JP2012176437A - Method for improving fatigue strength of weld part and weld joint - Google Patents

Method for improving fatigue strength of weld part and weld joint Download PDF

Info

Publication number
JP2012176437A
JP2012176437A JP2012000998A JP2012000998A JP2012176437A JP 2012176437 A JP2012176437 A JP 2012176437A JP 2012000998 A JP2012000998 A JP 2012000998A JP 2012000998 A JP2012000998 A JP 2012000998A JP 2012176437 A JP2012176437 A JP 2012176437A
Authority
JP
Japan
Prior art keywords
weld
weld toe
plastic deformation
chipper
hitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012000998A
Other languages
Japanese (ja)
Other versions
JP5898498B2 (en
Inventor
Katsuyoshi Nakanishi
克佳 中西
Yasushi Morikage
康 森影
Atsushi Okada
淳 岡田
Makoto Doi
真 土居
Hajime Tomo
一 鞆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Engineering Corp
Original Assignee
JFE Steel Corp
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Engineering Corp filed Critical JFE Steel Corp
Priority to JP2012000998A priority Critical patent/JP5898498B2/en
Publication of JP2012176437A publication Critical patent/JP2012176437A/en
Application granted granted Critical
Publication of JP5898498B2 publication Critical patent/JP5898498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fatigue strength improving method for improving fatigue strength of a weld part of a steel structure like a steel bridge suitable for hammer peening by introducing a compressive residual stress without imparting any deformation forming a new stress concentration part in the weld part.SOLUTION: A part of the surface of a base material, which is apart from a weld toe, is struck perpendicularly to the surface of the base material with a flat chipper whose striking face is chamfered. Preferably, striking is moved gradually from the vicinity of the weld toe to the outside so that part of a plastic deformation area caused by striking is overlapped, and the compressive residual stress is introduced into the weld toe. When forming a belt-like plastic deformation area having a described value of a recess characteristics (the product of the maximum depth and width)(mm) while bringing it into contact with the weld toe, the weld toe is struck with the chamfered part of the periphery of the flat part of the chipper striking face, and the base material is struck by the flat part. When the width of the striking face of the chipper used for striking is made B, plastic deformation is performed by striking the portion within B/4 from the weld toe of the surface of the base material.

Description

本発明は、鋼橋など鋼構造物における溶接部の疲労強度を、溶接部に新たな応力集中部となる変形を与えずに圧縮残留応力を導入し向上させる疲労強度向上方法および該方法を施した溶接継手に関し、ハンマーピーニングに用いて好適なものに関する。   The present invention provides a fatigue strength improving method for introducing and improving the fatigue strength of a welded portion in a steel structure such as a steel bridge by introducing compressive residual stress without giving the welded portion a deformation that becomes a new stress concentration portion. The present invention relates to a welded joint suitable for use in hammer peening.

近年、鋼橋の老朽化に伴い腐食や疲労に伴う損傷事例の報告が増加している。疲労損傷の防止には検査体制の確立とともに、通過車両などの作用外力を軽減したり、設計製作面からの溶接品質の向上が重要である。   In recent years, with the aging of steel bridges, reports of damage cases due to corrosion and fatigue are increasing. In order to prevent fatigue damage, it is important to establish an inspection system, to reduce external forces such as passing vehicles, and to improve welding quality from the design and production aspects.

溶接部は、割れなどの欠陥が存在したり、溶接止端部の形状が不適で応力集中部となると繰り返し応力に溶接残留応力の影響が重畳して疲労亀裂が発生しやすく、疲労破壊をもたらす場合があるため、その防止のため種々の観点からの提案がなされている。   If the weld has defects such as cracks, or if the shape of the weld toe is inappropriate and becomes a stress concentrated part, the effect of welding residual stress is superimposed on the repeated stress and fatigue cracks tend to occur, resulting in fatigue failure Since there are cases, proposals from various viewpoints have been made to prevent this.

特許文献1は、溶接部の疲労強度向上方法およびそれを用いた溶接構造物に関し、溶接止端部の近傍を超音波振動する打撃装置で塑性変形させる際、所定の打撃条件で特定寸法の溝を加工することで、短時間でかつ作業者の熟練度に依存しないで安定して疲労強度を向上させることが記載されている。   Patent Document 1 relates to a method for improving fatigue strength of a welded portion and a welded structure using the welded portion. When plastic deformation is performed by a striking device that ultrasonically vibrates the vicinity of a weld toe, a groove having a specific dimension under a predetermined striking condition. It is described that the fatigue strength is stably improved in a short time and without depending on the skill level of the operator.

特許文献2は、レーザ衝撃ピーニング方法に関し、レーザ光源からのパルスレーザビームを使用して、表面のコーティングを瞬間的に気化させてその爆発力により表面の一部に局所的に圧縮力を発生させる方法で、ガスタービンエンジンのファン動翼に圧縮残留応力を導入させることが記載されている。   Patent Document 2 relates to a laser shock peening method, which uses a pulsed laser beam from a laser light source to instantaneously vaporize a coating on the surface and generate a compressive force locally on a part of the surface by the explosive force. The method describes introducing compressive residual stress into a fan blade of a gas turbine engine.

非特許文献1は、ハンマーピーニング及びTIG処理による高強度鋼(SM570)の溶接継手部の疲労強度向上法に関し、ハンマーピーニングを施すと疲労強度が低下する場合があるため、溶接止端部の応力集中や残留応力を低減させる新たなハンマーピーニング法について検討した結果が記載されている。   Non-Patent Document 1 relates to a method for improving the fatigue strength of a welded joint portion of high strength steel (SM570) by hammer peening and TIG treatment. When hammer peening is applied, the fatigue strength may be reduced. The result of examination of a new hammer peening method for reducing concentration and residual stress is described.

通常、ハンマーピーニングは、作業者がピーニング装置のチッパーを手で持って、溶接止端部にチッパー先端が斜め上方から当たるようにし、ピーニング装置の荷重を溶接止端部に預けるようにして作業を行い作業負荷を軽減している。   Normally, hammer peening is performed by holding the chipper of the peening machine with the hand so that the tip of the chipper hits the weld toe from diagonally above and entrusting the load of the peening machine to the weld toe. To reduce the workload.

そのため、図27に示す母材1にリブ2を直立させた面外ガセット継手にハンマーピーニングを施した場合、ピーニング装置のチッパー5の先端により溶接止端部に応力集中箇所となる深い溝6が形成され、溶接ビード3の先端部から疲労亀裂7が発生する場合がある。   Therefore, when hammer peening is performed on the out-of-plane gusset joint in which the rib 2 is erected on the base material 1 shown in FIG. 27, a deep groove 6 serving as a stress concentration point is formed at the weld toe by the tip of the chipper 5 of the peening apparatus. The fatigue crack 7 may be formed from the tip of the weld bead 3.

非特許文献1にはハンマーピーニングの前にグラインダで溶接止端部の一部を予め研削すると疲労亀裂の発生防止に有効であることが紹介され、ハンマーピーニングを3パス程度の複数回行うことを提案している。   Non-Patent Document 1 introduces that it is effective to prevent the occurrence of fatigue cracks if a part of the weld toe is ground in advance with a grinder before hammer peening. is suggesting.

また、特許文献3には、溶接止端部に応力集中箇所となる深い溝が形成されないように、先端部が曲面の打撃ピンを用い、溶接ビードの止端から打撃中心までの距離が打撃ピンの先端曲率半径の2.5倍未満となる母材表面に、特定寸法の残留塑性変形が生じるように、ハンマーピーニングまたは超音波衝撃処理を施す突合せ溶接継手の疲労特性改善方法が記載されている(図28)。   Further, in Patent Document 3, a hitting pin having a curved tip end portion is used so that a deep groove serving as a stress concentration portion is not formed at the weld toe end, and the distance from the toe end of the weld bead to the hitting center is the hit pin. Describes a method for improving the fatigue characteristics of a butt welded joint that is subjected to hammer peening or ultrasonic impact treatment so that residual plastic deformation of a specific dimension occurs on the surface of the base material that is less than 2.5 times the radius of curvature of the tip. (FIG. 28).

特許文献4には溶接継手の疲労特性改善打撃処理方法として、溶接ビードの止端付近の母材金属材料表面に、打撃ピンを押し付けながら溶接線方向に相対的に移動操作させてハンマーピーニング処理又は超音波衝撃処理を施す際、前記打撃ピンとして、先端曲率半径Rが金属材料の厚さの1/2以下かつ2〜10mmの打撃ピンを用い、前記溶接ビードの止端から打撃処理位置の中心までの距離が、前記打撃ピンの先端曲率半径Rの2.5倍以内とすることが記載されている。   In Patent Document 4, as a fatigue treatment improving method for fatigue characteristics of a welded joint, a hammer peening process is performed by relatively moving the weld metal in the weld line direction while pressing the impact pin against the surface of the base metal material near the toe of the weld bead. When performing the ultrasonic impact treatment, a hitting pin having a radius of curvature R of 1/2 or less of the thickness of the metal material and 2 to 10 mm is used as the hitting pin, and the center of the hitting position from the toe of the weld bead. The distance is up to 2.5 times the radius of curvature R of the tip of the hitting pin.

更に、特許文献4には、前記打撃ピンが打撃処理中に溶接金属に触れない範囲までの母材金属材料表面に、前記打撃ピンによって、打撃痕の溝深さが、0.1〜2mm、該打撃ピンの先端曲率半径R以下、かつ前記金属材料の厚さの1/10以下であり、打撃痕の幅が、1.5〜15mm、かつ前記溝深さの5倍以上である残留塑性変形が生じるように、ハンマーピーニング又は超音波衝撃処理を施すことも記載されている。   Furthermore, Patent Document 4 discloses that the hitting pin has a groove depth of 0.1 to 2 mm on the surface of the base metal material up to a range where the hitting pin does not touch the weld metal during the hitting process. Residual plasticity having a radius of curvature of the tip of the hitting pin of R or less, 1/10 or less of the thickness of the metal material, and a hitting mark width of 1.5 to 15 mm and 5 times or more of the groove depth. It is also described that hammer peening or ultrasonic impact treatment is applied so that deformation occurs.

しかしながら、鋼橋など大型構造物の場合、溶接線長さが長く、溶接止端部が溶接線方向に直線でなく幅1mm程度をもって蛇行することが多い。特許文献3記載の溶接継手の疲労特性改善打撃処理方法のように溶接止端部から微小な距離だけ離れた位置を保ちつつ溶接止端部に沿って、ハンマーピーニングすることは困難である。   However, in the case of a large structure such as a steel bridge, the weld line length is long, and the weld toe portion is often meandering with a width of about 1 mm instead of a straight line in the weld line direction. It is difficult to perform hammer peening along the weld toe while maintaining a position separated from the weld toe by a minute distance as in the fatigue joint improvement impact processing method described in Patent Document 3.

特許文献1記載の超音波によるピーニング方法は使用する装置が従来の空気圧でチッパーを駆動する装置と比較すると高価で入手も困難である。特許文献2記載のレーザ衝撃ピーニング方法は、素材の前処理が必要で、且つ装置が高価で大きく、鋼橋製造に適用することは難しい。特許文献3記載の超音波打撃処理を用いた加工方法は、突き合わせ溶接継手が対象で、鋼構造物に多い、隅肉溶接継手に対する効果は不明である。   The ultrasonic peening method described in Patent Document 1 is expensive and difficult to obtain as compared with a conventional device that drives a chipper with air pressure. The laser shock peening method described in Patent Document 2 requires pretreatment of the material, and the apparatus is expensive and large, and is difficult to apply to steel bridge manufacturing. The processing method using ultrasonic striking treatment described in Patent Document 3 is for butt weld joints, and the effect on fillet weld joints, which is common in steel structures, is unknown.

尚、特許文献4は、チッパーの先端が曲率半径Rを有する形状とすることを必須用件としたものであり、溶接ビードの止端から打撃処理位置の中心までの距離が、先端曲率半径Rの関数で規定されるなど現在利用されているハンマーピーニング法に容易に適用できず汎用性に乏しい。   In addition, Patent Document 4 has an essential requirement that the tip of the chipper has a shape having a curvature radius R, and the distance from the toe of the weld bead to the center of the hitting processing position is the tip curvature radius R. It cannot be easily applied to the hammer peening method currently used, such as defined by the function of, and is not versatile.

そこで、本発明は、応力集中源となるような深い溝状の打撃痕を形成せず、圧縮残留応力を広範囲に導入できるチッパーを用いてハンマーピーニングを行い、溶接止端部における溶接残留応力を低減させて疲労強度を向上させる溶接部の疲労強度向上方法および溶接継手を提供することを目的とする。   Therefore, the present invention performs hammer peening using a chipper capable of introducing a compressive residual stress over a wide range without forming a deep groove-like hitting trace that becomes a stress concentration source, and reduces the welding residual stress at the weld toe. It aims at providing the fatigue strength improvement method and welded joint of the welding part which reduce and improve fatigue strength.

本発明の課題は以下の手段で達成可能である。
1.溶接部の溶接止端部近傍にチッパーの打撃による複数の打撃痕からなる帯状の塑性変形領域を形成して疲労強度を向上させる溶接部の疲労強度向上方法であって、前記チッパーの先端部の打撃面は平坦部と前記平坦部に沿った面取り部を有し、前記溶接止端部と前記打撃面の溶接止端部側との距離が前記打撃面の幅の1/4以内となるように前記溶接止端部近傍を打撃して窪み特性値(最大深さと幅の積)(mm)が所定の値を有する帯状の塑性変形領域を母材に形成する際、前記帯状の塑性変形領域を溶接止端部に接して形成する場合は、前記打撃面の平坦部周囲の面取り部で溶接止端部を、前記平坦部で母材を打撃することを特徴とする溶接部の疲労強度向上方法。
2.前記打撃面の幅が4mm以上で、前記溶接止端部と前記打撃面の溶接止端部側との距離が1mm以内であることを特徴とする1記載の溶接部の疲労強度向上方法。
3.前記帯状の塑性変形領域における窪み特性値(最大深さと幅の積)(mm)が前記溶接部に負荷される公称応力振幅が150MPa以下の場合は0.7mm以上、公称応力振幅が250MPa以下の場合は0.8mm以上であることを特徴とする2記載の溶接部の疲労強度向上方法。
4.前記帯状の塑性変形領域における最大深さが前記溶接部に負荷される公称応力振幅が150MPa以下の場合は0.19mm以上、公称応力振幅が250MPa以下の場合は0.22mm以上であることを特徴とする2または3に記載の溶接部の疲労強度向上方法。
5.チッパーによる打撃が打撃周期80Hz以上で溶接止端部に沿って移動速度10cm/min以下であることを特徴とする2乃至4のいずれか一つに記載の溶接部の疲労強度向上方法。
6.溶接止端部に沿って打撃線を設定し、当該打撃線上近傍を複数回打撃して帯状の塑性変形領域を形成することを特徴とする1乃至5のいずれか一つに記載の溶接部の疲労強度向上方法。
7.溶接部が隅肉溶接継手であることを特徴とする1乃至6のいずれか一つに記載の溶接部の疲労強度向上方法。
8.1乃至6のいずれか一つに記載の溶接部の疲労強度向上方法を施した溶接継手。
9.溶接止端部近傍を、先端部の打撃面に平坦部と前記平坦部に沿った面取り部を有するチッパーで前記打撃面に垂直方向に複数回打撃して形成した帯状の塑性変形領域を有する隅肉溶接継手であって、
前記打撃面の溶接止端部(線)と直角の辺の長さをB(mm)とした場合、前記帯状の塑性変形領域の溶接止端部側が前記溶接止端部から母材側にB/4(mm)以内となるように母材を打撃して帯状の塑性変形領域を形成した隅肉溶接継手。
10.前記打撃面の辺の長さが4mm以上で、前記帯状の塑性変形領域の溶接止端部側が前記溶接止端部から母材側に1mm以内で、
前記帯状の塑性変形領域における最大深さが
前記溶接部に負荷される公称応力振幅が150MPa以下の場合は0.19mm以上、公称応力振幅が250MPa以下の場合は0.22mm以上で、
前記帯状の塑性変形領域における最大深さと幅の積が
前記溶接部に負荷される公称応力振幅が150MPa以下の場合は0.7mm以上、公称応力振幅が250MPa以下の場合は0.8mm以上であることを特徴とする9記載の隅肉溶接継手。
The object of the present invention can be achieved by the following means.
1. A method for improving the fatigue strength of a welded portion by improving a fatigue strength by forming a band-shaped plastic deformation region consisting of a plurality of hitting marks by hitting a chipper in the vicinity of a weld toe of the welded portion, The striking surface has a flat portion and a chamfered portion along the flat portion, and the distance between the weld toe portion and the weld toe side of the striking surface is within ¼ of the width of the striking surface. When the belt-shaped plastic deformation region having a predetermined value of the depression characteristic value (product of maximum depth and width) (mm 2 ) is formed in the base metal by hitting the vicinity of the weld toe portion, the belt-shaped plastic deformation When forming the region in contact with the weld toe, the fatigue strength of the weld is characterized by hitting the weld toe at the chamfer around the flat part of the striking surface and hitting the base metal at the flat part. How to improve.
2. 2. The method for improving fatigue strength of a weld according to claim 1, wherein the striking surface has a width of 4 mm or more, and the distance between the weld toe and the weld toe side of the striking surface is within 1 mm.
3. The strip-shaped recesses characteristic values in the plastic deformation region (up to the product of the depth and width) (mm 2) is above the nominal stress amplitude that is loaded in the weld is below 150 MPa 0.7 mm 2 or more, a nominal stress amplitude 250MPa 2. The method for improving fatigue strength of welds according to 2, wherein the weld strength is 0.8 mm 2 or more in the following cases.
4). The maximum depth in the band-shaped plastic deformation region is 0.19 mm or more when the nominal stress amplitude applied to the weld is 150 MPa or less, and 0.22 mm or more when the nominal stress amplitude is 250 MPa or less. The method for improving fatigue strength of a welded portion according to 2 or 3,
5. 5. The method for improving fatigue strength of a weld according to any one of 2 to 4, wherein the hitting by the chipper is a hitting cycle of 80 Hz or more and a moving speed of 10 cm / min or less along the weld toe.
6). The welding line according to any one of 1 to 5, wherein a hitting line is set along the weld toe part, and the vicinity of the hitting line is hit a plurality of times to form a belt-like plastic deformation region. Fatigue strength improvement method.
7). The method for improving fatigue strength of a welded portion according to any one of 1 to 6, wherein the welded portion is a fillet weld joint.
The welded joint which gave the fatigue strength improvement method of the welding part as described in any one of 8.1 thru | or 6.
9. A corner having a band-shaped plastic deformation region formed by hitting the vicinity of the weld toe portion multiple times in a direction perpendicular to the striking surface with a chipper having a flat portion on the striking surface of the tip portion and a chamfered portion along the flat portion Meat welded joints,
When the length of the side perpendicular to the weld toe part (line) of the striking surface is B (mm), the weld toe part side of the band-shaped plastic deformation region is B from the weld toe part to the base metal side. A fillet welded joint in which a base metal is hit so as to be within / 4 (mm) to form a strip-shaped plastic deformation region.
10. The length of the side of the striking surface is 4 mm or more, and the weld toe side of the belt-shaped plastic deformation region is within 1 mm from the weld toe part to the base material side,
The maximum depth in the band-shaped plastic deformation region is 0.19 mm or more when the nominal stress amplitude applied to the weld is 150 MPa or less, 0.22 mm or more when the nominal stress amplitude is 250 MPa or less,
The product of maximum depth and width in the band-shaped plastic deformation region is 0.7 mm 2 or more when the nominal stress amplitude applied to the weld is 150 MPa or less, and 0.8 mm 2 or more when the nominal stress amplitude is 250 MPa or less. 9. The fillet welded joint according to 9, wherein

本発明によれば、溶接止端部にノッチ状の欠陥を生じさせることなく溶接止端部近傍をハンマーピーニングして溶接部の疲労強度を向上させることが可能で、1.疲労等級がD等級からA等級に飛躍的に向上する。2.溶接止端部および母材の両方が打撃可能で、母材表面のみを打撃しなければならないという施工上の制約がないため、廻し溶接部などの施工が容易となり、適用構造、適用部位の制限を受けにくい。という効果が得られ、産業上、極めて有用である。   According to the present invention, it is possible to improve the fatigue strength of the welded portion by hammer peening the vicinity of the welded toe portion without causing a notch-shaped defect in the welded toe portion. Fatigue grade is dramatically improved from D grade to A grade. 2. Since both the weld toe and the base metal can be struck and there is no construction restriction that only the base material surface has to be struck, the construction of the welded part, etc. is facilitated and the application structure and application site are limited. It is hard to receive. This is very useful industrially.

本発明を説明するための模式図。The schematic diagram for demonstrating this invention. チッパー先端部の形状を説明する図。The figure explaining the shape of a tipper tip part. prandtlの理論を説明する図。The figure explaining the theory of brandtl. 本発明の原理を説明するためのFEM解析条件を示す図。The figure which shows the FEM analysis conditions for demonstrating the principle of this invention. 図4の条件によるFEM解析結果を3次元残留応力分布として示す図。The figure which shows the FEM analysis result by the conditions of FIG. 4 as three-dimensional residual stress distribution. 図4の条件によるFEM解析結果を板厚方向断面で示す図(先端部に平坦部を有するチッパーの場合)The figure which shows the FEM analysis result by the thickness direction cross section by the conditions of FIG. 4 (in the case of the chipper which has a flat part in the front-end | tip part) 図4の条件によるFEM解析結果を板厚方向断面で示す図(先端部に半球部を有する丸型チッパーの場合)The figure which shows the FEM analysis result by the thickness direction cross section by the conditions of FIG. 4 (in the case of the round chipper which has a hemisphere part in the front-end | tip part) 4分の1対称モデルによる板厚方向断面における残留応力の大きさと打撃中心からの距離との関係を示す図(先端部に平坦部を有するチッパー(角型)と先端部に半球部を有するチッパー(丸型)の場合)。The figure which shows the relationship between the magnitude | size of the residual stress in the board thickness direction cross section by the 1/4 symmetrical model, and the distance from a hit | damage center (tipper which has a flat part in a front-end | tip part (square shape), and a chipper which has a hemisphere part in a front-end | tip part) (For round type)). 本発明の効果を溶接止端部近傍における圧縮残留応力分布で説明する図。The figure explaining the effect of this invention by the compressive residual stress distribution in the weld toe vicinity. 試験体形状を示す図で(a)は上面図、(b)は側面図。It is a figure which shows a test body shape, (a) is a top view, (b) is a side view. 疲労試験結果を示す図。The figure which shows a fatigue test result. 150MPa破断回数を塑性変形領域の窪み特性値(最大深さ×幅)(mm)で整理した結果を示す図(実施例1)。The figure (Example 1) which shows the result of having arranged the number of times of 150MPa fracture | rupture by the hollow characteristic value (maximum depth x width) (mm < 2 >) of a plastic deformation area | region. 250MPa破断回数を塑性変形領域の窪み特性値(最大深さ×幅)(mm)で整理した結果を示す図(実施例1)。The figure (Example 1) which shows the result of having arranged the 250MPa fracture | rupture frequency | count by the hollow characteristic value (maximum depth x width) (mm < 2 >) of the plastic deformation area | region. 塑性変形領域の窪み特性値(最大深さ×幅)(mm)と溶接止端部の最大残留応力との関係を示す図。The figure which shows the relationship between the hollow characteristic value (maximum depth x width) (mm < 2 >) of a plastic deformation area | region, and the largest residual stress of a weld toe part. 150MPa破断回数を塑性変形領域の最大深さで整理した結果を示す図(実施例1)。The figure which shows the result of having arranged the 150MPa fracture | rupture frequency by the maximum depth of a plastic deformation area | region (Example 1). 250MPa破断回数を塑性変形領域の最大深さで整理した結果を示す図(実施例1)。The figure which shows the result of having arranged the 250MPa fracture | rupture frequency by the maximum depth of a plastic deformation area | region (Example 1). 最も発生応力の大きいリブ2の端部における塑性変形領域で計測した窪み特性値(最大深さ×幅)(mm)と実際の断面積の関係を示す図。The figure which shows the relationship between the hollow characteristic value (maximum depth x width) (mm < 2 >) measured in the plastic deformation area | region in the edge part of the rib 2 with the largest generated stress, and an actual cross-sectional area. 250MPa破断回数を塑性変形領域の溶接止端部側の端部から溶接止端部までの距離(止端距離)で整理した結果を示す図(実施例2)。The figure (Example 2) which shows the result which arranged 250 MPa fracture | rupture frequency by the distance (stop distance) from the edge by the side of the weld toe part of a plastic deformation area | region to a weld toe part. 実施例3で用いた隅肉溶接により溶接した残留応力測定試験体の形状を示し、(a)は断面図、(b)は上面図、(c)は側面図を示す図。The shape of the residual-stress measurement test body welded by the fillet welding used in Example 3 is shown, (a) is sectional drawing, (b) is a top view, (c) is a figure which shows a side view. 溶接止端からチッパー端部までの距離が0mmの場合のX方向残留応力分布図で(a)は先端部に平坦部を有する角型チッパーの場合、(b)は先端部に半球部を有する丸型チッパーの場合を示す図。FIG. 6 is a residual stress distribution diagram in the X direction when the distance from the weld toe to the chipper end is 0 mm; (a) is a square chipper having a flat portion at the tip, and (b) has a hemispherical portion at the tip. The figure which shows the case of a round shape chipper. 溶接止端からチッパー端部までの距離が1mmの場合のX方向残留応力分布図で(a)は先端部に平坦部を有する角型チッパーの場合、(b)は先端部に半球部を有する丸型チッパーの場合を示す図。FIG. 4 is a distribution diagram of residual stress in the X direction when the distance from the weld toe to the tipper end is 1 mm. FIG. 4A is a square chipper having a flat portion at the tip, and FIG. The figure which shows the case of a round shape chipper. 溶接止端からチッパー端部までの距離が2mmの場合のX方向残留応力分布図で(a)は先端部に平坦部を有する角型チッパーの場合、(b)は先端部に半球部を有する丸型チッパーの場合を示す図。FIG. 6 is a residual stress distribution diagram in the X direction when the distance from the weld toe to the end of the chipper is 2 mm; (a) is a square chipper having a flat part at the tip, and (b) has a hemispherical part at the tip. The figure which shows the case of a round shape chipper. 溶接止端からチッパー端部までの距離が3mmの場合のX方向残留応力分布図で(a)は先端部に平坦部を有する角型チッパーの場合、(b)は先端部に半球部を有する丸型チッパーの場合を示す図。FIG. 5 is a distribution diagram of residual stress in the X direction when the distance from the weld toe to the tipper end is 3 mm. (A) is a square chipper having a flat part at the tip, and (b) has a hemispherical part at the tip. The figure which shows the case of a round shape chipper. 溶接止端からチッパー端部までの距離が4mmの場合のX方向残留応力分布図で(a)は先端部に平坦部を有する角型チッパーの場合、(b)は先端部に半球部を有する丸型チッパーの場合を示す図。FIG. 6 is a distribution diagram of residual stress in the X direction when the distance from the weld toe to the chipper end is 4 mm. FIG. 5A shows a square chipper having a flat part at the tip, and FIG. The figure which shows the case of a round shape chipper. ハンマーピーニング時に、残留応力測定試験体の打撃面の溶接止端部側の端部から溶接止端部まで離した距離Xが0mm,1mm,2mm,3mm,4mmの場合におけるX方向最小残留応力(最大圧縮残留応力)に関する角型チッパーの場合と丸型チッパーの場合とを比較する図。The minimum residual stress in the X direction when the distance X from the weld toe side end of the striking surface of the residual stress measurement specimen is 0mm, 1mm, 2mm, 3mm, or 4mm during hammer peening ( The figure which compares the case of a square chipper and the case of a round chipper regarding the maximum compressive residual stress). ハンマーピーニング時に溶接止端部から離した距離Xと試験体との位置関係を示す側面図。The side view which shows the positional relationship of the distance X and the test body which were separated from the weld toe part at the time of hammer peening. 従来のハンマーピーニングによる溶接止端部の損傷例を示す図。The figure which shows the damage example of the weld toe part by the conventional hammer peening. 従来技術(特許文献3)。Prior art (Patent Document 3).

本発明は溶接止端部近傍をチッパー(打撃ピンという場合がある)で連続的に打撃し、特定の領域に所定の寸法の帯状の塑性変形領域を形成することで、溶接止端部に圧縮の残留応力を導入して溶接継手の疲労強度を向上させることを特徴とする。   In the present invention, the vicinity of the weld toe portion is continuously hit with a chipper (sometimes called a hitting pin), and a band-shaped plastic deformation region having a predetermined size is formed in a specific region, thereby compressing the weld toe portion. It is characterized by improving the fatigue strength of the welded joint by introducing residual stress of.

図1は本発明を説明する概念図で、母材1にリブ2を廻し溶接で溶接した部材の側面図において、溶接ビード3の溶接止端部(以下、止端部という場合がある。)4から特定距離B/4だけ離れて幅Bの塑性変形(点線で表示)を母材1の表面に生じさせた場合を示している。   FIG. 1 is a conceptual diagram illustrating the present invention. In a side view of a member welded by welding a rib 2 around a base material 1, a weld toe portion of a weld bead 3 (hereinafter sometimes referred to as a toe portion). 4 shows a case where a plastic deformation (indicated by a dotted line) having a width B is generated on the surface of the base material 1 at a specific distance B / 4 away from 4.

本発明では塑性変形領域に生じる圧縮残留応力が、溶接止端部4の引張残留応力を打消し、更に溶接止端部4に圧縮残留応力が導入されるように、面圧をかけて塑性変形させた領域と溶接止端部との距離を塑性変形させた領域の幅Bの1/4以内となるように規定する。   In the present invention, the compressive residual stress generated in the plastic deformation region cancels the tensile residual stress of the weld toe 4 and further introduces the compressive residual stress into the weld toe 4 to apply the plastic deformation. The distance between the formed region and the weld toe is defined to be within ¼ of the width B of the plastically deformed region.

塑性変形させる領域の幅Bは、止端部4に圧縮残留応力が導入され、且つ、止端部4に、母材1の表面を塑性変形させたことにより新たな応力集中源となる変形が生じないように設定する。   The width B of the region to be plastically deformed is that a compressive residual stress is introduced into the toe portion 4 and a deformation that becomes a new stress concentration source is caused by plastically deforming the surface of the base material 1 at the toe portion 4. Set so that it does not occur.

母材1の表面を塑性変形させる場合は、プレス装置または繰り返し衝撃的な打撃を与える装置を用いる。以下の説明は、母材1の表面をハンマーピーニング装置のチッパー5で打撃する場合について行い、チッパー5の先端部の打撃面は平坦部と前記平坦部に沿った面取り部を有するものとする。   When the surface of the base material 1 is plastically deformed, a press device or a device that repeatedly impacts impact is used. The following description will be made in the case where the surface of the base material 1 is hit with the chipper 5 of the hammer peening apparatus, and the hitting surface at the tip of the chipper 5 has a flat portion and a chamfered portion along the flat portion.

図2でチッパー5の先端部の形状を説明する。図2は、チッパーを側面方向から見た側面図である。打撃面は正方形で、溶接止端部(線)に直角となる一辺の長さをチッパー5の先端のテーパー部51、テーパー部52の延長線と平坦部53の延長線の交点α1、α2間の長さL2とする。長さL2は平坦部53の一辺の長さL1とR面取り部の半径Rの2倍を加算した値と略等しく、本発明では幅Bとする。   The shape of the tip of the chipper 5 will be described with reference to FIG. FIG. 2 is a side view of the chipper as viewed from the side. The striking surface is square, and the length of one side perpendicular to the weld toe (line) is between the intersections α1 and α2 of the taper part 51 at the tip of the chipper 5, the extension line of the taper part 52 and the extension line of the flat part 53. The length is L2. The length L2 is substantially equal to a value obtained by adding the length L1 of one side of the flat portion 53 and twice the radius R of the R chamfered portion.

チッパー5で母材1の表面を打撃する場合、溶接止端部からチッパー5の打撃面の溶接止端部側までの距離が、チッパー5の打撃面の幅Bの1/4以内となるように打撃する。図2に示した先端部の形状を有するチッパー5で母材1の表面を打撃した場合、当該打撃により塑性変形する領域の幅は打撃面の平坦部の幅と略等しい。   When hitting the surface of the base material 1 with the chipper 5, the distance from the weld toe portion to the weld toe side of the hitting surface of the chipper 5 is within ¼ of the width B of the hitting surface of the chipper 5. To hit. When the surface of the base material 1 is hit with the chipper 5 having the shape of the tip shown in FIG. 2, the width of the region that is plastically deformed by the hit is substantially equal to the width of the flat portion of the hitting surface.

本発明において母材表面に対して垂直に打撃する際の垂直とは、厳密な意味での垂直に限るものではなく、打撃方向の傾き角が母材表面に対して80〜100°程度までであれば許容されるが、90°とすることが望ましい。   In the present invention, the vertical when hitting perpendicularly to the surface of the base material is not limited to the vertical in a strict sense, and the inclination angle in the striking direction is about 80 to 100 ° with respect to the base material surface. If possible, it is acceptable, but 90 ° is desirable.

チッパー5で母材表面を打撃する前に、止端部4と母材1の境界部にグラインダ研削などで窪み(r部)、好ましくは曲率半径が1mm以上の窪み(r部)を設けると母材表面の変形を止端部4に及ばさずに、より大きな圧縮残留応力を止端部4に導入させることが可能で好ましい。   Before hitting the surface of the base material with the chipper 5, a recess (r portion), preferably a radius of curvature of 1 mm or more (r portion) is provided at the boundary between the toe portion 4 and the base material 1 by grinding or the like. It is preferable that a larger compressive residual stress can be introduced into the toe portion 4 without affecting the toe portion 4 without deforming the surface of the base material.

なお、母材表面の一部を打撃して塑性変形させた領域を形成した場合に、当該領域より離れている溶接止端部に圧縮応力が付与される理由は、図3に示したprandtlの理論(非特許文献2より図を抜粋)で説明される。   In addition, when a region where the part of the base material surface is hit and plastically deformed is formed, the reason why compressive stress is applied to the weld toe portion away from the region is that of the prandtl shown in FIG. This will be explained by theory (extracted from Non-Patent Document 2).

平板に圧縮応力qを導入すると、その直下に鋭角が45°である直角三角型ABC、扇型のADC、BCEで示される、すべり線が発生する。その結果、圧縮応力を与えた長さと同じ長さの斜辺からなる直角三角型ADF、BEGに外側に押し出す力が作用し、圧縮応力が除荷された後も圧縮残留応力として板に作用する。   When compressive stress q is introduced into the flat plate, a slip line is generated immediately below it, as indicated by a right triangle type ABC having a 45 ° acute angle, a fan type ADC, and BCE. As a result, a force that pushes outward acts on the right-angled triangular ADF and BEG having a hypotenuse of the same length as the length to which the compressive stress is applied, and acts on the plate as a compressive residual stress even after the compressive stress is unloaded.

[チッパー先端部の形状および打撃位置]
本発明では、チッパーの先端部の打撃面を周囲を面取りした平坦な形状とする。図4〜9に、チッパー先端部の形状が母材の残留応力分布に及ぼす影響をFEM解析によってシミュレートした結果を示す。FEM解析条件は、以下のとおりとした。
[Chip tip shape and strike position]
In the present invention, the hitting surface at the tip of the chipper is made flat with a chamfered periphery. 4 to 9 show results of simulating the influence of the shape of the tip of the chipper on the residual stress distribution of the base material by FEM analysis. The FEM analysis conditions were as follows.

チッパー5にて最大26kNの荷重を変位1mmで、母材1表面に垂直方向から与えて、母材1を塑性変形させた。母材1は、大きさ:200mm×200mm、板厚:12mm、材質:SM490Y相当とした。一方、チッパー5は、高さ:135mm、先端部以外のチッパー部(一般部):9mm角とした。なお、チッパー5の先端部の打撃面は、正方形の場合と丸型の場合それぞれについて解析した。チッパー5の先端部の打撃面の形状は、正方形の場合が4×4(mm)の正方形で面取りのない完全な平坦とし、丸型の場合が直径4mmの半球状とした。さらにチッパー5の先端部の打撃面は、母材1に圧縮応力を与える範囲に相当するとした。 The chipper 5 was plastically deformed by applying a load of 26 kN at the maximum with a displacement of 1 mm to the surface of the base material 1 from the vertical direction. The base material 1 had a size of 200 mm × 200 mm, a plate thickness of 12 mm, and a material equivalent to SM490Y. On the other hand, the chipper 5 had a height of 135 mm and a chipper part other than the tip part (general part): 9 mm square. The hitting surface at the tip of the chipper 5 was analyzed for each of a square shape and a round shape. The shape of the striking surface at the tip of the chipper 5 was a square of 4 × 4 (mm 2 ) in the case of a square and completely flat without chamfering, and a hemisphere having a diameter of 4 mm in the case of a round shape. Furthermore, the striking surface at the tip of the chipper 5 corresponds to a range in which the base material 1 is subjected to compressive stress.

図4は、FEM解析を行う上でのメッシュ形状の例を示す。4分の1対称モデルによる弾塑性解析を行うとした為、母材1の大きさとチッパー5の先端部の打撃面の寸法は半分となっている。   FIG. 4 shows an example of a mesh shape for performing FEM analysis. Since the elasto-plastic analysis is performed by the 1/4 symmetry model, the size of the base material 1 and the size of the striking surface at the tip of the chipper 5 are halved.

図5に得られた残留応力の3次元分布の概要の一例として打撃面が4×4(mm)の正方形のチッパー5の場合について示す。図6、7は残留応力分布の概要を板厚方向断面の2次元で表示したもので、図6は打撃面が4×4(mm)の正方形のチッパー5の場合、図7は打撃面が丸型のチッパー5の場合を示す。図6、7より、打撃面が4×4(mm)の矩形状のチッパー5の場合、打撃面が丸型のチッパー5の場合と比較して、母材内に広く圧縮残留応力が分布し、その値も大きい。 FIG. 5 shows an example of the outline of the three-dimensional distribution of residual stress obtained in the case of a square chipper 5 having a striking surface of 4 × 4 (mm 2 ). 6 and 7 show the outline of the residual stress distribution in a two-dimensional cross section in the plate thickness direction. FIG. 6 shows a case where the hitting surface is a square chipper 5 of 4 × 4 (mm 2 ), and FIG. Shows the case of a round chipper 5. 6 and 7, in the case of the rectangular chipper 5 having a striking surface of 4 × 4 (mm 2 ), the compressive residual stress is widely distributed in the base metal compared to the case of the chipper 5 having a round striking surface. And the value is large.

図8に、上記FEM解析結果から得られた、板厚方向に平行な母材1の断面における残留応力の大きさと打撃中心からの距離との関係を示す。図8において、X=0mmが打撃中心位置、X=2mm上の点線が打撃面の端部位置に相当する。   FIG. 8 shows the relationship between the magnitude of the residual stress and the distance from the impact center in the cross section of the base material 1 parallel to the plate thickness direction, obtained from the FEM analysis result. In FIG. 8, X = 0 mm corresponds to the hitting center position, and the dotted line above X = 2 mm corresponds to the end position of the hitting surface.

図8に太い実線で示した打撃面が正方形のチッパー5の場合、打撃した領域には圧縮残留応力が発生し、打撃中心から離れるに従って増大し、打撃中心から水平方向に3〜4mm程度はなれた図8にb領域として示した位置で400MPa程度の最大値が発生している。その後、徐々に低下するが、打撃した領域の端部から、9mm程度離れたところまで、100MPaを超える大きな圧縮残留応力が発生している。   In the case of the chipper 5 having a square striking surface indicated by a thick solid line in FIG. 8, compressive residual stress is generated in the striking region, and increases as the distance from the striking center increases, and is about 3 to 4 mm in the horizontal direction from the striking center. A maximum value of about 400 MPa occurs at the position shown as the region b in FIG. Thereafter, the pressure gradually decreases, but a large compressive residual stress exceeding 100 MPa is generated from the end of the hit region to a distance of about 9 mm.

打撃面の幅(B)が4mm、即ち、図8において打撃中心からの距離2mmの位置の場合、溶接止端部から打撃面の溶接止端部側までの距離を1〜2mmとして母材を打撃すると、略最大の圧縮残留応力を溶接止端部に導入することが可能である。   When the width (B) of the striking surface is 4 mm, that is, at a distance of 2 mm from the striking center in FIG. 8, the distance from the weld toe to the weld toe side of the striking surface is 1-2 mm. When struck, it is possible to introduce a substantially maximum compressive residual stress into the weld toe.

一方、図8に細い実線で示した打撃面が丸型のチッパー5の場合、打撃面の中心近傍には引張残留応力が発生し、圧縮応力は、打撃面の中心から水平方向に3mm程度はなれた図8にa領域として示した位置で最大値350MPa程度が発生する。100MPaを超える大きな圧縮残留応力は、打撃した領域の端部から、6.5mm程度離れたところまでで、打撃面が平坦なチッパー5と比較して、母材に圧縮残留応力が導入される領域は小さい。   On the other hand, when the hitting surface indicated by the thin solid line in FIG. 8 is a round chipper 5, tensile residual stress is generated near the center of the hitting surface, and the compressive stress is about 3 mm in the horizontal direction from the center of the hitting surface. In addition, a maximum value of about 350 MPa occurs at the position shown as region a in FIG. Large compressive residual stress exceeding 100 MPa is a region where compressive residual stress is introduced into the base material as compared with the chipper 5 having a flat striking surface from the end of the striking region up to about 6.5 mm away. Is small.

図6〜8に示す結果より、本発明ではチッパー先端部の打撃面を平坦な形状(ハンマーピーニングを容易とするため、面取りを施す)とし、溶接止端部から打撃面の溶接止端部側までの距離を打撃面幅(B)の1/4以内とする。   From the results shown in FIGS. 6 to 8, in the present invention, the striking surface of the tip of the chipper is made flat (beveled to facilitate hammer peening), and the welding toe side of the striking surface from the welding toe part. The distance up to is within 1/4 of the striking face width (B).

平坦部の周囲を面取りすることによりチッパーの打撃による塑性変形領域を溶接止端部に接して形成する場合、打撃面の面取りされた部分が溶接止端部を打撃し、平坦部が溶接止端部に接した母材を打撃する。面取りされた部分が溶接止端部を打撃するので、溶接止端部にノッチ状の欠陥を生じさせることなく溶接止端部に接して塑性変形領域が形成される。尚、面取りは角を切り落とすC面取りでも半径Rの曲率で角部を丸めるR面取りのいずれでも良いが、C面取りの場合は辺長さ0.5mm以下、R面取の場合は0.5mmR以下とすることが望ましい。   When chamfering the periphery of the flat part to form a plastic deformation region by hitting the chipper in contact with the weld toe, the chamfered part of the striking surface strikes the weld toe, and the flat part is the weld toe. Strike the base material in contact with the part. Since the chamfered portion hits the weld toe, a plastic deformation region is formed in contact with the weld toe without causing a notch-shaped defect in the weld toe. The chamfering may be either C chamfering by cutting off corners or R chamfering by rounding the corners with a radius of curvature R. In the case of C chamfering, the side length is 0.5 mm or less, and in the case of R chamfering, 0.5 mmR or less. Is desirable.

図5には、平板状の母材表面を加圧し塑性変形させた際のFEM解析結果を示したが、溶接止端部4の近傍の母材表面を加圧(打撃)した際の残留応力分布をFEM解析で求めた結果の一例を図9に示す。圧縮残留応力分布は、溶接ビード3が存在しても平板の場合と同様な分布形態、大きさを示すことがわかる。   FIG. 5 shows the FEM analysis results when the flat base metal surface is pressed and plastically deformed. The residual stress when the base metal surface in the vicinity of the weld toe 4 is pressed (struck). An example of the result of the distribution obtained by FEM analysis is shown in FIG. It can be seen that the compressive residual stress distribution shows the same distribution form and size as in the case of the flat plate even when the weld bead 3 is present.

以上より、本発明では、溶接止端部近傍にチッパーの打撃による複数の打撃痕からなる帯状の塑性変形領域を形成する場合、打撃におけるチッパーの移動方向を示す打撃線(チッパーの打撃面の溶接止端部側の位置で表す)は、溶接止端部と打撃線との距離がチッパーの打撃面の幅の1/4以内となるように設定する。   As described above, in the present invention, when forming a belt-like plastic deformation region consisting of a plurality of hitting marks by hitting the chipper in the vicinity of the weld toe, a hitting line indicating the chipper moving direction in hitting (welding of the hitting surface of the chipper) Is set so that the distance between the weld toe and the striking line is within ¼ of the width of the hitting surface of the chipper.

この際、打撃による塑性変形領域の一部が重なるように止端部4近傍側から漸次外側に打撃線を設定すると、変動の小さな圧縮残留応力分布が得られ、より安定して疲労強度を向上させることが可能である。   At this time, if the striking line is gradually set outward from the vicinity of the toe portion 4 so that a part of the plastic deformation region due to the striking overlaps, a compressive residual stress distribution with small fluctuation is obtained, and the fatigue strength is improved more stably. It is possible to make it.

ハンマーピーニングに本発明を適用する場合、ハンマーピーニング装置のチッパーの先端部の寸法(幅B)と加圧力、母材特性(鋼橋の場合、SS400〜SM570が用いられ、降伏応力215N/mm〜450N/mmとなる)を用いて図4の解析を行い、母材表面における圧縮残留応力分布(図8)を求め、予め求めておいた止端部4の溶接残留応力分布に重畳させた場合に当該止端部4で最も大きな圧縮残留応力が得られるように、溶接止端部からチッパーの溶接止端部側までの距離をB/4以内で規定すれば良い。なお、本発明において、チッパーの打撃面の形状は面取り加工された平坦部を有していれば良く正方形に限定されない。 When the present invention is applied to hammer peening, the size (width B) of the tip of the chipper of the hammer peening apparatus, the applied pressure, and the base material characteristics (in the case of a steel bridge, SS400 to SM570 are used, and the yield stress is 215 N / mm 2. analyzes of FIG. 4 using a ~450N / mm 2), the compressive residual stress distribution in the base metal surface seeking (Figure 8), is superimposed on the welding residual stress distribution of the toe portion 4 obtained in advance In such a case, the distance from the weld toe to the weld toe side of the chipper may be defined within B / 4 so that the largest compressive residual stress is obtained at the toe 4. In the present invention, the shape of the hitting surface of the chipper is not limited to a square as long as it has a chamfered flat portion.

本発明を実施する場合、チッパー先端部の形状が損なわれた時点で新しいチッパーに交換する。先端を焼き入れし硬度を増したチッパーを用いることが望ましい。   When practicing the present invention, a new chipper is replaced when the shape of the tip of the chipper is damaged. It is desirable to use a chipper with a hardened tip and increased hardness.

幅150mm×長さ500mm×板厚12mmで材質がSM490Yの母材1に、幅75mm×高さ50mm×板厚12mmで材質がSM490Yのリブ2を廻し溶接にて溶接して試験体とした。廻し溶接条件は、ワイヤーMXZ200−1、2Φ、100%CO、240A、30V、40CPM、10、8KJ/cmとした。一方、チッパーは、0.5mmRのR面取り加工され平坦部が3mm角の略平坦形状の、4mm角の打撃面を先端部に有するものを使用した。そして、上記試験体の母材1表面を溶接線に沿って垂直に繰り返し打撃し、ハンマーピーニング処理を行った。打撃の際、上記試験体の溶接止端部から上記チッパーによる打撃面の溶接止端部側の端部までの距離は、1mmとした。その後、疲労試験に供した。 A test specimen was prepared by welding a base material 1 having a width of 150 mm, a length of 500 mm, a plate thickness of 12 mm and a material of SM490Y to a rib 2 having a width of 75 mm × height of 50 mm × plate thickness of 12 mm and a material of SM490Y. The rotating welding conditions were wire MXZ200-1, 2Φ, 100% CO 2 , 240 A, 30 V, 40 CPM, 10, 8 KJ / cm. On the other hand, a chipper having a 4 mm square striking surface at the tip part, which has an R chamfering process of 0.5 mmR and a substantially flat shape with a flat part of 3 mm square, was used. And the base material 1 surface of the said test body was repeatedly hit | damaged perpendicularly along the welding line, and the hammer peening process was performed. At the time of impact, the distance from the weld toe of the specimen to the end on the weld toe side of the hitting surface by the chipper was 1 mm. Then, it used for the fatigue test.

図10に試験体の平面図と側面図を示す。ハンマーピーニングは図示した試験体において溶接残留応力が大きい領域であるリブ2の長手方向の端部を取り囲むU字状の領域を、溶接部に沿ってリブの一方の側面から他方の側面に向かって同一打撃線上を連続打撃することを1〜8回(偶数回の場合は往復)行った。   FIG. 10 shows a plan view and a side view of the test specimen. In hammer peening, a U-shaped region surrounding the longitudinal end portion of the rib 2, which is a region where the welding residual stress is large, in the illustrated specimen is formed from one side surface of the rib to the other side surface along the welded portion. Continuous hitting on the same batting line was performed 1 to 8 times (in the case of an even number, reciprocating).

ハンマーピーニングの条件は、チッパーによる打撃を打撃周期90±10Hz、溶接線方向に移動速度10cm/min以下とし、IIW(International Institute of Welding)推薦条件のうち空気圧約6kg/cm、ハンマー荷重1.7kgを変化させ、1回の打撃による打撃痕の寸法を変化させた。 The conditions of hammer peening are as follows: hammering with a chipper with a striking cycle of 90 ± 10 Hz and a moving speed of 10 cm / min or less in the direction of the welding line. Among the IIW (International Institute of Welding) recommended conditions, air pressure is about 6 kg / cm 2 , hammer load 7 kg was changed, and the size of the impact mark by one impact was changed.

塑性変形領域の寸法は、図示した試験体で最も発生応力の大きいリブ2の先端部(廻し溶接部)においてリブ2の板厚中心線の延長線上の塑性変形領域をレーザ変位計で測定し、塑性変形領域の形状を示す特性値として塑性変形領域における最大深さ×幅で定義される窪み特性値(単位はmm)を求めた。また、最大深さは、母材の平坦な表面を基準とする窪み部分の最大値とする。複数回打撃した場合、レーザ変位計による測定は、個々の打撃痕の一部が重畳した、塑性変形領域の断面形状を測定することになる。また、溶接止端部の最大残留応力をX線回析法によって測定した。 The size of the plastic deformation region is measured by measuring the plastic deformation region on the extension of the plate thickness center line of the rib 2 with a laser displacement meter at the tip portion (turned welded portion) of the rib 2 having the largest generated stress in the illustrated specimen. As a characteristic value indicating the shape of the plastic deformation region, a hollow characteristic value (unit: mm 2 ) defined by the maximum depth × width in the plastic deformation region was obtained. Moreover, let the maximum depth be the maximum value of the hollow part on the basis of the flat surface of a base material. When hitting a plurality of times, the measurement by the laser displacement meter measures the cross-sectional shape of the plastic deformation region where a part of each hitting mark is superimposed. The maximum residual stress at the weld toe was measured by X-ray diffraction.

比較のため、溶接後、ハンマーピーニングを行わない試験体も作成して、疲労試験に供した。疲労試験は、試験体に対して、母材1の両端をチャッキングし、リブ2の長手方向に繰返し応力を与えて行った。   For comparison, a specimen that was not subjected to hammer peening after welding was also prepared and subjected to a fatigue test. The fatigue test was performed by chucking both ends of the base material 1 and repeatedly applying stress to the longitudinal direction of the rib 2 with respect to the test body.

図11に打撃線上を端から端まで移動する回数が実際の施工を想定した3、4回の場合の疲労試験結果を、溶接ままの場合と比較して示す。ハンマーピーニングを施した試験体はC等級ライン以上で、溶接まま試験体に比べ、日本鋼構造協会に示される疲労設計曲線(非特許文献3参照)の3等級程度の疲労強度向上効果が認められた。   FIG. 11 shows the fatigue test results when the number of times of movement from end to end on the batting line is 3 or 4 assuming actual construction, as compared with the case of welding. The specimen subjected to hammer peening is grade C line or higher, and the fatigue strength improvement effect of about grade 3 of the fatigue design curve shown in the Japan Steel Structure Association (see Non-Patent Document 3) is recognized compared with the as-welded specimen. It was.

表1と図12に母材に作用する公称応力振幅が150MPaの場合の破断回数を、表2と図13に公称応力振幅が250MPaの場合の破断回数を、塑性変形領域の窪み特性値(mm)で整理した結果を示す。 Table 1 and FIG. 12 show the number of breaks when the nominal stress amplitude acting on the base material is 150 MPa, and Table 2 and FIG. 13 show the number of breaks when the nominal stress amplitude is 250 MPa. The results organized in 2 ) are shown.

溶接まま(窪み特性値が0mmの場合)の試験結果に対し、公称応力振幅が150MPa以下の場合は0.7mm以上、公称応力振幅が250MPa以下の場合は0.8mm以上で、疲労強度が2等級向上したC等級ライン以上となる。 When the nominal stress amplitude is 150 MPa or less, 0.7 mm 2 or more, and when the nominal stress amplitude is 250 MPa or less, 0.8 mm 2 or more with respect to the test results as-welded (when the dent characteristic value is 0 mm 2 ) Strength will be higher than grade C line with 2 grades improvement.

表3と図14に塑性変形領域の窪み特性値(mm)と溶接止端部の最大圧縮残留応力との関係を示す。溶接止端部の最大圧縮残留応力は窪み特性値(mm)によって整理され、窪み特性値(mm)が大きくなると低下することが認められる。 Table 3 and FIG. 14 show the relationship between the dent characteristic value (mm 2 ) in the plastic deformation region and the maximum compressive residual stress at the weld toe. Maximum compressive residual stress of the weld toe is organized by depression characteristic value (mm 2), it is recognized that to decrease the indentation characteristic value (mm 2) is increased.

図15に表1の150MPa破断回数を塑性変形領域の最大深さで整理した結果を、図16に表2の250MPa破断回数を塑性変形領域の最大深さで整理した結果を示す。溶接ままの試験結果(打撃痕最大深さ0.00mmの場合)に対し、公称応力振幅が150MPa以下の場合は最大深さ0.19mm以上、公称応力振幅が250MPa以下の場合は最大深さ0.22mm以上で、疲労強度が2等級向上したC等級ライン以上となる。疲労強度の等級は、上述の日本鋼構造協会に示される疲労設計曲線による。   FIG. 15 shows the result of arranging the 150 MPa fracture times in Table 1 by the maximum depth of the plastic deformation region, and FIG. 16 shows the result of arranging the 250 MPa fracture times in Table 2 by the maximum depth of the plastic deformation region. When the nominal stress amplitude is 150 MPa or less, the maximum depth is 0.19 mm or more, and when the nominal stress amplitude is 250 MPa or less, the maximum depth is 0 with respect to the test results as-welded (in the case of the maximum impact mark depth of 0.00 mm). At 22 mm or more, the fatigue strength is improved by 2 grades or more, and becomes the C grade line or more. The grade of fatigue strength is based on the fatigue design curve shown in the above-mentioned Japan Steel Structure Association.

尚、図17に示すように最も溶接残留応力の大きいリブ2の先端部(廻し溶接部)における塑性変形領域で計測した窪み特性値(最大深さ×幅)と実際の窪みの断面積との間には、良好な比例関係が認められた。図中の回数は打撃線上を端から端まで移動する回数を示す。   In addition, as shown in FIG. 17, the hollow characteristic value (maximum depth × width) measured in the plastic deformation region at the tip end portion (turn weld portion) of the rib 2 having the largest welding residual stress and the actual sectional area of the hollow portion. A good proportional relationship was observed between them. The number of times in the figure indicates the number of times of movement from end to end on the batting line.

実施例1と同じ方法で作成した試験体を6体準備し、4mm角の打撃面を有するチッパーで、塑性変形領域の溶接止端部側の端部から溶接止端部までの距離が0mm、1mm、2mm、3mm、4mm、5mmのいずれかとなるようにハンマーピーニングを行った後、疲労試験に供した。   Six test specimens prepared by the same method as in Example 1 were prepared, and the distance from the weld toe side end of the plastic deformation region to the weld toe part was 0 mm with a chipper having a 4 mm square striking surface. Hammer peening was performed so as to be 1 mm, 2 mm, 3 mm, 4 mm, or 5 mm, and then subjected to a fatigue test.

ハンマーピーニングは母材表面を溶接線に沿って垂直に繰り返して打撃し、窪み特性値(最大深さ×幅)0.8mm以上、最大深さ0.20mm以上の塑性変形領域を形成するように条件を調整した。ハンマーピーニングの打撃線の設定および塑性変形領域の寸法の計測は、実施例1に準じた。塑性変形領域の溶接止端部側の端部から溶接止端部までの距離が0mmの場合、溶接止端部はチッパーの面取りされた部分で打撃されたが、ノッチ状の欠陥は発生しなかった。疲労試験は実施例1と同条件で行った。 Hammer peening is performed by repeatedly striking the surface of the base material vertically along the weld line to form a plastic deformation region having a dent characteristic value (maximum depth x width) of 0.8 mm 2 or more and a maximum depth of 0.20 mm or more. The conditions were adjusted. The setting of the hammer peening striking line and the measurement of the dimensions of the plastic deformation region were in accordance with Example 1. When the distance from the weld toe side end of the plastic deformation region to the weld toe is 0 mm, the weld toe was struck by the chamfered portion of the chipper, but no notch-shaped defect occurred. It was. The fatigue test was performed under the same conditions as in Example 1.

図18に250MPa破断回数を溶接止端部と塑性変形領域との距離(止端距離)で整理した結果を示す。溶接止端部と塑性変形領域との距離が打撃面の幅の1/4以内で本発明例となる塑性変形領域の溶接止端部側の端部から溶接止端部までの距離を0mm、1mmとした試験体では優れた疲労特性が得られている。   FIG. 18 shows the result of arranging the 250 MPa fracture times by the distance between the weld toe portion and the plastic deformation region (toe end distance). The distance from the weld toe side end to the weld toe part of the plastic deformation region of the present invention example within a quarter of the striking surface width is 0 mm, and the distance between the weld toe part and the plastic deformation region is 0 mm, Excellent fatigue properties are obtained with the test specimen of 1 mm.

ハンマーピーニングの場合、チッパーの打撃面と塑性変形領域の大きさはほぼ等しいので、溶接止端部とチッパーの打撃面の溶接止端部側との距離を2mm以上離して、母材のみを打撃した場合には、非特許文献2より算定される疲労等級がD等級であるのに対して、本発明による施工方法である、溶接止端部とチッパーの打撃面の溶接止端部側との距離を1mm以内として、溶接止端部と母材の境界部および母材の両方を打撃した場合には、疲労等級がA等級となり、溶接継手部の疲労強度が飛躍的に向上する。   In the case of hammer peening, the chipper striking surface and the plastic deformation area are almost equal in size, so the distance between the weld toe and the tip of the chipper striking surface is 2 mm or more, and only the base metal is hit. In this case, the fatigue grade calculated from Non-Patent Document 2 is D grade, whereas the construction method according to the present invention is the welding toe portion and the weld toe side of the hitting surface of the chipper. When the distance is within 1 mm and both the weld toe and the boundary between the base metal and the base metal are hit, the fatigue grade becomes A grade, and the fatigue strength of the welded joint is greatly improved.

幅150mm×長さ150mm×板厚12mmで材質がSM400の母材1に、幅150mm×高さ50mm×板厚12mmでSM400Aのリブ2を隅肉溶接にて溶接して残留応力測定試験体とした。隅肉溶接条件は、ワイヤーMXZ200−1、2Φ、100%CO、240A、30V、40CPM、10、8KJ/cmとした。一方、チッパーは、先端部の打撃面が0.5mmRのR面取り加工され平坦部が3mm角の略平坦形状の4mm角を有するもの、または、先端部の打撃面が直径4mmの半球を有するものを使用した。そして、上記残留応力測定試験体の母材1表面を溶接線に沿って垂直に繰り返し打撃し、ハンマーピーニング処理を行った。打撃の際、上記残留応力測定試験体の溶接止端部から上記各チッパーによる打撃面の溶接止端部側の端部までの距離は、0mm、1mm、2mm、3mm、4mmのいずれかとした。その後、残留応力測定に供した。 A test piece for residual stress measurement was prepared by welding a base metal 1 having a width of 150 mm, a length of 150 mm, a plate thickness of 12 mm, and a material of SM400, and a rib 2 of SM400A having a width of 150 mm × height of 50 mm × plate thickness of 12 mm by fillet welding. did. The fillet welding conditions were wires MXZ200-1, 2Φ, 100% CO 2 , 240A, 30V, 40CPM, 10, 8KJ / cm. On the other hand, the chipper has a rounded chamfered surface of 0.5 mmR at the tip and a flat portion of 4 mm square with a flat shape of 3 mm square, or a tip of the tip has a hemisphere with a diameter of 4 mm It was used. And the base material 1 surface of the said residual-stress measurement test body was repeatedly hit | damaged perpendicularly | vertically along the weld line, and the hammer peening process was performed. At the time of impact, the distance from the weld toe of the residual stress measurement specimen to the end on the weld toe side of the striking surface of each chipper was 0 mm, 1 mm, 2 mm, 3 mm, or 4 mm. Then, it used for the residual stress measurement.

図19は残留応力測定試験体の形状を示し、(a)は断面図、(b)は上面図、(c)は側面図を示す。ハンマーピーニングは図示した試験体においてリブの溶接止端両側を、溶接部に沿って直線状の連続打撃を複数回行った。   FIG. 19 shows the shape of the residual stress measurement specimen, (a) is a cross-sectional view, (b) is a top view, and (c) is a side view. Hammer peening was performed on the both sides of the weld toe of the rib in the illustrated test piece, and the straight continuous striking was performed a plurality of times along the weld.

ハンマーピーニングの条件は、チッパーによる打撃を打撃周期90±10Hz、溶接線方向に移動速度10cm/min以下とし、打撃痕深さ0.15mm以上になるように、略平坦形状の4mm角の打撃面を有するチッパーの場合5回、直径4mmの半球の打撃面を有するチッパーの場合2回の打撃を行った。   The condition of hammer peening is that the impact is 90 mm ± 10 Hz, the movement speed is 10 cm / min or less in the direction of the weld line, and the impact surface is a flat 4 mm square so that the impact depth is 0.15 mm or more. In the case of a chipper having a hemispherical hitting surface having a diameter of 4 mm, the chipper having a diameter of 5 was hit twice.

打撃による塑性変形領域の寸法は、残留応力計測ラインおよびその前後10mmの位置の合計3切断面においてレーザ変位計で測定した。そして、3切断面の打撃痕の最大深さの平均値を各試験体における最大深さ、また同じ3切断面の打撃痕幅の平均値を各試験体における幅とした。さらに参考のため、最大深さ×幅を併記した。残留応力測定試験体と最大深さとの関係を表4に示す。   The dimensions of the plastic deformation region due to impact were measured with a laser displacement meter at a total of three cut surfaces at the residual stress measurement line and at positions 10 mm before and after that. Then, the average value of the maximum depth of the striking traces on the three cut surfaces was defined as the maximum depth in each test specimen, and the average value of the striking trace widths on the same three cut planes was defined as the width in each test specimen. For reference, the maximum depth x width is also shown. Table 4 shows the relationship between the residual stress measurement specimen and the maximum depth.

また、溶接止端部の最大残留応力をX線回析法によって測定した。表5に先端部に平坦部を有する角型チッパー(単に角型チッパーという場合がある)を用いた試験体の残留応力分布を、表6に先端部に半球部を有する丸型チッパー(単に丸型チッパーという場合がある)を用いた試験体の残留応力分布を示す。X方向残留応力は約−100MPaあるいは溶接止端からの距離が約10mmを満たす位置まで測定した。試験体によって残留応力の測定位置および測定結果が異なるため、表5、6中には空欄が生じている。
また図20〜図24に残留応力測定結果(溶接止端からチッパー端部までの距離が0mm、1mm、2mm、3mm、4mmの場合のX方向残留応力分布図)を示す。
The maximum residual stress at the weld toe was measured by X-ray diffraction. Table 5 shows the residual stress distribution of a specimen using a square chipper having a flat portion at the tip (sometimes simply referred to as a square chipper), and Table 6 shows a round chipper having a hemispherical portion at the tip (simply round). The residual stress distribution of the test body using a type chipper) is shown. The X-direction residual stress was measured to a position where the distance from the weld toe is about −100 MPa or about 10 mm. Since the measurement position and the measurement result of the residual stress are different depending on the specimen, blanks are generated in Tables 5 and 6.
20 to 24 show the residual stress measurement results (X direction residual stress distribution diagrams when the distance from the weld toe to the tipper end is 0 mm, 1 mm, 2 mm, 3 mm, and 4 mm).

各図において(a)は先端部に平坦部を有する角型チッパーの場合、(b)は先端部に半球部を有する丸型チッパーの場合を示す。   In each figure, (a) shows the case of a square chipper having a flat part at the tip, and (b) shows the case of a round chipper having a hemispherical part at the tip.

ハンマーピーニング時における残留応力測定試験体の打撃面の溶接止端部側の端部から溶接止端部までの距離Xと、X方向最小残留応力(最大圧縮残留応力)との関係を表7に示す。また図25に、残留応力測定試験体の打撃面の溶接止端部側の端部から溶接止端部まで、ハンマーピーニング時に離した距離Xが、0mm,1mm,2mm,3mm,4mmの場合におけるX方向最小残留応力(最大圧縮残留応力)を、先端部に平坦部を有する角型チッパーと先端部に半球部を有する丸型チッパーの場合とを比較して示す。図26は、上記距離Xと試験体との位置関係を示した側面図である。   Table 7 shows the relationship between the distance X from the weld toe side end of the striking surface of the test specimen to the weld toe and the minimum residual stress in the X direction (maximum compressive residual stress) during hammer peening Show. Fig. 25 shows the distance X between the weld toe end of the striking surface of the residual stress measurement test specimen and the weld toe when the distance X during hammer peening is 0 mm, 1 mm, 2 mm, 3 mm, and 4 mm. The X-direction minimum residual stress (maximum compressive residual stress) is shown in comparison with a square chipper having a flat portion at the tip and a round chipper having a hemisphere at the tip. FIG. 26 is a side view showing the positional relationship between the distance X and the specimen.

図20〜24および図25より、先端部に平坦部を有する角型チッパーを用いてハンマーピーニングを行った残留応力測定試験体の溶接止端近傍の圧縮残留応力は、先端部に半球部を有する丸型チッパーを用いてハンマーピーニングを行った残留応力測定試験体の溶接止端近傍の圧縮残留応力と比較して、打撃面の溶接止端部側の端部から溶接止端部までの距離が0mm、1mm、2mm、3mm、4mmのいずれにおいても、打撃痕の最大深さが小さいにもかかわらず、圧縮残留応力が大きい。   20 to 24 and FIG. 25, the compressive residual stress in the vicinity of the weld toe of the residual stress measurement specimen subjected to hammer peening using a square chipper having a flat portion at the tip has a hemispherical portion at the tip. Compared with the compressive residual stress in the vicinity of the weld toe of the residual stress measurement test piece that was hammer peened using a round chipper, the distance from the weld toe side end of the striking surface to the weld toe was In any of 0 mm, 1 mm, 2 mm, 3 mm, and 4 mm, the compressive residual stress is large although the maximum depth of the impact mark is small.

例えば、図22の(a)と(b)とを溶接止端近傍の圧縮残留応力で比較すると、先端部に平坦部を有する角型チッパーの場合は先端部に半球部を有する丸型チッパーの場合の約2倍となっている。このことは、打撃痕形状と残留応力との関係が先端部に平坦部を有する角型チッパーと先端部に半球部を有する丸型チッパーとで異なることを意味している。すなわち、所定の残留応力を溶接止端近傍に導入するためには、平坦部を有する角型チッパーによる溶接止端部の打撃痕の形状に関する管理値は半球部を有する丸型チッパーによる溶接止端部の打撃痕の形状に関する管理値と異なり、新たな管理指標である窪み特性値(最大深さと幅の積)での管理が必要となる。   For example, comparing (a) and (b) of FIG. 22 with the compressive residual stress in the vicinity of the weld toe, in the case of a square chipper having a flat part at the tip part, a round chipper having a hemispherical part at the tip part is obtained. About twice as much as the case. This means that the relationship between the striking trace shape and the residual stress is different between a square chipper having a flat portion at the tip and a round chipper having a hemispherical portion at the tip. That is, in order to introduce a predetermined residual stress in the vicinity of the weld toe, the control value relating to the shape of the damage mark on the weld toe by the square chipper having a flat portion is the weld toe by a round chipper having a hemispherical part. Unlike the management value related to the shape of the hitting mark of the part, it is necessary to manage with a hollow characteristic value (product of maximum depth and width) which is a new management index.

1 母材
2 リブ
3 溶接ビード
4 溶接止端部
5 チッパー
51、52 テーパー部
53 平坦部
6 打撃部
7 疲労亀裂
DESCRIPTION OF SYMBOLS 1 Base material 2 Rib 3 Weld bead 4 Weld toe part 5 Chipper 51, 52 Tapered part 53 Flat part 6 Strike part 7 Fatigue crack

特開2006−175512号公報JP 2006-175512 A 特開2006−159290号公報JP 2006-159290 A 特開2010−142870号公報JP 2010-142870 A 特開2010−29897号公報JP 2010-29897 A

IMPROVING FATIGUE STRENGTH OF WELDED JOINTS BY HAMMER PEENING AND TIG−DRESSING:Kengo ANAMI、Chitoshi MIKI、Hideki TANI、Haruhito YAMAMOTO、Structual Eng./Earthquake Eng.、JSCE、Vol.17、NO.1、57s−68s、2000 April)IMPROVING FATIGUE STRENGTH OF WELDED JOINTS BY HAMMER PEENING AND TIG-DRESSING: Kengo ANAMI, Chitoshi MIKI, Hideki TANI, Haruhito YAMAMouto. / Earthquake Eng. , JSCE, Vol. 17, NO. 1, 57s-68s, 2000 April) 加藤健三著:金属塑性加工学、丸善、pp.74−76Kenzo Kato: Metallic plastic processing, Maruzen, pp. 74-76 日本鋼構造協会:鋼構造物の疲労設計指針・同解説、pp.1−18、1993年.Japan Steel Structure Association: Fatigue design guidelines for steel structures and explanations, pp. 1-18, 1993.

Claims (10)

溶接部の溶接止端部近傍にチッパーの打撃による複数の打撃痕からなる帯状の塑性変形領域を形成して疲労強度を向上させる溶接部の疲労強度向上方法であって、前記チッパーの先端部の打撃面は平坦部と前記平坦部に沿った面取り部を有し、前記溶接止端部と前記打撃面の溶接止端部側との距離が前記打撃面の幅の1/4以内となるように前記溶接止端部近傍を打撃して窪み特性値(最大深さと幅の積)(mm)が所定の値を有する帯状の塑性変形領域を母材に形成する際、前記帯状の塑性変形領域を溶接止端部に接して形成する場合は、前記打撃面の平坦部周囲の面取り部で溶接止端部を、前記平坦部で母材を打撃することを特徴とする溶接部の疲労強度向上方法。 A method for improving the fatigue strength of a welded portion by improving a fatigue strength by forming a band-shaped plastic deformation region consisting of a plurality of hitting marks by hitting a chipper in the vicinity of a weld toe of the welded portion, The striking surface has a flat portion and a chamfered portion along the flat portion, and the distance between the weld toe portion and the weld toe side of the striking surface is within ¼ of the width of the striking surface. When the belt-shaped plastic deformation region having a predetermined value of the depression characteristic value (product of maximum depth and width) (mm 2 ) is formed in the base metal by hitting the vicinity of the weld toe portion, the belt-shaped plastic deformation When forming the region in contact with the weld toe, the fatigue strength of the weld is characterized by hitting the weld toe at the chamfer around the flat part of the striking surface and hitting the base metal at the flat part. How to improve. 前記打撃面の幅が4mm以上で、前記溶接止端部と前記打撃面の溶接止端部側との距離が1mm以内であることを特徴とする請求項1記載の溶接部の疲労強度向上方法。   2. The method for improving the fatigue strength of a welded portion according to claim 1, wherein a width of the striking surface is 4 mm or more, and a distance between the weld toe portion and the weld toe side of the striking surface is within 1 mm. . 前記帯状の塑性変形領域における窪み特性値(最大深さと幅の積)(mm)が前記溶接部に負荷される公称応力振幅が150MPa以下の場合は0.7mm以上、公称応力振幅が250MPa以下の場合は0.8mm以上であることを特徴とする請求項2記載の溶接部の疲労強度向上方法。 The strip-shaped recesses characteristic values in the plastic deformation region (up to the product of the depth and width) (mm 2) is above the nominal stress amplitude that is loaded in the weld is below 150 MPa 0.7 mm 2 or more, a nominal stress amplitude 250MPa The method for improving the fatigue strength of a welded portion according to claim 2, wherein the following cases are 0.8 mm 2 or more. 前記帯状の塑性変形領域における最大深さが前記溶接部に負荷される公称応力振幅が150MPa以下の場合は0.19mm以上、公称応力振幅が250MPa以下の場合は0.22mm以上であることを特徴とする請求項2または3に記載の溶接部の疲労強度向上方法。   The maximum depth in the band-shaped plastic deformation region is 0.19 mm or more when the nominal stress amplitude applied to the weld is 150 MPa or less, and 0.22 mm or more when the nominal stress amplitude is 250 MPa or less. The method for improving fatigue strength of a welded portion according to claim 2 or 3. チッパーによる打撃が打撃周期80Hz以上で溶接止端部に沿って移動速度10cm/min以下であることを特徴とする請求項2乃至4のいづれか一つに記載の溶接部の疲労強度向上方法。   The method for improving fatigue strength of a welded portion according to any one of claims 2 to 4, wherein the hitting by the chipper is a hitting cycle of 80 Hz or more and a moving speed of 10 cm / min or less along the weld toe portion. 溶接止端部に沿って打撃線を設定し、当該打撃線上近傍を複数回打撃して帯状の塑性変形領域を形成することを特徴とする請求項1乃至5のいずれか一つに記載の溶接部の疲労強度向上方法。   The welding according to any one of claims 1 to 5, wherein a striking line is set along the weld toe, and the vicinity of the striking line is hit a plurality of times to form a belt-like plastic deformation region. Of improving the fatigue strength of parts. 溶接部が隅肉溶接継手であることを特徴とする請求項1乃至6のいずれか一つに記載の溶接部の疲労強度向上方法。   The method for improving fatigue strength of a welded portion according to any one of claims 1 to 6, wherein the welded portion is a fillet weld joint. 請求項1乃至6のいずれか一つに記載の溶接部の疲労強度向上方法を施した溶接継手。   The welded joint which gave the fatigue strength improvement method of the welding part as described in any one of Claims 1 thru | or 6. 溶接止端部近傍を、先端部の打撃面に平坦部と前記平坦部に沿った面取り部を有するチッパーで前記打撃面に垂直方向に複数回打撃して形成した帯状の塑性変形領域を有する隅肉溶接継手であって、
前記打撃面の溶接止端部(線)と直角の辺の長さをB(mm)とした場合、前記帯状の塑性変形領域の溶接止端部側が前記溶接止端部から母材側にB/4(mm)以内となるように母材を打撃して帯状の塑性変形領域を形成した隅肉溶接継手。
A corner having a band-shaped plastic deformation region formed by hitting the vicinity of the weld toe portion multiple times in a direction perpendicular to the striking surface with a chipper having a flat portion on the striking surface of the tip portion and a chamfered portion along the flat portion. Meat welded joints,
When the length of the side perpendicular to the weld toe part (line) of the striking surface is B (mm), the weld toe part side of the band-shaped plastic deformation region is B from the weld toe part to the base metal side. A fillet welded joint in which a base metal is hit so as to be within / 4 (mm) to form a strip-shaped plastic deformation region.
前記打撃面の辺の長さが4mm以上で、前記帯状の塑性変形領域の溶接止端部側が前記溶接止端部から母材側に1mm以内で、
前記帯状の塑性変形領域における最大深さが
前記溶接部に負荷される公称応力振幅が150MPa以下の場合は0.19mm以上、公称応力振幅が250MPa以下の場合は0.22mm以上で、
前記帯状の塑性変形領域における最大深さと幅の積が前記溶接部に負荷される公称応力振幅が150MPa以下の場合は0.7mm以上、公称応力振幅が250MPa以下の場合は0.8mm以上であることを特徴とする請求項9記載の隅肉溶接継手。
The length of the side of the striking surface is 4 mm or more, and the weld toe side of the belt-shaped plastic deformation region is within 1 mm from the weld toe part to the base material side,
The maximum depth in the band-shaped plastic deformation region is 0.19 mm or more when the nominal stress amplitude applied to the weld is 150 MPa or less, 0.22 mm or more when the nominal stress amplitude is 250 MPa or less,
The product of maximum depth and width in the band-shaped plastic deformation region is 0.7 mm 2 or more when the nominal stress amplitude applied to the weld is 150 MPa or less, and 0.8 mm 2 or more when the nominal stress amplitude is 250 MPa or less. The fillet welded joint according to claim 9, wherein:
JP2012000998A 2011-01-31 2012-01-06 Method for improving fatigue strength of welded part and welded joint Active JP5898498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012000998A JP5898498B2 (en) 2011-01-31 2012-01-06 Method for improving fatigue strength of welded part and welded joint

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011018068 2011-01-31
JP2011018068 2011-01-31
JP2012000998A JP5898498B2 (en) 2011-01-31 2012-01-06 Method for improving fatigue strength of welded part and welded joint

Publications (2)

Publication Number Publication Date
JP2012176437A true JP2012176437A (en) 2012-09-13
JP5898498B2 JP5898498B2 (en) 2016-04-06

Family

ID=46978678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012000998A Active JP5898498B2 (en) 2011-01-31 2012-01-06 Method for improving fatigue strength of welded part and welded joint

Country Status (1)

Country Link
JP (1) JP5898498B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014831A (en) * 2012-07-09 2014-01-30 Jfe Steel Corp Fatigue strength improving method of weld zone and welded joint
CN112775535A (en) * 2021-01-18 2021-05-11 西安石油大学 Method for improving comprehensive performance of high-strength aluminum alloy friction stir welding joint

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6226814B2 (en) * 2014-05-22 2017-11-08 株式会社神戸製鋼所 Manufacturing method of welded structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320960A (en) * 2005-04-20 2006-11-30 Nippon Steel Corp Metal member and metal structure excellent in fatigue crack development and propagation suppressing characteristics, and its manufacturing method
JP2010029897A (en) * 2008-07-28 2010-02-12 Nippon Steel Corp Peening method and apparatus for improving fatigue characteristic of welded joint, peening apparatus for improving the fatigue characteristics and welded structure excellent in fatigue resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320960A (en) * 2005-04-20 2006-11-30 Nippon Steel Corp Metal member and metal structure excellent in fatigue crack development and propagation suppressing characteristics, and its manufacturing method
JP2010029897A (en) * 2008-07-28 2010-02-12 Nippon Steel Corp Peening method and apparatus for improving fatigue characteristic of welded joint, peening apparatus for improving the fatigue characteristics and welded structure excellent in fatigue resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014831A (en) * 2012-07-09 2014-01-30 Jfe Steel Corp Fatigue strength improving method of weld zone and welded joint
CN112775535A (en) * 2021-01-18 2021-05-11 西安石油大学 Method for improving comprehensive performance of high-strength aluminum alloy friction stir welding joint

Also Published As

Publication number Publication date
JP5898498B2 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP2014014831A (en) Fatigue strength improving method of weld zone and welded joint
JP2011131260A (en) Method for increasing fatigue strength of weld zone, and weld joint
JP5720798B2 (en) Method for suppressing fatigue crack growth of metal member and metal member with suppressed fatigue crack growth
JP5898498B2 (en) Method for improving fatigue strength of welded part and welded joint
KR101577261B1 (en) Method for preventing fatigue damage in welded structures, tool for forming impact area, and welded structure
JP5844551B2 (en) Manufacturing method of welded joint
JP4895407B2 (en) Peening method and welded joint using it
JP5919986B2 (en) Hammer peening treatment method and welded joint manufacturing method using the same
JP6495569B2 (en) Tool for forming impact marks
JP5327567B1 (en) Peening method and welded joint
JP2013233590A (en) Welded joint superior in fatigue characteristic
JP5977077B2 (en) Welding peening method
JP5599653B2 (en) Welded joint
JP5599652B2 (en) Welded joint
WO2012164774A1 (en) Welded joint
JP6747416B2 (en) Tool for forming impact mark and method for producing welded joint
JP5955752B2 (en) Method for suppressing fatigue damage of welded structure and tool for forming hitting marks
JP6017938B2 (en) Method for suppressing fatigue damage of welded structure and tool for forming hitting marks
JP2019155470A (en) Method for peening processing of lap fillet-welded joint and weld structure
JP5252112B1 (en) Peening construction method
JP7365095B2 (en) Method for improving fatigue life and repairing cracks in welded parts of existing bridges
JP5776393B2 (en) Method for improving fatigue performance of welded structures
JP2013136095A (en) Method for suppressing fatigue damage of welded structure and tool for forming impact trace
JP2013136093A (en) Method for suppressing fatigue damage of weld structure, tool for forming impact trace used therein, and weld structure
JP2013136092A (en) Method for suppressing fatigue damage of welded structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160304

R150 Certificate of patent or registration of utility model

Ref document number: 5898498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250