JP4688305B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery Download PDF

Info

Publication number
JP4688305B2
JP4688305B2 JP2001032339A JP2001032339A JP4688305B2 JP 4688305 B2 JP4688305 B2 JP 4688305B2 JP 2001032339 A JP2001032339 A JP 2001032339A JP 2001032339 A JP2001032339 A JP 2001032339A JP 4688305 B2 JP4688305 B2 JP 4688305B2
Authority
JP
Japan
Prior art keywords
battery
secondary battery
thickness
container
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001032339A
Other languages
Japanese (ja)
Other versions
JP2002237283A (en
Inventor
史朗 加藤
香江 横内
静邦 矢田
治夫 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2001032339A priority Critical patent/JP4688305B2/en
Publication of JP2002237283A publication Critical patent/JP2002237283A/en
Application granted granted Critical
Publication of JP4688305B2 publication Critical patent/JP4688305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水系二次電池に関し、特に、蓄電システム用非水系二次電池に関するものである。
【0002】
【従来の技術】
近年、省資源を目指したエネルギーの有効利用及び地球環境問題の観点から、深夜電力貯蔵及び太陽光発電の電力貯蔵を目的とした家庭用分散型蓄電システム、電気自動車のための蓄電システム等が注目を集めている。例えば、特開平6−86463号公報には、エネルギー需要者に最適条件でエネルギーを供給できるシステムとして、発電所から供給される電気、ガスコージェネレーション、燃料電池、蓄電池等を組み合わせたトータルシステムが提案されている。このような蓄電システムに用いられる二次電池は、エネルギー容量が10Wh以下の携帯機器用小型二次電池と異なり、容量が大きい大型のものが必要とされる。このため、上記の蓄電システムでは、複数の二次電池を直列に積層し、電圧が例えば50〜400Vの組電池として用いるのが常であり、ほとんどの場合、鉛電池を用いていた。
【0003】
一方、携帯機器用小型二次電池の分野では、小型及び高容量のニーズに応えるべく、新型電池としてニッケル水素電池、リチウム二次電池の開発が進展し、180Wh/l以上の体積エネルギー密度を有する電池が市販されている。特に、リチウムイオン電池は、350Wh/lを超える体積エネルギー密度の可能性を有すること、及び、安全性、サイクル特性等の信頼性が金属リチウムを負極に用いたリチウム二次電池に比べ優れることから、その市場を飛躍的に延ばしている。
【0004】
これを受け、蓄電システム用大型電池の分野においても、高エネルギー密度電池の候補として、リチウムイオン電池をターゲットとし、リチウム電池電力貯蔵技術研究組合(LIBES)等で精力的に開発が進められている。
【0005】
これら大型リチウムイオン電池のエネルギー容量は、100Whから400Wh程度であり、体積エネルギー密度は、200〜300Wh/lと携帯機器用小型二次電池並のレベルに達している。その形状は、直径50mm〜70mm、長さ250mm〜450mmの円筒型、厚さ35mm〜50mmの角形又は長円角形等の扁平角柱形が代表的なものである。
【0006】
しかし、これら大型リチウムイオン電池は、高エネルギー密度が得られるものの、その電池設計が携帯機器用小型電池の延長にあることから、直径又は厚さが携帯機器用小型電池の3倍以上の円筒型、角型等の電池形状とされる。この場合には、充放電時の電池の内部抵抗によるジュール発熱、或いはリチウムイオンの出入りによって活物質のエントロピーが変化することによる電池の内部発熱により、電池内部に熱が蓄積されやすい。このため、電池内部の温度と電池表面付近の温度差が大きく、これに伴って内部抵抗が異なる。その結果、充電量、電圧のばらつきを生じ易い。また、この種の電池は複数個を組電池にして用いるため、システム内での電池の設置位置によっても蓄熱されやすさが異なって各電池間のばらつきが生じ、組電池全体の正確な制御が困難になる。更には、高率充放電時等に放熱が不十分な為、電池温度が上昇し、電池にとって好ましくない状態におかれることから、電解液の分解等による寿命の低下、更には電池の熱暴走の誘起など信頼性、特に、安全性に問題が残されていた。
【0007】
上記問題を解決する目的でWO99/60652号公報には、正極、負極、セパレータ、及びリチウム塩を含む非水系電解質を電池容器内に収容した扁平形状の非水系二次電池であって、前記非水系二次電池は、その厚さが12mm未満の扁平形状であり、そのエネルギー容量が30Wh以上且つ体積エネルギー密度が180Wh/l以上の非水系二次電池が開示されている。該電池は独特の電池形状(扁平形状)により、実用化の障壁となる上記蓄熱に起因する信頼性、安全性の問題点を解決する事を提案している。
【0008】
【発明が解決しようとする課題】
扁平形状の電池の場合、放熱性を向上させる目的から電池の厚みを薄くするに従い、電池表裏面積は大きくなる。又高いエネルギー密度を維持するためには、特に、蓄電システムに用いられる大型リチウム二次電池(エネルギー容量30Wh以上)において扁平形状の電池を試作する場合は、その傾向が強く、例えば、100Wh級の厚さ6mmのリチウムイオン電池の場合、電池表裏面の大きさは、600cm2(片面)と非常に大きい。
【0009】
一般的に携帯機器用の小型リチウムイオン電池においては、機器の故障による誤作動や使用者側の誤用によって過充電や外部短絡といった状態になると、電池内部が加熱されて電解液が分解されたり蒸発したりすることにより内部でガスが発生する。よって内圧上昇に伴う事故を防止するためには、例えば特開平6−36752号公報に記載されている様に動作圧が高い範囲1〜2MPaで設計されている安全弁が容器の蓋や底に備えられている。
【0010】
しかしながら、電池表裏面が大きくかつ容器厚さが薄い大型電池に上述のような一般的な安全弁を設けた場合、電池内部でガスが発生し内圧が上昇するような異常事態において小型電池では問題にならない低い圧力であっても容器自体が容易に膨張し易く、安全弁が充分に働かず発火や爆発を誘発しかねない危険な状態に陥るという問題が残されていた。
【0011】
本発明の目的は、上記問題点を解決すべく、30Wh以上の大容量且つ180Wh/l以上の体積エネルギー密度を有し、異常時に発火や爆発などの危険な事故を未然に防止するため、内圧上昇が発生するような異常事態において早い段階で動作する圧力解放機構を備え、安全性の高い扁平形状の非水系二次電池を提供することにある。
【0012】
本発明の更なる目的は、厚さが12mm未満の扁平形状であり、放熱特性に優れた安全性の高い扁平形状の非水系二次電池を提供することにある。
【0013】
【課題を解決するための手段】
本発明は、上記目的を達成するため、正極、負極、セパレータ、及びリチウム塩を含む非水系電解質を電池容器内に収容した扁平形状の非水系二次電池であって、電池容器が多角形の扁平形状をなし、前記電池容器は、金属板であり、その板厚は、0.2mm以上1mm以下であり、そのエネルギー容量が30Wh以上且つ体積エネルギー密度が180Wh/l以上であり、前記偏平形状をなす電池容器の広平面部に圧力解放機構を具備し、該圧力解放機構は、19.6kPa以上78.5kPa未満の作動圧で、破断する少なくとも一つの直線状又は曲線状の溝により形成された薄肉部を有し、該薄肉部の厚さが0.02mm以上0.2mm未満であり、該薄肉部を形成する溝は電池容器の外周から前記広平面部の重心に至る距離の60%以内の外周寄りの範囲に少なくともその一部分を含むことを特徴とする非水系二次電池を提供するものである。
【0014】
【発明の実施の形態】
以下、本発明の一実施の形態の非水系二次電池について図面を参照しながら説明する。図1は、本発明の一実施の形態の扁平な矩形(ノート型)の蓄電システム用非水系二次電池の平面図及び側面図を示す図であり、図2は、図1に示す電池の内部に収納される電極積層体の構成を示す側面図である。
【0015】
図1及び図2に示すように、本実施の形態の非水系二次電池は、上蓋1及び底容器2からなる電池容器と、該電池容器の中に収納されている複数の正極101a、負極101b、101c、及びセパレータ104からなる電極積層体とを備えている。本実施形態のような扁平型非水系二次電池の場合、正極101a、負極101b(又は積層体の両外側に配置された負極101c)は、例えば、図2に示すように、セパレータ104を介して交互に配置されて積層されるが、本発明は、この配置に特に限定されず、積層数等は、必要とされる容量等に応じて種々の変更が可能である。また、図1及び図2に示す非水系二次電池の形状は、例えば縦300mm×横210mm×厚さ6mmであり、正極101aにLiMn24、負極101b、101cに炭素材料を用いるリチウム二次電池の場合、例えば、蓄電システムに用いることができる。
【0016】
図1に示すように、電池容器の上蓋1には、正極端子3及び負極端子4が上蓋1と絶縁された状態で取り付けられており、正極端子3に図2に示す各正極101aの正極集電体105aが電気的に接続されるとともに、負極端子4に各負極101b、101cの負極集電体105bが電気的に接続されている。
【0017】
上蓋1及び底容器2は、図1中の拡大図に示したA点、つまり上蓋1の周縁部を溶かし込んで底容器2と溶接することにより電池容器を構成している。上蓋1には、電解液の注液口5が開けられており、電解液注液後、例えば、アルミニウム−変成ポリプロピレンラミネートフィルムからなる封口フィルム6を用いて封口される。最終封口工程は、少なくとも一回の充電操作の後に行うことが好ましい。封口フィルム6による最終封口工程後の電池容器内の圧力は、以下の理由から大気圧未満であることが好ましく、更に好ましくは8.66×104Pa(650Torr)以下、特に好ましくは7.33×104Pa(550Torr)以下である。すなわち、内圧が大気圧以上になると、電池が設計厚みより大きくなり易く、或いは電池の厚みのばらつきが大きくなり易く、更には電池の内部抵抗及び容量がばらつきやすくなるからである。この圧力は、使用するセパレータ、電解液の種類、電池容器の材質及び厚み、電池の形状等を加味して決定される。
【0018】
正極101aに用いられる正極活物質としては、リチウム系の正極材料であれば、特に限定されず、リチウム複合コバルト酸化物、リチウム複合ニッケル酸化物、リチウム複合マンガン酸化物、或いはこれらの混合物、更にはこれら複合酸化物に異種金属元素を一種以上添加した系等を用いることができ、高電圧、高容量の電池が得られることから、好ましい。また、大型リチウム系二次電池の実用化において最重点課題である安全性を重視する場合、熱分解温度が高いマンガン酸化物が好ましい。このマンガン酸化物としてはLiMn24に代表されるリチウム複合マンガン酸化物、更にはこれら複合酸化物に異種金属元素を一種以上添加した系、さらにはリチウムを量論比よりも過剰にしたLi1+xMn2-y4が挙げられる。特に、本発明は上記マンガン酸化物を主体とする正極を用いる場合、その効果が大きい。
【0019】
負極101b、101cに用いられる負極活物質としては、リチウム系の負極材料であれば、特に限定されず、リチウムをドープ及び脱ドープ可能な材料であることが、安全性、サイクル寿命などの信頼性が向上し好ましい。リチウムをドープ及び脱ドープ可能な材料としては、公知のリチウムイオン電池の負極材として使用されている黒鉛系物質、炭素系物質、錫酸化物系、ケイ素酸化物系等の金属酸化物、或いはポリアセン系有機半導体に代表される導電性高分子等が挙げられる。
【0020】
セパレータ104の構成は、特に限定されるものではないが、単層又は複層のセパレータを用いることができ、少なくとも1枚は不織布を用いることが好ましく、この場合、サイクル特性が向上する。また、セパレータ104の材質も、特に限定されるものではないが、例えばポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアミド、クラフト紙、ガラス、セルロース系材料等が挙げられ、電池の耐熱性、安全性設計に応じ適宜決定される。
【0021】
本実施形態の非水系二次電池の電解質としては、公知のリチウム塩を含む非水系電解質を使用することができ、正極材料、負極材料、充電電圧等の使用条件により適宜決定され、より具体的にはLiPF6、LiBF4、LiClO4等のリチウム塩を、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、酢酸メチル、蟻酸メチル、或いはこれら2種以上の混合溶媒等の有機溶媒に溶解したもの等が例示される。また、電解液の濃度は特に限定されるものではないが、一般的に0.5mol/lから2mol/lが実用的であり、該電解液は当然のことながら、水分が100ppm以下のものを用いることが好ましい。なお、本明細書で使用する非水系電解質とは、非水系電解液、有機電解液を含む概念を意味するものであり、また、ゲル状又は固体の電解質も含む概念を意味するものである。
【0022】
上記のように構成された非水系二次電池は、家庭用蓄電システム(夜間電力貯蔵、コージェネレション、太陽光発電等)、電気自動車等の蓄電システム等に用いることができ、大容量且つ高エネルギー密度を有することができる。この場合、エネルギー容量は、好ましくは30Wh以上、より好ましくは50Wh以上であり、且つエネルギー密度は、好ましくは180Wh/l以上、より好ましくは200Wh/lである。エネルギー容量が30Wh未満の場合、或いは、体積エネルギー密度が180Wh/l未満の場合は、蓄電システムに用いるには容量が小さく、充分なシステム容量を得るために電池の直並列数を増やす必要があること、また、コンパクトな設計が困難となることから蓄電システム用としては好ましくない。
【0023】
本実施形態の非水系二次電池は、扁平形状をしており、その厚さは12mm未満、より好ましくは10mm未満である。厚さの下限については電極の充填率、電池サイズ(薄くなれば同容量を得るためには面積が大きくなる)を考慮した場合、2mm以上が実用的である。電池の厚さが12mm以上になると、電池内部の発熱を充分に外部に放熱することが難しくなること、或いは電池内部と電池表面付近での温度差が大きくなり、内部抵抗が異なる結果、電池内での充電量、電圧のばらつきが大きくなる。なお、具体的な厚さは、電池容量、エネルギー密度に応じて適宜決定されるが、期待する放熱特性が得られる最大厚さで設計するのが、好ましい。
【0024】
また、本実施形態の非水系二次電池は、例えば、扁平形状の表裏面が角形、円形、長円形等の種々の形状とすることができ、角形の場合は、一般に矩形であるが、三角形、六角形等の多角形とすることもできる。さらに、肉厚の薄い円筒等の筒形にすることもできる。筒形の場合は、筒の肉厚がここでいう厚さとなる。また、製造の容易性の観点から、電池の扁平形状の表裏面が矩形であり、図1に示すようなノート型の形状が好ましい。
【0025】
電池容器となる上蓋1及び底容器2に用いられる材質は、電池の用途、形状により適宜選択され、特に限定されるものではなく、種々の金属板、硬質樹脂等金属以外の構造材、金属板と他の材料との組み合わせ等とすることができる。特に、鉄、ステンレス鋼、アルミニウム等が一般的であり、コストの観点からも実用的である。また、電池容器の厚さも電池の用途、形状或いは電池容器の材質により適宜決定され、特に限定されるものではない。好ましくは、その電池表面積の80%以上の部分の厚さ(電池ケースを構成する一番面積が広い部分の厚さ)が0.2mm以上である。上記厚さが0.2mm未満では、電池の製造に必要な強度が得られないことから望ましくなく、この観点から、より好ましくは0.3mm以上である。また、同部分の厚さは、1mm以下であることが望ましい。この厚さが1mmを超えると、電極面を押さえ込む力は大きくなるが、電池の内容積が減少し充分な容量が得られないこと、或いは、重量が重くなることから望ましくなく、この観点からより好ましくは0.7mm以下である。
【0026】
上記のように、本実施形態では、非水系二次電池の厚さを12mm未満に設計することにより、この電池が30Wh以上の大容量且つ180Wh/lの高エネルギー密度を有する場合に高率充放電が行われたときであっても、優れた放熱特性を実現し、電池温度の上昇を抑制することができる。従って、内部発熱による電池の蓄熱を低減することができ、その結果、電池の熱暴走も抑止することが可能となり信頼性、安全性に優れた非水系二次電池を提供することができる。
【0027】
次に、上記の様に構成された本実施形態の非水系二次電池に具備する圧力解放機構について詳細に説明する。この圧力解放機構は、扁平形状をなす電池容器の広平面部に形成された少なくとも1つ以上の直線状または曲線状の溝により形成された薄肉部を有しており、この薄肉部は、電池容器に一定以上の内部圧力が生じると破断する安全弁として作用する。
【0028】
この圧力解放機構は、薄肉部の厚さの下限が好ましくは0.02mm以上、より好ましくは0.03mm以上、上限が、好ましくは0.2mm未満、より好ましくは0.1mm未満である。厚さが上記下限未満であると、通常使用時にも破断するおそれがあり、また電池容器の加工工程においてピンホールフリーを保証できない範囲となる可能性があるため好ましくない。一方、厚さが上記上限を越えると、電池内部にガスが発生する異常事態が続いても薄肉部が破断せず、容易に膨張変形し、発火や爆発を誘発させる危険性がある。この薄肉部の最適な厚さは、電池の形状、厚み、電池容器の材質、電池の容量、使用するセパレータ、電解液の種類等により適宜設計されるが、例えば電池容器の材質がステンレスの場合には、0.03mm以上0.06mm未満、アルミニウムの場合は0.06mm以上0.1mm未満、鉄の場合は0.04mm以上0.07mm未満が好ましい。なお、薄肉部を構成する溝は、例えば切溝加工により形成することができる。また、本発明において溝の個数は、少なくとも1個以上あればよく、2個以上の複数の溝を設けてもよい。
【0029】
この圧力解放機構の作動圧(電池内部の上昇した圧力と電池外側の圧力との差)は、下限が好ましくは5kPa以上、より好ましくは20kPa以上、上限が、好ましくは500kPa未満、より好ましくは120kPa未満、特に好ましくは80kPa未満であり、このようにすると、早いタイミングで内部圧力を解放させることができ、特に有利である。
【0030】
圧力解放機構を配置させる場所については、図3中斜線領域51に示す様に扁平形状をなす電池容器の広平面部内に配置し、広平面の外周から所定距離の範囲に少なくともその一部分を含むように設けるのが望ましい。その外周寄りの範囲は、容器外周から該広平面部の重心に至る距離の60%以内の外周寄りの範囲とするのが望ましく、40%以内の範囲とするのがさらに望ましい。
【0031】
電池の広平面が大きくかつ容器厚さが薄い場合、上述の通り容器は膨らみ易い。その度合いは使用する電池の形状、厚み、電池容器の素材に依存するが、特に外周から広平面部の重心に至る距離の60%以内の外周寄りの範囲に容器の膨らみに伴う歪みが発生し易い。この歪みは、外周から重心に至る距離の40%以内の外周寄りの範囲においてさらに大きくなる傾向を示す。これは、上記範囲において、容器壁を変形させる力が大きく作用していることを意味する。また、内圧の上昇に伴って容器壁全体に作用する応力が、この範囲に伝搬して集中的に作用しているとも言える。したがって、これらの範囲に圧力解放機構を設けると、容器内圧が低圧でも、圧力解放機構を設けた箇所には集中した大きな応力が作用し、確実に作動させることができる。逆に、上記範囲より重心よりの範囲にのみ圧力解放機構を設けると、その範囲は容器が膨らんだときに、歪まずにそのままの形状で持ち上げられる傾向を示し、変形曲率が小さく、平らに近い状態を保つため、圧力解放機構を作動させる力が作用し難い。
【0032】
電池容器の広平面部の形状が矩形等、多角形の場合には、そのコーナー部近傍に設けると、そこに歪みが集中するので、その歪みを有効に利用でき、確実な作動を得る上でより好ましい。また、このように、電池容器の内圧の集中による歪みを利用して作動する圧力解放機構であるため、内部ガスにより容器が膨らむというような異常事態でない通常状態においては、不用意な破断開口は起こらない。
【0033】
図4を用いて、溝の配置を説明する。図4に示す電池容器は広平面が矩形形状であり、直線状溝64又は曲線状溝64の接線64aは、矩形の重心(中心)G及び角部とを結ぶ仮想直線61を横切るように配置されており、上記溝のなす直線又は曲線の接線が、上記仮想直線61の垂線に対して±60度以内の角度をなすように設けられているのが望ましい。これは、容器が膨らむときに生じる広平面部での歪みは、仮想直線61を横切る方向において大きいからである。したがって、図4中の角62を上記範囲とすることにより、大きな歪みが生じる方向に溝を沿わすことができ、その結果低い容器内圧で破断開口し易い圧力解放機構とすることができるのである。溝のなす角62が上記範囲を越えると、容器が膨らむときに大きな歪みを生じずに持ちあがることとなり、低圧で確実に作動させることが難しい。この例のように容器広平面が矩形の場合は、その重心と角部とを結ぶ仮想直線は、勿論対角線となる。なお、容器広平面部が、矩形以外の多角形の場合でも、直線状溝又は曲線状溝の接線が、多角形の重心(中心)及び角部を結ぶ仮想直線を横切るように配置され、上記溝のなす直線又は曲線の接線が、仮想直線の垂線に対して±60度以内の角度をなすように設けられることにより、上記と同様の作用が得られる。
【0034】
上述のように広平面部側に上記の角度範囲内で圧力解放機構の溝を形成することにより、溝の開口時に電池内容物が周囲へ飛散することも防止できる。圧力解放機構の溝は、その形状、薄肉部厚さの設計により予め決定された上記所定圧力の範囲で開口させることができる。また、圧力解放機構を容器広平面部側に設けることにより大きな開口面積を持たせて素早く内部ガスを抜き出すことが可能となる。さらに、保護カバーが必要でかつ設備投資も大きいラプチャーディスクと比較して、コストを低減することができる点でもより好ましい。
【0035】
溝の製造方法は特に限定されないが、上記した切溝加工のほか、例えばエッチング、プレスなどにより、任意の形状で所定の厚さを残し、薄肉部の溝加工を行うことができる。図5には溝加工式の圧力解放機構の例を示す。上蓋1表面の周囲近傍でかつコーナー付近71に大きな薄肉部を形成する切溝加工部72を設けると、低い圧力でかつ大きな開口面積を持つ圧力解放機構となる。図中72aは直線状、72bは円弧状、72cは円の一部のみ残した形状、72dはX印形状の溝方式圧力解放機構である。
【0036】
【実施例】
以下、本発明の実施例を示し、本発明をさらに具体的に説明する。
【0037】
(実施例1)
(1)図1に示すように、底容器2は、0.5mmのSUS304製薄板を深さ5mmに絞り加工によりトレー状に作成し、電池の上蓋1も厚さ0.5mmのSUS304製薄板で平板状に作成した。電池外形寸法は短辺側で210mm、長辺側で300mmとおよそJIS規格A4サイズと同等とした。また、同図に示すように、上蓋1には、アルミ製の正極端子及び銅製の負極端子3、4(6mmφ、先M3のねじ切り)を取り付けた。正極及び負極端子3、4は、ポリプロピレン製ガスケットで上蓋1と絶縁した。次に底容器2内へ電極積層体を挿入せずに上蓋1を配置し、図1の角部Aを全周に亘りレーザー溶接して電池外装体、つまり電池容器のみからなる組立品を作製した。
【0038】
(2)図5に示すように、電池容器の上蓋1のコーナー部71に、幅0.5mm、薄肉部厚さ0.040mmの直線状の溝72aを切削加工で作製し、圧力解放機構とした。この溝72aは、コーナー部71の両辺より10mmずつ内側の平行線上で、コーナー部71両辺より45mm内側の二点を直線で結んだ線分である。
【0039】
(3)上記のようにして得られた電池外装体のみの組立品に、注液口5を使って電池内圧を上昇させていき圧力解放機構の作動試験を行ったところ、少し膨らんだ時点で素早く作動し、電池の膨張後厚さも13mmでとどまっていた。
【0040】
(実施例2)
実施例1の(2)に示す溝72aを上蓋1のコーナー部71に作製した電池容器を用いて非水二次電池を以下の様に組み立てた。
【0041】
(1)LiMn24100重量部、アセチレンブラック8重量部、ポリビニリデンフルオライド(PVDF)3重量部をN−メチルピロリドン(NMP)100重量部と混合し正極合材スラリーを得た。該スラリーを集電体となる厚さ20μmのアルミ箔の両面に塗布、乾燥した後、プレスを行い、正極を得た。図6の(a)は正極の説明図である。本実施例において正極101aの塗布面積(W1×W2)は、262.5×192mm2であり、20μmの集電体の両面に110μmの厚さで塗布されている。その結果、電極厚さtは240μmとなっている。また、電極の短辺側には電極材料が塗布されていない正極集電片106aが設けられ、その中央に直径3mmの穴が開けられている。
【0042】
(2)黒鉛化メソカーボンマイクロビーズ(MCMB、大阪ガスケミカル製、品番6−28)100重量部、PVDF10重量部をNMP90重量部と混合し、負極合材スラリーを得た。該スラリーを集電体となる厚さ14μmの銅箔の両面に塗布、乾燥した後、プレスを行い、負極を得た。図6の(b)は負極の説明図である。負極101bの塗布面積(W1×W2)は、267×195mm2であり、14μmの集電体の両面に90μmの厚さで塗布されている。その結果、電極厚さtは194μmとなっている。また、電極の短辺側には電極材料が塗布されていない負極集電片106bが設けられ、その中央に直径3mmの穴が開けられている。更に、同様の手法で片面だけに塗布し、それ以外は同様の方法で厚さ104μmの片面電極を作成した。片面電極は(3)項の電極積層体において外側に配置される(図2中101c)。
【0043】
(3)図2に示すように、上記(1)項で得られた正極8枚、負極9枚(内片面2枚)をセパレータA104a(レーヨン系、目付12.6g/m2)とセパレータB104b(ポリエチレン製微孔膜;目付13.3g/m2)とを合わせたセパレータ104を介して交互に積層し、さらに、電池容器との絶縁のために外側の負極101cの更に外側にセパレーターB104bを配置し、電極積層体を作成した。なお、セパレータ104は、セパレータA104aが正極側に、セパレータB104bが負極側になるように配置した。
【0044】
(4)電池容器を構成する底容器2(図1参照)は、0.5mmのSUS304製薄板を絞り加工により深さ5mmのトレー状に作成し、上蓋1は厚さ0.5mmのSUS304製薄板で平板状に作成した。該上蓋1には、アルミ製の正極端子及び銅製の負極端子3、4(6mmφ、先M3のねじ切り)を取り付けた。正極及び負極端子3、4は、ポリプロピレン製ガスケットで上蓋1と絶縁されている。
【0045】
(5)上記(3)項で作成した電極積層体の各正極集電片106aの穴に正極端子3のねじ部を挿通するとともに、各負極集電片106bの穴に負極端子4のねじ部を挿通し、それぞれ、アルミニウム製及び銅製のナットを締結した後、電極積層体を絶縁テープで上蓋1に固定し、図1の角部Aを全周に亘りレーザー溶接した。その後、注液口5(6mmφ)から電解液としてエチレンカーボネートとジエチルカーボネートを1:1重量比で混合した溶媒に1mol/lの濃度にLiPF6を溶解した溶液を注液した。次に、大気圧下で、仮止め用のボルトを用いて注液口5を一旦封口した。
【0046】
(6)この電池を5Aの電流で4.2Vまで充電し、その後4.2Vの定電圧を印加する定電流定電圧充電を12時間行い、続いて、5Aの定電流で2.5Vまで放電した。
【0047】
(7)電池に取り付けられた仮止め用ボルトを取り外し、4.00×104Pa(300Torr)の減圧下で、直径12mmに打ち抜いた厚さ0.08mmのアルミ箔−変性ポリプロピレンラミネートフィルムからなる封口フィルム6を、温度250〜350℃、圧力98.1〜294kPa(1〜3kg/cm2)、加圧時間5〜10秒の条件で熱融着することにより、注液口5を最終封口し、厚さ6mmの扁平形状のノート型電池を得た。
【0048】
続いて、この電池を5Aの電流で4.2Vまで充電し、その後4.2Vの定電圧を印加する定電流定電圧充電を12時間行い、続いて、5Aの定電流で2.5Vまで放電し、容量を確認した。これにより算出された放電容量は27Ahであった。次に安全性を確認するため、27Aの定電流充電での過充電試験を社団法人電池工業会指針SBA G1101に準じて行った。過充電進行に伴い電池表面温度は上昇し、電池内部でのガス発生のためか、電池容器が膨張し始めた。その後すぐさま図5中のコーナー部71の溝72aが破断開口し、蒸気が発生し、電池温度は徐々に低下していった。大容量電池であるにもかかわらず、発熱発火等には至らなかった。電池の膨張後厚さも12mmでとどまっていた。
【0049】
(比較例1)
実施例2で使用した圧力解放機構以外は実施例2と同様に電池を作製した。図5に示すように、上蓋1のコーナー部71に、幅0.5mm、薄肉部厚さ0.015mmの直線状の溝72aを切削加工で作製し、圧力解放機構とした。この溝72aは、コーナー部71の両辺より10mmずつ内側の平行線上で、コーナー部71両辺より45mm内側の二点を直線で結んだ線分である。しかし注液工程後、溝72aの一部から液漏れしていることを発見した。薄肉部の厚さがこの様に薄すぎると、一般的な製造工程あるいはユーザーによる通常使用時においても、容易に破断開口してしまうことが予想された。
【0050】
(比較例2)
実施例1の(1)の圧力解放機構以外は実施例1と同様に電池外装体のみの組立品を作製した。図5に示すように、上蓋1のコーナー部71に、幅0.5mm、薄肉部厚さ0.3mmの直線状の溝72aを切削加工で作製し、圧力解放機構とした。この溝72aは、コーナー部71の両辺より10mmずつ内側の平行線上で、コーナー部71両辺より45mm内側の二点を直線で結んだ線分である。上記のようにして得られた電池外装体のみの組立品に、注液口5を使って電池内圧を上昇させ圧力解放機構の開口試験を行ったところ、低圧では圧力解放機構が作動せず、容器は厚さ90mmまで大きく膨張したため、試験を中止した。電池内容物を含んでいた場合、非常に危険な事態が予想された。
【0051】
【発明の効果】
以上から明らかな通り、本発明によれば、厚さが12mm未満の扁平形状であり、30Wh以上の大容量且つ180Wh/l以上の高体積エネルギー密度を有する扁平型非水二次電池において、内圧上昇が発生するような異常事態であっても、早い段階で動作する圧力解放機構を備えた安全性の高い非水系二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態の蓄電システム用非水系二次電池の平面図及び側面図を示す図である。
【図2】図1に示す電池の内部に収納される電極積層体の構成を示す側面図である。
【図3】本発明の圧力解放機構配置場所の説明図である。
【図4】本発明の切溝加工方式圧力解放機構配置角度の説明図である。
【図5】本発明の非水系二次電池の実施例及び比較例に用いた圧力解放機構の説明図である。
【図6】図2に示す積層体を構成する正極、負極、及びセパレータの平面図である。
【符号の説明】
1 上蓋
2 底容器
3 正極端子
4 負極端子
5 注液口
6 封口フィルム
51 圧力解放機構配置範囲
61 仮想直線
62 仮想直線と、直線状溝又は曲線状溝の接線とで挟まれた狭角
64 溝(圧力解放機構)
71 上蓋コーナー部
72a、72b,72c,72d 溝(圧力解放機構)
101a 正極(両面)
101b 負極(両面)
101c 負極(片面)
104、104a、104b セパレータ
105a 正極集電体
105b 負極集電体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous secondary battery, and more particularly to a non-aqueous secondary battery for a power storage system.
[0002]
[Prior art]
In recent years, from the viewpoint of effective use of energy aiming at resource saving and global environmental problems, attention has been focused on home-use distributed storage systems for the storage of late-night power storage and solar power generation, storage systems for electric vehicles, etc. Collecting. For example, Japanese Patent Laid-Open No. 6-86463 proposes a total system that combines electricity, gas cogeneration, fuel cells, storage batteries, and the like supplied from a power plant as a system that can supply energy to energy consumers under optimum conditions. ing. A secondary battery used in such a power storage system requires a large battery having a large capacity, unlike a small secondary battery for portable equipment having an energy capacity of 10 Wh or less. For this reason, in the above power storage system, a plurality of secondary batteries are usually stacked in series and used as an assembled battery having a voltage of 50 to 400 V, for example, and in most cases, lead batteries are used.
[0003]
On the other hand, in the field of small secondary batteries for portable devices, the development of nickel-metal hydride batteries and lithium secondary batteries as new batteries has progressed to meet the needs for small size and high capacity, and has a volumetric energy density of 180 Wh / l or more. Batteries are commercially available. In particular, a lithium ion battery has a possibility of a volume energy density exceeding 350 Wh / l, and reliability such as safety and cycle characteristics is superior to a lithium secondary battery using metallic lithium as a negative electrode. , Has dramatically expanded its market.
[0004]
In response, in the field of large-scale batteries for power storage systems, lithium-ion batteries are targeted as candidates for high-energy density batteries, and development is actively underway by the Lithium Battery Power Storage Technology Research Association (LIBES) and others. .
[0005]
The energy capacity of these large-sized lithium ion batteries is about 100 Wh to 400 Wh, and the volume energy density is 200 to 300 Wh / l, the same level as a small secondary battery for portable devices. The shape is typically a cylindrical shape having a diameter of 50 mm to 70 mm, a length of 250 mm to 450 mm, and a flat prismatic shape such as a square or oblong square having a thickness of 35 mm to 50 mm.
[0006]
However, although these large lithium ion batteries provide high energy density, the battery design is an extension of the small battery for portable devices, so that the diameter or thickness of the large lithium ion batteries is more than three times that of the small batteries for portable devices. The battery has a square shape. In this case, heat is likely to be accumulated inside the battery due to Joule heat generation due to the internal resistance of the battery during charging and discharging, or internal heat generation of the battery due to change in entropy of the active material due to the entry and exit of lithium ions. For this reason, the temperature difference between the temperature inside the battery and the vicinity of the battery surface is large, and the internal resistance differs accordingly. As a result, variations in charge amount and voltage are likely to occur. In addition, since this type of battery is used as a plurality of assembled batteries, the ease of heat storage differs depending on the installation position of the batteries in the system, resulting in variations among the batteries, and accurate control of the entire assembled battery is possible. It becomes difficult. In addition, because of insufficient heat dissipation during high-rate charging / discharging, etc., the battery temperature rises, leaving the battery unfavorable, resulting in a decrease in life due to decomposition of the electrolyte, and thermal runaway of the battery. Problems such as induction of reliability, particularly safety, remained.
[0007]
In order to solve the above problem, WO99 / 60652 discloses a flat nonaqueous secondary battery in which a nonaqueous electrolyte containing a positive electrode, a negative electrode, a separator, and a lithium salt is contained in a battery container, An aqueous secondary battery has a flat shape with a thickness of less than 12 mm, a non-aqueous secondary battery having an energy capacity of 30 Wh or more and a volume energy density of 180 Wh / l or more is disclosed. The battery proposes to solve the problems of reliability and safety caused by the heat storage, which is a barrier to practical use, due to the unique battery shape (flat shape).
[0008]
[Problems to be solved by the invention]
In the case of a flat battery, the front and back areas of the battery increase as the battery thickness is reduced for the purpose of improving heat dissipation. In order to maintain a high energy density, in particular, when a flat battery is prototyped in a large lithium secondary battery (energy capacity of 30 Wh or more) used in a power storage system, the tendency is strong. In the case of a lithium ion battery having a thickness of 6 mm, the size of the battery front and back surfaces is 600 cm. 2 Very large (one side).
[0009]
In general, in a small lithium ion battery for portable devices, if the battery is overcharged or externally short-circuited due to malfunction due to device failure or misuse by the user, the inside of the battery is heated and the electrolyte is decomposed or evaporated. Gas is generated inside. Therefore, in order to prevent an accident due to an increase in internal pressure, a safety valve designed in a high operating pressure range of 1 to 2 MPa is provided on the lid and bottom of the container as described in, for example, Japanese Patent Laid-Open No. 6-36752. It has been.
[0010]
However, when a general safety valve as described above is provided on a large battery with a large battery front and back and a thin container thickness, it is a problem with a small battery in an abnormal situation where gas is generated inside the battery and the internal pressure rises. Even at a low pressure, the container itself easily expands, and there remains a problem that the safety valve does not work sufficiently and falls into a dangerous state that may cause ignition or explosion.
[0011]
In order to solve the above problems, the object of the present invention is to have a large capacity of 30 Wh or more and a volumetric energy density of 180 Wh / l or more. An object of the present invention is to provide a highly safe flat non-aqueous secondary battery that includes a pressure release mechanism that operates at an early stage in an abnormal situation in which a rise occurs.
[0012]
A further object of the present invention is to provide a flat non-aqueous secondary battery having a flat shape with a thickness of less than 12 mm and excellent heat dissipation characteristics and high safety.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is a flat nonaqueous secondary battery in which a nonaqueous electrolyte containing a positive electrode, a negative electrode, a separator, and a lithium salt is contained in a battery container, The battery container has a polygonal flat shape, the battery container is a metal plate, the plate thickness is 0.2 mm or more and 1 mm or less, The energy capacity is 30 Wh or more and the volume energy density is 180 Wh / l or more, and a pressure release mechanism is provided in the wide plane portion of the flat battery case, and the pressure release mechanism includes: 19.6 kPa or more and less than 78.5 kPa A thin portion formed by at least one linear or curved groove that breaks at a working pressure of 0.02 mm or more and less than 0.2 mm. The groove forming the thin portion includes at least a part thereof in a range near the outer periphery within 60% of the distance from the outer periphery of the battery container to the center of gravity of the wide flat portion. A non-aqueous secondary battery is provided.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a nonaqueous secondary battery according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a plan view and a side view of a flat rectangular (note type) non-aqueous secondary battery for an electricity storage system according to an embodiment of the present invention, and FIG. 2 is a diagram of the battery shown in FIG. It is a side view which shows the structure of the electrode laminated body accommodated in an inside.
[0015]
As shown in FIGS. 1 and 2, the non-aqueous secondary battery according to the present embodiment includes a battery container including an upper lid 1 and a bottom container 2, a plurality of positive electrodes 101a and negative electrodes housed in the battery container. 101b, 101c, and an electrode laminate including the separator 104. In the case of a flat type non-aqueous secondary battery as in the present embodiment, the positive electrode 101a and the negative electrode 101b (or the negative electrode 101c disposed on both outer sides of the laminate) are provided via a separator 104 as shown in FIG. However, the present invention is not particularly limited to this arrangement, and the number of stacked layers can be variously changed depending on the required capacity. The shape of the nonaqueous secondary battery shown in FIGS. 1 and 2 is, for example, 300 mm long × 210 mm wide × 6 mm thick, and LiMn is formed on the positive electrode 101a. 2 O Four In the case of a lithium secondary battery using a carbon material for the negative electrodes 101b and 101c, for example, it can be used in a power storage system.
[0016]
As shown in FIG. 1, a positive electrode terminal 3 and a negative electrode terminal 4 are attached to the upper lid 1 of the battery container in a state of being insulated from the upper lid 1, and the positive electrode terminal 3 has a positive electrode collection of each positive electrode 101 a shown in FIG. 2. The electric body 105 a is electrically connected, and the negative electrode current collector 105 b of each of the negative electrodes 101 b and 101 c is electrically connected to the negative electrode terminal 4.
[0017]
The top lid 1 and the bottom container 2 constitute a battery container by melting the point A shown in the enlarged view in FIG. 1, that is, the peripheral edge of the top lid 1 and welding it to the bottom container 2. The upper lid 1 is provided with an electrolytic solution injection port 5, and after the electrolytic solution injection, is sealed using, for example, a sealing film 6 made of an aluminum-modified polypropylene laminate film. The final sealing step is preferably performed after at least one charging operation. The pressure in the battery container after the final sealing step with the sealing film 6 is preferably less than atmospheric pressure for the following reasons, and more preferably 8.66 × 10. Four Pa (650 Torr) or less, particularly preferably 7.33 × 10 Four Pa (550 Torr) or less. That is, when the internal pressure is equal to or higher than atmospheric pressure, the battery is likely to be larger than the designed thickness, or the variation in battery thickness is likely to increase, and further, the internal resistance and capacity of the battery are likely to vary. This pressure is determined in consideration of the separator to be used, the type of electrolyte, the material and thickness of the battery container, the shape of the battery, and the like.
[0018]
The positive electrode active material used for the positive electrode 101a is not particularly limited as long as it is a lithium-based positive electrode material, and lithium composite cobalt oxide, lithium composite nickel oxide, lithium composite manganese oxide, or a mixture thereof, A system in which one or more different metal elements are added to these composite oxides can be used, and a high voltage and high capacity battery can be obtained, which is preferable. Further, in the case of emphasizing safety, which is the highest priority issue in practical use of a large lithium secondary battery, manganese oxide having a high thermal decomposition temperature is preferable. As this manganese oxide, LiMn 2 O Four Lithium composite manganese oxide, a system in which one or more different metal elements are added to these composite oxides, and Li in which lithium is made in excess of the stoichiometric ratio 1 + x Mn 2-y O Four Is mentioned. In particular, the present invention has a great effect when a positive electrode mainly composed of the manganese oxide is used.
[0019]
The negative electrode active material used for the negative electrodes 101b and 101c is not particularly limited as long as it is a lithium-based negative electrode material, and is a material capable of doping and dedoping lithium, such as safety and reliability such as cycle life. Is preferable. Examples of materials that can be doped and dedoped with lithium include graphite-based materials, carbon-based materials, tin oxide-based, silicon oxide-based metal oxides, and polyacene, which are used as negative electrode materials for known lithium ion batteries. Examples thereof include conductive polymers represented by organic organic semiconductors.
[0020]
Although the structure of the separator 104 is not particularly limited, a single-layer or multi-layer separator can be used, and at least one sheet is preferably a nonwoven fabric. In this case, cycle characteristics are improved. The material of the separator 104 is not particularly limited, and examples thereof include polyolefins such as polyethylene and polypropylene, polyamides, kraft paper, glass, cellulosic materials, and the like, depending on the heat resistance and safety design of the battery. It is determined appropriately.
[0021]
As the electrolyte of the non-aqueous secondary battery of this embodiment, a non-aqueous electrolyte containing a known lithium salt can be used, which is appropriately determined according to the use conditions such as the positive electrode material, the negative electrode material, and the charging voltage, and more specifically. LiPF 6 , LiBF Four LiClO Four Lithium salts such as propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyrolactone, methyl acetate, methyl formate, or a mixed solvent of two or more of these are dissolved. The thing etc. are illustrated. Further, the concentration of the electrolytic solution is not particularly limited, but generally 0.5 mol / l to 2 mol / l is practical, and naturally the electrolytic solution has a water content of 100 ppm or less. It is preferable to use it. In addition, the non-aqueous electrolyte used in this specification means a concept including a non-aqueous electrolyte solution and an organic electrolyte solution, and also refers to a concept including a gel-like or solid electrolyte.
[0022]
The non-aqueous secondary battery configured as described above can be used for a household power storage system (night power storage, cogeneration, solar power generation, etc.), a power storage system such as an electric vehicle, and the like. It can have an energy density. In this case, the energy capacity is preferably 30 Wh or more, more preferably 50 Wh or more, and the energy density is preferably 180 Wh / l or more, more preferably 200 Wh / l. When the energy capacity is less than 30 Wh or when the volumetric energy density is less than 180 Wh / l, the capacity is small for use in the power storage system, and it is necessary to increase the number of series-parallel batteries to obtain sufficient system capacity. In addition, it is not preferable for a power storage system because a compact design becomes difficult.
[0023]
The non-aqueous secondary battery of this embodiment has a flat shape, and its thickness is less than 12 mm, more preferably less than 10 mm. As for the lower limit of the thickness, 2 mm or more is practical in consideration of the filling factor of the electrode and the battery size (the area becomes larger in order to obtain the same capacity as the thickness is reduced). When the thickness of the battery is 12 mm or more, it becomes difficult to sufficiently dissipate the heat generated inside the battery to the outside, or the temperature difference between the inside of the battery and the vicinity of the battery surface increases, resulting in different internal resistances. Variation in the amount of charge and voltage in the battery becomes large. The specific thickness is appropriately determined according to the battery capacity and the energy density, but it is preferable to design with the maximum thickness that provides the expected heat dissipation characteristics.
[0024]
In addition, the non-aqueous secondary battery according to the present embodiment can have various shapes such as a square shape, a circular shape, and an oval shape on the front and back surfaces of the flat shape. It can also be a polygon such as a hexagon. Furthermore, it can also be made into cylindrical shapes, such as a thin cylinder. In the case of a cylinder, the thickness of the cylinder is the thickness referred to here. Further, from the viewpoint of ease of manufacture, the flat front and back surfaces of the battery are rectangular, and a notebook shape as shown in FIG. 1 is preferable.
[0025]
The materials used for the top lid 1 and the bottom container 2 to be battery containers are appropriately selected depending on the use and shape of the battery, and are not particularly limited. Various metal plates, hard resin and other structural materials other than metals, such as metal plates And a combination with other materials. In particular, iron, stainless steel, aluminum and the like are common, and are practical from the viewpoint of cost. Also, the thickness of the battery container is appropriately determined depending on the use and shape of the battery or the material of the battery container, and is not particularly limited. Preferably, the thickness of the portion of 80% or more of the battery surface area (the thickness of the portion having the largest area constituting the battery case) is 0.2 mm or more. If the thickness is less than 0.2 mm, it is not desirable because the strength required for manufacturing the battery cannot be obtained. From this viewpoint, it is more preferably 0.3 mm or more. The thickness of the same part is desirably 1 mm or less. If this thickness exceeds 1 mm, the force to hold down the electrode surface increases, but it is not desirable because the internal volume of the battery is reduced and a sufficient capacity cannot be obtained, or the weight increases. Preferably it is 0.7 mm or less.
[0026]
As described above, in this embodiment, the thickness of the non-aqueous secondary battery is designed to be less than 12 mm, so that when this battery has a large capacity of 30 Wh or more and a high energy density of 180 Wh / l, a high rate charge is achieved. Even when discharging is performed, excellent heat dissipation characteristics can be realized, and an increase in battery temperature can be suppressed. Accordingly, the heat storage of the battery due to internal heat generation can be reduced, and as a result, thermal runaway of the battery can be suppressed, and a non-aqueous secondary battery excellent in reliability and safety can be provided.
[0027]
Next, the pressure release mechanism provided in the non-aqueous secondary battery of the present embodiment configured as described above will be described in detail. The pressure release mechanism has a thin portion formed by at least one linear or curved groove formed in a wide flat portion of the battery container having a flat shape. Acts as a safety valve that breaks when internal pressure above a certain level occurs in the container.
[0028]
In this pressure release mechanism, the lower limit of the thickness of the thin portion is preferably 0.02 mm or more, more preferably 0.03 mm or more, and the upper limit is preferably less than 0.2 mm, more preferably less than 0.1 mm. If the thickness is less than the above lower limit, there is a possibility of breaking during normal use, and there is a possibility that pinhole freeness cannot be guaranteed in the battery container processing step, which is not preferable. On the other hand, if the thickness exceeds the above upper limit, even if an abnormal situation in which gas is generated inside the battery continues, there is a risk that the thin-walled portion does not break, easily expands and deforms, and triggers an ignition or explosion. The optimum thickness of this thin part is appropriately designed depending on the shape and thickness of the battery, the material of the battery container, the capacity of the battery, the separator used, the type of electrolyte, etc. For example, when the material of the battery container is stainless steel Is preferably 0.03 mm or more and less than 0.06 mm, aluminum is 0.06 mm or more and less than 0.1 mm, and iron is preferably 0.04 mm or more and less than 0.07 mm. In addition, the groove | channel which comprises a thin part can be formed by kerf processing, for example. In the present invention, the number of grooves may be at least one or more, and two or more grooves may be provided.
[0029]
The operating pressure of this pressure release mechanism (the difference between the increased pressure inside the battery and the pressure outside the battery) is preferably 5 kPa or more, more preferably 20 kPa or more, and the upper limit is preferably less than 500 kPa, more preferably 120 kPa. Is less than 80 kPa, particularly preferably less than 80 kPa. In this way, the internal pressure can be released at an early timing, which is particularly advantageous.
[0030]
As for the place where the pressure release mechanism is arranged, as shown in the hatched region 51 in FIG. 3, the pressure release mechanism is arranged in the wide flat portion of the battery container having a flat shape and includes at least a part thereof within a predetermined distance from the outer periphery of the wide plane. It is desirable to provide in. The range closer to the outer periphery is preferably a range closer to the outer periphery within 60% of the distance from the outer periphery of the container to the center of gravity of the wide flat portion, and more preferably within 40%.
[0031]
When the wide plane of the battery is large and the container thickness is thin, the container easily swells as described above. The degree depends on the shape and thickness of the battery used, and the material of the battery container. In particular, distortion due to the swelling of the container occurs in the vicinity of the outer periphery within 60% of the distance from the outer periphery to the center of gravity of the wide flat surface portion. easy. This distortion tends to become larger in a range near the outer periphery within 40% of the distance from the outer periphery to the center of gravity. This means that in the above-mentioned range, a force that deforms the container wall is acting greatly. It can also be said that the stress acting on the entire container wall as the internal pressure increases propagates to this range and acts intensively. Therefore, when the pressure release mechanism is provided in these ranges, even if the internal pressure of the container is low, a concentrated large stress acts on the place where the pressure release mechanism is provided, and the pressure release mechanism can be reliably operated. On the contrary, when the pressure release mechanism is provided only in the range from the center of gravity to the above range, the range tends to be lifted as it is without distortion when the container swells, the deformation curvature is small, and it is almost flat In order to maintain the state, the force for operating the pressure release mechanism is difficult to act.
[0032]
If the shape of the wide flat part of the battery container is a rectangle or other polygonal shape, if it is provided near the corner, distortion concentrates there, so that the distortion can be used effectively to obtain reliable operation. More preferred. In addition, since it is a pressure release mechanism that operates using distortion due to concentration of the internal pressure of the battery container in this way, in a normal state where the container is not inflated by internal gas, an inadvertent break opening is Does not happen.
[0033]
The arrangement of the grooves will be described with reference to FIG. The battery container shown in FIG. 4 has a rectangular shape on a wide plane, and the straight groove 64 or the tangent line 64a of the curved groove 64 is arranged so as to cross a virtual straight line 61 connecting the center of gravity (center) G and corners of the rectangle. It is preferable that the straight line or the tangent line of the curved line is provided so as to form an angle within ± 60 degrees with respect to the perpendicular line of the virtual straight line 61. This is because the distortion in the wide plane portion that occurs when the container swells is large in the direction across the virtual straight line 61. Therefore, by setting the angle 62 in FIG. 4 within the above range, the groove can be along the direction in which a large strain is generated, and as a result, a pressure release mechanism that easily breaks and opens with a low internal pressure of the container can be obtained. . If the angle 62 formed by the groove exceeds the above range, the container will be lifted without causing a large distortion when it expands, making it difficult to reliably operate at low pressure. When the container wide plane is rectangular as in this example, the virtual straight line connecting the center of gravity and the corner is of course a diagonal line. In addition, even when the container wide plane portion is a polygon other than a rectangle, the tangent of the linear groove or the curved groove is arranged so as to cross a virtual straight line connecting the center of gravity (center) and corners of the polygon, By providing the straight line formed by the groove or the tangent line of the curved line so as to form an angle of ± 60 degrees or less with respect to the perpendicular line of the virtual straight line, the same action as described above can be obtained.
[0034]
As described above, by forming the groove of the pressure release mechanism within the above angle range on the wide plane portion side, it is possible to prevent the battery contents from being scattered around when the groove is opened. The groove of the pressure release mechanism can be opened within the predetermined pressure range determined in advance by designing the shape and thickness of the thin portion. Further, by providing the pressure release mechanism on the side of the container wide flat surface, it becomes possible to quickly extract the internal gas with a large opening area. Furthermore, it is more preferable in that the cost can be reduced as compared with a rupture disk that requires a protective cover and has a large equipment investment.
[0035]
The method for producing the groove is not particularly limited, but in addition to the above-described grooving, for example, by etching or pressing, a predetermined thickness can be left in an arbitrary shape, and the grooving of the thin portion can be performed. FIG. 5 shows an example of a groove processing type pressure release mechanism. Providing a kerf portion 72 that forms a large thin portion near the periphery of the surface of the upper lid 1 and near the corner 71 provides a pressure release mechanism with a low pressure and a large opening area. In the figure, 72a is a linear shape, 72b is an arc shape, 72c is a shape in which only a part of a circle is left, and 72d is an X-shaped groove type pressure release mechanism.
[0036]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0037]
Example 1
(1) As shown in FIG. 1, the bottom container 2 is made of a 0.5 mm SUS304 thin plate in a tray shape by drawing to a depth of 5 mm, and the battery top lid 1 is also a 0.5 mm thick SUS304 thin plate. Was made into a flat plate shape. The external dimensions of the battery were 210 mm on the short side and 300 mm on the long side, approximately the same as the JIS standard A4 size. Moreover, as shown in the figure, the upper lid 1 was provided with a positive electrode terminal made of aluminum and a negative electrode terminal 3, 4 made of copper (6 mmφ, threaded M3). The positive and negative terminals 3 and 4 were insulated from the upper lid 1 by a polypropylene gasket. Next, the upper lid 1 is arranged without inserting the electrode laminate into the bottom container 2, and the corner A in FIG. 1 is laser welded over the entire circumference to produce a battery outer body, that is, an assembly consisting only of the battery container. did.
[0038]
(2) As shown in FIG. 5, a straight groove 72a having a width of 0.5 mm and a thin-walled portion thickness of 0.040 mm is formed in the corner portion 71 of the upper lid 1 of the battery container by cutting. did. The groove 72 a is a line segment that connects two points, which are 10 mm inside from both sides of the corner portion 71, and two points 45 mm inside from both sides of the corner portion 71 with a straight line.
[0039]
(3) When an operation test of the pressure release mechanism was performed by increasing the battery internal pressure using the liquid injection port 5 to the assembly having only the battery outer casing obtained as described above, It worked quickly and the thickness of the battery remained at 13mm after expansion.
[0040]
(Example 2)
A nonaqueous secondary battery was assembled as follows using a battery container in which the groove 72 a shown in (2) of Example 1 was formed in the corner portion 71 of the upper lid 1.
[0041]
(1) LiMn 2 O Four 100 parts by weight, 8 parts by weight of acetylene black and 3 parts by weight of polyvinylidene fluoride (PVDF) were mixed with 100 parts by weight of N-methylpyrrolidone (NMP) to obtain a positive electrode mixture slurry. The slurry was applied to both sides of a 20 μm thick aluminum foil serving as a current collector, dried, and then pressed to obtain a positive electrode. (A) of FIG. 6 is explanatory drawing of a positive electrode. In this embodiment, the application area (W1 × W2) of the positive electrode 101a is 262.5 × 192 mm. 2 It is applied to both sides of a 20 μm current collector with a thickness of 110 μm. As a result, the electrode thickness t is 240 μm. Further, a positive electrode current collecting piece 106a to which no electrode material is applied is provided on the short side of the electrode, and a hole having a diameter of 3 mm is formed in the center thereof.
[0042]
(2) 100 parts by weight of graphitized mesocarbon microbeads (MCMB, manufactured by Osaka Gas Chemical Co., No. 6-28) and 10 parts by weight of PVDF were mixed with 90 parts by weight of NMP to obtain a negative electrode mixture slurry. The slurry was applied to both sides of a 14 μm thick copper foil serving as a current collector, dried, and then pressed to obtain a negative electrode. FIG. 6B is an explanatory diagram of the negative electrode. The coating area (W1 × W2) of the negative electrode 101b is 267 × 195 mm. 2 It is applied to both sides of a 14 μm current collector with a thickness of 90 μm. As a result, the electrode thickness t is 194 μm. Further, a negative electrode current collecting piece 106b to which no electrode material is applied is provided on the short side of the electrode, and a hole having a diameter of 3 mm is formed in the center thereof. Further, a single-sided electrode having a thickness of 104 μm was prepared by the same method except that the coating was applied to only one side. The single-sided electrode is arranged on the outer side in the electrode laminate of item (3) (101c in FIG. 2).
[0043]
(3) As shown in FIG. 2, 8 positive electrodes and 9 negative electrodes (2 inner surfaces) obtained in the above item (1) were used as separators A104a (rayon system, basis weight 12.6 g / m). 2 ) And separator B104b (polyethylene microporous membrane; basis weight 13.3 g / m) 2 ), And the separator B104b was further arranged outside the outer negative electrode 101c for insulation from the battery container, thereby preparing an electrode laminate. The separator 104 was arranged so that the separator A104a was on the positive electrode side and the separator B104b was on the negative electrode side.
[0044]
(4) The bottom container 2 (see FIG. 1) constituting the battery container is prepared by drawing a 0.5 mm SUS304 thin plate into a tray having a depth of 5 mm, and the upper lid 1 is made of SUS304 having a thickness of 0.5 mm. A thin plate was used to form a flat plate. An aluminum positive electrode terminal and a copper negative electrode terminal 3, 4 (6 mmφ, threaded tip M3) were attached to the upper lid 1. The positive and negative terminals 3 and 4 are insulated from the upper lid 1 by a polypropylene gasket.
[0045]
(5) The screw portion of the positive electrode terminal 3 is inserted into the hole of each positive electrode current collecting piece 106a of the electrode laminate prepared in the above item (3), and the screw portion of the negative electrode terminal 4 is inserted into the hole of each negative electrode current collector piece 106b. After the aluminum nut and the copper nut were fastened, the electrode laminate was fixed to the upper lid 1 with an insulating tape, and the corner A in FIG. 1 was laser welded over the entire circumference. Thereafter, LiPF was added to the solvent at a concentration of 1 mol / l from an injection port 5 (6 mmφ) into a solvent in which ethylene carbonate and diethyl carbonate were mixed at a 1: 1 weight ratio as an electrolyte. 6 The solution in which was dissolved was injected. Next, under the atmospheric pressure, the liquid injection port 5 was once sealed using a temporary fixing bolt.
[0046]
(6) This battery is charged to 4.2 V with a current of 5 A, and then subjected to constant current and constant voltage charging for 12 hours to apply a constant voltage of 4.2 V, and then discharged to 2.5 V with a constant current of 5 A. did.
[0047]
(7) Remove the temporary fixing bolt attached to the battery, 4.00 × 10 Four Under a reduced pressure of Pa (300 Torr), a sealing film 6 made of a 0.08 mm thick aluminum foil-modified polypropylene laminate film punched to a diameter of 12 mm was applied at a temperature of 250 to 350 ° C. and a pressure of 98.1 to 294 kPa (1 to 3 kg). / Cm 2 The liquid injection port 5 was finally sealed by heat-sealing under conditions of a pressurization time of 5 to 10 seconds, and a flat notebook battery having a thickness of 6 mm was obtained.
[0048]
Subsequently, the battery is charged to 4.2 V with a current of 5 A, and then a constant current and constant voltage charge for applying a constant voltage of 4.2 V is performed for 12 hours. Subsequently, the battery is discharged to 2.5 V with a constant current of 5 A. And confirmed the capacity. The discharge capacity calculated thereby was 27 Ah. Next, in order to confirm safety, an overcharge test with a constant current charge of 27 A was performed according to the Association of Battery Industry Association Guidelines SBA G1101. The battery surface temperature rose with the progress of overcharge, and the battery container started to expand, probably because of gas generation inside the battery. Immediately thereafter, the groove 72a of the corner portion 71 in FIG. 5 was broken open, steam was generated, and the battery temperature gradually decreased. Despite being a large-capacity battery, exothermic ignition did not occur. After expansion, the thickness of the battery remained at 12 mm.
[0049]
(Comparative Example 1)
A battery was produced in the same manner as in Example 2 except for the pressure release mechanism used in Example 2. As shown in FIG. 5, a straight groove 72a having a width of 0.5 mm and a thin portion thickness of 0.015 mm was formed by cutting in the corner portion 71 of the upper lid 1 to form a pressure release mechanism. The groove 72 a is a line segment that connects two points, which are 10 mm inside from both sides of the corner portion 71, and two points 45 mm inside from both sides of the corner portion 71 with a straight line. However, after the liquid injection process, it was discovered that liquid leaked from a part of the groove 72a. If the thickness of the thin wall portion is too thin, it was expected that the opening would be easily broken even during a general manufacturing process or during normal use by a user.
[0050]
(Comparative Example 2)
Except for the pressure release mechanism of Example 1 (1), an assembly including only the battery outer package was produced in the same manner as in Example 1. As shown in FIG. 5, a straight groove 72 a having a width of 0.5 mm and a thin portion thickness of 0.3 mm was formed in the corner portion 71 of the upper lid 1 by a cutting process to form a pressure release mechanism. The groove 72 a is a line segment that connects two points, which are 10 mm inside from both sides of the corner portion 71, and two points 45 mm inside from both sides of the corner portion 71 with a straight line. When an opening test of the pressure release mechanism was performed by increasing the battery internal pressure using the liquid injection port 5 to the assembly of the battery outer body obtained as described above, the pressure release mechanism did not operate at a low pressure. Since the container expanded greatly to a thickness of 90 mm, the test was stopped. A very dangerous situation was expected when the battery contents were included.
[0051]
【The invention's effect】
As is apparent from the above, according to the present invention, in a flat non-aqueous secondary battery having a flat shape with a thickness of less than 12 mm, a large capacity of 30 Wh or more and a high volume energy density of 180 Wh / l or more, It is possible to provide a highly safe non-aqueous secondary battery including a pressure release mechanism that operates at an early stage even in an abnormal situation in which a rise occurs.
[Brief description of the drawings]
1A and 1B are a plan view and a side view of a nonaqueous secondary battery for a power storage system according to an embodiment of the present invention.
2 is a side view showing a configuration of an electrode laminate housed in the battery shown in FIG. 1. FIG.
FIG. 3 is an explanatory view of a place where a pressure release mechanism according to the present invention is arranged.
FIG. 4 is an explanatory view of a kerf processing type pressure release mechanism arrangement angle according to the present invention.
FIG. 5 is an explanatory diagram of a pressure release mechanism used in Examples and Comparative Examples of the non-aqueous secondary battery of the present invention.
6 is a plan view of a positive electrode, a negative electrode, and a separator that constitute the laminate shown in FIG. 2. FIG.
[Explanation of symbols]
1 Upper lid
2 Bottom container
3 Positive terminal
4 Negative terminal
5 Injection port
6 Sealing film
51 Pressure release mechanism placement range
61 Virtual straight line
62 Narrow angle sandwiched between virtual straight line and tangent line of straight or curved groove
64 groove (pressure release mechanism)
71 Upper lid corner
72a, 72b, 72c, 72d groove (pressure release mechanism)
101a Positive electrode (both sides)
101b Negative electrode (both sides)
101c Negative electrode (single side)
104, 104a, 104b Separator
105a Positive electrode current collector
105b Negative electrode current collector

Claims (6)

正極、負極、セパレータ、及びリチウム塩を含む非水系電解質を電池容器内に収容した扁平形状の非水系二次電池であって、電池容器が多角形の扁平形状をなし、前記電池容器は、金属板であり、その板厚は、0.2mm以上1mm以下であり、そのエネルギー容量が30Wh以上且つ体積エネルギー密度が180Wh/l以上であり、前記偏平形状をなす電池容器の広平面部に圧力解放機構を具備し、該圧力解放機構は、19.6kPa以上78.5kPa未満の作動圧で、破断する少なくとも一つの直線状又は曲線状の溝により形成された薄肉部を有し、該薄肉部の厚さが0.02mm以上0.2mm未満であり、該薄肉部を形成する溝は電池容器の外周から前記広平面部の重心に至る距離の60%以内の外周寄りの範囲に少なくともその一部分を含むことを特徴とする非水系二次電池。A flat non-aqueous secondary battery in which a non-aqueous electrolyte containing a positive electrode, a negative electrode, a separator, and a lithium salt is housed in a battery container , the battery container having a polygonal flat shape, and the battery container is made of metal The plate has a thickness of 0.2 mm or more and 1 mm or less, an energy capacity of 30 Wh or more and a volume energy density of 180 Wh / l or more, and pressure is released to the wide flat portion of the flat battery case. The pressure release mechanism includes a thin portion formed by at least one linear or curved groove that breaks at an operating pressure of 19.6 kPa or more and less than 78.5 kPa . The thickness is 0.02 mm or more and less than 0.2 mm, and the groove forming the thin portion is at least within a range near the outer periphery within 60% of the distance from the outer periphery of the battery container to the center of gravity of the wide flat surface portion. A non-aqueous secondary battery comprising a part of 前記電池容器が多角形の偏平形状をなし、前記薄肉部を形成する溝は、該多角形の重心及び角部を結ぶ仮想直線を横切るように配置されており、前記溝のなす直線又は曲線の接線が、前記仮想直線の垂線に対して±60度以内の角度をなすように設けられていることを特徴とする請求項1に記載の非水系二次電池。The battery container has a polygonal flat shape, and the groove forming the thin portion is arranged so as to cross an imaginary straight line connecting the center of gravity and the corner of the polygon. 2. The non-aqueous secondary battery according to claim 1 , wherein a tangent is provided so as to form an angle of within ± 60 degrees with respect to the perpendicular of the virtual straight line. 前記扁平形状の表裏面の形状は、矩形であることを特徴とする請求項1又は2に記載の非水系二次電池。The non-aqueous secondary battery according to claim 1 , wherein a shape of the flat front and back surfaces is a rectangle. 前記非水系二次電池は、厚さが12mm未満の扁平形状であることを特徴とする請求項1からのいずれかに記載の非水系二次電池。The nonaqueous secondary battery, nonaqueous secondary battery according to any one of claims 1 to 3, the thickness is characterized by a flat shape smaller than 12 mm. 前記負極は、リチウムをドープ及び脱ドープ可能な物質を含むことを特徴とする請求項1からのいずれかに記載の非水系二次電池。The negative electrode, a nonaqueous secondary battery according to any one of claims 1 4, characterized in that it comprises a doped lithium and dedoped substance. 前記正極は、マンガン酸化物を含むことを特徴とする請求項1からのいずれかに記載の非水系二次電池。The positive electrode, a nonaqueous secondary battery according to any one of claims 1-5, characterized in that it comprises a manganese oxide.
JP2001032339A 2001-02-08 2001-02-08 Non-aqueous secondary battery Expired - Fee Related JP4688305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001032339A JP4688305B2 (en) 2001-02-08 2001-02-08 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001032339A JP4688305B2 (en) 2001-02-08 2001-02-08 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2002237283A JP2002237283A (en) 2002-08-23
JP4688305B2 true JP4688305B2 (en) 2011-05-25

Family

ID=18896288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001032339A Expired - Fee Related JP4688305B2 (en) 2001-02-08 2001-02-08 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4688305B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774705B2 (en) * 2004-09-17 2011-09-14 日産自動車株式会社 Bipolar battery provided with gas releasing means, manufacturing method thereof, and assembled battery using bipolar battery.
CN2757343Y (en) * 2004-11-16 2006-02-08 比亚迪股份有限公司 Anti-explosion safety cell
JP4892842B2 (en) * 2005-03-02 2012-03-07 トヨタ自動車株式会社 Lithium secondary battery
KR100833737B1 (en) 2006-10-25 2008-05-29 삼성에스디아이 주식회사 Prismatic can type lithium ion rechargeable battery
JP4831265B2 (en) * 2009-03-04 2011-12-07 トヨタ自動車株式会社 Sealed battery and method for manufacturing sealed battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265055A (en) * 1988-08-29 1990-03-05 Hitachi Maxell Ltd Flat sealed battery
JPH11312505A (en) * 1998-04-28 1999-11-09 Sony Corp Thin battery
WO1999060652A1 (en) * 1998-05-20 1999-11-25 Osaka Gas Company Limited Nonaqueous secondary cell and method for controlling the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265055A (en) * 1988-08-29 1990-03-05 Hitachi Maxell Ltd Flat sealed battery
JPH11312505A (en) * 1998-04-28 1999-11-09 Sony Corp Thin battery
WO1999060652A1 (en) * 1998-05-20 1999-11-25 Osaka Gas Company Limited Nonaqueous secondary cell and method for controlling the same

Also Published As

Publication number Publication date
JP2002237283A (en) 2002-08-23

Similar Documents

Publication Publication Date Title
JP4404300B2 (en) Sealed prismatic battery
JP6250567B2 (en) Sealed battery
EP2215672B1 (en) Pouch type secondary battery with improved safety
EP2602840B1 (en) Secondary battery pouch having improved stability, pouch-type secondary battery using same, and medium- or large-sized battery pack
JP3997370B2 (en) Non-aqueous secondary battery
WO2014119309A1 (en) Hermetic battery
KR101546545B1 (en) Pouch type lithium secondary battery
JP4348492B2 (en) Non-aqueous secondary battery
JP4892842B2 (en) Lithium secondary battery
JP4218792B2 (en) Non-aqueous secondary battery
JP4009803B2 (en) Non-aqueous secondary battery
JP2011187241A (en) Nonaqueous electrolyte secondary battery
JP3997369B2 (en) Manufacturing method of non-aqueous secondary battery
JP4428796B2 (en) Non-aqueous secondary battery
JP4688305B2 (en) Non-aqueous secondary battery
JP2002151020A (en) Electrochemical device
JP4092543B2 (en) Non-aqueous secondary battery
JP2002246068A (en) Nonaqueous secondary cell
JP4821043B2 (en) Electrochemical devices
JPH11102673A (en) Thin secondary battery
JP4601109B2 (en) Non-aqueous secondary battery
JP4009802B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP4594478B2 (en) Non-aqueous secondary battery
JP2007018746A (en) Film-coated lithium cell
JP2002245991A (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

R150 Certificate of patent or registration of utility model

Ref document number: 4688305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees