JP7000975B2 - All solid state battery - Google Patents

All solid state battery Download PDF

Info

Publication number
JP7000975B2
JP7000975B2 JP2018084421A JP2018084421A JP7000975B2 JP 7000975 B2 JP7000975 B2 JP 7000975B2 JP 2018084421 A JP2018084421 A JP 2018084421A JP 2018084421 A JP2018084421 A JP 2018084421A JP 7000975 B2 JP7000975 B2 JP 7000975B2
Authority
JP
Japan
Prior art keywords
current collector
collector layer
short
layer
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018084421A
Other languages
Japanese (ja)
Other versions
JP2019087525A (en
Inventor
元 長谷川
徳洋 尾瀬
英晃 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to US16/141,326 priority Critical patent/US10714789B2/en
Priority to CN201811209386.1A priority patent/CN109755659B/en
Publication of JP2019087525A publication Critical patent/JP2019087525A/en
Application granted granted Critical
Publication of JP7000975B2 publication Critical patent/JP7000975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本願は全固体電池を開示する。 The present application discloses an all-solid-state battery.

特許文献1には、積層電極群の外側に、絶縁体を介して2枚の金属板を配置してなる短絡形成兼放熱促進ユニットを備えた、積層型ポリマー電解質電池が開示されている。特許文献1に開示された電池によれば、電池の釘刺し試験時等において電極同士が短絡した場合に、短絡形成兼放熱促進ユニットに短絡電流を流すことで発電要素の電圧を低減することができ、且つ、当該ユニット等にて発生した熱を外部へとスムーズに放熱することができるものと考えられる。特許文献2~4にも、釘刺し等の電池の内部短絡による熱の発生を抑制するための種々の技術が開示されている。 Patent Document 1 discloses a laminated polymer electrolyte battery provided with a short-circuit forming and heat dissipation promoting unit in which two metal plates are arranged on the outside of a laminated electrode group via an insulator. According to the battery disclosed in Patent Document 1, when the electrodes are short-circuited during a battery nailing test or the like, the voltage of the power generation element can be reduced by passing a short-circuit current through the short-circuit forming and heat dissipation promoting unit. It is considered that the heat generated by the unit or the like can be smoothly dissipated to the outside. Patent Documents 2 to 4 also disclose various techniques for suppressing heat generation due to an internal short circuit of a battery such as nail sticking.

特開2001-068156号公報Japanese Unexamined Patent Publication No. 2001-068156 特許第6027262号公報Japanese Patent No. 6027262 特開2015-072835号公報Japanese Unexamined Patent Publication No. 2015-072835 特開2015-018710号公報Japanese Patent Application Laid-Open No. 2015-018710

発電要素を複数積層しつつ電気的に並列に接続した全固体電池においては、釘刺し試験によって発電要素を短絡させると、一部の発電要素から他の発電要素へと電子が流れ込み(以下、これを「回り込み電流」という場合がある。)、一部の発電要素の温度が局所的に上昇してしまうという課題が生じる。このような課題に対し、発電要素とは別に短絡電流分散体を設け、釘刺し試験において一部の発電要素とともに短絡電流分散体も短絡させ、短絡抵抗が大きい発電要素からの回り込み電流を、短絡抵抗が小さい発電要素だけでなく、短絡抵抗が小さい短絡電流分散体へと分散させることで、一部の発電要素の温度のみが局所的に上昇することを防止できるものと考えられる(図9)。 In an all-solid-state battery in which multiple power generation elements are stacked and electrically connected in parallel, when the power generation elements are short-circuited by a nail piercing test, electrons flow from some power generation elements to other power generation elements (hereinafter, this). Is sometimes referred to as "wrap-around current"), which causes a problem that the temperature of some power generation elements rises locally. To solve these problems, a short-circuit current dispersion is provided separately from the power generation element, and in the nail piercing test, the short-circuit current dispersion is short-circuited together with some power generation elements, and the wraparound current from the power generation element with high short-circuit resistance is short-circuited. It is considered that it is possible to prevent the temperature of only some of the power generation elements from rising locally by distributing them not only to the power generation elements having a small resistance but also to the short circuit current dispersion having a small short circuit resistance (Fig. 9). ..

短絡電流分散体は、第1の集電体層と第2の集電体層とこれらの間に設けられた絶縁層とによって構成することができる。例えば、特許文献1、2に開示されているように、各種樹脂を用いて絶縁層を構成することが有り得る。或いは、特許文献2に開示されているように、セラミック材料や電池用セパレータを用いて絶縁層を構成することも有り得る。或いは、特許文献3に開示されているように、集電体層の表面を薄い絶縁被膜で覆うことも有り得る。一方、第1の集電体層と第2の集電体層としては、特許文献1~4に開示されているような金属箔によって構成することが有り得る。これにより、通常使用時は絶縁層によって第1の集電体層と第2の集電体層とを絶縁でき、釘刺し時は、第1の集電体層と第2の集電体層とを接触させて短絡電流分散体を短絡させることができるようにも思われる。 The short-circuit current dispersion can be composed of a first current collector layer, a second current collector layer, and an insulating layer provided between them. For example, as disclosed in Patent Documents 1 and 2, various resins may be used to form an insulating layer. Alternatively, as disclosed in Patent Document 2, the insulating layer may be formed by using a ceramic material or a battery separator. Alternatively, as disclosed in Patent Document 3, the surface of the current collector layer may be covered with a thin insulating film. On the other hand, the first current collector layer and the second current collector layer may be formed of a metal foil as disclosed in Patent Documents 1 to 4. As a result, the first current collector layer and the second current collector layer can be insulated by the insulating layer during normal use, and the first current collector layer and the second current collector layer can be insulated during nailing. It also seems that the short-circuit current collector can be short-circuited by contacting with.

しかしながら、本発明者らは、特許文献1~4に開示された技術を転用して短絡電流分散体を構成した場合、釘刺し時、短絡電流分散体の短絡抵抗が安定しない場合があるという新たな課題に突き当たった。短絡電流分散体の短絡抵抗が不安定であると、上記の回り込み電流を短絡電流分散体へと効率的に分散させることができず、発電要素のジュール発熱を抑制することができない虞がある。 However, the present inventors have newly stated that when the short-circuit current dispersion is constructed by diverting the techniques disclosed in Patent Documents 1 to 4, the short-circuit resistance of the short-circuit current dispersion may not be stable at the time of nailing. I ran into a difficult task. If the short-circuit resistance of the short-circuit current dispersion is unstable, the above-mentioned wraparound current cannot be efficiently dispersed in the short-circuit current dispersion, and there is a possibility that the Joule heat generation of the power generation element cannot be suppressed.

本願は、上記課題を解決するための手段の一つとして、少なくとも一つの短絡電流分散体と複数の発電要素とが積層された全固体電池であって、前記短絡電流分散体において、第1の集電体層と第2の集電体層と前記第1の集電体層及び前記第2の集電体層の間に設けられた絶縁層とが積層されており、前記発電要素において、正極集電体層と正極材層と固体電解質層と負極材層と負極集電体層とが積層されており、前記第1の集電体層が前記正極集電体層と電気的に接続されており、前記第2の集電体層が前記負極集電体層と電気的に接続されており、複数の前記発電要素同士が電気的に並列に接続されており、前記第1の集電体層及び前記第2の集電体層のうち、少なくとも、釘刺し試験において釘が刺し込まれる側に配置される集電体層において、複数の金属箔が前記第1の集電体層と前記絶縁層と前記第2の集電体層との積層方向に沿って積層されている、全固体電池を開示する。 The present application is an all-solid-state battery in which at least one short-circuit current dispersion and a plurality of power generation elements are laminated as one of means for solving the above-mentioned problems, and the first aspect of the short-circuit current dispersion is the present application. An insulating layer provided between the current collector layer, the second current collector layer, the first current collector layer, and the second current collector layer is laminated, and in the power generation element, the current generation element has a laminated body. A positive electrode collector layer, a positive electrode material layer, a solid electrolyte layer, a negative electrode material layer, and a negative electrode current collector layer are laminated, and the first current collector layer is electrically connected to the positive electrode collector layer. The second collector layer is electrically connected to the negative electrode current collector layer, and a plurality of the power generation elements are electrically connected in parallel to each other. Of the electric body layer and the second current collector layer, at least in the current collector layer arranged on the side where the nail is inserted in the nail piercing test, a plurality of metal foils are formed on the first current collector layer. Discloses an all-solid-state battery in which the insulating layer and the second collector layer are laminated along the stacking direction.

「釘が刺し込まれる側」とは、釘刺し試験の釘刺し完了後における釘頭側(釘刺し方向上流側)をいう。これに対し「釘が刺し出される側」とは、釘刺し試験の釘刺し完了後における釘先端側(釘刺し方向下流側)をいう。
「…集電体層において、…複数の金属箔が積層されている」とは、例えば、複数枚の金属箔が重ね合わされた形態のほか、一枚の金属箔が折り畳まれることで断面形状において複数の金属箔が積層されたような形態であってもよい。
The "nail piercing side" means the nail head side (upstream side in the nail piercing direction) after the nail piercing of the nail piercing test is completed. On the other hand, the "nail piercing side" means the nail tip side (downstream side in the nail piercing direction) after the nail piercing in the nail piercing test is completed.
"... in the current collector layer ... a plurality of metal foils are laminated" means, for example, in the form in which a plurality of metal foils are overlapped, or in the cross-sectional shape by folding one metal leaf. It may be in the form of laminated metal foils.

本開示の全固体電池において、前記短絡電流分散体が前記複数の発電要素よりも外側に積層されており、前記第1の集電体層及び前記第2の集電体層のうち、少なくとも、外側に配置される集電体層において、複数の金属箔が前記第1の集電体層と前記絶縁層と前記第2の集電体層との積層方向に沿って積層されていることが好ましい。 In the all-solid-state battery of the present disclosure, the short-circuit current dispersion is laminated on the outer side of the plurality of power generation elements, and at least one of the first current collector layer and the second current collector layer In the current collector layer arranged on the outside, a plurality of metal foils are laminated along the stacking direction of the first current collector layer, the insulating layer, and the second current collector layer. preferable.

本開示の全固体電池において、前記発電要素における前記正極集電体層と前記正極材層と前記固体電解質層と前記負極材層と前記負極集電体層との積層方向、複数の前記発電要素の積層方向、前記短絡電流分散体における前記第1の集電体層と前記絶縁層と前記第2の集電体層との積層方向、及び、前記短絡電流分散体と複数の前記発電要素との積層方向、が同じ方向であることが好ましい。 In the all-solid-state battery of the present disclosure, there are a plurality of the power generation elements in the stacking direction of the positive electrode collector layer, the positive electrode material layer, the solid electrolyte layer, the negative electrode material layer, and the negative electrode current collector layer in the power generation element. The stacking direction of the short-circuit current dispersion, the stacking direction of the first collector layer, the insulating layer, and the second collector layer in the short-circuit current dispersion, and the short-circuit current dispersion and the plurality of power generation elements. It is preferable that the stacking directions of the above are the same.

本開示の全固体電池において、前記複数の金属箔の1枚当たりの厚さが、9μm以上15μm以下であることが好ましい。 In the all-solid-state battery of the present disclosure, it is preferable that the thickness of each of the plurality of metal foils is 9 μm or more and 15 μm or less.

本開示の全固体電池において、前記複数の金属箔の1枚当たりの厚さが9μm以上15μm以下であり、前記複数の金属箔の枚数が4枚以上7枚以下であることが好ましい。 In the all-solid-state battery of the present disclosure, it is preferable that the thickness of each of the plurality of metal foils is 9 μm or more and 15 μm or less, and the number of the plurality of metal foils is 4 or more and 7 or less.

本発明者らの知見では、特許文献1~4に開示された技術を転用して短絡電流分散体を構成した場合、当該短絡電流分散体への釘刺し時、第1の集電体層と第2の集電体層との接触が安定的に保持されず、これにより短絡抵抗が不安定となる。短絡電流分散体への釘刺し時、第1の集電体層と第2の集電体層との接触が安定的に保持されないのは、ジュール発熱によって集電体層が溶断したり、釘の進行に伴う集電体層の経時的な変形によって集電体層間の接続が解除されたりすること等に起因するものと考えられる。短絡電流分散体への釘刺し時、第1の集電体層と第2の集電体層との接触を安定的に保持するためには、釘刺し時に第1の集電体層と第2の集電体層とが接触する確率を上げることや、第1の集電体層と第2の集電体層との接触面積を増大させることが有効といえる。 According to the findings of the present inventors, when the short-circuit current dispersion is constructed by diverting the techniques disclosed in Patent Documents 1 to 4, when the short-circuit current dispersion is nailed, the first collector layer is used. The contact with the second collector layer is not stably maintained, which makes the short-circuit resistance unstable. When the short-circuit current dispersion is nailed, the contact between the first current collector layer and the second current collector layer is not stably maintained because the current collector layer is melted due to Joule heat generation or the nail is nailed. It is considered that this is caused by the disconnection between the current collector layers due to the time-dependent deformation of the current collector layer with the progress of the above. In order to stably maintain contact between the first current collector layer and the second current collector layer when nailing the short-circuit current dispersion, the first current collector layer and the first current collector layer and the second current collector layer are required to be stably maintained during nailing. It can be said that it is effective to increase the probability of contact with the current collector layer 2 and to increase the contact area between the first current collector layer and the second current collector layer.

本開示の全固体電池においては、短絡電流分散体を構成する第1の集電体層及び第2の集電体層のうち、釘刺し試験において釘が刺し込まれる側の集電体層において複数の金属箔が積層されている。この場合、短絡電流分散体への釘刺し時、一方の集電体層の複数の金属箔が、他方の集電体層に向かって各々突出し、一方の集電体層と他方の集電体層とで接触点及び接触面が複数形成され易い。すなわち、本開示の全固体電池によれば、短絡電流分散体への釘刺し時、第1の集電体層と第2の集電体層との接触性が向上し、短絡電流分散体の短絡抵抗を安定させることができる。 In the all-solid-state battery of the present disclosure, among the first current collector layer and the second current collector layer constituting the short-circuit current dispersion, in the current collector layer on the side where the nail is pierced in the nail piercing test. Multiple metal foils are laminated. In this case, when the short-circuit current dispersion is nailed, the plurality of metal foils of one current collector layer project toward the other current collector layer, respectively, and one current collector layer and the other current collector layer. A plurality of contact points and contact surfaces are likely to be formed with the layer. That is, according to the all-solid-state battery of the present disclosure, when the short-circuit current dispersion is nailed, the contact property between the first current collector layer and the second collector layer is improved, and the short-circuit current dispersion is used. The short circuit resistance can be stabilized.

全固体電池100の層構成を説明するための概略図である。It is a schematic diagram for demonstrating the layer structure of the all-solid-state battery 100. 短絡電流分散体10の層構成を説明するための概略図である。(A)が外観斜視図であり、(B)がIIB-IIB断面図である。It is a schematic diagram for demonstrating the layer structure of the short-circuit current dispersion body 10. (A) is an external perspective view, and (B) is a sectional view taken along line IIB-IIB. 発電要素20の層構成を説明するための概略図である。(A)が外観斜視図であり、(B)がIIIB-IIIB断面図である。It is a schematic diagram for demonstrating the layer structure of a power generation element 20. (A) is an external perspective view, and (B) is a sectional view taken along line IIIB-IIIB. 短絡電流分散体に対する釘刺し試験方法を説明するための概略図である。It is a schematic diagram for demonstrating the nail piercing test method for a short-circuit current dispersion. 比較例1に関して、釘刺し試験における短絡電流分散体の短絡抵抗の安定性を確認した結果である。This is the result of confirming the stability of the short-circuit resistance of the short-circuit current dispersion in the nail piercing test with respect to Comparative Example 1. 実施例1に係る短絡電流分散体の構成を説明するための概略図である。It is a schematic diagram for demonstrating the structure of the short-circuit current dispersion which concerns on Example 1. FIG. 比較例2に係る短絡電流分散体の構成を説明するための概略図である。It is a schematic diagram for demonstrating the structure of the short-circuit current dispersion which concerns on Comparative Example 2. FIG. 実施例1及び比較例2に関して、釘刺し試験における短絡電流分散体の短絡抵抗の安定性を確認した結果である。This is the result of confirming the stability of the short-circuit resistance of the short-circuit current dispersion in the nail piercing test with respect to Example 1 and Comparative Example 2. 発電要素が並列に接続された全固体電池において、釘刺し時に生じる回り込み電流等について説明するための概略図である。It is a schematic diagram for demonstrating the wraparound current generated at the time of nailing in an all-solid-state battery in which power generation elements are connected in parallel.

1.全固体電池100
図1に、全固体電池100の層構成を概略的に示す。図1においては、説明の便宜上、集電体層同士(集電タブ同士)の接続部分や、電池ケース等を省略して示している。図2に、全固体電池100を構成する短絡電流分散体10の層構成を概略的に示す。図2(A)が外観斜視図、図2(B)がIIB-IIB断面図である。図3に、全固体電池100を構成する発電要素20の層構成を概略的に示す。図3(A)が外観斜視図、図3(B)がIIIB-IIIB断面図である。
1. 1. All-solid-state battery 100
FIG. 1 schematically shows the layer structure of the all-solid-state battery 100. In FIG. 1, for convenience of explanation, the connection portion between the current collector layers (current collector tabs), the battery case, and the like are omitted. FIG. 2 schematically shows the layer structure of the short-circuit current dispersion 10 constituting the all-solid-state battery 100. FIG. 2A is an external perspective view, and FIG. 2B is a sectional view taken along line IIB-IIB. FIG. 3 schematically shows the layer structure of the power generation element 20 constituting the all-solid-state battery 100. FIG. 3A is an external perspective view, and FIG. 3B is a sectional view taken along line IIIB-IIIB.

図1~3に示すように、全固体電池100は、少なくとも1つの短絡電流分散体10と複数の発電要素20(発電要素20a及び20b)とが積層されてなる。短絡電流分散体10において、第1の集電体層11と第2の集電体層12と第1の集電体層11及び第2の集電体層12の間に設けられた絶縁層13とが積層されている。発電要素20a及び20bにおいて、正極集電体層21と正極材層22と固体電解質層23と負極材層24と負極集電体層25とが積層されている。全固体電池100においては、第1の集電体層11が正極集電体層21と電気的に接続されており、第2の集電体層12が負極集電体層25と電気的に接続されており、複数の発電要素同士が電気的に並列に接続されている。ここで、全固体電池100においては、短絡電流分散体10の第1の集電体層11及び第2の集電体層12のうち、少なくとも、釘刺し試験において釘が刺し込まれる側に配置される集電体層(図1においては第1の集電体層11がこれに該当する)において、複数の金属箔が第1の集電体層11と絶縁層13と第2の集電体層12との積層方向に沿って積層されている点に特徴を有する。 As shown in FIGS. 1 to 3, the all-solid-state battery 100 is formed by stacking at least one short-circuit current dispersion 10 and a plurality of power generation elements 20 (power generation elements 20a and 20b). In the short-circuit current dispersion 10, an insulating layer provided between the first current collector layer 11, the second current collector layer 12, the first current collector layer 11 and the second current collector layer 12. 13 is laminated. In the power generation elements 20a and 20b, the positive electrode current collector layer 21, the positive electrode material layer 22, the solid electrolyte layer 23, the negative electrode material layer 24, and the negative electrode current collector layer 25 are laminated. In the all-solid-state battery 100, the first current collector layer 11 is electrically connected to the positive electrode current collector layer 21, and the second current collector layer 12 is electrically connected to the negative electrode current collector layer 25. It is connected, and a plurality of power generation elements are electrically connected in parallel. Here, in the all-solid-state battery 100, it is arranged at least on the side where the nail is pierced in the nail piercing test among the first current collector layer 11 and the second current collector layer 12 of the short-circuit current dispersion 10. In the current collector layer (corresponding to the first current collector layer 11 in FIG. 1), a plurality of metal foils form a first current collector layer 11, an insulating layer 13, and a second current collector. It is characterized in that it is laminated along the stacking direction with the body layer 12.

1.1.短絡電流分散体10
短絡電流分散体10は、第1の集電体層11と、第2の集電体層12と、第1の集電体層11及び第2の集電体層12の間に設けられる絶縁層13と、を備える。このような構成を備えた短絡電流分散体10は、電池の通常使用時において第1の集電体層11と第2の集電体層12とが絶縁層13によって適切に絶縁される一方で、釘刺し時には第1の集電体層11と第2の集電体層12とが接触して電気抵抗が小さくなる。
1.1. Short circuit current dispersion 10
The short-circuit current dispersion 10 is an insulation provided between the first current collector layer 11, the second current collector layer 12, the first current collector layer 11 and the second current collector layer 12. A layer 13 is provided. In the short-circuit current dispersion 10 having such a configuration, the first current collector layer 11 and the second current collector layer 12 are appropriately insulated by the insulating layer 13 during normal use of the battery. At the time of nailing, the first current collector layer 11 and the second current collector layer 12 come into contact with each other to reduce the electric resistance.

1.1.1.釘刺し試験において釘の刺し込み側に配置される集電体層
まず、本願にいう「釘刺し試験において釘が刺し込まれる側に配置される集電体層」について説明する。全固体電池において、短絡電流分散体が複数の発電要素の間に介在して積層されている場合(すなわち、発電要素と発電要素とで短絡電流分散体が挟み込まれている場合)、短絡電流分散体の第1の集電体層及び第2の集電体層のいずれについても「釘刺し試験において釘が刺し込まれる側に配置される集電体層」となり得る。そのため、この場合は、第1の集電体層及び第2の集電体層の双方とも複数の金属箔によって構成することが好ましい。
一方、図1に示すように、短絡電流分散体10が複数の発電要素20よりも外側に積層されている場合、短絡電流分散体10の第1の集電体層11及び第2の集電体層12のうち外側に配置される集電体層が「釘刺し試験において釘が刺し込まれる側に配置される集電体層」となる。よって、この場合は、短絡電流分散体10の第1の集電体層11及び第2の集電体層12のうち、少なくとも、外側に配置される集電体層(図1においては第1の集電体層11がこれに該当する)において、複数の金属箔が第1の集電体層11と絶縁層13と第2の集電体層12との積層方向に沿って積層されていることが好ましい。
1.1.1. The current collector layer arranged on the nail piercing side in the nail piercing test First, the "current collector layer arranged on the nail piercing side in the nail piercing test" will be described. In an all-solid-state battery, when the short-circuit current dispersion is laminated between a plurality of power generation elements (that is, when the short-circuit current dispersion is sandwiched between the power generation element and the power generation element), the short-circuit current distribution is performed. Both the first current collector layer and the second current collector layer of the body can be "the current collector layer arranged on the side where the nail is inserted in the nail insertion test". Therefore, in this case, it is preferable that both the first current collector layer and the second current collector layer are composed of a plurality of metal foils.
On the other hand, as shown in FIG. 1, when the short-circuit current dispersion 10 is stacked outside the plurality of power generation elements 20, the first current collector layer 11 and the second current collector of the short-circuit current dispersion 10 are stacked. The current collector layer arranged on the outer side of the body layer 12 is the "current collector layer arranged on the side where the nail is inserted in the nail insertion test". Therefore, in this case, at least the current collector layer arranged on the outer side of the first current collector layer 11 and the second current collector layer 12 of the short-circuit current dispersion 10 (the first in FIG. 1). In (corresponding to the current collector layer 11 of the above), a plurality of metal foils are laminated along the stacking direction of the first current collector layer 11, the insulating layer 13, and the second current collector layer 12. It is preferable to have.

全固体電池100においては、釘刺し試験時に釘が刺し込まれる側に配置される第1の集電体層11が複数の金属箔によって構成される。当該金属箔を構成する金属としては、Cu、Ni、Al、Fe、Ti、Zn、Co、Cr、Au、Pt、ステンレス鋼等が挙げられる。金属箔は、その表面に、接触抵抗を調整するための何らかの層を有していてもよい。 In the all-solid-state battery 100, the first current collector layer 11 arranged on the side where the nail is inserted during the nail insertion test is composed of a plurality of metal foils. Examples of the metal constituting the metal foil include Cu, Ni, Al, Fe, Ti, Zn, Co, Cr, Au, Pt, stainless steel and the like. The metal leaf may have some layer on its surface for adjusting the contact resistance.

第1の集電体層11において、金属箔1枚あたりの厚みは特に限定されるものではなく、金属箔として一般的な厚みであればよいが、より顕著な効果を発揮させる観点からは、金属箔1枚あたりの厚みを1μm以上90μm以下とすることが好ましい。下限がより好ましくは7μm以上、さらに好ましくは9μm以上であり、上限がより好ましくは20μm以下、さらに好ましくは15μm以下である。 In the first current collector layer 11, the thickness per metal foil is not particularly limited, and may be a general thickness as a metal foil, but from the viewpoint of exerting a more remarkable effect, it may be used. The thickness of one metal foil is preferably 1 μm or more and 90 μm or less. The lower limit is more preferably 7 μm or more, further preferably 9 μm or more, and the upper limit is more preferably 20 μm or less, still more preferably 15 μm or less.

第1の集電体層11において、層全体としての厚みは特に限定されるものではない。電池の体積エネルギー密度等を考慮した場合、第1の集電体層11の厚みをできるだけ薄くすることが好ましい一方、釘刺し時における短絡電流分散体10の短絡抵抗を一層安定化させる観点からは、第1の集電体層11の厚みをできるだけ厚くすることが好ましいと考えられる。例えば、第1の集電体層11の層全体としての厚みを20μm以上2mm以下とすることが好ましい。下限がより好ましくは30μm以上、さらに好ましくは36μm以上、上限がより好ましくは0.2mm以下、さらに好ましくは105μm以下である。 In the first current collector layer 11, the thickness of the layer as a whole is not particularly limited. Considering the volume energy density of the battery and the like, it is preferable to make the thickness of the first collector layer 11 as thin as possible, but from the viewpoint of further stabilizing the short-circuit resistance of the short-circuit current dispersion 10 at the time of nailing. It is considered preferable to make the thickness of the first current collector layer 11 as thick as possible. For example, it is preferable that the thickness of the first current collector layer 11 as a whole is 20 μm or more and 2 mm or less. The lower limit is more preferably 30 μm or more, further preferably 36 μm or more, and the upper limit is more preferably 0.2 mm or less, still more preferably 105 μm or less.

第1の集電体層11において、金属箔の枚数は特に限定されるものではない。より顕著な効果を発揮させる観点からは、例えば、金属箔の枚数を2枚以上200枚以下とすることが好ましい。下限がより好ましくは4枚以上、上限がより好ましくは20枚以下、さらに好ましくは7枚以下である。 The number of metal foils in the first current collector layer 11 is not particularly limited. From the viewpoint of exerting a more remarkable effect, for example, the number of metal foils is preferably 2 or more and 200 or less. The lower limit is more preferably 4 or more, the upper limit is more preferably 20 or less, and even more preferably 7 or less.

図2に示すように、第1の集電体層11は集電タブ11aを備えており、当該集電タブ11aを介して発電要素20の正極集電体層21に電気的に接続されていることが好ましい。集電タブ11aは第1の集電体層11と同じ材質であってもよいし、異なる材質であってもよい。 As shown in FIG. 2, the first current collector layer 11 includes a current collector tab 11a, which is electrically connected to the positive electrode current collector layer 21 of the power generation element 20 via the current collector tab 11a. It is preferable to have. The current collector tab 11a may be made of the same material as the first current collector layer 11 or may be made of a different material.

1.1.2.釘刺し試験において釘が刺し出される側に配置される集電体層
全固体電池100において、釘刺し試験において釘が刺し出される側に配置される第2の集電体層12は、金属箔や金属メッシュ等により構成すればよい。特に金属箔が好ましい。第2の集電体層12を構成する金属としては、Cu、Ni、Al、Fe、Ti、Zn、Co、Cr、Au、Pt、ステンレス鋼等が挙げられる。第2の集電体層12は、その表面に、接触抵抗を調整するための何らかの層を有していてもよい。
11.2. In the all-solid-state battery 100, the second collector layer 12 arranged on the side where the nail is pierced in the nail piercing test is a metal leaf. Or a metal mesh or the like. Metal leaf is particularly preferable. Examples of the metal constituting the second collector layer 12 include Cu, Ni, Al, Fe, Ti, Zn, Co, Cr, Au, Pt, stainless steel and the like. The second current collector layer 12 may have some layer on its surface for adjusting the contact resistance.

第2の集電体層12の厚みは特に限定されるものではない。例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。第2の集電体層12の厚みをこのような範囲とした場合、釘刺し時、第1の集電体層11と第2の集電体層12とを互いにより適切に接触させることができ、短絡電流分散体10をより適切に短絡させることができる。 The thickness of the second current collector layer 12 is not particularly limited. For example, it is preferably 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 100 μm or less. When the thickness of the second current collector layer 12 is within such a range, the first current collector layer 11 and the second current collector layer 12 can be brought into contact with each other more appropriately at the time of nailing. It is possible to short-circuit the short-circuit current dispersion 10 more appropriately.

図2に示すように、第2の集電体層12は集電タブ12aを備えており、当該集電タブ12aを介して発電要素20の負極集電体層25に電気的に接続されていることが好ましい。集電タブ12aは第2の集電体層12と同じ材質であってもよいし、異なる材質であってもよい。 As shown in FIG. 2, the second current collector layer 12 includes a current collector tab 12a, which is electrically connected to the negative electrode current collector layer 25 of the power generation element 20 via the current collector tab 12a. It is preferable to have. The current collector tab 12a may be made of the same material as the second current collector layer 12, or may be made of a different material.

尚、本開示の全固体電池においては、短絡電流分散体10の第1の集電体層11及び第2の集電体層12のうち、少なくとも、釘刺し試験において釘が刺し込まれる側に配置される集電体層が、複数の金属箔によって構成されていればよい。よって、上述したような、第1の集電体層11のみが複数の金属箔によって構成される形態のほか、第1の集電体層11及び第2の集電体層12の双方が複数の金属箔によって構成される形態とすることも可能である。 In the all-solid-state battery of the present disclosure, at least on the side where the nail is pierced in the nail piercing test, among the first current collector layer 11 and the second current collector layer 12 of the short-circuit current dispersion 10. The current collector layer to be arranged may be composed of a plurality of metal foils. Therefore, as described above, in addition to the form in which only the first current collector layer 11 is composed of a plurality of metal foils, both the first current collector layer 11 and the second current collector layer 12 are plural. It is also possible to form a form composed of the metal foil of.

1.1.3.絶縁層13
全固体電池100において、絶縁層13は、電池の通常使用時において、第1の集電体層11と第2の集電体層12とを絶縁するものであればよい。絶縁層13は、有機材料からなる絶縁層であっても、無機材料からなる絶縁層であっても、有機材料と無機材料とが混在する絶縁層であってもよい。特に、有機材料からなる絶縁層が好ましい。無機材料からなる絶縁層と比較して、有機材料からなる絶縁層は、通常使用時に割れによる短絡発生確率が低いという観点から有利だからである。
11.3. Insulation layer 13
In the all-solid-state battery 100, the insulating layer 13 may be any as long as it insulates the first current collector layer 11 and the second current collector layer 12 during normal use of the battery. The insulating layer 13 may be an insulating layer made of an organic material, an insulating layer made of an inorganic material, or an insulating layer in which an organic material and an inorganic material are mixed. In particular, an insulating layer made of an organic material is preferable. This is because the insulating layer made of an organic material is more advantageous than the insulating layer made of an inorganic material from the viewpoint that the probability of short circuit occurrence due to cracking is low during normal use.

絶縁層13を構成し得る有機材料としては各種樹脂が挙げられる。例えば、各種熱可塑性樹脂や各種熱硬化性樹脂である。特にポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリフェニレンサルファイド等のスーパーエンジニアリングプラスチックが好ましい。通常、熱硬化性樹脂は、熱可塑性樹脂よりも熱安定性が高く、且つ、硬質で脆い。すなわち、熱硬化性樹脂により絶縁層13を構成した場合において、短絡電流分散体10の釘刺しを行った場合、絶縁層13が容易に破断し、第1の集電体層11や第2の集電体層12の変形に対して絶縁層13が追従することを抑制でき、第1の集電体層11と第2の集電体層12とをより容易に接触させることができる。また、絶縁層13の温度が上昇したとしても熱分解を抑制できる。この観点からは、絶縁層13は熱硬化性樹脂シートによって構成されることが好ましく、熱硬化性ポリイミド樹脂シートによって構成されることがより好ましい。 Examples of the organic material that can form the insulating layer 13 include various resins. For example, various thermoplastic resins and various thermosetting resins. In particular, super engineering plastics such as polyimide, polyamide-imide, polyetheretherketone, and polyphenylene sulfide are preferable. Generally, thermosetting resins have higher thermal stability than thermoplastic resins, and are hard and brittle. That is, when the insulating layer 13 is made of the heat-curable resin, the insulating layer 13 is easily broken when the short-circuit current dispersion 10 is nailed, and the first current collector layer 11 and the second collector layer 11 and the second collector layer 13 are easily broken. It is possible to prevent the insulating layer 13 from following the deformation of the current collector layer 12, and the first current collector layer 11 and the second current collector layer 12 can be brought into contact with each other more easily. Further, even if the temperature of the insulating layer 13 rises, thermal decomposition can be suppressed. From this point of view, the insulating layer 13 is preferably composed of a thermosetting resin sheet, and more preferably composed of a thermosetting polyimide resin sheet.

絶縁層13を構成し得る無機材料としては各種セラミックが挙げられる。例えば、無機酸化物である。尚、表面に酸化物被膜を有する金属箔によって絶縁層13を構成してもよい。例えば、アルマイト処理によって、アルミニウム箔の表面に陽極酸化被膜を形成することで、表面に絶縁層として酸化アルミニウム被膜を有するアルミニウム箔が得られる。この場合、酸化アルミニウム被膜の厚みは0.01μm以上5μm以下であることが好ましい。下限がより好ましくは0.1μm以上であり、上限がより好ましくは1μm以下である。 Examples of the inorganic material that can form the insulating layer 13 include various ceramics. For example, an inorganic oxide. The insulating layer 13 may be formed of a metal foil having an oxide film on the surface. For example, by forming an anodic oxide film on the surface of the aluminum foil by alumite treatment, an aluminum foil having an aluminum oxide film as an insulating layer on the surface can be obtained. In this case, the thickness of the aluminum oxide film is preferably 0.01 μm or more and 5 μm or less. The lower limit is more preferably 0.1 μm or more, and the upper limit is more preferably 1 μm or less.

絶縁層13の厚みは特に限定されるものではない。例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。絶縁層13の厚みをこのような範囲とした場合、電池の通常使用時、第1の集電体層11と第2の集電体層12とをより適切に絶縁することができるとともに、釘刺し等の外部応力による変形によって第1の集電体層11と第2の集電体層12とをより適切に導通させて、短絡電流分散体10を短絡させることができる。 The thickness of the insulating layer 13 is not particularly limited. For example, it is preferably 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 100 μm or less. When the thickness of the insulating layer 13 is within such a range, the first current collector layer 11 and the second current collector layer 12 can be more appropriately insulated and the nails can be used during normal use of the battery. The short-circuit current dispersion 10 can be short-circuited by more appropriately conducting the first current collector layer 11 and the second current collector layer 12 by deformation due to external stress such as piercing.

1.2.発電要素20(20a、20b)
全固体電池100において、発電要素20a及び20bは、それぞれ、正極集電体層21と正極材層22と固体電解質層23と負極材層24と負極集電体層25とが積層されてなる。すなわち、発電要素20a及び20bはそれぞれ単電池として機能し得る。
1.2. Power generation element 20 (20a, 20b)
In the all-solid-state battery 100, the power generation elements 20a and 20b are formed by laminating a positive electrode collector layer 21, a positive electrode material layer 22, a solid electrolyte layer 23, a negative electrode material layer 24, and a negative electrode current collector layer 25, respectively. That is, the power generation elements 20a and 20b can each function as a cell.

1.2.1.正極集電体層21
正極集電体層21は、金属箔や金属メッシュ等により構成すればよい。特に金属箔が好ましい。正極集電体層21を構成する金属としては、Ni、Cr、Au、Pt、Al、Fe、Ti、Zn、ステンレス鋼等が挙げられる。正極集電体層21は、その表面に、接触抵抗を調整するための何らかのコート層を有していてもよい。例えば、導電材と樹脂とを含むコート層等である。正極集電体層21の厚みは特に限定されるものではない。例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。
1.2.1. Positive electrode current collector layer 21
The positive electrode current collector layer 21 may be formed of a metal foil, a metal mesh, or the like. Metal leaf is particularly preferable. Examples of the metal constituting the positive electrode current collector layer 21 include Ni, Cr, Au, Pt, Al, Fe, Ti, Zn, and stainless steel. The positive electrode current collector layer 21 may have some coat layer on its surface for adjusting the contact resistance. For example, a coat layer containing a conductive material and a resin. The thickness of the positive electrode current collector layer 21 is not particularly limited. For example, it is preferably 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 100 μm or less.

図3に示すように、正極集電体層21は外縁の一部に正極集電タブ21aを備えることが好ましい。タブ21aにより、第1の集電体層11と正極集電体層21とを容易に電気的に接続することができるとともに、正極集電体層21同士を容易に電気的に並列に接続することができる。 As shown in FIG. 3, it is preferable that the positive electrode current collector layer 21 is provided with a positive electrode current collector tab 21a on a part of the outer edge. The tab 21a allows the first current collector layer 11 and the positive electrode current collector layer 21 to be easily electrically connected, and the positive electrode current collector layers 21 to be easily electrically connected in parallel. be able to.

1.2.2.正極材層22
正極材層22は、少なくとも活物質を含む層であり、活物質に加えて、さらに任意に固体電解質、バインダー及び導電助剤等を含ませることができる。活物質は公知の活物質を用いればよい。公知の活物質のうち、所定のイオンを吸蔵放出する電位(充放電電位)の異なる2つの物質を選択し、貴な電位を示す物質を正極活物質とし、卑な電位を示す物質を後述の負極活物質として、それぞれ用いることができる。例えば、リチウムイオン電池を構成する場合は、正極活物質としてコバルト酸リチウム、ニッケル酸リチウム、LiNi1/3Co1/3Mn1/3、マンガン酸リチウム、スピネル系リチウム化合物等の各種のリチウム含有複合酸化物を用いることができる。正極活物質は表面がニオブ酸リチウム層やチタン酸リチウム層やリン酸リチウム層等の酸化物層で被覆されていてもよい。正極材層22に含まれ得る固体電解質は無機固体電解質であることが好ましい。有機ポリマー電解質と比較してイオン伝導度が高いためである。また、有機ポリマー電解質と比較して、耐熱性に優れるためである。さらに、有機ポリマー電解質と比較して、釘刺し時に発電要素20に加わる圧力が高圧となり、本開示の全固体電池100による効果が顕著となるものと考えられるためである。好ましい無機固体電解質としては、例えば、ランタンジルコン酸リチウム、LiPON、Li1+XAlGe2-X(PO、Li-SiO系ガラス、Li-Al-S-O系ガラス等の酸化物固体電解質;LiS-P、LiS-SiS、LiI-LiS-SiS、LiI-SiS-P、LiI-LiBr-LiS-P、LiI-LiS-P、LiI-LiS-P、LiI-LiPO-P、LiS-P-GeS等の硫化物固体電解質を例示することができる。特に、LiS-Pを含む硫化物固体電解質がより好ましく、LiS-Pを50モル%以上含む硫化物固体電解質がさらに好ましい。正極材層22に含まれ得るバインダーとしては、例えば、ブタジエンゴム(BR)、アクリレートブタジエンゴム(ABR)、ポリフッ化ビニリデン(PVdF)等が挙げられる。正極材層22に含まれ得る導電助剤としてはアセチレンブラックやケッチェンブラック等の炭素材料やニッケル、アルミニウム、ステンレス鋼等の金属材料が挙げられる。正極材層22における各成分の含有量は従来と同様とすればよい。正極材層22の形状も従来と同様とすればよい。特に、全固体電池100を容易に構成できる観点から、シート状の正極材層22が好ましい。この場合、正極材層22の厚みは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上150μm以下であることがより好ましい。
1.2.2. Positive electrode material layer 22
The positive electrode material layer 22 is a layer containing at least an active material, and in addition to the active material, a solid electrolyte, a binder, a conductive auxiliary agent, and the like can be optionally contained. As the active material, a known active material may be used. From the known active materials, two substances having different potentials (charge / discharge potentials) for occluding and releasing predetermined ions are selected, a substance showing a noble potential is used as a positive electrode active material, and a substance showing a low potential is described later. Each can be used as a negative electrode active material. For example, when constituting a lithium ion battery, various positive electrode active materials such as lithium cobalt oxide, lithium nickel oxide, LiNi 1/3 Co 1/3 Mn 1/3 O2 , lithium manganate, and spinel-based lithium compounds are used. Lithium-containing composite oxides can be used. The surface of the positive electrode active material may be coated with an oxide layer such as a lithium niobate layer, a lithium titanate layer, or a lithium phosphate layer. The solid electrolyte that can be contained in the positive electrode material layer 22 is preferably an inorganic solid electrolyte. This is because the ionic conductivity is higher than that of the organic polymer electrolyte. This is also because it has excellent heat resistance as compared with the organic polymer electrolyte. Further, it is considered that the pressure applied to the power generation element 20 at the time of nailing becomes higher than that of the organic polymer electrolyte, and the effect of the all-solid-state battery 100 of the present disclosure becomes remarkable. Preferred inorganic solid electrolytes include oxide solids such as lithium lanthanum dilconate, LiPON, Li 1 + X Al X Ge 2-X (PO 4 ) 3 , Li-SiO-based glass, and Li-Al-SO-based glass. Electrolyte; Li 2 SP 2 S 5 , Li 2 S-SiS 2 , LiI-Li 2 S-SiS 2 , LiI-Si 2 SP 2 S 5 , LiI-LiBr-Li 2 SP 2 S 5 , LiI-Li 2 SP 2 S 5, LiI-Li 2 SP 2 O 5, LiI-Li 3 PO 4-P 2 S 5 , Li 2 SP 2 S 5 - GeS 2 and other sulfides A solid electrolyte can be exemplified. In particular, a sulfide solid electrolyte containing Li 2 SP 2 S 5 is more preferable, and a sulfide solid electrolyte containing 50 mol% or more of Li 2 SP 2 S 5 is even more preferable. Examples of the binder that can be contained in the positive electrode material layer 22 include butadiene rubber (BR), acrylate butadiene rubber (ABR), polyvinylidene fluoride (PVdF), and the like. Examples of the conductive auxiliary agent that can be contained in the positive electrode material layer 22 include carbon materials such as acetylene black and Ketjen black, and metal materials such as nickel, aluminum, and stainless steel. The content of each component in the positive electrode material layer 22 may be the same as in the conventional case. The shape of the positive electrode material layer 22 may be the same as in the conventional case. In particular, the sheet-shaped positive electrode material layer 22 is preferable from the viewpoint that the all-solid-state battery 100 can be easily configured. In this case, the thickness of the positive electrode material layer 22 is preferably, for example, 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 150 μm or less.

1.2.3.固体電解質層23
固体電解質層23は、少なくとも固体電解質を含む層であり、固体電解質に加えて、さらに任意にバインダーを含ませることができる。固体電解質は上述した無機固体電解質が好ましい。バインダーは正極材層22に用いられるものとして例示した種々のバインダーの中から適宜選択して用いることができる。固体電解質層23における各成分の含有量は従来と同様とすればよい。固体電解質層23の形状も従来と同様とすればよい。特に、全固体電池100を容易に構成できる観点から、シート状の固体電解質層23が好ましい。この場合、固体電解質層23の厚みは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。
1.2.3. Solid electrolyte layer 23
The solid electrolyte layer 23 is a layer containing at least a solid electrolyte, and can further optionally contain a binder in addition to the solid electrolyte. The above-mentioned inorganic solid electrolyte is preferable as the solid electrolyte. The binder can be appropriately selected and used from various binders exemplified as those used for the positive electrode material layer 22. The content of each component in the solid electrolyte layer 23 may be the same as before. The shape of the solid electrolyte layer 23 may be the same as before. In particular, the sheet-shaped solid electrolyte layer 23 is preferable from the viewpoint that the all-solid-state battery 100 can be easily configured. In this case, the thickness of the solid electrolyte layer 23 is preferably, for example, 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 100 μm or less.

1.2.4.負極材層24
負極材層24は、少なくとも活物質を含む層であり、活物質に加えて、さらに任意に固体電解質、バインダー及び導電助剤等を含ませることができる。活物質は公知の活物質を用いればよい。公知の活物質のうち、所定のイオンを吸蔵放出する電位(充放電電位)の異なる2つの物質を選択し、貴な電位を示す物質を上述の正極活物質とし、卑な電位を示す物質を負極活物質として、それぞれ用いることができる。例えば、リチウムイオン電池を構成する場合は、負極活物質としてSiやSi合金;グラファイトやハードカーボン等の炭素材料;チタン酸リチウム等の各種酸化物;金属リチウムやリチウム合金等を用いることができる。固体電解質、バインダー及び導電助剤は正極材層22に用いられるものとして例示したものの中から適宜選択して用いることができる。負極材層24における各成分の含有量は従来と同様とすればよい。負極材層24の形状も従来と同様とすればよい。特に、全固体電池100を容易に構成できる観点から、シート状の負極材層24が好ましい。この場合、負極材層24の厚みは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。ただし、負極の容量が正極の容量よりも大きくなるように、負極材層24の厚みを決定することが好ましい。
1.2.4. Negative electrode material layer 24
The negative electrode material layer 24 is a layer containing at least an active material, and in addition to the active material, a solid electrolyte, a binder, a conductive auxiliary agent, and the like can be optionally contained. As the active material, a known active material may be used. From the known active materials, two substances having different potentials (charge / discharge potentials) for occluding and releasing predetermined ions are selected, a substance showing a noble potential is used as the above-mentioned positive electrode active material, and a substance showing a low potential is used. Each can be used as a negative electrode active material. For example, in the case of constituting a lithium ion battery, Si or Si alloy; carbon material such as graphite or hard carbon; various oxides such as lithium titanate; metallic lithium, lithium alloy or the like can be used as the negative electrode active material. The solid electrolyte, the binder and the conductive auxiliary agent can be appropriately selected and used from those exemplified as those used for the positive electrode material layer 22. The content of each component in the negative electrode material layer 24 may be the same as in the conventional case. The shape of the negative electrode material layer 24 may be the same as in the conventional case. In particular, the sheet-shaped negative electrode material layer 24 is preferable from the viewpoint that the all-solid-state battery 100 can be easily configured. In this case, the thickness of the negative electrode material layer 24 is preferably, for example, 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 100 μm or less. However, it is preferable to determine the thickness of the negative electrode material layer 24 so that the capacity of the negative electrode is larger than the capacity of the positive electrode.

1.2.5.負極集電体層25
負極集電体層25は、金属箔や金属メッシュ等により構成すればよい。特に金属箔が好ましい。負極集電体層25を構成する金属としては、Cu、Ni、Fe、Ti、Co、Zn、ステンレス鋼等が挙げられる。負極集電体層25は、その表面に、接触抵抗を調整するための何らかのコート層を有していてもよい。例えば、導電材と樹脂とを含むコート層等である。負極集電体層25の厚みは特に限定されるものではない。負極集電体25の厚みは特に限定されるものではない。例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。
1.2.5. Negative electrode current collector layer 25
The negative electrode current collector layer 25 may be formed of a metal foil, a metal mesh, or the like. Metal leaf is particularly preferable. Examples of the metal constituting the negative electrode current collector layer 25 include Cu, Ni, Fe, Ti, Co, Zn, and stainless steel. The negative electrode current collector layer 25 may have some coat layer on its surface for adjusting the contact resistance. For example, a coat layer containing a conductive material and a resin. The thickness of the negative electrode current collector layer 25 is not particularly limited. The thickness of the negative electrode current collector 25 is not particularly limited. For example, it is preferably 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 100 μm or less.

図3に示すように、負極集電体層25は外縁の一部に負極集電タブ25aを備えることが好ましい。タブ25aにより、第2の集電体層12と負極集電体層25とを容易に電気的に接続することができるとともに、負極集電体層25同士を容易に電気的に並列に接続することができる。 As shown in FIG. 3, it is preferable that the negative electrode current collector layer 25 is provided with a negative electrode current collector tab 25a on a part of the outer edge. The tab 25a allows the second current collector layer 12 and the negative electrode current collector layer 25 to be easily electrically connected, and the negative electrode current collector layers 25 to be easily electrically connected in parallel. be able to.

1.3.短絡電流分散体及び発電要素の配置や接続形態
1.3.1.発電要素の配置
全固体電池100において、発電要素20a及び20bの積層数は特に限定されるものではなく、目的とする電池の出力に応じて、適宜決定すればよい。この場合、複数の発電要素20が互いに直接接触するように積層されていてもよいし、複数の発電要素20が何らかの層(例えば絶縁層)や間隔(空気層)を介して積層されていてもよい。電池の出力密度を向上させる観点からは、図1に示すように、複数の発電要素20が互いに直接接触するように積層されていることが好ましい。また、図1、3に示すように、2つの発電要素20a、20bが、負極集電体25を共用していることが好ましい。このようにすることで、電池の出力密度が一層向上する。さらに、図1に示すように、全固体電池100においては、複数の発電要素20の積層方向と、発電要素20における各層21~25の積層方向とを一致させることが好ましい。このようにすることで、積層電池100の拘束が容易となり、電池の出力密度が一層向上する。
1.3. Arrangement and connection form of short-circuit current dispersion and power generation element 1.3.1. Arrangement of power generation elements In the all-solid-state battery 100, the number of stacked power generation elements 20a and 20b is not particularly limited, and may be appropriately determined according to the output of the target battery. In this case, a plurality of power generation elements 20 may be laminated so as to be in direct contact with each other, or a plurality of power generation elements 20 may be laminated via some layer (for example, an insulating layer) or an interval (air layer). good. From the viewpoint of improving the output density of the battery, as shown in FIG. 1, it is preferable that the plurality of power generation elements 20 are laminated so as to be in direct contact with each other. Further, as shown in FIGS. 1 and 3, it is preferable that the two power generation elements 20a and 20b share the negative electrode current collector 25. By doing so, the output density of the battery is further improved. Further, as shown in FIG. 1, in the all-solid-state battery 100, it is preferable that the stacking direction of the plurality of power generation elements 20 coincides with the stacking direction of the layers 21 to 25 in the power generation element 20. By doing so, the laminated battery 100 can be easily restrained, and the output density of the battery is further improved.

1.3.2.発電要素同士の電気的接続
全固体電池100においては、複数の発電要素同士が電気的に並列に接続される。このように並列に接続された発電要素においては、一の発電要素が短絡した場合に、他の発電要素から当該一の発電要素へと集中して電子が流れ込む。すなわち、電池短絡時にジュール発熱が大きくなり易い。言い換えれば、このように並列接続された複数の発電要素20を備える全固体電池100において、短絡電流分散体10を設けることによる効果がより顕著となる。発電要素同士を電気的に接続するための部材としては、従来公知の部材を用いればよい。例えば、上述したように、正極集電体層21に正極集電タブ21aを設け、負極集電体層25に負極集電タブ25aを設け、当該タブ21a、25aを介して発電要素20同士を電気的に並列に接続することができる。
1.3.2. Electrical connection between power generation elements In the all-solid-state battery 100, a plurality of power generation elements are electrically connected in parallel. In the power generation elements connected in parallel in this way, when one power generation element is short-circuited, electrons flow from the other power generation elements to the one power generation element in a concentrated manner. That is, Joule heat generation tends to increase when the battery is short-circuited. In other words, in the all-solid-state battery 100 including the plurality of power generation elements 20 connected in parallel in this way, the effect of providing the short-circuit current dispersion 10 becomes more remarkable. As a member for electrically connecting the power generation elements to each other, a conventionally known member may be used. For example, as described above, the positive electrode current collector layer 21 is provided with the positive electrode current collector tab 21a, the negative electrode current collector layer 25 is provided with the negative electrode current collector tab 25a, and the power generation elements 20 are connected to each other via the tabs 21a and 25a. It can be electrically connected in parallel.

1.3.3.短絡電流分散体と発電要素との電気的接続
全固体電池100において、短絡電流分散体10の第1の集電体層11が発電要素20の正極集電体層21と電気的に接続されており、短絡電流分散体10の第2の集電体層12が発電要素20の負極集電体層25と電気的に接続されている。このように、短絡電流分散体10と複数の発電要素20とを電気的に接続することで、例えば、短絡電流分散体10及び一部の発電要素(例えば、発電要素20a)の短絡時に、他の発電要素(例えば発電要素20b)からの回り込み電流を短絡電流分散体10へと分散させることができる。短絡電流分散体10と発電要素20とを電気的に接続するための部材としては、従来公知の部材を用いればよい。例えば、上述したように、第1の集電体層11に第1の集電タブ11aを設け、第2の集電体層12に第2の集電タブ12aを設け、当該タブ11a、12aを介して短絡電流分散体10と発電要素20とを電気的に接続することができる。
1.3.3. Electrical connection between the short-circuit current dispersion and the power generation element In the all-solid-state battery 100, the first current collector layer 11 of the short-circuit current dispersion 10 is electrically connected to the positive electrode current collector layer 21 of the power generation element 20. The second collector layer 12 of the short-circuit current dispersion 10 is electrically connected to the negative electrode current collector layer 25 of the power generation element 20. By electrically connecting the short-circuit current dispersion 10 and the plurality of power generation elements 20 in this way, for example, when the short-circuit current dispersion 10 and some power generation elements (for example, the power generation element 20a) are short-circuited, the other The wraparound current from the power generation element (for example, the power generation element 20b) can be distributed to the short-circuit current disperser 10. As a member for electrically connecting the short-circuit current dispersion 10 and the power generation element 20, a conventionally known member may be used. For example, as described above, the first current collector layer 11 is provided with the first current collector tab 11a, the second current collector layer 12 is provided with the second current collector tab 12a, and the tabs 11a and 12a are provided. The short-circuit current dispersion 10 and the power generation element 20 can be electrically connected via the above.

1.3.4.短絡電流分散体と発電要素との位置関係
短絡電流分散体10と複数の発電要素20とは互いに積層されていればよい。この場合、短絡電流分散体10と複数の発電要素20とを直接積層してもよいし、上記の課題を解決できる範囲において他の層(絶縁層や断熱層等)を介して間接的に積層してもよい。また、短絡電流分散体10は、上述したように、複数の発電要素20よりも外側に積層されていてもよいし、複数の発電要素20の間に積層されていてもよいし、複数の発電要素20の外側と複数の発電要素20の間との双方に積層されていてもよい。特に、図1に示すように、短絡電流分散体10と複数の発電要素20とを積層した場合において、短絡電流分散体10が複数の発電要素20よりも外側に設けられていることが好ましく、短絡電流分散体10が複数の発電要素20よりも積層方向(複数の発電要素20における各層の積層方向)外側に少なくとも設けられていることがより好ましい。これにより、釘刺し時、短絡電流分散体10が発電要素20a等よりも先に短絡し、発電要素20a等から短絡電流分散体10へと回り込み電流を発生させることができ、さらには、発電要素20a等の内部における発熱を抑制できる。
1.3.4. Positional relationship between the short-circuit current dispersion and the power generation element The short-circuit current dispersion 10 and the plurality of power generation elements 20 may be laminated on each other. In this case, the short-circuit current dispersion 10 and the plurality of power generation elements 20 may be directly laminated, or indirectly laminated via another layer (insulation layer, heat insulating layer, etc.) within the range in which the above problems can be solved. You may. Further, as described above, the short-circuit current dispersion 10 may be stacked outside the plurality of power generation elements 20, may be stacked between the plurality of power generation elements 20, or may be laminated between the plurality of power generation elements 20. It may be laminated both on the outside of the element 20 and between the plurality of power generation elements 20. In particular, as shown in FIG. 1, when the short-circuit current dispersion 10 and the plurality of power generation elements 20 are laminated, it is preferable that the short-circuit current dispersion 10 is provided outside the plurality of power generation elements 20. It is more preferable that the short-circuit current dispersion 10 is provided at least outside the stacking direction (stacking direction of each layer in the plurality of power generation elements 20) than the plurality of power generation elements 20. As a result, the short-circuit current dispersion 10 can be short-circuited before the power generation element 20a or the like at the time of nailing, and can sneak from the power generation element 20a or the like to the short-circuit current dispersion 10 to generate a current, and further, the power generation element. It is possible to suppress heat generation inside 20a and the like.

釘刺しによる電池の短絡が発生し易いのは、釘が発電要素20aの正極集電体層21から負極集電体層25に向かって(或いは、負極集電体層25から正極集電体層21に向かって)刺された場合である。この点、全固体電池100においては、釘刺し方向と、各層の積層方向とが一致することが好ましい。より具体的には、図1に示すように、発電要素20a、20bにおける正極集電体層21と正極材層22と固体電解質層23と負極材層24と負極集電体層25との積層方向、複数の発電要素20の積層方向、短絡電流分散体10における第1の集電体層11と絶縁層13と第2の集電体層12との積層方向、及び、短絡電流分散体10と複数の発電要素20との積層方向、が同じ方向であることが好ましい。 A short circuit of the battery due to nail sticking is likely to occur when the nail moves from the positive electrode current collector layer 21 of the power generation element 20a toward the negative electrode current collector layer 25 (or from the negative electrode current collector layer 25 to the positive electrode current collector layer). This is the case of being stabbed (towards 21). In this respect, in the all-solid-state battery 100, it is preferable that the nailing direction and the stacking direction of each layer coincide with each other. More specifically, as shown in FIG. 1, the positive electrode current collector layer 21, the positive electrode material layer 22, the solid electrolyte layer 23, the negative electrode material layer 24, and the negative electrode current collector layer 25 are laminated in the power generation elements 20a and 20b. Direction, stacking direction of a plurality of power generation elements 20, stacking direction of the first current collector layer 11 and the insulating layer 13 and the second current collector layer 12 in the short-circuit current dispersion 10, and the short-circuit current dispersion 10. And the stacking direction of the plurality of power generation elements 20 are preferably the same direction.

1.3.5.短絡電流分散体と発電要素との大きさの関係
全固体電池100においては、短絡電流分散体10が、発電要素20のできるだけ多くの部分を覆っていることで、釘刺し時に、複数の発電要素20よりも先に短絡電流分散体10を短絡させ易くなる。この観点からは、例えば、全固体電池100においては、短絡電流分散体10と複数の発電要素20との積層方向から見た時に、短絡電流分散体10の外縁が複数の発電要素20の外縁よりも外側に存在していることが好ましい。或いは、複数の発電要素20の積層方向と各層21~25の積層方向とが同じである場合において、短絡電流分散体10と複数の発電要素20との積層方向から見た時に、短絡電流分散体10の外縁が正極材層22、電解質層23及び負極材層24の外縁よりも外側に存在することが好ましい。ただし、この場合、短絡電流分散体10の第1の集電体層11と発電要素20の負極集電体層25とが短絡しないようにする。すなわち、短絡電流分散体10と発電要素20との間に絶縁体等を設け、短絡電流分散体10を大きくしても、短絡電流分散体10と発電要素20との短絡を防止可能とする。
1.3.5. Relationship between the size of the short-circuit current dispersion and the power generation element In the all-solid-state battery 100, the short-circuit current dispersion 10 covers as many parts of the power generation element 20 as possible, so that a plurality of power generation elements are generated at the time of nailing. It becomes easy to short-circuit the short-circuit current dispersion 10 before 20. From this point of view, for example, in the all-solid-state battery 100, the outer edge of the short-circuit current dispersion 10 is larger than the outer edge of the plurality of power generation elements 20 when viewed from the stacking direction of the short-circuit current dispersion 10 and the plurality of power generation elements 20. Is preferably present on the outside. Alternatively, when the stacking direction of the plurality of power generation elements 20 and the stacking direction of each layer 21 to 25 are the same, the short-circuit current dispersion is viewed from the stacking direction of the short-circuit current dispersion 10 and the plurality of power generation elements 20. It is preferable that the outer edge of 10 is outside the outer edge of the positive electrode material layer 22, the electrolyte layer 23, and the negative electrode material layer 24. However, in this case, the first collector layer 11 of the short-circuit current dispersion 10 and the negative electrode current collector layer 25 of the power generation element 20 are prevented from short-circuiting. That is, even if an insulator or the like is provided between the short-circuit current dispersion 10 and the power generation element 20 and the short-circuit current dispersion 10 is enlarged, it is possible to prevent the short-circuit current dispersion 10 and the power generation element 20 from being short-circuited.

一方で、電池のエネルギー密度をより高める観点及び上記した短絡電流分散体10と発電要素20との短絡を容易に防止できる観点からは、短絡電流分散体10をできるだけ小さくしてもよい。すなわち、この観点からは、全固体電池100においては、短絡電流分散体10と複数の発電要素20との積層方向から見た時に、短絡電流分散体10の外縁が発電要素20の外縁よりも内側に存在することが好ましい。或いは、複数の発電要素20の積層方向と発電要素20における各層21~25の積層方向とが同じである場合において、短絡電流分散体10と複数の発電要素20との積層方向から見た時に、短絡電流分散体10の外縁が正極材層22、固体電解質層23及び負極材層24の外縁よりも内側に存在することが好ましい。 On the other hand, the short-circuit current dispersion 10 may be made as small as possible from the viewpoint of further increasing the energy density of the battery and from the viewpoint of easily preventing a short circuit between the short-circuit current dispersion 10 and the power generation element 20 described above. That is, from this point of view, in the all-solid-state battery 100, the outer edge of the short-circuit current dispersion 10 is inside the outer edge of the power generation element 20 when viewed from the stacking direction of the short-circuit current dispersion 10 and the plurality of power generation elements 20. It is preferable to be present in. Alternatively, when the stacking direction of the plurality of power generation elements 20 and the stacking direction of each layer 21 to 25 in the power generation element 20 are the same, when viewed from the stacking direction of the short-circuit current dispersion 10 and the plurality of power generation elements 20, It is preferable that the outer edge of the short-circuit current dispersion 10 is present inside the outer edge of the positive electrode material layer 22, the solid electrolyte layer 23, and the negative electrode material layer 24.

以上の通り、全固体電池100においては、釘刺しによる短絡電流分散体10及び一部の発電要素(例えば、発電要素20a)の短絡時に、他の発電要素(例えば発電要素20b)からの回り込み電流を短絡電流分散体10へと分散させることができる。ここで、全固体電池100においては、短絡電流分散体10の第1の集電体層11及び第2の集電体層12のうち、少なくとも、釘刺し試験において釘が刺し込まれる側に配置される集電体層が、複数の金属箔によって構成されている。これにより、釘刺し試験時に短絡電流分散体10の短絡抵抗が安定させることができる。 As described above, in the all-solid-state battery 100, when the short-circuit current dispersion 10 and a part of the power generation element (for example, the power generation element 20a) are short-circuited by nail sticking, the wraparound current from another power generation element (for example, the power generation element 20b) Can be dispersed in the short-circuit current disperser 10. Here, in the all-solid-state battery 100, it is arranged at least on the side where the nail is pierced in the nail piercing test among the first current collector layer 11 and the second current collector layer 12 of the short-circuit current dispersion 10. The current collector layer to be formed is composed of a plurality of metal foils. As a result, the short-circuit resistance of the short-circuit current dispersion 10 can be stabilized during the nail piercing test.

また、全固体電池100の短絡電流分散体10において、第1の集電体層11を複数の金属箔で構成することで、短絡電流分散体10の熱容量を増大させる効果も期待できる。すなわち、釘刺し時に短絡電流分散体10に大きな電流が流れ込んだとしても、短絡電流分散体10の発熱を抑えることができ、発電要素20に含まれる電池材料の劣化等を抑えることができるものと考えられる。 Further, in the short-circuit current dispersion 10 of the all-solid-state battery 100, by forming the first current collector layer 11 with a plurality of metal foils, the effect of increasing the heat capacity of the short-circuit current dispersion 10 can be expected. That is, even if a large current flows into the short-circuit current dispersion 10 at the time of nailing, the heat generation of the short-circuit current dispersion 10 can be suppressed, and the deterioration of the battery material contained in the power generation element 20 can be suppressed. Conceivable.

2.全固体電池の製造方法
短絡電流分散体10は、第1の集電体層11(複数の金属箔)と第2の集電体層12(例えば、金属箔)との間に絶縁層13(例えば、熱硬化性樹脂シート)を配置することで、容易に作製できる。例えば、図2に示すように、第2の集電体層12の少なくとも片面に絶縁層13を配置し、さらに絶縁層13の第2の集電体層12とは反対側の面に第1の集電体層11を配置してもよい。ここで、短絡電流分散体10は、その形状を保持するために、接着剤や樹脂などを用いて各層を互いに貼り合わせてもよい。この場合、接着剤等は、各層の全面に塗布する必要はなく、各層の表面の一部に塗布すればよい。
2. 2. Method for manufacturing an all-solid-state battery The short-circuit current dispersion 10 has an insulating layer 13 (for example, a metal foil) between a first current collector layer 11 (a plurality of metal foils) and a second current collector layer 12 (for example, a metal foil). For example, it can be easily manufactured by arranging a thermosetting resin sheet). For example, as shown in FIG. 2, the insulating layer 13 is arranged on at least one surface of the second current collector layer 12, and the first is further arranged on the surface of the insulating layer 13 opposite to the second current collector layer 12. The current collector layer 11 may be arranged. Here, in order to maintain the shape of the short-circuit current dispersion 10, each layer may be bonded to each other using an adhesive, a resin, or the like. In this case, the adhesive or the like does not need to be applied to the entire surface of each layer, but may be applied to a part of the surface of each layer.

発電要素20については、公知の方法により作製できる。例えば、正極集電体層21の表面に正極材を湿式にて塗工して乾燥させることで正極材層22を形成し、負極集電体層25の表面に負極材を湿式にて塗工して乾燥させることで負極材層24を形成し、正極材層21と負極材層24との間に固体電解質等を含む固体電解質層23を転写し、プレス成形して一体化することで発電要素20を作製できる。この時のプレス圧は特に限定されるものではないが、例えば2ton/cm以上とすることが好ましい。尚、これらの作製手順はあくまでも一例であり、これ以外の手順によっても発電要素20を作製可能である。例えば、湿式法に替えて乾式法によって正極材層等を形成することも可能である。 The power generation element 20 can be manufactured by a known method. For example, the positive electrode material layer 22 is formed by wet-coating and drying the positive electrode material on the surface of the positive electrode current collector layer 21, and the negative electrode material is wet-coated on the surface of the negative electrode current collector layer 25. The negative electrode material layer 24 is formed by drying the electrodes, and the solid electrolyte layer 23 containing the solid electrolyte and the like is transferred between the positive electrode material layer 21 and the negative electrode material layer 24, and the solid electrolyte layer 23 is press-molded and integrated to generate power. The element 20 can be made. The press pressure at this time is not particularly limited, but is preferably 2 ton / cm 2 or more, for example. It should be noted that these manufacturing procedures are merely examples, and the power generation element 20 can be manufactured by other procedures. For example, it is also possible to form a positive electrode material layer or the like by a dry method instead of the wet method.

このようにして作製した短絡電流分散体10を複数の発電要素20に対して積層するとともに、第1の集電体層11に設けられたタブ11aを正極集電体層21と接続し、第2の集電体層12に設けられたタブ12aを負極集電体層25と接続し、正極集電体層21のタブ21a同士を接続し、負極集電体層25のタブ25a同士を接続することで、短絡電流分散体10と発電要素20とを電気的に接続するとともに、複数の発電要素20同士を電気的に並列に接続することができる。このようにして電気的に接続された積層体をラミネートフィルムやステンレス鋼缶等の電池ケース内に真空封入することによって全固体電池を作製できる。尚、これらの作製手順はあくまでも一例であり、これ以外の手順によっても全固体電池を作製可能である。 The short-circuit current dispersion 10 thus produced is laminated on the plurality of power generation elements 20, and the tab 11a provided on the first current collector layer 11 is connected to the positive electrode current collector layer 21. The tab 12a provided on the current collector layer 12 of 2 is connected to the negative electrode current collector layer 25, the tabs 21a of the positive electrode current collector layer 21 are connected to each other, and the tabs 25a of the negative electrode current collector layer 25 are connected to each other. By doing so, the short-circuit current dispersion 10 and the power generation element 20 can be electrically connected, and the plurality of power generation elements 20 can be electrically connected in parallel. An all-solid-state battery can be manufactured by vacuum-sealing the electrically connected laminate in a battery case such as a laminated film or a stainless steel can. It should be noted that these manufacturing procedures are merely examples, and an all-solid-state battery can be manufactured by other procedures.

以上の通り、従来の全固体電池の製造方法を応用することで、本開示の全固体電池100を容易に製造することができる。 As described above, the all-solid-state battery 100 of the present disclosure can be easily manufactured by applying the conventional all-solid-state battery manufacturing method.

3.補足事項
上記説明においては、短絡電流分散体10において、発電要素20の正極集電体層21に電気的に接続される第1の集電体層11が、複数の金属箔を備える形態について説明したが、本開示の全固体電池はこの形態に限定されるものではない。負極集電体層25に電気的に接続される第2の集電体層12が、釘刺し試験時において釘が刺し込まれる側に配置される形態も有り得る。この場合、少なくとも、第2の集電体層12において複数の金属箔が第1の集電体層11と絶縁層13と第2の集電体層12との積層方向に沿って積層されていればよい。第2の集電体層12を複数の金属箔の積層体とする場合の具体的な構成については、上記の第1の集電体層11における場合と同様であることから、ここでは詳細な説明を省略する。
3. 3. Supplementary Provisions In the above description, in the short-circuit current dispersion 10, a form in which the first current collector layer 11 electrically connected to the positive electrode current collector layer 21 of the power generation element 20 includes a plurality of metal foils will be described. However, the all-solid-state battery of the present disclosure is not limited to this form. There may be a form in which the second current collector layer 12 electrically connected to the negative electrode current collector layer 25 is arranged on the side where the nail is inserted during the nail insertion test. In this case, at least in the second current collector layer 12, a plurality of metal foils are laminated along the stacking direction of the first current collector layer 11, the insulating layer 13, and the second current collector layer 12. Just do it. The specific configuration when the second current collector layer 12 is a laminated body of a plurality of metal foils is the same as the case of the first current collector layer 11 described above, and thus is detailed here. The explanation is omitted.

上記説明においては、1つの第1の集電体層と1つの絶縁層と1つの第2の集電体層とによって短絡電流分散体が構成される形態について示したが、本開示の全固体電池はこの形態に限定されるものではない。短絡電流分散体は、第1の集電体層と第2の集電体層との間に絶縁層を有するものであればよく、各層の数は特に限定されない。集電体層を複数設けた場合も、上述したように、少なくとも、釘刺し試験時において釘が刺し込まれる側に配置される集電体層については複数の金属箔で構成するものとする。 In the above description, the form in which the short-circuit current dispersion is formed by one first current collector layer, one insulating layer, and one second current collector layer has been shown, but the all-solid-state battery of the present disclosure has been described. The battery is not limited to this form. The short-circuit current dispersion may have an insulating layer between the first current collector layer and the second current collector layer, and the number of each layer is not particularly limited. Even when a plurality of current collector layers are provided, at least the current collector layer arranged on the side where the nail is inserted at the time of the nail piercing test shall be composed of a plurality of metal foils.

上記説明においては、全固体電池において短絡電流分散体が複数の発電要素の積層方向の外側に1つだけ備えられる形態について示したが、短絡電流分散体の数はこれに限定されるものではない。全固体電池において外側に複数の短絡電流分散体が備えられていてもよい。また、複数の発電要素の外側に限らず、短絡電流分散体が複数の発電要素の間に設けられていてもよい。 In the above description, in the all-solid-state battery, only one short-circuit current dispersion is provided outside the stacking direction of the plurality of power generation elements, but the number of short-circuit current dispersions is not limited to this. .. The all-solid-state battery may be provided with a plurality of short-circuit current dispersions on the outside. Further, the short-circuit current dispersion may be provided between the plurality of power generation elements, not limited to the outside of the plurality of power generation elements.

上記説明においては、2つの発電要素が、1つの負極集電体層を共用する形態について示したが、本開示の全固体電池はこの形態に限定されるものではない。発電要素は単電池として機能するものであればよく、正極集電体層と正極材層と固体電解質層と負極材層と負極集電体層とが積層されていればよい。例えば、2つの発電要素が1つの正極集電体層を共用する形態であってもよいし、複数の発電要素が集電体層を共用せずに各々独立して存在する形態であってもよい。 In the above description, the mode in which the two power generation elements share one negative electrode current collector layer has been shown, but the all-solid-state battery of the present disclosure is not limited to this mode. The power generation element may be any as long as it functions as a cell, and it is sufficient that the positive electrode current collector layer, the positive electrode material layer, the solid electrolyte layer, the negative electrode material layer, and the negative electrode current collector layer are laminated. For example, two power generation elements may share one positive electrode current collector layer, or a plurality of power generation elements may exist independently without sharing the current collector layer. good.

上記説明においては、複数の発電要素が積層された形態について示したが、全固体電池において発電要素が複数積層されていない形態(一つの単電池のみからなる形態)においても、ある程度の効果が奏されるものと考えられる。しかしながら、釘刺し時等の短絡によるジュール発熱は、一つの発電要素からなる形態よりも、複数の発電要素が積層された形態において大きくなりやすい。すなわち、複数の発電要素が積層された形態において、短絡電流分散体を設けることによる効果がより顕著となるものといえる。 In the above description, a form in which a plurality of power generation elements are stacked is shown, but a certain effect can be achieved even in a form in which a plurality of power generation elements are not stacked in an all-solid-state battery (a form consisting of only one cell). It is thought that it will be done. However, Joule heat generation due to a short circuit such as when nailing is likely to be larger in a form in which a plurality of power generation elements are laminated than in a form consisting of one power generation element. That is, it can be said that the effect of providing the short-circuit current dispersion becomes more remarkable in the form in which a plurality of power generation elements are laminated.

上記説明においては、短絡電流分散体や発電要素から集電タブが突出するものとして説明した。しかしながら、本開示の全固体電池において集電タブはなくてもよい。例えば、面積の大きな集電体層を用い、短絡電流分散体と発電要素との積層体において、複数の集電体層の外縁を突出させるものとし、当該突出させた集電層の間に導電材を挟みこむことで、タブを設けずとも、集電体層同士の電気的な接続が可能である。或いは、タブではなく、導線等によって集電体層同士を電気的に接続してもよい。 In the above description, it has been described that the current collector tab protrudes from the short-circuit current dispersion and the power generation element. However, the all-solid-state battery of the present disclosure does not have to have a current collector tab. For example, in a laminated body of a short-circuit current dispersion and a power generation element, a current collector layer having a large area is used, and the outer edges of a plurality of current collector layers are projected, and conductivity is formed between the projected current collector layers. By sandwiching the material, it is possible to electrically connect the current collector layers to each other without providing a tab. Alternatively, the current collector layers may be electrically connected to each other by a conducting wire or the like instead of the tab.

上記説明においては、電解液系電池を除いた全固体電池について示した。本開示の技術は、電解液系電池においても適用可能とも考えられるが、全固体電池に適用した場合において顕著な効果を発揮するものと考えられる。全固体電池は電解液系電池に比べて発電要素内の隙間が少なく、釘刺し時に釘が発電要素を貫通する際、発電要素にかかる圧力が高い。よって、発電要素の短絡抵抗が小さくなり、一部の発電要素へと多くの回り込み電流が流れ込むこととなると考えられる。さらに、全固体電池においては、発電要素内の内部抵抗を低減すべく、発電要素に対して拘束圧力を付与する場合がある。この場合、発電要素の積層方向(正極集電体層が負極集電体層に向かう方向)に拘束圧力が付与されることとなり、釘刺し時、釘による圧力と拘束圧力とが加算されて発電要素に印加されることから、正極集電体層と負極集電体層とが接触して短絡し易く、また、発電要素の短絡抵抗が小さくなり易いものと考えられる。そのため、短絡電流分散体を設けて回りこみ電流を分散させることによる効果が顕著となるものと考えられる。さらに、全固体電池においては、釘刺し時に釘が短絡電流分散体を貫通する際、短絡電流分散体にかかる圧力も高くなる。すなわち、釘刺し時に高い圧力がかかった状態において第1の集電体層と第2の集電体層とを如何に適切に接触させて、短絡電流分散体の短絡抵抗を小さくするかが課題となる。上記本開示の技術は当該課題を解決するものである。一方、電解液系電池は、通常、電池ケース内が電解液で満たされ、各層が電解液に浸漬されて、各層の隙間に電解液が供給されるものであり、釘刺し時に釘によって印加される圧力が、全固体電池の場合と比較して小さくなる。そのため、全固体電池とは課題の発生メカニズムが異なるうえ、短絡電流分散体を設ける効果が全固体電池の場合と比べて相対的に小さくなるものと考えられる。 In the above description, the all-solid-state battery excluding the electrolytic solution-based battery is shown. Although the technique of the present disclosure may be applicable to an electrolytic solution-based battery, it is considered to exert a remarkable effect when applied to an all-solid-state battery. The all-solid-state battery has a smaller gap in the power generation element than the electrolyte-based battery, and the pressure applied to the power generation element is high when the nail penetrates the power generation element when the nail is pierced. Therefore, it is considered that the short-circuit resistance of the power generation element becomes small and a large amount of wraparound current flows into some power generation elements. Further, in the all-solid-state battery, a restraining pressure may be applied to the power generation element in order to reduce the internal resistance in the power generation element. In this case, a constraining pressure is applied in the stacking direction of the power generation elements (the direction in which the positive electrode current collector layer faces the negative electrode current collector layer), and when the nail is pierced, the pressure due to the nail and the restraining pressure are added to generate power. Since it is applied to the element, it is considered that the positive electrode current collector layer and the negative electrode current collector layer are likely to come into contact with each other to cause a short circuit, and the short circuit resistance of the power generation element is likely to be reduced. Therefore, it is considered that the effect of providing the short-circuit current disperser to disperse the wraparound current becomes remarkable. Further, in the all-solid-state battery, when the nail penetrates the short-circuit current dispersion during nail piercing, the pressure applied to the short-circuit current dispersion also increases. That is, the problem is how to properly contact the first current collector layer and the second current collector layer in a state where high pressure is applied at the time of nailing to reduce the short-circuit resistance of the short-circuit current dispersion. Will be. The above-mentioned technique of the present disclosure solves the problem. On the other hand, in an electrolytic solution-based battery, the inside of a battery case is usually filled with an electrolytic solution, each layer is immersed in the electrolytic solution, and the electrolytic solution is supplied to the gap between the layers, and the electrolytic solution is applied by a nail at the time of nail piercing. The pressure is smaller than that of the all-solid-state battery. Therefore, it is considered that the mechanism of occurrence of the problem is different from that of the all-solid-state battery, and the effect of providing the short-circuit current dispersion is relatively smaller than that of the all-solid-state battery.

尚、バイポーラ電極を介して発電要素同士を電気的に直列に接続した場合は、一部の発電要素に釘を刺すと、他の発電要素から当該一部の発電要素へと釘を介して回り込み電流が流れるものと考えられる。すなわち、接触抵抗の高い釘を介して回り込むこととなり、その電流量は小さい。また、バイポーラ電極を介して発電要素同士を電気的に直列に接続した場合、発電要素のすべてに釘が刺さった場合に回り込み電流が最も大きくなると考えられるが、このような場合、発電要素の放電が既に十分に進行しているものとも考えられ、一部の発電要素の温度が局所的に上昇するといったことは生じ難い。この点、発電要素を電気的に並列に接続した場合と比較して、短絡電流分散体による効果が小さくなるものと考えられる。よって、本開示の技術は、発電要素同士を電気的に並列に接続した電池において特に顕著な効果を発揮するものといえる。 When the power generation elements are electrically connected in series via a bipolar electrode, if a nail is inserted into some of the power generation elements, the other power generation elements wrap around to the part of the power generation elements via the nail. It is thought that an electric current flows. That is, it wraps around through a nail having high contact resistance, and the amount of current is small. In addition, when the power generation elements are electrically connected in series via bipolar electrodes, it is considered that the wraparound current becomes the largest when all the power generation elements are pierced by nails. In such a case, the power generation elements are discharged. It is considered that the temperature of some power generation elements has already progressed sufficiently, and it is unlikely that the temperature of some power generation elements will rise locally. In this respect, it is considered that the effect of the short-circuit current dispersion is smaller than that in the case where the power generation elements are electrically connected in parallel. Therefore, it can be said that the technique of the present disclosure exerts a particularly remarkable effect in a battery in which power generation elements are electrically connected in parallel.

1.予備実験
特許文献1~4に開示された技術を参考に、1枚の金属箔を用いて短絡電流分散体の集電体層を構成した場合について、釘刺し試験時の短絡抵抗の安定性を確認した。
1. 1. Preliminary experiment With reference to the techniques disclosed in Patent Documents 1 to 4, the stability of the short-circuit resistance during the nail piercing test was determined when the current collector layer of the short-circuit current dispersion was constructed using one metal foil. confirmed.

1.1.短絡電流分散体の作製
第1の集電体層として厚み15μmのアルミニウム箔(UACJ社製、1N30)を1枚用い、第2の集電体層として厚み35μmの銅箔(古河電工社製)を1枚用い、当該第1の集電体層と第2の集電体層との間に絶縁層として熱硬化性ポリイミド樹脂フィルム(厚み25μm、東レデュポン社製カプトン)を2枚挟み込んで、接着材で固定し、比較例1に係る短絡電流分散体を得た。尚、後述の評価の便宜上、得られた短絡電流分散体の表裏を絶縁層で挟み込むものとした。
1.1. Fabrication of short-circuit current dispersion One aluminum foil (UACJ, 1N30) with a thickness of 15 μm was used as the first current collector layer, and a copper foil with a thickness of 35 μm (Furukawa Electric Co., Ltd.) was used as the second current collector layer. Two thermosetting polyimide resin films (thickness 25 μm, Capton manufactured by Toray Dupont Co., Ltd.) were sandwiched between the first current collector layer and the second current collector layer as an insulating layer. It was fixed with an adhesive to obtain a short-circuit current dispersion according to Comparative Example 1. For convenience of evaluation described later, the front and back surfaces of the obtained short-circuit current dispersion are sandwiched between insulating layers.

1.2.短絡抵抗の安定性評価
比較例1に係る短絡電流分散体について、図4に示すような釘刺し試験装置を用いて、釘刺し時における短絡電流分散体の短絡抵抗の安定性を評価した。具体的には、短絡電流分散体をアルミ板上に設置し、短絡電流分散体のタブに直流電源を接続する一方、短絡電流分散体の両面を拘束治具によって拘束した。拘束後、直流電源の設定値を電圧(4.3V)電流(80A)と設定し、釘が刺し込まれる側(釘刺し方向上流側)を第1の集電体層、釘が刺し出される側(釘刺し方向下流側)を第2の集電体層として、釘(φ8mm、先端角度60度)を25mm/secの速度で刺し込み、釘刺し開始から終了までにおける短絡電流分散体へ流れる電流の変化を確認した。結果を図5に示す。
1.2. Evaluation of stability of short-circuit resistance For the short-circuit current dispersion according to Comparative Example 1, the stability of the short-circuit resistance of the short-circuit current dispersion during nail piercing was evaluated using a nail piercing test device as shown in FIG. Specifically, the short-circuit current dispersion was installed on an aluminum plate, and a DC power supply was connected to the tab of the short-circuit current dispersion, while both sides of the short-circuit current dispersion were constrained by a restraint jig. After restraint, the set value of the DC power supply is set to voltage (4.3V) and current (80A), and the side where the nail is inserted (upstream side in the nail insertion direction) is the first collector layer, and the nail is inserted. With the side (downstream side in the nail piercing direction) as the second collector layer, the nail (φ8 mm, tip angle 60 degrees) is pierced at a speed of 25 mm / sec and flows to the short-circuit current dispersion from the start to the end of the nail piercing. The change in current was confirmed. The results are shown in FIG.

図5に示す結果から明らかなように、従来技術を参考にして短絡電流分散体を構成した場合、釘刺し時、短絡電流分散体に流れる電流が安定しない。短絡電流分散体への釘刺し時、第1の集電体層と第2の集電体層との接触が安定的に保持されず、これにより短絡抵抗が不安定となったものと考えられる。短絡電流分散体への釘刺し時、第1の集電体層と第2の集電体層との接触が安定的に保持されないのは、ジュール発熱によって集電体層が溶断したり、釘の進行に伴う集電体層の経時的な変形によって集電体層間の接続が解除されたりすること等に起因するものと考えられる。以上の結果から、短絡電流分散体への釘刺し時、第1の集電体層と第2の集電体層との接触を安定的に保持するためには、釘刺し時に第1の集電体層と第2の集電体層とが接触する確率を上げること、第1の集電体層と第2の集電体層との接触面積を増大させることが有効と考えられる。 As is clear from the results shown in FIG. 5, when the short-circuit current dispersion is configured with reference to the prior art, the current flowing through the short-circuit current dispersion is not stable at the time of nailing. It is probable that the contact between the first current collector layer and the second current collector layer was not stably maintained when the short-circuit current dispersion was nailed, and as a result, the short-circuit resistance became unstable. .. When the short-circuit current dispersion is nailed, the contact between the first current collector layer and the second current collector layer is not stably maintained because the current collector layer is melted due to Joule heat generation or the nail is nailed. It is considered that this is caused by the disconnection between the current collector layers due to the time-dependent deformation of the current collector layer with the progress of the above. From the above results, in order to stably maintain the contact between the first current collector layer and the second current collector layer when nailing the short-circuit current dispersion, the first current collector is collected at the time of nailing. It is considered effective to increase the probability that the current collector layer and the second current collector layer come into contact with each other, and to increase the contact area between the first current collector layer and the second current collector layer.

2.短絡電流分散体の改良及び効果の確認
釘刺し時に第1の集電体層と第2の集電体層とが接触する確率を上げ、且つ、第1の集電体層と第2の集電体層との接触面積を増大させることを狙って、短絡電流分散体の集電体層の構成を改良した。具体的には、釘刺し試験時に釘が刺し込まれる側に配置される集電体層の構成を変更した。
2. 2. Improvement of short-circuit current dispersion and confirmation of effect Increase the probability that the first current collector layer and the second current collector layer come into contact with each other at the time of nailing, and increase the probability that the first current collector layer and the second current collector layer come into contact with each other. The configuration of the current collector layer of the short-circuit current dispersion was improved with the aim of increasing the contact area with the electric body layer. Specifically, the configuration of the current collector layer arranged on the side where the nail is inserted during the nail insertion test was changed.

2.1.短絡電流分散体の作製
<実施例1>
第1の集電体層として厚み15μmのアルミニウム箔(UACJ社製、1N30)を7枚重ねたものを用いたこと以外は、比較例1と同様にして短絡電流分散体を得た。実施例1に係る短絡電流分散体の構成を図6に示す。
2.1. Fabrication of short-circuit current dispersion <Example 1>
A short-circuit current dispersion was obtained in the same manner as in Comparative Example 1 except that seven aluminum foils (manufactured by UACJ Corporation, 1N30) having a thickness of 15 μm were used as the first current collector layer. FIG. 6 shows the configuration of the short-circuit current dispersion according to the first embodiment.

<比較例2>
第1の集電体層として厚み100μmのアルミニウム箔(1N30)を1枚用いたこと以外は、比較例1と同様にして短絡電流分散体を得た。比較例2に係る短絡電流分散体の構成を図7に示す。
<Comparative Example 2>
A short-circuit current dispersion was obtained in the same manner as in Comparative Example 1 except that one aluminum foil (1N30) having a thickness of 100 μm was used as the first current collector layer. FIG. 7 shows the configuration of the short-circuit current dispersion according to Comparative Example 2.

2.2.短絡抵抗の安定性評価
実施例1及び比較例2に係る短絡電流分散体それぞれについて、図4に示すような釘刺し試験装置を用いて、釘刺し時における短絡電流分散体の短絡抵抗の安定性を評価した。具体的には、短絡電流分散体をアルミ板上に設置し、短絡電流分散体のタブに直流電源を接続する一方、短絡電流分散体の両面を拘束治具によって拘束した。拘束圧は比較例1と同様とした。拘束後、直流電源の設定値を電圧(4.3V)、電流(245A)と設定し、釘が刺し込まれる側(上流側)を第1の集電体層、釘が刺し出される側(下流側)を第2の集電体層として、釘(φ8mm、先端角度60度)を25mm/secの速度で刺し込み、釘刺し開始から終了までにおける短絡電流分散体に流れる電流の変化を確認した。結果を図8に示す。
2.2. Evaluation of stability of short-circuit resistance For each of the short-circuit current dispersions according to Example 1 and Comparative Example 2, the stability of the short-circuit resistance of the short-circuit current dispersion during nail piercing using a nail piercing test device as shown in FIG. Was evaluated. Specifically, the short-circuit current dispersion was installed on an aluminum plate, and a DC power supply was connected to the tab of the short-circuit current dispersion, while both sides of the short-circuit current dispersion were constrained by a restraint jig. The restraining pressure was the same as in Comparative Example 1. After restraint, the set values of the DC power supply are set to voltage (4.3V) and current (245A), and the side where the nail is inserted (upstream side) is the first collector layer and the side where the nail is inserted (the side where the nail is inserted). (Downstream side) is used as the second collector layer, and a nail (φ8 mm, tip angle 60 degrees) is pierced at a speed of 25 mm / sec, and the change in the current flowing through the short-circuit current dispersion from the start to the end of nail piercing is confirmed. did. The results are shown in FIG.

図8に示す結果から明らかなように、比較例2に係る短絡電流分散体については、釘刺し直後は約180Aの電流が流れるものの、約0.5秒後には電流がほとんど流れなくなった。比較例1の結果から、第1の集電体層の厚みを厚くしたとしても、釘刺し時に第1の集電体層と第2の集電体層とが接触する確率を上げることは困難であり、第1の集電体層と第2の集電体層との接触性を向上させることは困難であることが分かった。
一方、実施例1に係る短絡電流分散体については、釘刺し直後から安定的に約180Aの電流が流れた。実施例1の結果から、釘刺し試験において釘が刺し込まれる側に配置される集電体層を複数の金属箔で構成することで、釘刺し時に集電体層同士が接触する確率を上げることができ、集電体層間同士の接触面積を増大させることができ、釘刺し時の短絡電流分散体の短絡抵抗(特に集電体層同士の接触抵抗)を小さく維持できることが分かった。
As is clear from the results shown in FIG. 8, in the short-circuit current dispersion according to Comparative Example 2, a current of about 180 A flows immediately after nailing, but almost no current flows after about 0.5 seconds. From the results of Comparative Example 1, even if the thickness of the first current collector layer is increased, it is difficult to increase the probability that the first current collector layer and the second current collector layer come into contact with each other at the time of nailing. Therefore, it was found that it is difficult to improve the contact property between the first current collector layer and the second current collector layer.
On the other hand, in the short-circuit current dispersion according to the first embodiment, a current of about 180 A was stably flowed immediately after the nail was pierced. From the results of Example 1, by forming the current collector layer arranged on the side where the nail is inserted in the nail insertion test with a plurality of metal foils, the probability that the current collector layers come into contact with each other at the time of nail insertion is increased. It was found that the contact area between the collector layers can be increased, and the short-circuit resistance of the short-circuit current dispersion at the time of nailing (particularly the contact resistance between the collector layers) can be kept small.

また、実施例1に係る短絡電流分散体は、比較例1に係る短絡電流分散体と比較して集電体層が厚く、大きな熱容量を有する。すなわち、回り込み電流が流れ込んだとしても、短絡電流分散体が発熱し難いという利点がある。 Further, the short-circuit current dispersion according to the first embodiment has a thicker current collector layer and a larger heat capacity than the short-circuit current dispersion according to the comparative example 1. That is, there is an advantage that the short-circuit current dispersion is unlikely to generate heat even if a wraparound current flows in.

以上のように、全固体電池において発電要素とともに短絡電流分散体を設ける場合、当該短絡電流分散体において釘刺し試験時に釘が刺し込まれる側に配置される集電体層を複数の金属箔で構成することで、釘刺し試験時、短絡電流分散体の短絡抵抗を小さく維持でき、発電要素から短絡電流分散体へと回り込み電流を適切に分散させることができることが明らかとなった。 As described above, when a short-circuit current dispersion is provided together with a power generation element in an all-solid-state battery, the collector layer arranged on the side where the nail is inserted during the nail insertion test in the short-circuit current dispersion is made of a plurality of metal foils. It was clarified that the short-circuit resistance of the short-circuit current dispersion can be kept small during the nail piercing test, and the wraparound current can be appropriately distributed from the power generation element to the short-circuit current dispersion.

3.短絡電流分散体における金属箔の厚みや枚数の検討
3.1.短絡電流分散体の作製
<実施例2~6、参考例1~3>
第1の集電体層として下記表1に示される厚みを有するアルミニウム箔(福田箔粉工業社製、1N30)を下記表1に示される枚数重ねたものを用いたこと以外は、比較例1と同様にして短絡電流分散体を得た。
3. 3. Examination of the thickness and number of metal foils in the short-circuit current dispersion 3.1. Fabrication of short-circuit current dispersion <Examples 2 to 6, Reference Examples 1 to 3>
Comparative Example 1 except that an aluminum foil (manufactured by Fukuda Foil Powder Industry Co., Ltd., 1N30) having the thickness shown in Table 1 below was used as the first current collector layer in a stacked number as shown in Table 1 below. A short-circuit current dispersion was obtained in the same manner as above.

Figure 0007000975000001
Figure 0007000975000001

3.2.短絡抵抗の安定性評価
実施例1~6、比較例2、参考例1~3に係る短絡電流分散体それぞれについて、図4に示すような釘刺し試験装置を用いて、上述した方法にて、釘刺し時における短絡電流分散体の短絡抵抗の安定性を評価した。また、釘刺し時に短絡電流分散体に流れる電流の平均値(平均電流)を求めた。平均電流が大きいほど好ましいといえる。結果を下記表2に示す。
3.2. Stability evaluation of short-circuit resistance For each of the short-circuit current dispersions according to Examples 1 to 6, Comparative Examples 2 and Reference Examples 1 to 3, the method described above was performed using a nail piercing test apparatus as shown in FIG. The stability of the short-circuit resistance of the short-circuit current dispersion during nailing was evaluated. In addition, the average value (mean current) of the current flowing through the short-circuit current dispersion at the time of nailing was obtained. It can be said that the larger the average current, the more preferable. The results are shown in Table 2 below.

Figure 0007000975000002
Figure 0007000975000002

表2に示す結果から明らかなように、比較例2に比べて、実施例1~6及び参考例1~3のいずれも、釘刺し時に短絡電流分散体に流れる電流の平均値が大きくなった。すなわち、短絡電流分散体において、釘刺し時に釘が刺し込まれる側に配置される集電体層として複数の金属箔の積層体を採用することで、短絡電流分散体への釘刺し時、第1の集電体層と第2の集電体層との接触性が向上して短絡抵抗が低下することが分かる。中でも、複数の金属箔の1枚当たりの厚さが9μm以上15μm以下の場合(実施例1~6、参考例2、3)に第1の集電体層と第2の集電体層との接触性を一層向上させ易いといえる。特に、複数の金属箔の1枚当たりの厚さが9μm以上15μm以下で、且つ、複数の金属箔の枚数が4枚以上7枚以下である場合(実施例1~6)に、第1の集電体層と第2の集電体層との接触性を一層向上させつつ、短絡抵抗を一層安定して低下させることができる。 As is clear from the results shown in Table 2, the average value of the current flowing through the short-circuit current dispersion during nailing was larger in both Examples 1 to 6 and Reference Examples 1 to 3 than in Comparative Example 2. .. That is, in the short-circuit current dispersion, by adopting a laminated body of a plurality of metal foils as the current collector layer arranged on the side where the nail is pierced at the time of nail piercing, when the short-circuit current dispersion is pierced with a nail, the first It can be seen that the contact property between the current collector layer 1 and the second collector layer is improved and the short-circuit resistance is lowered. Above all, when the thickness per sheet of the plurality of metal foils is 9 μm or more and 15 μm or less (Examples 1 to 6, Reference Examples 2 and 3), the first current collector layer and the second current collector layer are used. It can be said that it is easy to further improve the contact property of. In particular, when the thickness of each of the plurality of metal foils is 9 μm or more and 15 μm or less, and the number of the plurality of metal foils is 4 or more and 7 or less (Examples 1 to 6), the first method is used. The short-circuit resistance can be lowered more stably while further improving the contact property between the current collector layer and the second current collector layer.

尚、上記実施例では、釘刺し試験時に釘が刺し込まれる側の集電体層において複数のアルミニウム箔を採用した形態について説明したが、金属箔の種類はアルミニウム箔に限定されるものではない。本発明者は、アルミニウム箔以外の金属箔の場合にも同様の効果が認められることを確認している。 In the above embodiment, a mode in which a plurality of aluminum foils are used in the current collector layer on the side where the nail is inserted during the nail insertion test has been described, but the type of the metal foil is not limited to the aluminum foil. .. The present inventor has confirmed that the same effect is observed in the case of a metal foil other than the aluminum foil.

4.1.金属箔の種類を変更した場合
例えば、アルミニウム箔に替えて、銅箔を用いた場合にも同様の効果が認められる。以下、実施例を示す。
4.1. When the type of metal foil is changed For example, the same effect is observed when copper foil is used instead of aluminum foil. Hereinafter, examples will be shown.

4.2.短絡電流分散体の作製
<実施例7~10、比較例3>
第1の集電体層として下記表3に示される厚みを有する銅箔(古河電工製)を下記表1に示される枚数重ねたものを用いたこと以外は、比較例1と同様にして短絡電流分散体を得た。
4.2. Fabrication of short-circuit current dispersion <Examples 7 to 10, Comparative Example 3>
Short-circuited in the same manner as in Comparative Example 1 except that a copper foil (manufactured by Furukawa Electric Co., Ltd.) having a thickness shown in Table 3 below was used as the first current collector layer. A current dispersion was obtained.

Figure 0007000975000003
Figure 0007000975000003

4.3.短絡抵抗の安定性評価
実施例7~10、比較例3に係る短絡電流分散体それぞれについて、図4に示すような釘刺し試験装置を用いて、上述した方法にて、釘刺し時における短絡電流分散体の短絡抵抗の安定性を評価した。また、釘刺し時に短絡電流分散体に流れる電流の平均値(平均電流)を求めた。平均電流が大きいほど好ましいといえる。結果を下記表4に示す。
4.3. Stability evaluation of short-circuit resistance For each of the short-circuit current dispersions according to Examples 7 to 10 and Comparative Example 3, the short-circuit current at the time of nail piercing was performed by the above-mentioned method using a nail piercing test apparatus as shown in FIG. The stability of the short-circuit resistance of the dispersion was evaluated. In addition, the average value (mean current) of the current flowing through the short-circuit current dispersion at the time of nailing was obtained. It can be said that the larger the average current, the more preferable. The results are shown in Table 4 below.

Figure 0007000975000004
Figure 0007000975000004

表4に示す結果から明らかなように、比較例3よりも実施例7のほうが集電体層全体としての厚みが薄いにも関わらず、比較例3よりも実施例7のほうが釘刺し時に短絡電流分散体に流れる電流の平均値が大きくなった。すなわち、短絡電流分散体において、釘刺し時に釘が刺し込まれる側に配置される集電体層として複数の金属箔の積層体を採用することで、短絡電流分散体への釘刺し時、第1の集電体層と第2の集電体層との接触性が向上して短絡抵抗が低下することが分かる。また、実施例8~10のように銅箔の枚数が4~7枚である場合、電流の平均値がさらに大きくなった。すなわち、複数の金属箔の1枚当たりの厚さが9μm以上15μm以下で、且つ、複数の金属箔の枚数が4枚以上7枚以下である場合(実施例8~10)において、第1の集電体層と第2の集電体層との接触性を一層向上させつつ、短絡抵抗を一層安定して低下させることができる。 As is clear from the results shown in Table 4, although the thickness of the current collector layer as a whole is thinner in Example 7 than in Comparative Example 3, Example 7 is short-circuited at the time of nailing than Comparative Example 3. The average value of the current flowing through the current dispersion has increased. That is, in the short-circuit current dispersion, by adopting a laminated body of a plurality of metal foils as the current collector layer arranged on the side where the nail is pierced at the time of nail piercing, when the short-circuit current dispersion is pierced with a nail, the first It can be seen that the contact property between the current collector layer 1 and the second collector layer is improved and the short-circuit resistance is lowered. Further, when the number of copper foils was 4 to 7 as in Examples 8 to 10, the average value of the current was further increased. That is, when the thickness of each of the plurality of metal foils is 9 μm or more and 15 μm or less, and the number of the plurality of metal foils is 4 or more and 7 or less (Examples 8 to 10), the first. The short-circuit resistance can be lowered more stably while further improving the contact property between the current collector layer and the second current collector layer.

本発明に係る全固体電池は、携帯機器用等の小型電源から車搭載用等の大型電源まで、広く好適に利用できる。 The all-solid-state battery according to the present invention can be widely and suitably used from a small power source for mobile devices to a large power source for mounting on a vehicle.

10 短絡電流分散体
11 第1の集電体層(複数の金属箔)
11a 第1の集電タブ
12 第2の集電体層
12a 第2の集電タブ
13 絶縁層
20a、20b 発電要素
21 正極集電体層
21a 正極集電タブ
22 正極材層
23 固体電解質層
24 負極材層
25 負極集電体層
25a 負極集電タブ
100 全固体電池
10 Short-circuit current dispersion 11 First current collector layer (multiple metal foils)
11a 1st current collector tab 12 2nd current collector layer 12a 2nd current collector tab 13 Insulation layer 20a, 20b Power generation element 21 Positive electrode current collector layer 21a Positive electrode current collector tab 22 Positive electrode material layer 23 Solid electrolyte layer 24 Negative electrode material layer 25 Negative electrode current collector layer 25a Negative electrode current collector tab 100 All-solid-state battery

Claims (5)

少なくとも一つの短絡電流分散体と複数の発電要素とが積層された全固体電池であって、
前記短絡電流分散体において、第1の集電体層と第2の集電体層と前記第1の集電体層及び前記第2の集電体層の間に設けられた絶縁層とが積層されており、
前記発電要素において、正極集電体層と正極材層と固体電解質層と負極材層と負極集電体層とが積層されており、
前記第1の集電体層が前記正極集電体層と電気的に接続されており、
前記第2の集電体層が前記負極集電体層と電気的に接続されており、
複数の前記発電要素同士が電気的に並列に接続されており、
前記第1の集電体層及び前記第2の集電体層のうち、少なくとも、釘刺し試験において釘が刺し込まれる側に配置される集電体層において、複数の金属箔が前記第1の集電体層と前記絶縁層と前記第2の集電体層との積層方向に沿って積層されており、
前記複数の金属箔の1枚当たりの厚さが9μm以上15μm以下であり、
前記複数の金属箔の枚数が4枚以上7枚以下である、
全固体電池。
An all-solid-state battery in which at least one short-circuit current dispersion and a plurality of power generation elements are laminated.
In the short-circuit current dispersion, the insulating layer provided between the first current collector layer, the second current collector layer, the first current collector layer, and the second current collector layer is formed. It is laminated and
In the power generation element, a positive electrode collector layer, a positive electrode material layer, a solid electrolyte layer, a negative electrode material layer, and a negative electrode current collector layer are laminated.
The first current collector layer is electrically connected to the positive electrode current collector layer.
The second current collector layer is electrically connected to the negative electrode current collector layer.
The plurality of power generation elements are electrically connected in parallel, and the power generation elements are electrically connected in parallel.
Of the first current collector layer and the second current collector layer, at least in the current collector layer arranged on the side where the nail is inserted in the nail piercing test, the plurality of metal foils are the first. The current collector layer, the insulating layer, and the second current collector layer are laminated along the stacking direction.
The thickness of each of the plurality of metal foils is 9 μm or more and 15 μm or less.
The number of the plurality of metal foils is 4 or more and 7 or less.
All-solid-state battery.
前記短絡電流分散体が前記複数の発電要素よりも外側に積層されており、
前記第1の集電体層及び前記第2の集電体層のうち、少なくとも、外側に配置される集電体層において、複数の金属箔が前記第1の集電体層と前記絶縁層と前記第2の集電体層との積層方向に沿って積層されている、
請求項1に記載の全固体電池。
The short-circuit current dispersion is laminated on the outer side of the plurality of power generation elements.
Of the first current collector layer and the second current collector layer, at least in the current collector layer arranged on the outside, a plurality of metal foils form the first current collector layer and the insulating layer. And the second collector layer are laminated along the stacking direction.
The all-solid-state battery according to claim 1.
前記発電要素における前記正極集電体層と前記正極材層と前記固体電解質層と前記負極材層と前記負極集電体層との積層方向、
複数の前記発電要素の積層方向、
前記短絡電流分散体における前記第1の集電体層と前記絶縁層と前記第2の集電体層との積層方向、及び、
前記短絡電流分散体と複数の前記発電要素との積層方向、
が同じ方向である、
請求項1又は2に記載の全固体電池。
The stacking direction of the positive electrode current collector layer, the positive electrode material layer, the solid electrolyte layer, the negative electrode material layer, and the negative electrode current collector layer in the power generation element.
Stacking direction of the plurality of power generation elements,
The stacking direction of the first current collector layer, the insulating layer, and the second current collector layer in the short-circuit current dispersion, and
The stacking direction of the short-circuit current dispersion and the plurality of power generation elements,
Are in the same direction,
The all-solid-state battery according to claim 1 or 2.
前記絶縁層が熱硬化性樹脂シートによって構成される、
請求項1~3のいずれか1項に記載の全固体電池。
The insulating layer is made of a thermosetting resin sheet.
The all-solid-state battery according to any one of claims 1 to 3.
前記絶縁層が熱硬化性ポリイミド樹脂シートによって構成される、
請求項1~3のいずれか1項に記載の全固体電池。
The insulating layer is made of a thermosetting polyimide resin sheet.
The all-solid-state battery according to any one of claims 1 to 3.
JP2018084421A 2017-11-07 2018-04-25 All solid state battery Active JP7000975B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/141,326 US10714789B2 (en) 2017-11-07 2018-09-25 All-solid state battery
CN201811209386.1A CN109755659B (en) 2017-11-07 2018-10-17 All-solid-state battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017214896 2017-11-07
JP2017214896 2017-11-07

Publications (2)

Publication Number Publication Date
JP2019087525A JP2019087525A (en) 2019-06-06
JP7000975B2 true JP7000975B2 (en) 2022-02-03

Family

ID=66763347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018084421A Active JP7000975B2 (en) 2017-11-07 2018-04-25 All solid state battery

Country Status (1)

Country Link
JP (1) JP7000975B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247209A (en) 2003-02-14 2004-09-02 Nissan Motor Co Ltd Laminated battery
CN102332579A (en) 2011-02-21 2012-01-25 东莞新能源科技有限公司 Lithium ion battery and cathode active material thereof
JP2014093149A (en) 2012-11-01 2014-05-19 Toyota Industries Corp Power storage device
JP2014107144A (en) 2012-11-28 2014-06-09 Toyota Industries Corp Power storage device
JP2015072835A (en) 2013-10-03 2015-04-16 日産自動車株式会社 Bipolar secondary battery
JP2015153732A (en) 2014-02-19 2015-08-24 日産自動車株式会社 bipolar secondary battery
JP2017103123A (en) 2015-12-02 2017-06-08 トヨタ自動車株式会社 Laminated all-solid battery
US20170170515A1 (en) 2015-12-15 2017-06-15 Sila Nanotechnologies Inc. Solid state electrolytes for safe metal and metal-ion batteries

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247209A (en) 2003-02-14 2004-09-02 Nissan Motor Co Ltd Laminated battery
CN102332579A (en) 2011-02-21 2012-01-25 东莞新能源科技有限公司 Lithium ion battery and cathode active material thereof
JP2014093149A (en) 2012-11-01 2014-05-19 Toyota Industries Corp Power storage device
JP2014107144A (en) 2012-11-28 2014-06-09 Toyota Industries Corp Power storage device
JP2015072835A (en) 2013-10-03 2015-04-16 日産自動車株式会社 Bipolar secondary battery
JP2015153732A (en) 2014-02-19 2015-08-24 日産自動車株式会社 bipolar secondary battery
JP2017103123A (en) 2015-12-02 2017-06-08 トヨタ自動車株式会社 Laminated all-solid battery
US20170170515A1 (en) 2015-12-15 2017-06-15 Sila Nanotechnologies Inc. Solid state electrolytes for safe metal and metal-ion batteries

Also Published As

Publication number Publication date
JP2019087525A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6288057B2 (en) Stacked all-solid battery
US10714789B2 (en) All-solid state battery
KR102105296B1 (en) Stacked battery
JP6575557B2 (en) All-solid battery and method for producing all-solid battery
JP6939685B2 (en) Laminated battery
JP6766736B2 (en) All solid state battery
JP2022043327A (en) All-solid battery
KR20180113157A (en) Stacked battery
KR102217190B1 (en) Stacked battery
JP2017041439A (en) battery
JP2018181521A (en) Laminate battery
JP6939035B2 (en) All solid state battery
JP6977300B2 (en) All solid state battery
JP7000975B2 (en) All solid state battery
JP6844403B2 (en) Laminated battery
JP2019140079A (en) Stacked battery
JP6852713B2 (en) Laminated battery
JP6977306B2 (en) All solid state battery
JP2021111589A (en) battery
JP2021144840A (en) Solid-state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R151 Written notification of patent or utility model registration

Ref document number: 7000975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151