a region near the outer periphery within 30% of a distance from the outer periphery of the container to the center of gravity of the wide plane within the region. The non-aqueous secondary battery according to claim 1, wherein
【請求項3】 前記薄肉部は、少なくとも一つの直線状
又は曲線状の溝で形成されていることを特徴とする請求
項1又は2に記載の非水系二次電池。
3. The non-aqueous secondary battery according to claim 1, wherein the thin portion is formed by at least one linear or curved groove.
【請求項4】 前記変形防止部は、電池容器の一部を薄
肉とすることにより形成されていることを特徴とする請
求項1〜3の何れかに記載の非水系二次電池。
4. The non-aqueous secondary battery according to claim 1, wherein the deformation preventing portion is formed by thinning a part of a battery container.
【請求項5】 前記変形防止部は、少なくとも一つの直
線状又は曲線状の溝により形成されていることを特徴と
する請求項4記載の非水系二次電池。
5. The non-aqueous secondary battery according to claim 4, wherein the deformation preventing portion is formed by at least one linear or curved groove.
【請求項6】 前記変形防止部は、電池容器に設けられ
た直線状又は曲線状のリブにより形成されていることを
特徴とする請求項1〜3の何れかに記載の非水系二次電
池。
6. The non-aqueous secondary battery according to claim 1, wherein the deformation preventing portion is formed by a linear or curved rib provided on the battery container. .
【請求項7】 前記電池容器が多角形の扁平形状をな
し、前記薄肉部を構成する溝は、該多角形の重心と角部
とを結ぶ仮想直線を横切るように配置されており、前記
溝のなす曲線の接線又は直線と、前記仮想直線の垂線と
の交角が±60度の範囲内に設定されていることを特徴
とする請求項1〜6の何れかに記載の非水系二次電池。
7. The battery container has a polygonal flat shape, and a groove constituting the thin portion is disposed so as to cross an imaginary straight line connecting a center of gravity and a corner of the polygon. The non-aqueous secondary battery according to any one of claims 1 to 6, wherein an intersection angle between a tangent or a straight line of the curved line and a perpendicular of the virtual straight line is set within a range of ± 60 degrees. .
【請求項8】 前記変形防止部を構成する曲線状溝の接
線又は直線状溝が、前記広平面部における前記領域内の
外周線に対して±20度以内の角度をなすように設けら
れていることを特徴とする請求項5又は6に記載の非水
系二次電池。
8. A tangent line or a straight groove of the curved groove constituting the deformation preventing portion is provided so as to form an angle within ± 20 degrees with respect to an outer peripheral line in the area in the wide plane portion. The non-aqueous secondary battery according to claim 5, wherein:
【請求項9】 前記変形防止部を構成する曲線状リブの
接線又は直線状リブが、前記広平面部における前記領域
内の外周線に対して±20度以内の角度をなすように設
けられていることを特徴とする請求項に記載の非水系
二次電池。
9. A tangent or a straight rib of the curved rib constituting the deformation preventing portion is provided so as to form an angle within ± 20 degrees with an outer peripheral line in the area in the wide plane portion. The non-aqueous secondary battery according to claim 6 , wherein:
【請求項10】 前記変形防止部は、前記仮想直線を挟
んで対向配置され、且つ、対向配置された変形防止部同
士が互いに離隔配置されるとともに、各々の変形防止部
が前記薄肉部とも離隔配置されていることを特徴とする
請求項7に記載の非水系二次電池。
10. The deformation preventing portions are arranged opposite to each other with the virtual straight line interposed therebetween, and the opposed deformation preventing portions are spaced apart from each other, and each of the deformation preventing portions is also spaced from the thin portion. The non-aqueous secondary battery according to claim 7, which is arranged.
【請求項11】 前記電池容器の広平面の形状は、矩形
であることを特徴とする請求項1〜10のいずれかに記
載の非水系二次電池。
11. The non-aqueous secondary battery according to claim 1, wherein the shape of the wide plane of the battery container is rectangular.
【請求項12】 前記非水系二次電池は、厚さが12m
m未満の扁平形状であることを特徴とする請求項1〜1
1のいずれかに記載の非水系二次電池。
12. The non-aqueous secondary battery has a thickness of 12 m.
m is a flat shape less than m.
2. The non-aqueous secondary battery according to any one of 1.
【請求項13】 前記電池容器の板厚は、0.2mm以
上1mm以下であることを特徴とする請求項1〜12の
いずれかに記載の非水系二次電池。
13. The non-aqueous secondary battery according to claim 1, wherein the thickness of the battery container is 0.2 mm or more and 1 mm or less.
JP2000074551A 2000-03-16 2000-03-16 Non-aqueous secondary battery Expired - Fee Related JP4428796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000074551A JP4428796B2 (en) 2000-03-16 2000-03-16 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000074551A JP4428796B2 (en) 2000-03-16 2000-03-16 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2001266812A true JP2001266812A (en) 2001-09-28
JP4428796B2 JP4428796B2 (en) 2010-03-10

Family

ID=18592577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000074551A Expired - Fee Related JP4428796B2 (en) 2000-03-16 2000-03-16 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4428796B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020042598A (en) * 2002-05-16 2002-06-05 이점호 safety-groove of a secondary battery
JP2007194001A (en) * 2006-01-18 2007-08-02 Matsushita Electric Ind Co Ltd Battery application apparatus
WO2010100731A1 (en) * 2009-03-04 2010-09-10 トヨタ自動車株式会社 Sealed battery and method of producing sealed battery
JP2011238627A (en) * 2000-09-29 2011-11-24 Lg Chem Ltd Safety plate of secondary battery
CN110660933A (en) * 2019-08-30 2020-01-07 蜂巢能源科技有限公司 Preparation method of soft package lithium ion battery
WO2023159639A1 (en) * 2022-02-28 2023-08-31 宁德时代新能源科技股份有限公司 Housing, battery cell, battery, and electrical device
WO2023220889A1 (en) * 2022-05-16 2023-11-23 宁德时代新能源科技股份有限公司 Shell, battery cell, battery and electric device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011238627A (en) * 2000-09-29 2011-11-24 Lg Chem Ltd Safety plate of secondary battery
KR20020042598A (en) * 2002-05-16 2002-06-05 이점호 safety-groove of a secondary battery
JP2007194001A (en) * 2006-01-18 2007-08-02 Matsushita Electric Ind Co Ltd Battery application apparatus
WO2010100731A1 (en) * 2009-03-04 2010-09-10 トヨタ自動車株式会社 Sealed battery and method of producing sealed battery
JP4831265B2 (en) * 2009-03-04 2011-12-07 トヨタ自動車株式会社 Sealed battery and method for manufacturing sealed battery
CN110660933A (en) * 2019-08-30 2020-01-07 蜂巢能源科技有限公司 Preparation method of soft package lithium ion battery
WO2023159639A1 (en) * 2022-02-28 2023-08-31 宁德时代新能源科技股份有限公司 Housing, battery cell, battery, and electrical device
WO2023220889A1 (en) * 2022-05-16 2023-11-23 宁德时代新能源科技股份有限公司 Shell, battery cell, battery and electric device

Also Published As

Publication number Publication date
JP4428796B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
EP2602840B1 (en) Secondary battery pouch having improved stability, pouch-type secondary battery using same, and medium- or large-sized battery pack
JP3997370B2 (en) Non-aqueous secondary battery
WO2014119308A1 (en) Sealed battery
WO2014119309A1 (en) Hermetic battery
US20070196733A1 (en) Pouch type rechargeable battery
KR101629499B1 (en) Electrode assembly and secondary battery comprising the same
KR101546545B1 (en) Pouch type lithium secondary battery
JP4892842B2 (en) Lithium secondary battery
JP5161421B2 (en) Non-aqueous electrolyte battery
JP4348492B2 (en) Non-aqueous secondary battery
JP4009803B2 (en) Non-aqueous secondary battery
JP5462304B2 (en) Battery pack using lithium-ion battery
JP2008251381A (en) Nonaqueous secondary battery
JP3997369B2 (en) Manufacturing method of non-aqueous secondary battery
JPH11102674A (en) Thin secondary battery
JP4428796B2 (en) Non-aqueous secondary battery
JP2002246068A (en) Nonaqueous secondary cell
JP4688305B2 (en) Non-aqueous secondary battery
JP2002298827A (en) Nonaqueous secondary battery
JPH11102673A (en) Thin secondary battery
JP4092543B2 (en) Non-aqueous secondary battery
JP4601109B2 (en) Non-aqueous secondary battery
JP2002245991A (en) Non-aqueous secondary battery
JP4009802B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP4594478B2 (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees