JP2012177374A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2012177374A
JP2012177374A JP2012110589A JP2012110589A JP2012177374A JP 2012177374 A JP2012177374 A JP 2012177374A JP 2012110589 A JP2012110589 A JP 2012110589A JP 2012110589 A JP2012110589 A JP 2012110589A JP 2012177374 A JP2012177374 A JP 2012177374A
Authority
JP
Japan
Prior art keywords
filter
particulate
sub
exhaust gas
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012110589A
Other languages
Japanese (ja)
Inventor
Athanasios G Konstandopoulos
ジー コンスタンドポウロス アタナシオス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Publication of JP2012177374A publication Critical patent/JP2012177374A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/031Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • G01N15/0618Investigating concentration of particle suspensions by collecting particles on a support of the filter type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/08By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of clogging, e.g. of particle filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/10By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device for reducing flow resistance, e.g. to obtain more engine power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/06By-pass systems
    • F01N2550/12By-pass systems of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1606Particle filter loading or soot amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably purify exhaust gas without deteriorating fuel efficiency, in an exhaust emission control device of a diesel engine.SOLUTION: The exhaust emission control device includes a main particulate capturing filter 22 arranged in a main exhaust line 21 of the diesel engine 11, a sub-exhaust line 21A branched from the main exhaust line in a branch point at the main particulate capturing filter upstream side, a sub-particulate capturing filter 22A arranged in the sub-exhaust line and smaller in soot storage capacity than a soot storage capacity of the main particulate capturing filter, a low pressure part arranged at the downstream side of the sub-particulate capturing filter in the sub-exhaust line and imparting pressure lower than pressure of the branch point, and a differential pressure measuring part for measuring differential pressure generated between an inlet and an outlet of the sub-particulate capturing filter. The sub-exhaust line has a downstream side end at the downstream side of the sub-particulate capturing filter, and the downstream side end is connected to an exhaust gas recirculating line of the diesel engine.

Description

本発明は内燃エンジンの排ガス浄化装置に係り、特に微粒子捕捉フィルタ(DPF)を備え、ディーゼルエンジンの排ガスに含まれる微粒子(PM)を除去するのに使われる排ガス浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly to an exhaust gas purification apparatus that includes a particulate trapping filter (DPF) and is used to remove particulates (PM) contained in exhaust gas from a diesel engine.

従来、ディーゼルエンジンより排出されるC(炭素)を主とする微粒子(PM:particulate matter)を捕捉するのに、多孔質セラミックより構成される微粒子捕捉フィルタ(DPF:diesel particulate filter)が使われている。このような微粒子捕捉フィルタでは、継続的な使用に伴って捕捉した微粒子が徐々に堆積し、このため、微粒子捕捉フィルタを使った排ガス浄化装置においては、堆積した微粒子を微粒子捕捉フィルタ中において定期的に燃焼させて除去し、微粒子捕捉フィルタを再生することが行われている。微粒子捕捉フィルタ中における微粒子の堆積を放置すると、微粒子捕捉フィルタ中で排ガスにより生じる圧力が過大になり、燃費の悪化やエンジンの損傷を招くことがある。   Conventionally, a particulate particulate filter (DPF) composed of a porous ceramic has been used to capture particulate matter (PM) mainly composed of C (carbon) discharged from a diesel engine. Yes. In such a particulate trapping filter, the trapped particulates gradually accumulate with continuous use. For this reason, in the exhaust gas purifying apparatus using the particulate trapping filter, the deposited particulates are periodically contained in the particulate trapping filter. The particulate trapping filter is regenerated by burning it away. If the deposition of particulates in the particulate trapping filter is left unattended, the pressure generated by the exhaust gas in the particulate trapping filter becomes excessive, which may lead to deterioration of fuel consumption and engine damage.

このような微粒子捕捉フィルタの再生は、フィルタを交換したり取り外ししたりすることなく、ディーゼルエンジンの運転中に行うのが望ましく、このため、爆発燃焼後、シリンダ中をピストンが下降している状態でさらに燃料噴射を行う(ポストインジェクション)ことが行われている。これにより、堆積している微粒子が、発生した高温のガスにより燃焼される。   It is desirable to regenerate such a particulate trapping filter during the operation of the diesel engine without exchanging or removing the filter. Therefore, after explosion combustion, the piston is lowered in the cylinder. Further, fuel injection (post-injection) is performed. Thereby, the deposited fine particles are burned by the generated high-temperature gas.

米国特許第6952920号US Pat. No. 6,952,920 米国特許第5651248号US Pat. No. 5,651,248

図1は、本発明の関連技術による、従来の微粒子捕捉フィルタを備えたディーゼルエンジンの排ガス浄化システムの全体構成を示す。   FIG. 1 shows an overall configuration of an exhaust gas purification system for a diesel engine equipped with a conventional particulate trapping filter according to the related art of the present invention.

図1を参照するに、ディーゼルエンジン11の排気ライン12には微粒子捕捉フィルタ12Bが設けられ、前記ディーゼルエンジン11から排出される排ガス中の微粒子を捕捉している。   Referring to FIG. 1, a particulate trap filter 12 </ b> B is provided in the exhaust line 12 of the diesel engine 11 to capture particulates in exhaust gas discharged from the diesel engine 11.

図2Aは、前記微粒子捕捉フィルタ12Bの概略を、図2Bは、前記微粒子捕捉フィルタの構成部品を示す。   FIG. 2A shows the outline of the particulate trapping filter 12B, and FIG. 2B shows the components of the particulate trapping filter.

前記微粒子捕捉フィルタ12Bは、典型的にはSiCなどの多孔質セラミックよりなるフィルタユニット12Aより構成され、前記フィルタユニット12A中には、一端から他端へと延在する、例えば1mm×1mmの断面を有する多数のガス通路12aが形成されている。   The particulate trapping filter 12B is typically composed of a filter unit 12A made of a porous ceramic such as SiC, and the filter unit 12A has a cross section of, for example, 1 mm × 1 mm extending from one end to the other end. A large number of gas passages 12a are formed.

その際、前記微粒子捕捉フィルタ12Bは、複数のフィルタユニット(フィルタ構成部品)12Aをシール剤(接着層)で結束し、外周部を切削加工して全体として円柱形状に形成されている。さらに、フィルタ12Bの外周面が、シール剤(コーティング層)により覆われている。前記微粒子捕捉フィルタ12Bは、一つのユニットで形成されている場合もある。   At that time, the particulate trapping filter 12B is formed in a cylindrical shape as a whole by binding a plurality of filter units (filter components) 12A with a sealant (adhesive layer) and cutting the outer peripheral portion. Furthermore, the outer peripheral surface of the filter 12B is covered with a sealing agent (coating layer). The particulate trapping filter 12B may be formed as a single unit.

図2Cは、微粒子捕捉フィルタ12Bの原理を示す。   FIG. 2C shows the principle of the particulate trapping filter 12B.

図2Cに概略的に示すように、前記複数のガス通路12aは、エンジンから流入する排ガス流に対して上流側または下流側の端部が交互に閉じられており、一のガス通路12a中に導入された排ガスは、前記多孔質部材12b中を、隣接するガス通路へと透過する。そこで、このように排ガスが多孔質部材12b中を透過する際に、前記排ガス中に含まれる微粒子が前記多孔質部材12bにより捕捉され、図2Dに示すように前記微粒子12cの堆積が、前記多孔質部材12b上に層状に生じる。   As schematically shown in FIG. 2C, the plurality of gas passages 12a are alternately closed at the upstream or downstream ends with respect to the exhaust gas flow flowing in from the engine. The introduced exhaust gas permeates through the porous member 12b to the adjacent gas passage. Therefore, when the exhaust gas permeates through the porous member 12b in this way, the particulates contained in the exhaust gas are captured by the porous member 12b, and the deposition of the particulates 12c is performed as shown in FIG. 2D. It occurs in layers on the material member 12b.

微粒子捕捉フィルタ12Bは内部に排ガス中の微粒子を堆積するため、先にも述べたように、適当な時点でクリーニングプロセス(堆積した微粒子の燃焼)を行い、フィルタを再生する必要がある。   Since the particulate trapping filter 12B accumulates particulates in the exhaust gas inside, as described above, it is necessary to perform a cleaning process (combustion of the deposited particulates) at an appropriate time to regenerate the filter.

図1で説明した従来の排ガス浄化システムでは、かかるフィルタの再生は、車両が所定の走行距離、例えば500kmを走行するごとに、例えば10分間程度行われている。   In the conventional exhaust gas purification system described with reference to FIG. 1, the regeneration of the filter is performed for about 10 minutes every time the vehicle travels a predetermined travel distance, for example, 500 km.

しかし、このようにポストインジェクションによるフィルタ再生を一律に行った場合には、再生はフィルタ中における微粒子の実際の捕捉量に無関係に実行されることになる。このような場合、フィルタ中への微粒子の過剰な堆積が生じないように、フィルタ再生の間隔を、安全のため、実際に必要な場合よりも短めに設定しておかなければならない。しかし、このようにポストインジェクションによるフィルタ再生を過度に行うと、燃料消費が増大し、車両の燃費が悪化してしまう。   However, when the filter regeneration by post-injection is uniformly performed as described above, the regeneration is performed regardless of the actual trapped amount of the fine particles in the filter. In such a case, the interval between filter regenerations must be set shorter than actually required for safety so that excessive accumulation of fine particles in the filter does not occur. However, if filter regeneration by post-injection is performed excessively in this way, fuel consumption increases and the fuel efficiency of the vehicle deteriorates.

これに対し、図3に示すように、前記微粒子捕捉フィルタ12Bの上流側および下流側の間の差圧ΔPを測定し、前記差圧ΔPが所定値に達すると前記微粒子捕捉フィルタ12Bの再生をポストインジェクションにより実行する構成が公知である。特許文献1を参照。   In contrast, as shown in FIG. 3, the differential pressure ΔP between the upstream side and the downstream side of the particulate trapping filter 12B is measured, and when the differential pressure ΔP reaches a predetermined value, the particulate trapping filter 12B is regenerated. A configuration for performing post-injection is known. See US Pat.

図3の構成によれば、前記微粒子捕捉フィルタ12Bの再生が、その上流側と下流側の差圧が所定値に達した場合にのみ実行されるため、余計なポストインジェクション工程が行われることがない。このため、ディーゼルエンジンを搭載した車両の燃費を向上させることが可能となる。   According to the configuration of FIG. 3, regeneration of the particulate trapping filter 12B is executed only when the upstream and downstream differential pressures reach a predetermined value, and therefore an extra post-injection step may be performed. Absent. For this reason, it becomes possible to improve the fuel consumption of a vehicle equipped with a diesel engine.

ところが、前記微粒子捕捉フィルタ12B中における微粒子の捕捉は、一様には生じない。図4に示すように、フィルタ12B中の位置(A,1),(B,1),(C,1),(A,2),(B,2),(C,2),(A,3),(B,3),(C,3)によって、捕捉された微粒子の密度や厚さが異なることがわかる。さらに、堆積した微粒子の層中に、局所的な排ガスの通路となる空洞が生じていることがわかる。このような空洞が存在することは、捕捉された微粒子の燃焼が制御されていないことを示しており、またさらに、捕捉された微粒子の局所的な燃焼が生じたことを示している。   However, the trapping of the particulates in the particulate trapping filter 12B does not occur uniformly. As shown in FIG. 4, positions (A, 1), (B, 1), (C, 1), (A, 2), (B, 2), (C, 2), (A in the filter 12B , 3), (B, 3), and (C, 3) show that the density and thickness of the captured fine particles are different. Furthermore, it turns out that the cavity used as the path | route of a waste gas locally arises in the layer of the deposited fine particle. The presence of such cavities indicates that the combustion of the trapped particulates is not controlled and further indicates that local combustion of the trapped particulates has occurred.

また図5に示すように、微粒子の堆積量が同一であっても、捕捉された微粒子の密度が異なることもある。図5は、堆積量が同一であっても、厚さにより、差圧が大きく変化することを示している。図5の例では、微粒子の堆積量は、全て8g/Lである。それにもかかわらず、図5より、捕捉された微粒子の厚さが109μmから255μmに変化した場合、差圧は15.3kPaから8.8kPaに変化することがわかる。この場合には、約2倍に達する差圧の変化が生じている。   Further, as shown in FIG. 5, even if the amount of deposited fine particles is the same, the density of the captured fine particles may be different. FIG. 5 shows that even if the deposition amount is the same, the differential pressure varies greatly depending on the thickness. In the example of FIG. 5, the deposition amount of fine particles is 8 g / L for all. Nevertheless, FIG. 5 shows that the differential pressure changes from 15.3 kPa to 8.8 kPa when the thickness of the trapped fine particles changes from 109 μm to 255 μm. In this case, a change in the differential pressure that reaches about twice has occurred.

従来の図3の構成において、捕捉された微粒子12c中にこのような不均一や局所的な空洞が生じると、実際に堆積した微粒子量と差圧ΔPは、理論的な計算値に対して、±50%にも達する誤差を生じる。その結果、実際に堆積した微粒子の量と再生動作を行うタイミングの関係が大きくずれてしまうことになる。さらに、排ガス圧および排ガス流量はエンジンの負荷や回転数により変化することを勘案すると、従来の図3の構成において、微粒子捕捉フィルタ12B中における微粒子の堆積量を正確に検出するのは非常に困難であると言える。   In the conventional configuration of FIG. 3, when such non-uniformity or local cavities occur in the trapped fine particles 12 c, the amount of the actually deposited fine particles and the differential pressure ΔP are compared with the theoretical calculation values. An error as high as ± 50% is generated. As a result, the relationship between the amount of fine particles actually deposited and the timing for performing the regeneration operation is greatly deviated. Further, considering that the exhaust gas pressure and the exhaust gas flow rate vary depending on the engine load and the rotational speed, it is very difficult to accurately detect the amount of particulates deposited in the particulate trapping filter 12B in the conventional configuration of FIG. It can be said that.

また特許文献2には、微粒子捕捉フィルタの他に微粒子検出用フィルタを設け、微粒子捕捉フィルタに捕捉された微粒子の量を、電気抵抗測定により求める構成が記載されている。この技術では、微粒子捕捉フィルタに捕捉された微粒子と微粒子検出用フィルタにより捕捉された微粒子は、検出された抵抗値が所定値以下になった場合、ヒータを使って燃焼される。これにより、微粒子捕捉フィルタの再生がなされる。   Further, Patent Document 2 describes a configuration in which a particulate detection filter is provided in addition to the particulate capturing filter, and the amount of particulate captured by the particulate capturing filter is obtained by electrical resistance measurement. In this technique, the particulates captured by the particulate capturing filter and the particulates captured by the particulate detection filter are burned by using a heater when the detected resistance value becomes a predetermined value or less. As a result, the particulate trapping filter is regenerated.

前記特許文献2の構成では、微粒子捕捉フィルタにヒータを設ける必要があり、構成が複雑になる問題があり、さらに微粒子捕捉フィルタの再生に電力が消費される問題がある。また前記特許文献2の技術では、フィルタ再生時の電力消費を節減するため、微粒子捕捉フィルタへの微粒子の堆積が限界にきており直ちに再生を行うのが不可欠である特定の場合を除いて、再生動作を微粒子検出用フィルタの温度が所定値より高い状態を選んで実行されている。その結果、この技術では再生動作のタイミングが制約され、また微粒子検出用フィルタの再生動作において自由度が制約されることになる。   In the configuration of Patent Document 2, it is necessary to provide a heater in the particulate trapping filter, and there is a problem that the configuration is complicated, and further, there is a problem that electric power is consumed for regeneration of the particulate trapping filter. In addition, in the technique of Patent Document 2, in order to save power consumption at the time of filter regeneration, the accumulation of particulates on the particulate trapping filter has reached its limit and it is indispensable to immediately perform regeneration, The regeneration operation is performed by selecting a state in which the temperature of the particulate detection filter is higher than a predetermined value. As a result, in this technique, the timing of the regeneration operation is restricted, and the degree of freedom is restricted in the regeneration operation of the particulate detection filter.

また前記特許文献2の技術では、ヒータによる微粒子捕捉フィルタの再生作業中は、その微粒子捕捉フィルタを使うことができず、このため予備の微粒子捕捉フィルタを設けておき、前記再生作業中にはこの予備の微粒子捕捉フィルタに切り替えている。しかし、このような構成では、同等の微粒子捕捉フィルタを2つ設ける必要があり、さらに切り替えバルブが必要であり、排ガス浄化装置の構成が大がかりになるという問題がある。かかる排ガス浄化装置を小型の車両に搭載するのは困難である。   In the technique of Patent Document 2, the particulate trapping filter cannot be used during the regeneration operation of the particulate trapping filter by the heater. For this reason, a spare particulate trapping filter is provided, Switch to a spare particulate trap filter. However, in such a configuration, it is necessary to provide two equivalent particulate trapping filters, and further, there is a problem that a switching valve is required and the configuration of the exhaust gas purification device becomes large. It is difficult to mount such an exhaust gas purification device on a small vehicle.

また前記特許文献2の技術では、前記微粒子検出用フィルタを、微粒子捕捉フィルタと同時に、あるいは微粒子捕捉フィルタの再生に引き続いて再生しているが、微粒子検出用フィルタの再生タイミングが任意に選べないため、微粒子検出用フィルタの状態如何によっては、微粒子捕捉フィルタの再生タイミングに誤差が生じやすいという問題がある。   In the technique of Patent Document 2, the particulate detection filter is regenerated at the same time as the particulate capturing filter or following the regeneration of the particulate capturing filter, but the regeneration timing of the particulate detection filter cannot be arbitrarily selected. Depending on the state of the particulate detection filter, there is a problem that an error is likely to occur in the regeneration timing of the particulate capturing filter.

仮に微粒子捕捉フィルタの再生と微粒子検出用フィルタの生成を独立に行うと、微粒子検出用フィルタの再生を行った時点で、微粒子検出用フィルタの通気抵抗が減少し、排ガスは専ら微粒子検出用フィルタを流れるようになる。その結果、微粒子捕捉フィルタの再生タイミング検出に誤差が生じる。このような理由から、前記特許文献2の技術では、微粒子検出用フィルタの再生と微粒子捕捉フィルタの再生を、先に述べたように、同期させて行っているのである。   If regeneration of the particulate trapping filter and generation of the particulate detection filter are performed independently, when the particulate detection filter is regenerated, the ventilation resistance of the particulate detection filter decreases, and the exhaust gas exclusively passes through the particulate detection filter. It begins to flow. As a result, an error occurs in the regeneration timing detection of the particulate trapping filter. For this reason, in the technique of Patent Document 2, regeneration of the particulate detection filter and regeneration of the particulate trapping filter are performed in synchronization as described above.

さらに前記特許文献2の技術は、(a)アッシュ堆積、および(b)劣化による大きな見積もり誤差の問題点を有している。   Further, the technique of Patent Document 2 has a problem of a large estimation error due to (a) ash deposition and (b) deterioration.

さらに、前記特許文献2の技術では、捕捉した微粒子の堆積量を見積もるのに電極の電気抵抗を測定するという、その原理そのものに起因する問題点がある。   Furthermore, the technique of Patent Document 2 has a problem due to the principle itself of measuring the electric resistance of the electrode in order to estimate the amount of trapped fine particles deposited.

図5に示すように、堆積量が同じであっても、捕捉された微粒子の厚さは変化することがある。そこで、捕捉された微粒子の厚さが異なると、電気抵抗を正確に測定することが困難となり、堆積量の見積もり値に誤差が生じることになる。   As shown in FIG. 5, even if the deposition amount is the same, the thickness of the captured fine particles may change. Therefore, if the trapped fine particles have different thicknesses, it is difficult to accurately measure the electrical resistance, and an error occurs in the estimated value of the deposition amount.

さらに、微粒子捕捉フィルタや微粒子検出用フィルタに、微粒子の燃焼後にアッシュ(Ash)の堆積が生じた場合には、もはや正確な電気抵抗の測定はできず、堆積量の見積もりに大きな誤差が生じてしまう。   Furthermore, when ash deposition occurs on the particulate trapping filter or particulate detection filter after the combustion of the particulates, it is no longer possible to accurately measure the electrical resistance, resulting in a large error in the estimation of the deposition amount. End up.

さらに、微粒子検出用フィルタの使用に伴い、時間経過や排ガス環境中での使用による、フィルタや電極に劣化が生じる。特に電極(導電性金属からなる端子)は、Cu,Cr,Ni等の金属が含浸されたものであるので、酸化、不純物付着、ひび割れ、腐食等の、物理的劣化や酸化劣化、熱劣化が生じやすい。   Further, with the use of the particulate detection filter, the filter and the electrode are deteriorated due to the passage of time and use in the exhaust gas environment. In particular, the electrode (terminal made of conductive metal) is impregnated with a metal such as Cu, Cr, Ni, etc., so that physical deterioration, oxidation deterioration, and thermal deterioration such as oxidation, adhesion of impurities, cracking, and corrosion are not caused. Prone to occur.

フィルタや電極が劣化した場合には、もはや電気抵抗を正確に測定することができず、堆積量の算出結果に誤差が生じてしまう。   When the filter or electrode deteriorates, the electrical resistance can no longer be accurately measured, and an error occurs in the calculation result of the deposition amount.

一の側面によれば排ガス浄化装置は、ディーセルエンジンの主排気ラインに設置された主微粒子捕捉フィルタと、前記主微粒子捕捉フィルタ上流側の分岐点において前記主排気ラインから分岐された副排気ラインと、前記副排気ラインに設置された、前記主微粒子捕捉フィルタのスートストレージ容量よりもスートストレージ容量の小さい副微粒子捕捉フィルタと、前記副排気ライン中、前記副微粒子捕捉フィルタの下流側に設けられ、前記分岐点の圧力よりも低い圧力を与える低圧部と、前記副微粒子捕捉フィルタの入口と出口の間に生じる差圧を測定する差圧測定部と、を備え、前記副排気ラインは、前記副微粒子捕捉フィルタの下流側に下流側端部を有し、前記下流側端部は、前記ディーゼルエンジンの排気ガス再循環ラインに接続されている According to one aspect, an exhaust gas purification apparatus includes a main particulate trap filter installed in a main exhaust line of a diesel engine, and a sub exhaust line branched from the main exhaust line at a branch point upstream of the main particulate trap filter. A sub-particulate trapping filter having a soot storage capacity smaller than a soot storage capacity of the main particulate trapping filter installed in the sub-exhaust line, and provided on the downstream side of the subparticulate trapping filter in the sub-exhaust line, A low pressure section that applies a pressure lower than the pressure at the branch point; and a differential pressure measurement section that measures a differential pressure generated between an inlet and an outlet of the secondary particulate trapping filter, and the secondary exhaust line includes the secondary exhaust line. The downstream end of the particulate trapping filter has a downstream end, and the downstream end is connected to the exhaust gas recirculation line of the diesel engine. To have.

本発明によれば、主微粒子捕捉フィルタのスートストレージ容量よりもスートストレージ容量が小さく、従って不均一な微粒子堆積の生じにくい副微粒子捕捉フィルタを使い、かかる副微粒子捕捉フィルタに生じる差圧を測定することにより、主微粒子捕捉フィルタにおける微粒子の堆積量を、簡単かつ容易に測定することが可能となる。このため、ポストインジェクションによる燃費の悪化を抑制することが可能となる。さらに本発明によれば、副微粒子捕捉フィルタの再生を主微粒子捕捉フィルタと独立に実行することが可能となり、主微粒子捕捉フィルタ中における微粒子の堆積量を、副微粒子捕捉フィルタを使って常に、正確に測定することが可能となる。さらに、アッシュ堆積やフィルタや電極の劣化を受けにくく、正確な測定を行うことが可能となる。   According to the present invention, a soot storage capacity is smaller than the soot storage capacity of the main particulate trapping filter, and therefore, a secondary particulate trapping filter in which nonuniform particulate deposition is unlikely to occur and the differential pressure generated in the secondary particulate trapping filter is measured. This makes it possible to easily and easily measure the amount of particulates deposited on the main particulate trapping filter. For this reason, it becomes possible to suppress the deterioration of fuel consumption due to post-injection. Furthermore, according to the present invention, it is possible to perform regeneration of the secondary particulate trapping filter independently of the primary particulate trapping filter, and the amount of particulate deposition in the primary particulate trapping filter is always accurately determined using the secondary particulate trapping filter. It becomes possible to measure. Furthermore, it is less susceptible to ash deposition and filter and electrode deterioration, and accurate measurement can be performed.

本発明ではその際、前記副微粒子捕捉フィルタの下流側端部をディーゼルエンジンの低圧部に接続することにより、排ガスを前記副微粒子捕捉フィルタに確実に供給することが可能となる。かかる低圧部としては、ディーセルエンジンの吸気系あるいは排気系のいずれの低圧部を使ってもよい。   In the present invention, the exhaust gas can be reliably supplied to the secondary particulate trapping filter by connecting the downstream end of the secondary particulate trapping filter to the low pressure portion of the diesel engine. As such a low pressure part, any low pressure part of an intake system or an exhaust system of a diesel engine may be used.

さらに本発明によれば、主排気ガスライン中の排ガスが副微粒子捕捉フィルタの再生に伴い、前記副排気ラインの通気抵抗が、前記副微粒子捕捉フィルタの再生により減少することで、前記副排気ラインに集中する問題を、前記副排気ラインにバルブを設け、その流量を一定に制御することで回避することが可能である。すなわち、主微粒子捕捉フィルタにおける微粒子の捕捉は、副微粒子捕捉フィルタと同様になされ、その結果、前記副微粒子捕捉フィルタの差圧測定により求めた主微粒子捕捉フィルタへの微粒子堆積量の推定値が、実際に主微粒子捕捉フィルタにおける微粒子量からずれる問題が回避される。   Furthermore, according to the present invention, the exhaust resistance in the main exhaust gas line is reduced by the regeneration of the sub-particulate trapping filter due to the regeneration of the sub-particulate trapping filter due to the regeneration of the sub-particulate trapping filter. Can be avoided by providing a valve in the auxiliary exhaust line and controlling the flow rate to be constant. That is, the trapping of the particulates in the main particulate trapping filter is made in the same manner as the secondary particulate trapping filter, and as a result, the estimated value of the particulate deposition amount on the main particulate trapping filter obtained by measuring the differential pressure of the secondary particulate trapping filter is In practice, the problem of deviating from the amount of fine particles in the main fine particle trapping filter is avoided.

従来の排ガス浄化装置を使ったエンジンの全体図である。It is a general view of the engine using the conventional exhaust gas purification apparatus. 微粒子捕捉フィルタの概略的構成を示す図である。It is a figure which shows schematic structure of a particulate-trapping filter. 微粒子捕捉フィルタの構成要素を示す図である。It is a figure which shows the component of a microparticles | fine-particles capture filter. 微粒子捕捉フィルタの動作原理を示す図である。It is a figure which shows the principle of operation of a microparticle capture filter. 微粒子捕捉フィルタにより捕捉された微粒子の状態を示す図である。It is a figure which shows the state of the microparticles | fine-particles captured by the microparticle capture filter. 本発明の関連技術による従来の排ガス浄化装置を使ったエンジンシステムの全体構成を示す図である。It is a figure which shows the whole structure of the engine system using the conventional exhaust gas purification apparatus by the related technique of this invention. 図3の排ガス浄化装置の問題点を説明する図である。It is a figure explaining the problem of the exhaust gas purification apparatus of FIG. 図3の排ガス浄化装置の問題点を説明する別の図である。It is another figure explaining the problem of the exhaust gas purification apparatus of FIG. 本発明の第1の実施形態による排ガス浄化装置の構成を示す図である。It is a figure which shows the structure of the exhaust gas purification apparatus by the 1st Embodiment of this invention. 図6で使われる副微粒子捕捉フィルタの構成を示す図である。It is a figure which shows the structure of the subparticle capture filter used in FIG. 図7Aの副微粒子捕捉フィルタの原理を説明する図である。It is a figure explaining the principle of the subfine particle capture filter of FIG. 7A. 図6の副微粒子捕捉フィルタを使った微粒子(PM)センサの構成を示す図である。It is a figure which shows the structure of the microparticles | fine-particles (PM) sensor using the subparticle capture filter of FIG. 本発明の効果を説明する図である。It is a figure explaining the effect of this invention. 本発明の第2の実施形態による排ガス浄化装置における微粒子捕捉フィルタの再生動作を説明するフローチャートである。It is a flowchart explaining the reproduction | regeneration operation | movement of the particulate trap filter in the exhaust gas purification apparatus by the 2nd Embodiment of this invention. 本発明の第2の実施形態による排ガス浄化装置における微粒子捕捉フィルタの他の再生動作を説明するフローチャートである。It is a flowchart explaining other regeneration operation | movement of the particulate trap filter in the exhaust gas purification apparatus by the 2nd Embodiment of this invention. 図6の排ガス浄化装置を含むディーゼルエンジンの全体構成を示す図である。It is a figure which shows the whole structure of the diesel engine containing the exhaust gas purification apparatus of FIG.

本発明の一実施形態において、ディーゼルエンジンの主排気ラインに設置された主微粒子捕捉フィルタと、前記主微粒子捕捉フィルタの上流側の分岐点で前記主排気ラインから分岐した副排気ラインと、前記副排気ラインに設置された、前記主微粒子捕捉フィルタのスートストレージ容量よりも小さなスートストレージ容量を有する副微粒子捕捉フィルタと、前記副排気ライン中、前記副微粒子捕捉フィルタの下流側に設けられ、前記分岐点における圧力よりも低い圧力を与える低圧部と、前記副微粒子捕捉フィルタの入口側と出口側の差圧を測定する差圧測定部と、を備えた排ガス浄化装置を提供する。   In one embodiment of the present invention, a main particulate trap filter installed in a main exhaust line of a diesel engine, a sub exhaust line branched from the main exhaust line at a branch point upstream of the main particulate trap filter, A sub-particulate trapping filter having a soot storage capacity smaller than a soot storage capacity of the main particulate trapping filter installed in the exhaust line; and the branch provided in the sub-exhaust line downstream of the subparticulate trapping filter. Provided is an exhaust gas purifying apparatus comprising a low pressure section that applies a pressure lower than the pressure at a point, and a differential pressure measurement section that measures a differential pressure between an inlet side and an outlet side of the secondary particulate trapping filter.

上記排ガス浄化装置の実施形態において、前記副微粒子捕捉フィルタの下流側において前記副排気ライン下流側端部が、前記ディーゼルエンジンの空気吸入部に接続されていることが好ましい。   In the embodiment of the exhaust gas purifying apparatus, it is preferable that the downstream end of the secondary exhaust line on the downstream side of the secondary particulate trapping filter is connected to an air suction portion of the diesel engine.

また、前記下流側端部は、エアフィルタの上流側に接続されていることが好ましい。   The downstream end is preferably connected to the upstream side of the air filter.

また、前記副微粒子捕捉フィルタの下流側の前記副排気ライン下流側端部が前記主排気ラインに、前記主微粒子捕捉フィルタの下流側において接続されていることが好ましい。   Moreover, it is preferable that the downstream end part of the secondary exhaust line on the downstream side of the secondary particulate trapping filter is connected to the main exhaust line on the downstream side of the primary particulate trapping filter.

また、前記副微粒子捕捉フィルタの下流側において前記副排気ライン下流側端部が、前記ディーゼルエンジンの排ガス再循環ラインに接続されていることが好ましい。   Moreover, it is preferable that the downstream end part of the secondary exhaust line is connected to the exhaust gas recirculation line of the diesel engine on the downstream side of the secondary particulate trapping filter.

また、前記副排気ラインには、流量計あるいは同等のメータ(例えばガス流速計)が設置されていることが好ましい。   Moreover, it is preferable that a flow meter or an equivalent meter (for example, a gas flow meter) is installed in the auxiliary exhaust line.

また、前記副排気ラインには、温度測定部が設置されていることが好ましい。   Moreover, it is preferable that a temperature measuring unit is installed in the auxiliary exhaust line.

また、前記副微粒子フィルタには、ヒータが設置されていることが好ましい。   The sub-particulate filter is preferably provided with a heater.

また、前記副排気ラインには、前記副排気ライン中における前記排ガスの流量を所定値に維持するバルブが設置されていることが好ましい。   Further, it is preferable that a valve for maintaining the flow rate of the exhaust gas in the auxiliary exhaust line at a predetermined value is installed in the auxiliary exhaust line.

また、前記差圧測定部、温度測定部、副微粒子捕捉フィルタ、および流量計あるいはこれに等価なメータ(例えばガス流速計)の少なくとも一つが、ホルダに格納されていることが好ましい。   In addition, it is preferable that at least one of the differential pressure measuring unit, the temperature measuring unit, the sub-particulate trapping filter, and the flow meter or a meter equivalent thereto (for example, a gas velocimeter) is stored in the holder.

以下、本発明の実施形態について、図面を参照しながら説明する。
[第1の実施形態]
図6は、本発明の第1の実施形態による排ガス浄化装置20の構成を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
FIG. 6 shows the configuration of the exhaust gas purification apparatus 20 according to the first embodiment of the present invention.

図6を参照するに、図示しないディーゼルエンジンからの排ガスは、先に図2Aで説明したのと同様な主微粒子捕捉フィルタ(DPF)22に、主排気ライン21を介して導入され、前記主微粒子捕捉フィルタ(DPF)22は、前記排ガス中の微粒子を、先に図2Cおよび2Dで説明したように捕捉する。   Referring to FIG. 6, exhaust gas from a diesel engine (not shown) is introduced into a main particulate trapping filter (DPF) 22 similar to that described above with reference to FIG. The capture filter (DPF) 22 captures the fine particles in the exhaust gas as described above with reference to FIGS. 2C and 2D.

さらに図6の構成では、前記主微粒子捕捉フィルタ(DPF)22から上流側において、副排気ライン21Aが前記主排気ライン21から分岐し、前記副排気ライン21Aには副微粒子捕捉フィルタ22Aが、前記主微粒子捕捉フィルタ(DPF)22のスートストレージ容量よりも小さなスートストレージ容量で設けられている。さらに前記副微粒子捕捉フィルタ22Aの入口と出口の間の差圧ΔPを測定する差圧計22Bが設けられている。さらに図6の構成では、前記副排気ライン21Aに前記副微粒子捕捉フィルタ22Aの下流側において流量計24と制御バルブ23とが設けられ、前記制御バルブ23は前記副排気ライン21Aにおける排ガス流量を、前記流量計24による測定に基づいて、一定に維持するのに使われる。この制御バルブ23と流量計24とは、前記副排気ライン21Aのどこに設けてもよい。ここで前記副微粒子捕捉フィルタ22Aと、前記差圧計22Bと、流量計24とは、排ガス中に含まれる微粒子の量を測定する微粒子(PM)センサを構成する。前記微粒子(PM)センサは、温度測定部(T1)を含むように構成されていてもよい。さらに、前記主微粒子捕捉フィルタ(DPF)22に温度測定部T2を設けることも可能である。   Further, in the configuration of FIG. 6, on the upstream side from the main particulate trapping filter (DPF) 22, a sub exhaust line 21 </ b> A branches from the main exhaust line 21. The soot storage capacity is smaller than the soot storage capacity of the main particulate trapping filter (DPF) 22. Further, a differential pressure gauge 22B is provided for measuring a differential pressure ΔP between the inlet and outlet of the sub-particulate trap 22A. Further, in the configuration of FIG. 6, the sub exhaust line 21A is provided with a flow meter 24 and a control valve 23 on the downstream side of the sub fine particle capturing filter 22A, and the control valve 23 controls the exhaust gas flow rate in the sub exhaust line 21A. Based on the measurement by the flow meter 24, it is used to keep it constant. The control valve 23 and the flow meter 24 may be provided anywhere on the auxiliary exhaust line 21A. Here, the secondary particulate trapping filter 22A, the differential pressure gauge 22B, and the flow meter 24 constitute a particulate (PM) sensor that measures the amount of particulates contained in the exhaust gas. The fine particle (PM) sensor may be configured to include a temperature measurement unit (T1). Further, the main particle capturing filter (DPF) 22 may be provided with a temperature measuring unit T2.

この排気ライン中の温度測定部は、次のいずれに設けてもよい。(1)主微粒子捕捉フィルタの内部、(2)副微粒子捕捉フィルタの内部、(3)これに接続された配管(パイプ)内、(4)主微粒子捕捉フィルタの表面、あるいは(5)副微粒子捕捉フィルタの表面。排ガス温度の正確な測定が可能となるという観点からは、構成(1)あるいは(2)が好ましく、特に構成(2)がより好ましい。   The temperature measuring unit in the exhaust line may be provided in any of the following. (1) Inside of the main particle capturing filter, (2) Inside of the sub particle capturing filter, (3) In a pipe (pipe) connected thereto, (4) The surface of the main particle capturing filter, or (5) Sub particle The surface of the capture filter. From the viewpoint of enabling accurate measurement of the exhaust gas temperature, the configuration (1) or (2) is preferable, and the configuration (2) is particularly preferable.

図6の例では、前記主微粒子捕捉フィルタ(DPF)22は、35〜65%の気孔率を有するSiCなどの多孔質セラミックよりなり、ハニカム構造を形成するが、前記ガス流れ方向に垂直な断面において、一辺が1.1mmの矩形のガス通路が、図2Bのガス通路12aに対応して形成されていることがわかる。ここではガス通路は互いに約0.3mmの距離だけ離れて形成されており、全体として格子状のパターンを形成している。   In the example of FIG. 6, the main particulate trapping filter (DPF) 22 is made of a porous ceramic such as SiC having a porosity of 35 to 65% and forms a honeycomb structure, but has a cross section perpendicular to the gas flow direction. In FIG. 2, it can be seen that a rectangular gas passage having a side of 1.1 mm is formed corresponding to the gas passage 12a of FIG. 2B. Here, the gas passages are formed with a distance of about 0.3 mm from each other, forming a lattice pattern as a whole.

図7Aは、前記副微粒子捕捉フィルタ22Aを含む全体構成を示し、一方図7Bは前記副微粒子捕捉フィルタ22Aの原理を示す。   FIG. 7A shows the overall configuration including the secondary particulate trapping filter 22A, while FIG. 7B shows the principle of the secondary particulate trapping filter 22A.

前記副微粒子捕捉フィルタ22Aは、前記主微粒子捕捉フィルタ(DPF)22と同様な多孔質セラミックにより構成することができる。前記副微粒子捕捉フィルタを多孔質セラミックにより構成する場合には、前記副微粒子捕捉フィルタがSiCなどの多孔質セラミックよりなり、矩形形状のセル22bを含むのが好ましい。ここで、前記主微粒子捕捉フィルタ22(DPF)中における排ガス通路(図3の通路12aに対応)の総容積の5%以下、例えば0.05〜5%、あるいは65ml以下、例えば0.05〜65mlの容積、あるいは0.1〜1000cm2(好ましくは1〜10cm2)の濾過面積を有する単一のガス通路22aが形成される。前記ガス通路22aは、例えば矩形断面形状を有し、その一端が閉じられている(1セルの場合には後端が閉じられる)。ここで、前記ガス通路22aの外形形状あるいは前記副微粒子捕捉フィルタ22A(セル22b)の外形形状は、前記主微粒子捕捉フィルタ(DPF)22のガス通路の断面形状と同一である必要はなく、円形、正方形、八角形、楕円形など、任意形状であってよい。さらに、前記微粒子捕捉フィルタ22A(セル22b)を構成する多孔質セラミックは、前記主微粒子捕捉フィルタ(DPF)22を構成する多孔質セラミックと同一である必要はない。また前記副微粒子捕捉フィル22A(セル22b)は、セラミック以外に材料で形成されていてもよい。 The sub-particle capturing filter 22A can be made of a porous ceramic similar to the main particle capturing filter (DPF) 22. When the sub-particulate trapping filter is made of a porous ceramic, it is preferable that the sub-particulate trapping filter is made of a porous ceramic such as SiC and includes rectangular cells 22b. Here, 5% or less of the total volume of the exhaust gas passage (corresponding to the passage 12a in FIG. 3) in the main particulate trapping filter 22 (DPF), for example 0.05 to 5%, or 65 ml or less, for example 0.05 to A single gas passage 22a having a volume of 65 ml or a filtration area of 0.1 to 1000 cm 2 (preferably 1 to 10 cm 2 ) is formed. The gas passage 22a has, for example, a rectangular cross-sectional shape, and one end thereof is closed (in the case of one cell, the rear end is closed). Here, the outer shape of the gas passage 22a or the outer shape of the sub-particle trapping filter 22A (cell 22b) does not have to be the same as the cross-sectional shape of the gas passage of the main particulate trapping filter (DPF) 22, but is circular. , Square, octagon, oval, etc. Furthermore, the porous ceramic constituting the particulate trapping filter 22A (cell 22b) need not be the same as the porous ceramic constituting the main particulate trapping filter (DPF) 22. The sub-particle capturing film 22A (cell 22b) may be formed of a material other than ceramic.

前記ガス通路22aを、前記主微粒子捕捉フィルタ(DPF)22中の排ガス通路(図3の通路12aに対応)の5%以下の容積に形成することにより、あるいは65ml以下の容積に形成することにより、あるいは0.1〜1000cm2(好ましくは1〜10cm2)の濾過面積に形成することにより、前記主微粒子捕捉フィルタ(DPF)22中の微粒子の堆積量の測定を簡単な手順で行うことが可能となる。 By forming the gas passage 22a at a volume of 5% or less of the exhaust gas passage (corresponding to the passage 12a of FIG. 3) in the main particulate trapping filter (DPF) 22, or by forming a volume of 65 ml or less. Alternatively, by forming a filtration area of 0.1 to 1000 cm 2 (preferably 1 to 10 cm 2 ), it is possible to measure the amount of deposited fine particles in the main fine particle capturing filter (DPF) 22 by a simple procedure. It becomes possible.

前記セル22bは、排ガス温度Tを測定する温度測定部が設けられ、前記温度測定部には、熱電対22dが設けられている。さらに、前記セル22bの周りには前記内壁に堆積した微粒子層(煤層)22cを燃焼させ前記副微粒子捕捉フィルタ22Aを再生するために、ヒータ22hが巻回されている。さらに、セル22bと熱電対22dとヒータ22hとは、SiO2−Al23などよりなる円筒形のホルダ22e中に、Al23などの絶縁物(インシュレータ)22iを介して格納されており、さらに前記ホルダ22eには、前記差圧ΔPを測定するダイアフラム圧力計22Bが、前記副排気ライン21A中の排ガスが前記圧力計22Bに供給されるように設けられている。前記ホルダ22eは金属ハウジングに格納されており、微粒子(PM)センサとして前記副排気ラインに設置される。前記ホルダ22eは、また前記副排気ラインの配管内に設置してもよいし、前記副排気ライン中に、金属ハウジングに格納した状態で設置してもよい。 The cell 22b is provided with a temperature measurement unit for measuring the exhaust gas temperature T, and the temperature measurement unit is provided with a thermocouple 22d. Further, a heater 22h is wound around the cell 22b in order to burn the particulate layer (soot layer) 22c deposited on the inner wall and regenerate the secondary particulate capturing filter 22A. Further, the cell 22b, the thermocouple 22d, and the heater 22h are stored in a cylindrical holder 22e made of SiO 2 —Al 2 O 3 or the like via an insulator (insulator) 22i such as Al 2 O 3. Further, the holder 22e is provided with a diaphragm pressure gauge 22B for measuring the differential pressure ΔP so that the exhaust gas in the auxiliary exhaust line 21A is supplied to the pressure gauge 22B. The holder 22e is housed in a metal housing and is installed in the auxiliary exhaust line as a particulate (PM) sensor. The holder 22e may be installed in the pipe of the auxiliary exhaust line, or may be installed in a state of being stored in a metal housing in the auxiliary exhaust line.

そこで、前記副排気ライン21A中の排ガスが前記セル22bの排ガス通路22aに導入されると、前記排ガスは前記セル22bの壁面を通過してセル外側へと流れ、前記排ガス中の微粒子が図2Cの場合と同様に捕捉される。その際、微粒子は前記セル22bの内壁面に堆積し、微粒子層22cを形成する。   Therefore, when the exhaust gas in the auxiliary exhaust line 21A is introduced into the exhaust gas passage 22a of the cell 22b, the exhaust gas passes through the wall surface of the cell 22b and flows to the outside of the cell. Is captured in the same way as At that time, the fine particles are deposited on the inner wall surface of the cell 22b to form the fine particle layer 22c.

本発明では、このようにして捕捉され前記微粒子捕捉フィルタ22の内壁面に堆積した微粒子22cの堆積量が、このようにして得られた前記差圧ΔPと排ガス温度Tと排ガス流量Qとから、式(1)を使って、以下のように算出される。   In the present invention, the amount of the particulates 22c trapped in this way and deposited on the inner wall surface of the particulate trapping filter 22 is calculated from the differential pressure ΔP, the exhaust gas temperature T, and the exhaust gas flow rate Q thus obtained. Using the formula (1), it is calculated as follows.

図8は、前記図6の副微粒子捕捉フィルタ22Aのより詳細な構成を示す。   FIG. 8 shows a more detailed configuration of the sub-particle trapping filter 22A shown in FIG.

図8を参照するに、前記副排気ライン21A中の排ガスは、前記セル22b中のガス通路22aに、矢印で示すように供給され、前記セルを通過後、側方にあるいは後方に排出される。その際、前記セル22b上のヒータ22hは駆動ライン22b1を介して供給される電力により駆動され、前記セル22bにより捕捉された微粒子22cの燃焼が生じる。さらに、前記ダイアフラム圧力計22Bの出力信号が、信号ライン22pを介して制御回路へと供給される。   Referring to FIG. 8, the exhaust gas in the auxiliary exhaust line 21A is supplied to the gas passage 22a in the cell 22b as indicated by an arrow, and is exhausted to the side or rear after passing through the cell. . At that time, the heater 22h on the cell 22b is driven by electric power supplied via the drive line 22b1, and combustion of the particulates 22c captured by the cell 22b occurs. Further, the output signal of the diaphragm pressure gauge 22B is supplied to the control circuit via the signal line 22p.

前記図7Aおよび7Bの副微粒子捕捉フィルタ22Aでは、前記副微粒子捕捉フィルタに捕捉された微粒子のスートロード量が、以下の式により算出される。   7A and 7B, the soot load amount of the fine particles captured by the sub fine particle capturing filter is calculated by the following equation.

ΔP=function(流量,温度,スートロード,形状)
以下に好ましい実例を示すが(他の表現を用いることも可能である)、この実例では、前記副微粒子捕捉フィルタに捕捉された微粒子層の厚さW[m]が、以下の式により計算される。
ΔP = function (flow rate, temperature, soot load, shape)
A preferable example is shown below (other expressions can be used). In this example, the thickness W [m] of the fine particle layer captured by the secondary fine particle capturing filter is calculated by the following equation. The

ここでΔPは差圧[Pa]を表し、μは動粘性係数を表し、Qは[m3/h]で表した排ガス流量を表し、αはセルの一辺の長さを表し、ρは排ガスの比重を表し、Vtrapはフィルタ体積を表し、Wsは壁厚を表し、Kwは壁のガス透過率を表し、Ksootは、捕捉された微粒子層のガス透過率を表し、Wは捕捉された微粒子層の厚さを表し、Fは係数(=28.454)を表し、Lは有効フィルタ長さを表し、βは多孔質壁のフォルヒハイマー係数を表し、ζは排ガスの流入および流出の内部損失係数を表す。 Here, ΔP represents the differential pressure [Pa], μ represents the kinematic viscosity coefficient, Q represents the exhaust gas flow rate expressed in [m 3 / h], α represents the length of one side of the cell, and ρ represents the exhaust gas. Vtrap represents the filter volume, Ws represents the wall thickness, Kw represents the gas permeability of the wall, Ksoot represents the gas permeability of the trapped particulate layer, and W represents the trapped particulate. Represents the layer thickness, F represents the coefficient (= 28.454), L represents the effective filter length, β represents the Forchheimer coefficient of the porous wall, ζ is the internal loss of exhaust gas inflow and outflow Represents a coefficient.

次に、前記セル22bにより捕捉された微粒子の質量msootが、以下の式により求められる。   Next, the mass msoot of the fine particles captured by the cell 22b is obtained by the following equation.

ここでmsootは、捕捉された微粒子の質量[g]を表し、Ncellsは、入口側のセルの開口数を表し、ρsootは、捕捉された微粒子の密度を表す。 Here, msoot represents the mass [g] of the captured fine particles, Ncells represents the numerical aperture of the cell on the inlet side, and ρsoot represents the density of the captured fine particles.

そこで、msootを、前記副微粒子捕捉フィルタの前回の再生時点から計った時間(経過時間)[h]で除することにより、単位時間当たりの捕捉量PM[g/h]が求められる。   Therefore, the amount of trapping PM [g / h] per unit time is obtained by dividing msoot by the time (elapsed time) [h] measured from the previous regeneration time of the sub-particulate trap.

このように単位時間に堆積した微粒子の質量PM[g/h]が求められると、排ガス中の微粒子濃度PMconc[g/cm3]が、前記副微粒子捕捉フィルタ22Aを通過する排ガスの流量Q2[m3/h]を使って求められる。 When the mass PM [g / h] of the fine particles accumulated per unit time is obtained in this way, the fine particle concentration PMconc [g / cm 3 ] in the exhaust gas becomes the flow rate Q2 [2] of the exhaust gas passing through the sub-particle trapping filter 22A. m 3 / h].

PM[g/h]=PMconc[g/m3]×Q2[m3/h] (3)
前記排ガス中の微粒子の濃度PMconcは、前記副排気ライン21Aにおいても主排気ライン21においても同じ値をとるので、前記微粒子捕捉フィルタ22に流入した微粒子の量Pmenter full filter[g/h]は、前記単位時間当たりの微粒子の質量PM[g/h]を使って、以下のように求められる。
PM [g / h] = PMconc [g / m 3 ] × Q2 [m 3 / h] (3)
Since the concentration PMconc of the particulates in the exhaust gas has the same value in both the auxiliary exhaust line 21A and the main exhaust line 21, the amount of particulates Pmenter full filter [g / h] flowing into the particulate trapping filter 22 is Using the mass PM [g / h] of fine particles per unit time, the following is obtained.

PMenter full filter[g/h]=PMconc[g/m3]×Q1[m3/h] (4)
さらに、これから、前記フィルタ中に堆積した微粒子の量が、フィルタの捕捉効率を勘案して求められる。以上の説明において、Q1は、前記主微粒子捕捉フィルタ(DPF)22を通過する排ガスの流量を示す。Q1は、実際の測定により、あるいはエンジンの運転状況から推定される。
PMenter full filter [g / h] = PMconc [g / m 3 ] × Q1 [m 3 / h] (4)
Furthermore, from this, the amount of fine particles accumulated in the filter is obtained in consideration of the trapping efficiency of the filter. In the above description, Q1 indicates the flow rate of the exhaust gas passing through the main particulate trapping filter (DPF) 22. Q1 is estimated by actual measurement or from the operating state of the engine.

図9は、図6の排ガス浄化装置において前記主微粒子捕捉フィルタ(DPF)22の前後において生じる差圧と、前記主微粒子捕捉フィルタ(DPF)22における微粒子の堆積量との関係を示す。ここで実線は、前記副微粒子捕捉フィルタ22Aおよび式(1)〜(4)を使って求められた、前記主微粒子捕捉フィルタ22における微粒子堆積量を示す。一方、破線は、前記主微粒子捕捉フィルタ(DPF)22の前後における差圧から直接に求めた場合の、前記主微粒子捕捉フィルタ(DPF)22における微粒子の堆積量を示す。   FIG. 9 shows the relationship between the differential pressure generated before and after the main particulate trapping filter (DPF) 22 in the exhaust gas purifying apparatus of FIG. 6 and the amount of particulates deposited on the main particulate trapping filter (DPF) 22. Here, the solid line indicates the amount of accumulated particulates in the main particulate trapping filter 22 obtained using the secondary particulate trapping filter 22A and the equations (1) to (4). On the other hand, the broken line indicates the amount of fine particles deposited on the main fine particle trapping filter (DPF) 22 when directly obtained from the differential pressure before and after the main fine particle trapping filter (DPF) 22.

図9を参照するに、前記主微粒子捕捉フィルタ(DPF)22の前後の差圧には、同じ微粒子堆積量で比較して、±50%に達する誤差が生じていることがわかる。   Referring to FIG. 9, it can be seen that the differential pressure before and after the main particulate trapping filter (DPF) 22 has an error of ± 50% compared with the same particulate deposition amount.

これに対し、前記副微粒子捕捉フィルタの前後における差圧ΔPを求め、式(1)〜(4)を使うことにより、前記主微粒子捕捉フィルタ(DPF)22に捕捉された微粒子の堆積量を、±10%の誤差で求めることが可能である。   On the other hand, by obtaining the differential pressure ΔP before and after the sub-particulate trapping filter and using the equations (1) to (4), the amount of particulates trapped in the main particulate trapping filter (DPF) 22 is It can be obtained with an error of ± 10%.

そこで、本発明によれば、図6の排ガス浄化装置において、前記主微粒子捕捉フィルタ(DPF)22中における微粒子の堆積量を、よりスートストレージ容量の小さい前記副微粒子捕捉フィルタ22Aにおいて生じる差圧ΔPを測定することで、正確に見積もることが可能となり、その結果に基づいてポストインジェクションを行うことにより、前記主微粒子捕捉フィルタ(DPF)22の再生を、最適なタイミングで実行することが可能となる。これにより、不要なポストインジェクションが回避され、車両の燃費が向上する。   Therefore, according to the present invention, in the exhaust gas purifying apparatus of FIG. 6, the amount of particulates deposited in the main particulate trapping filter (DPF) 22 is changed to the differential pressure ΔP generated in the secondary particulate trapping filter 22A having a smaller soot storage capacity. Can be accurately estimated, and by performing post-injection based on the result, regeneration of the main particulate trapping filter (DPF) 22 can be performed at an optimal timing. . Thereby, unnecessary post-injection is avoided and the fuel efficiency of the vehicle is improved.

図6の構成において、流量計24は、公知のベンチュリ流量計、ホットワイヤ流量計などを使うことが可能であり、その際、前記流量計24は前記副排気ライン21A中における排ガス流量を、制御バルブ23を用いて例えば50〜6000ml/分の範囲において、略一定に制御することが可能である。これにより、排ガスが前記副排気ライン21Aに偏って流れるのが回避され、前記主微粒子捕捉フィルタ(DPF)22中の微粒子堆積量を、前記副微粒子捕捉フィルタ22Aにより得られた堆積量から、より高精度に求めることが可能となる。   In the configuration of FIG. 6, a known venturi flow meter, a hot wire flow meter, or the like can be used as the flow meter 24. At this time, the flow meter 24 controls the exhaust gas flow rate in the auxiliary exhaust line 21A. The valve 23 can be controlled to be substantially constant, for example, in the range of 50 to 6000 ml / min. As a result, it is avoided that the exhaust gas flows in the sub-exhaust line 21A, and the amount of particulates accumulated in the main particulate trapping filter (DPF) 22 is further increased from the amount of deposition obtained by the subsidiary particulate capturing filter 22A. It can be obtained with high accuracy.

ここで、「前記副微粒子捕捉フィルタの入口と出口の間の差圧を測定する差圧測定部」とは、前記副微粒子捕捉フィルタの入口と出口の差圧を測定する差圧計を含むのみならず、微粒子捕捉フィルタ22Aの出口側にのみ、圧力計を使う構成をも含むものである。かかる構成では、初期状態(再生直後の状態)の圧力値が記憶されており、前記差圧は、前記副微粒子捕捉フィルタ22Aに微粒子の堆積が生じた状態の圧力を測定し、このようにして得られた圧力値を前記記憶された初期圧力値から差し引くことにより求められる。   Here, the “differential pressure measuring unit for measuring the differential pressure between the inlet and the outlet of the sub-particulate trapping filter” includes only a differential pressure gauge for measuring the differential pressure between the inlet and the outlet of the sub-particulate trapping filter. In addition, a configuration in which a pressure gauge is used only on the outlet side of the particulate trapping filter 22A is also included. In such a configuration, the pressure value in the initial state (the state immediately after the regeneration) is stored, and the differential pressure is measured in the state in which particulates are deposited on the sub-particulate trapping filter 22A. It is obtained by subtracting the obtained pressure value from the stored initial pressure value.

さらに前記差圧を測定するに当たり、前記流量計あるいは流速計を、前記副微粒子捕捉フィルタの入口側および出口側に、あるいは出口側のみに設けることも可能である。かかる構成によれば、前記差圧は、前記副微粒子捕捉フィルタの入口側および出口側に設けられた流量計、流速計、などの読み取り値から求められる。あるいは、前記差圧は、前記副微粒子捕捉フィルタの出口側の前記流量計や流速計の読み取り値から、初期状態(再生直後の状態)の読み取り値と前記副微粒子捕捉フィルタに微粒子の堆積が生じた状態の読み取り値を比較することにより、求めることができる。   Furthermore, when measuring the differential pressure, the flow meter or velocimeter may be provided on the inlet side and outlet side of the sub-particulate trap filter, or only on the outlet side. According to this configuration, the differential pressure can be obtained from readings from a flow meter, a current meter, and the like provided on the inlet side and the outlet side of the sub-particulate trap filter. Alternatively, the differential pressure is determined by the accumulation of fine particles in the reading of the initial state (the state immediately after the regeneration) and the reading of the sub-particulate trap from the reading of the flow meter or velocimeter on the outlet side of the sub-particulate trap. It can be obtained by comparing the read values in the same state.

本発明は、前記副微粒子捕捉フィルタ22Aについて求めた差圧から、前記主微粒子捕捉フィルタ(DPF)22に捕捉された微粒子の量を、式(1)を使うことにより求めることを特徴としており、前記副微粒子捕捉フィルタの差圧を求めるには、従来差圧を測定するのに使われているものを含め、如何なる計測器を使ってもよい。
[第2の実施形態]
図10は、図6の排ガス浄化装置を使った本発明の第2の実施形態による排ガス浄化方法を示すフローチャートである。
The present invention is characterized in that the amount of fine particles trapped by the main fine particle trapping filter (DPF) 22 is obtained from the differential pressure obtained for the sub-fine particle trapping filter 22A by using equation (1), In order to determine the differential pressure of the secondary particulate trapping filter, any measuring instrument may be used including those conventionally used to measure the differential pressure.
[Second Embodiment]
FIG. 10 is a flowchart showing an exhaust gas purification method according to the second embodiment of the present invention using the exhaust gas purification apparatus of FIG.

図10を参照するに、前記副排気ライン21A中の流量は、ステップ1において、前記流量計24を使うことにより、また場合によってはバルブ23を使うことにより、50〜6000ml/分の範囲に設定され、前記副微粒子捕捉フィルタ22A前後の差圧ΔPが、前記差圧計22Bにより検出される。さらに、前記温度測定部T1を使って、前記排ガスの温度Tが測定される。   Referring to FIG. 10, the flow rate in the auxiliary exhaust line 21A is set in the range of 50 to 6000 ml / min in step 1 by using the flow meter 24 and, in some cases, by using the valve 23. Then, the differential pressure ΔP before and after the secondary particulate trapping filter 22A is detected by the differential pressure gauge 22B. Further, the temperature T of the exhaust gas is measured using the temperature measuring unit T1.

次にステップ2において、前記副微粒子捕捉フィルタ22Aに捕捉された微粒子の層厚Wが、前記ステップ1で求められた差圧ΔPから、式(1)に従って求められる。ここで、前記排ガスの温度Tは、前記副微粒子捕捉フィルタ22Aの温度測定部T1を使う代わりに、前記主微粒子捕捉フィルタ(DPF)22の温度測定部T2を使って求めてもよい。さらに、前記温度Tは、前記温度測定部T1,T2の温度から算出(例えば平均値、最大値、最小値など)することもできる。前記微粒子の量を正確に算出することが可能となるという観点からは、前記副微粒子フィルタ22Aの温度測定部T1を使うことが好ましい。前記温度測定部としては熱電対を使うことができるが、温度を測定できるものならどのようなものでも使うことができる。さらに排気管内の排ガス温度を測定するのが好ましいが、フィルタあるいはセルの温度を測定してもよい。   Next, in step 2, the layer thickness W of the fine particles captured by the sub-fine particle capturing filter 22A is determined from the differential pressure ΔP determined in step 1 according to the equation (1). Here, the temperature T of the exhaust gas may be obtained using the temperature measuring unit T2 of the main particle capturing filter (DPF) 22 instead of using the temperature measuring unit T1 of the sub-particle capturing filter 22A. Further, the temperature T can be calculated (for example, an average value, a maximum value, a minimum value, etc.) from the temperatures of the temperature measuring units T1 and T2. From the viewpoint that the amount of the fine particles can be accurately calculated, it is preferable to use the temperature measuring unit T1 of the secondary fine particle filter 22A. A thermocouple can be used as the temperature measuring unit, but any device capable of measuring temperature can be used. Furthermore, although it is preferable to measure the exhaust gas temperature in the exhaust pipe, the temperature of the filter or cell may be measured.

さらにステップ2では、セル21bにより捕捉された微粒子の質量msootが、ステップ1で検出された層厚Wから、前記式(2)により求められる。   Further, in step 2, the mass msoot of the fine particles captured by the cell 21b is obtained from the layer thickness W detected in step 1 by the above formula (2).

さらにステップ3において、前記副微粒子捕捉フィルタ22Aのセル22bに堆積した微粒子層の質量msootが所定の閾値Th0を超えたか否かが判定され、結果がNO(Th0を越えていない場合)であれば、プロセスはステップ1に戻される。   Further, in step 3, it is determined whether or not the mass msoot of the particulate layer deposited on the cell 22b of the secondary particulate capturing filter 22A exceeds a predetermined threshold Th0, and if the result is NO (if it does not exceed Th0). , The process returns to step 1.

一方、前記ステップ3において前記副微粒子捕捉フィルタ22Aのセル22bに堆積した微粒子層の質量msootが前記所定閾値Th0を超えた場合には、ステップ4において前記ヒータ22hが駆動され、微粒子22cが燃焼により除去される。   On the other hand, when the mass msoot of the particulate layer deposited on the cell 22b of the secondary particulate capturing filter 22A in step 3 exceeds the predetermined threshold Th0, the heater 22h is driven in step 4 and the particulate 22c is burned. Removed.

一方、図10のプロセスでは、ステップ11において、前記ステップ2で求められた前記セル22b中に捕捉された微粒子の質量msootを使って、前記排ガス中に微粒子の濃度PMが前記式(3)により求められ、前記主微粒子捕捉フィルタ22に堆積した微粒子の量PMenter full filterが、前記式(4)および前記主微粒子捕捉フィルタ(DPF)22の捕捉効率から、求められる。   On the other hand, in the process of FIG. 10, in step 11, using the mass msoot of the fine particles trapped in the cell 22b obtained in the step 2, the concentration PM of the fine particles in the exhaust gas is expressed by the equation (3). The amount PMenter full filter of the fine particles accumulated on the main fine particle trapping filter 22 is obtained from the equation (4) and the trapping efficiency of the main fine particle trapping filter (DPF) 22.

そこでステップ12では、前記主微粒子捕捉フィルタ(DPF)22中における微粒子堆積量PMenter full filterが所定の閾値Th1を超えたか否かが判定され、判定結果がNO(Th1を越えていない場合)であれば、プロセスはステップS11に戻される。   Therefore, in step 12, it is determined whether or not the particulate accumulation amount PMenter full filter in the main particulate trapping filter (DPF) 22 exceeds a predetermined threshold Th1, and the determination result is NO (if it does not exceed Th1). If so, the process returns to step S11.

一方、前記ステップ12において、前記主微粒子捕捉フィルタ(DPF)22中における微粒子の堆積量PMenter full filterが前記閾値Th1を超えていると判定された場合には、ステップ13においてエンジン制御ユニット(ECU)をコントロールしてポストインジェクションが行われ、前記主微粒子捕捉フィルタ(DPF)22中に堆積した微粒子が、燃焼により除去される。これにより、フィルタの再生がなされる。   On the other hand, if it is determined in step 12 that the particulate accumulation amount PMenter full filter in the main particulate trapping filter (DPF) 22 exceeds the threshold value Th1, the engine control unit (ECU) is determined in step 13. Is controlled and post-injection is performed, and particulates accumulated in the main particulate trapping filter (DPF) 22 are removed by combustion. Thereby, the filter is regenerated.

図10のプロセスでは、前記副微粒子捕捉フィルタ22Aの再生と主微粒子捕捉フィルタ(DPF)22の再生とを独立に実行することができ、前記副微粒子捕捉フィルタ22Aを構成するセル22b中に堆積した微粒子22cの量、すなわち煤層の量を、例えば0.5g/l以下の小さな値に常時維持することが可能である。かかる構成によれば、副微粒子捕捉フィルタ22Aを使った微粒子センサの感度を向上させることができる。   In the process of FIG. 10, the regeneration of the secondary particulate trapping filter 22A and the regeneration of the main particulate trapping filter (DPF) 22 can be performed independently and deposited in the cell 22b constituting the secondary particulate trapping filter 22A. The amount of the fine particles 22c, that is, the amount of the soot layer can be constantly maintained at a small value of, for example, 0.5 g / l or less. According to this configuration, it is possible to improve the sensitivity of the particle sensor using the secondary particle capturing filter 22A.

図6の構成では、バルブ23が前記副排気ライン21Aに設置されているが、前記副微粒子捕捉フィルタ22Aの再生を前記主微粒子捕捉フィルタ(DPF)22と独立に行っても、排ガスが主として前記副微粒子捕捉フィルタを流れてしまうような状況が生じることはなく、前記主微粒子捕捉フィルタ(DPF)22中の微粒子堆積量の見積もりに誤差が生じることはない。   In the configuration of FIG. 6, the valve 23 is installed in the sub exhaust line 21 </ b> A. However, even if the regeneration of the sub particle capturing filter 22 </ b> A is performed independently of the main particle capturing filter (DPF) 22, the exhaust gas mainly There is no situation where the secondary particulate trapping filter flows, and no error occurs in the estimation of the particulate deposition amount in the main particulate trapping filter (DPF) 22.

その際、前記バルブ23は、前記副排気ライン21A中のガス流量を厳密に一定に維持する必要はなく、前記副排気ライン21Aへの極端な排ガスの偏りを回避できれば十分である。   At that time, the valve 23 does not need to keep the gas flow rate in the auxiliary exhaust line 21A strictly constant, and it is sufficient if it can avoid an extreme deviation of the exhaust gas to the auxiliary exhaust line 21A.

このように、本発明の第2の実施形態では、前記差圧ΔPと前記排ガスの温度Tと前記排ガス流量Qとが測定され(ステップ1)、前記第2の微粒子捕捉フィルタにより捕捉された微粒子の質量が、前記測定結果から、前記式(1)および(2)を使って求められ(ステップ2)、前記主微粒子捕捉フィルタに捕捉された微粒子の量が、前記式(3)、(4)、および、さらに前記主微粒子捕捉フィルタの捕捉効率を使って求められる(ステップ11)。   Thus, in the second embodiment of the present invention, the differential pressure ΔP, the exhaust gas temperature T, and the exhaust gas flow rate Q are measured (step 1), and the particulates captured by the second particulate trapping filter. Is obtained from the measurement results using the equations (1) and (2) (step 2), and the amount of fine particles captured by the main fine particle capture filter is determined by the equations (3) and (4). ), And further using the trapping efficiency of the main particulate trapping filter (step 11).

一方、前記主微粒子捕捉フィルタ中に捕捉された微粒子を求めるプロセスは、図11に示すように変形することもできる。   On the other hand, the process for obtaining the particles trapped in the main particle trapping filter can be modified as shown in FIG.

図10において、また以下に説明する図11においても、前記主微粒子捕捉フィルタ(DPF)22はDPFとして表記され、一方前記副微粒子捕捉フィルタ22Aは副DPFとして表記されている。さらに、前記微粒子の堆積は、「DPMdeopo」と表記されている。   In FIG. 10 and also in FIG. 11 described below, the main particulate trapping filter (DPF) 22 is expressed as DPF, while the secondary particulate capturing filter 22A is expressed as secondary DPF. Further, the deposition of the fine particles is described as “DPMdepo”.

すなわち、図11において、前記主微粒子捕捉フィルタに捕捉された微粒子の量を求めるプロセス(ステップ11)は、前記ステップ1で得られた測定結果を使って、前記副微粒子捕捉フィルタ中に捕捉された微粒子の量を求めるプロセス(ステップ2)と並行して行われる。   That is, in FIG. 11, the process (step 11) for obtaining the amount of fine particles captured by the main fine particle capturing filter was captured in the secondary fine particle capturing filter using the measurement result obtained in step 1. This is performed in parallel with the process for determining the amount of fine particles (step 2).

図12は、図6の排気ガス浄化装置を組み込んだディーゼルエンジンシステムの全体構成を示す。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。   FIG. 12 shows the overall configuration of a diesel engine system incorporating the exhaust gas purification device of FIG. However, in the figure, the same reference numerals are given to the parts described above, and the description will be omitted.

図12の本発明の一実施形態において、ディーゼルエンジンの主排気ライン21に設置された主微粒子捕捉フィルタ22と、前記主微粒子捕捉フィルタ22の上流側の分岐点で前記主排気ライン21から分岐した副排気ライン21Aと、前記副排気ライン21Aに設置された、前記主微粒子捕捉フィルタ22のスートストレージ容量よりも小さなスートストレージ容量を有する副微粒子捕捉フィルタ22Aと、前記副排気ライン21A中、前記副微粒子捕捉フィルタ22Aの下流側に設けられ、前記分岐点における圧力よりも低い圧力を与える低圧部(1),(2),(3)と、前記副微粒子捕捉フィルタ22Aの入口側と出口側の差圧を測定する差圧測定部22B(図6参照)と、を備えた排ガス浄化装置を提供する。   In one embodiment of the present invention shown in FIG. 12, the main particulate trapping filter 22 installed in the main exhaust line 21 of the diesel engine and the main exhaust line 21 branch off at a branch point upstream of the main particulate trapping filter 22. A sub-exhaust line 21A, a sub-particle trapping filter 22A installed in the sub-exhaust line 21A and having a soot storage capacity smaller than the soot storage capacity of the main particulate trapping filter 22, and the sub-exhaust line 21A, Low pressure portions (1), (2), (3) that are provided downstream of the particulate trapping filter 22A and apply a pressure lower than the pressure at the branch point, and the inlet side and outlet side of the secondary particulate trapping filter 22A An exhaust gas purification device including a differential pressure measurement unit 22B (see FIG. 6) for measuring a differential pressure is provided.

上記排ガス浄化装置の実施形態において、前記副微粒子捕捉フィルタ22Aの下流側において前記副排気ライン21A下流側端部が、前記ディーゼルエンジンの空気吸入部(2)に接続されていることが好ましい。   In the embodiment of the exhaust gas purifying apparatus, it is preferable that the downstream end of the secondary exhaust line 21A is connected to the air suction part (2) of the diesel engine on the downstream side of the secondary particulate capturing filter 22A.

また、前記下流側端部は、エアフィルタ11AFの上流側(2)に接続されていることが好ましい。   The downstream end is preferably connected to the upstream side (2) of the air filter 11AF.

また、前記副微粒子捕捉フィルタ22Aの下流側の前記副排気ライン21A下流側端部が前記主排気ライン21に、前記主微粒子捕捉フィルタ22の下流側(1)において接続されていることが好ましい。   Further, it is preferable that the downstream end of the secondary exhaust line 21A downstream of the secondary particulate trapping filter 22A is connected to the main exhaust line 21 on the downstream side (1) of the primary particulate trapping filter 22.

また、前記副微粒子捕捉フィルタ22Aの下流側において前記副排気ライン21A下流側端部が、前記ディーゼルエンジン11の排ガス再循環ライン(3)に接続されていることが好ましい。   Further, it is preferable that the downstream end of the secondary exhaust line 21A is connected to the exhaust gas recirculation line (3) of the diesel engine 11 on the downstream side of the secondary particulate capturing filter 22A.

ただし上記の丸付きかっこで示す参照符号は、図12中、丸で囲んだ参照符号に対応する。   However, the reference numerals indicated by the above parentheses correspond to the reference numerals surrounded by circles in FIG.

図12を参照するに、ディーゼルエンジン11は、吸気管11inを含む吸気系および主排気ライン21を含む排気系を備えており、前記吸気管11inには、エアフィルタ11AFが設けられている。前記吸気管11inの一部には、前記エアフィルタ11AFの下流側に、排ガスで駆動され、吸入したエアを圧縮するターボチャージャ11TのインペラCが設けられており、前記ターボチャージャ11Tで圧縮されたエアは、エアクーラー11ACで冷却された後、バルブ11AVで流量制御されながら、前記ディーゼルエンジン11に導入される。   Referring to FIG. 12, the diesel engine 11 includes an intake system including an intake pipe 11in and an exhaust system including a main exhaust line 21, and the intake pipe 11in is provided with an air filter 11AF. A part of the intake pipe 11in is provided with an impeller C of a turbocharger 11T that is driven by exhaust gas and compresses the sucked air downstream of the air filter 11AF, and is compressed by the turbocharger 11T. The air is cooled by the air cooler 11AC and then introduced into the diesel engine 11 while the flow rate is controlled by the valve 11AV.

前記ディーゼルエンジン11の排気ガスは前記排気ライン21に排出され、前記ターボチャージャ11TのタービンTを駆動した後、酸化物触媒(DOC)22Oxおよび図6の主微粒子捕捉フィルタ(DPF)22を介して排出される。また前記エンジン排気ガスの一部は、前記主排気ライン21から、バルブ21Vを含むEGRシステムにより、エンジンの上流側、吸気管に、NOx低減のために戻される。   Exhaust gas from the diesel engine 11 is discharged to the exhaust line 21, and after driving the turbine T of the turbocharger 11T, it passes through an oxide catalyst (DOC) 22Ox and a main particulate trapping filter (DPF) 22 in FIG. Discharged. A part of the engine exhaust gas is returned from the main exhaust line 21 to the intake pipe on the upstream side of the engine by an EGR system including a valve 21V for NOx reduction.

また前記エアフィルタ11AFには、前記吸気管11in中の空気温度および流量を測定するセンサS1が設けられており、前記バルブ11AVとエンジン11の間には、吸気エア温度および圧力を測定するセンサS2,S3が設けられている。さらに前記主排気ライン21には、前記酸素触媒22Oxから排出された排ガスの温度を促成するセンサS4が設けられ、さらに図6の構成に対応して、前記主微粒子捕捉フィルタ(DPF)22前後の差圧を測定する差圧計(図示せず)が設けられている。   The air filter 11AF is provided with a sensor S1 for measuring the air temperature and flow rate in the intake pipe 11in. Between the valve 11AV and the engine 11, a sensor S2 for measuring the intake air temperature and pressure. , S3 are provided. Further, the main exhaust line 21 is provided with a sensor S4 for urging the temperature of the exhaust gas discharged from the oxygen catalyst 22Ox. Further, corresponding to the configuration of FIG. A differential pressure gauge (not shown) for measuring the differential pressure is provided.

図12の構成では、図6で説明した副排気ライン21Aが前記主排気ライン21から分岐しており、前記副排気ライン21Aに副微粒子捕捉フィルタ22Aが設けられている。その際、前記副微粒子捕捉フィルタ22Aの排気出口は、(1)前記主微粒子捕捉フィルタ(DPF)22の下流側端、(2)前記吸気管11inのうち、前記エアフィルタの上流側、(3)前記EGRシステムの一部、特にエンジンの排気側とバルブ21Vの間など、前記副微粒子捕捉フィルタ21Aの入口よりも圧力の低い部分に接続され、前記主排気ライン21中の排ガスが、前記副微粒子捕捉フィルタ22Aに吸引される。これは、前記図6の構成において、副微粒子捕捉フィルタ22Aの下流側に吸引ポンプを接続したのと同じであり、前記副微粒子捕捉フィルタ22Aに排ガスを確実に供給することが可能となる。   In the configuration of FIG. 12, the sub exhaust line 21A described in FIG. 6 is branched from the main exhaust line 21, and the sub exhaust line 21A is provided with a sub particulate trapping filter 22A. At that time, the exhaust outlet of the secondary particulate trapping filter 22A is (1) a downstream end of the main particulate trapping filter (DPF) 22, (2) an upstream side of the air filter in the intake pipe 11in, (3 ) A part of the EGR system, in particular, between the exhaust side of the engine and the valve 21V, is connected to a part having a lower pressure than the inlet of the sub-particulate trap 21A, and the exhaust gas in the main exhaust line 21 is Sucked into the particulate trapping filter 22A. This is the same as the configuration shown in FIG. 6 in which a suction pump is connected to the downstream side of the sub-particle trapping filter 22A, and the exhaust gas can be reliably supplied to the sub-particle trapping filter 22A.

さらに、以上では、前記主微粒子フィルタ(DPF)22および副微粒子捕捉フィルタ22Aとして、SiCよりなるハニカム部材を使う場合について説明したが、本発明はかかる特定のフィルタ部品に限定されるものではなく、Si−SiC、窒化アルミニウムや窒化珪素、窒化硼素、窒化タングステンなどの窒化物、炭化ジルコニウム、炭化チタン、炭化タンタル、炭化タングステンなどの炭化物、アルミナ、酸化ジルコニウム、コージエライト、ムライト、シリカ、チタン酸アルミニウムなどの酸化物、あるいはステンレスなどの金属の多孔質体を使うことも可能である。また、ハニカム構造の他にも、コルゲートやエレメント板などの構造体を使うことも可能である。   Furthermore, in the above description, the case where a honeycomb member made of SiC is used as the main particulate filter (DPF) 22 and the secondary particulate capturing filter 22A has been described, but the present invention is not limited to such a specific filter component, Si-SiC, nitrides such as aluminum nitride, silicon nitride, boron nitride, tungsten nitride, carbides such as zirconium carbide, titanium carbide, tantalum carbide, tungsten carbide, alumina, zirconium oxide, cordierite, mullite, silica, aluminum titanate, etc. It is also possible to use a porous body made of a metal such as oxide or stainless steel. In addition to the honeycomb structure, a structure such as a corrugate or an element plate can be used.

本発明の実施形態の排ガス浄化装置は小型であり、トラックや産業機械などの大型車両のみならず、乗用車にも適用可能である。   The exhaust gas purifying apparatus of the embodiment of the present invention is small in size and can be applied not only to large vehicles such as trucks and industrial machines but also to passenger cars.

以上、本発明を好ましい実施形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載した要旨内において様々な変形・変更が可能である。   As mentioned above, although this invention was described about preferable embodiment, this invention is not limited to this specific embodiment, A various deformation | transformation and change are possible within the summary described in the claim.

11 ディーゼルエンジン
12 排気ライン
12A フィルタユニット
12B 微粒子捕捉フィルタ(DPF)
12a ガス通路
12b 多孔質部材
12c 微粒子
20 排ガス浄化装置
21 主排気ライン
21A 副排気ライン
22 主微粒子捕捉フィルタ(DPF)
22A 副微粒子捕捉フィルタ
22a 排ガス通路
22b セル
22b1 駆動ライン
22c 微粒子層
22d 熱電対
22e ホルダ(容器)
22h ヒータ
22i 絶縁物(インシュレータ)
22p 信号ライン
23 制御バルブ
24 流量計
11 Diesel engine 12 Exhaust line 12A Filter unit 12B Particulate trap (DPF)
12a Gas passage 12b Porous member 12c Fine particles 20 Exhaust gas purification device 21 Main exhaust line 21A Sub exhaust line 22 Main fine particle capture filter (DPF)
22A Sub-particle capture filter 22a Exhaust gas passage 22b Cell 22b1 Drive line 22c Particle layer 22d Thermocouple 22e Holder (container)
22h heater 22i insulator (insulator)
22p Signal line 23 Control valve 24 Flow meter

Claims (7)

ディーセルエンジンの主排気ラインに設置された主微粒子捕捉フィルタと、
前記主微粒子捕捉フィルタ上流側の分岐点において前記主排気ラインから分岐された副排気ラインと、
前記副排気ラインに設置された、前記主微粒子捕捉フィルタのスートストレージ容量よりもスートストレージ容量の小さい副微粒子捕捉フィルタと、
前記副排気ライン中、前記副微粒子捕捉フィルタの下流側に設けられ、前記分岐点の圧力よりも低い圧力を与える低圧部と、
前記副微粒子捕捉フィルタの入口と出口の間に生じる差圧を測定する差圧測定部と、を備え、
前記副排気ラインは、前記副微粒子捕捉フィルタの下流側に下流側端部を有し、
前記下流側端部は、前記ディーゼルエンジンの排気ガス再循環ラインに接続されている排ガス浄化装置。
A main particle trap filter installed in the main exhaust line of the diesel engine;
A sub exhaust line branched from the main exhaust line at a branch point upstream of the main particulate trapping filter;
A sub-particle trapping filter installed in the sub-exhaust line and having a soot storage capacity smaller than the soot storage capacity of the main particulate trapping filter;
A low-pressure part that is provided downstream of the sub-particulate trap filter in the sub-exhaust line and applies a pressure lower than the pressure at the branch point;
A differential pressure measuring unit that measures a differential pressure generated between an inlet and an outlet of the sub-particulate trapping filter,
The secondary exhaust line has a downstream end on the downstream side of the secondary particulate trapping filter,
The downstream end is an exhaust gas purification apparatus connected to an exhaust gas recirculation line of the diesel engine.
前記下流側端部は、エアフィルタの上流側に接続されている請求項1記載の排ガス浄化装置。   The exhaust gas purification device according to claim 1, wherein the downstream end is connected to an upstream side of an air filter. 前記副排気ラインには、さらに流量計または同等のメータが設置されている請求項1または2記載の排ガス浄化装置。   The exhaust gas purification device according to claim 1 or 2, wherein a flow meter or an equivalent meter is further installed in the auxiliary exhaust line. 前記副排気ラインには、さらに温度測定部が設置されている、請求項1〜3のいずれか一項記載の排ガス浄化装置。   The exhaust gas purification device according to any one of claims 1 to 3, wherein a temperature measuring unit is further installed in the auxiliary exhaust line. 前記副微粒子捕捉フィルタには、ヒータが設置されている請求項1〜4のいずれか一項記載の排ガス浄化装置。   The exhaust gas purification apparatus according to any one of claims 1 to 4, wherein a heater is installed in the sub-particulate trap. 前記副排気ラインには、前記副排気ライン中における前記排ガスの流量を一定に維持するバルブが設置されている請求項1〜5のいずれか一項記載の排ガス浄化装置。   The exhaust gas purification device according to any one of claims 1 to 5, wherein a valve for maintaining a constant flow rate of the exhaust gas in the auxiliary exhaust line is installed in the auxiliary exhaust line. 前記差圧測定部、前記温度測定部、前記副微粒子捕捉フィルタおよび前記流量計またはこれと同等のメータのうち少なくとも一つが、ホルダに格納されている請求項1〜6のいずれか一項記載の排ガス浄化装置。   7. The device according to claim 1, wherein at least one of the differential pressure measuring unit, the temperature measuring unit, the sub-particulate trap filter and the flow meter or a meter equivalent thereto is stored in a holder. Exhaust gas purification device.
JP2012110589A 2006-10-17 2012-05-14 Exhaust emission control device Pending JP2012177374A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06386032.4 2006-10-17
EP06386032 2006-10-17

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007209681A Division JP2008101604A (en) 2006-10-17 2007-08-10 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2012177374A true JP2012177374A (en) 2012-09-13

Family

ID=37890742

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012110589A Pending JP2012177374A (en) 2006-10-17 2012-05-14 Exhaust emission control device
JP2012110588A Pending JP2012184768A (en) 2006-10-17 2012-05-14 Exhaust gas purifying apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012110588A Pending JP2012184768A (en) 2006-10-17 2012-05-14 Exhaust gas purifying apparatus

Country Status (1)

Country Link
JP (2) JP2012177374A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349358A (en) * 2001-05-23 2002-12-04 Hino Motors Ltd Egr system for supercharged diesel engine
JP2008101604A (en) * 2006-10-17 2008-05-01 Ibiden Co Ltd Exhaust emission control device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417711A (en) * 1990-05-09 1992-01-22 Hino Motors Ltd Intake and exhaust system of engine
JPH05187329A (en) * 1992-01-14 1993-07-27 Mazda Motor Corp Exhaust gas circulation device for engine with supercharger
JPH0674100A (en) * 1992-08-28 1994-03-15 Fuji Heavy Ind Ltd Exhaust gas re-circulation control method for engine
JP3014940B2 (en) * 1995-02-23 2000-02-28 日本碍子株式会社 Dust collector
JPH08338320A (en) * 1995-06-14 1996-12-24 Hino Motors Ltd Exhaust emission control device
JP4553363B2 (en) * 2005-02-17 2010-09-29 ボッシュ株式会社 Particulate amount measuring device, particulate amount measuring method, and exhaust purification device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349358A (en) * 2001-05-23 2002-12-04 Hino Motors Ltd Egr system for supercharged diesel engine
JP2008101604A (en) * 2006-10-17 2008-05-01 Ibiden Co Ltd Exhaust emission control device

Also Published As

Publication number Publication date
JP2012184768A (en) 2012-09-27

Similar Documents

Publication Publication Date Title
JP4951441B2 (en) Exhaust gas purification device
JP5142624B2 (en) Exhaust gas purification device, exhaust gas purification method, and particulate measurement method
KR100899967B1 (en) Exhaust gas purifying apparatus
JP2008101606A (en) Particulate detection sensor
US7658064B2 (en) Exhaust gas purifying apparatus
KR100899968B1 (en) Particulate matter detection sensor for exhaust gas purifying apparatus
JP5833864B2 (en) Exhaust gas treatment method and exhaust gas treatment control system for internal combustion engine
JP4042476B2 (en) Exhaust gas purification device for internal combustion engine
JP4855811B2 (en) Fine particle amount detection system
JP4537232B2 (en) Control method of fuel injection amount
JP2006250048A (en) Regeneration control method of filter for exhaust emission control
JP4598655B2 (en) Exhaust gas purification device
JP2013160208A (en) Exhaust emission control apparatus and exhaust emission control method
JP2012177374A (en) Exhaust emission control device
JP2010270617A (en) Exhaust emission control system and method for controlling the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131022