JP2012172205A - Desulfurizing method for molten steel - Google Patents

Desulfurizing method for molten steel Download PDF

Info

Publication number
JP2012172205A
JP2012172205A JP2011035944A JP2011035944A JP2012172205A JP 2012172205 A JP2012172205 A JP 2012172205A JP 2011035944 A JP2011035944 A JP 2011035944A JP 2011035944 A JP2011035944 A JP 2011035944A JP 2012172205 A JP2012172205 A JP 2012172205A
Authority
JP
Japan
Prior art keywords
molten steel
rem
concentration
desulfurization
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011035944A
Other languages
Japanese (ja)
Other versions
JP5293759B2 (en
Inventor
Mitsuhiro Numata
光裕 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2011035944A priority Critical patent/JP5293759B2/en
Publication of JP2012172205A publication Critical patent/JP2012172205A/en
Application granted granted Critical
Publication of JP5293759B2 publication Critical patent/JP5293759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a desulfurizing method which can obtain desulfurizing effect equal to desulfurization using a slag with high Al and high CaO concentration, even when Al concentration in molten steel is low and CaO concentration in the slag is low, and also can obtain a desulfurizing rate higher than that of the conventional method when Al concentration and CaO concentration are equal to those of the convention method.SOLUTION: In the desulfurizing method, one or more of rare earth metal such as La, Ce, and Nd is added to the molten steel, then gas stirring is performed, in the refining treatment of stirring a molten steel in a ladle and a slug on a surface of the molten steel with an inert gas. The amount of the rare earth metal added is 0.2 kg/ton or more and 0.9 kg/ton or less. The amount of Al added before adding the REM is adjusted such that the ratio [Al]/[REM] of Al concentration [Al] (mass%) in the molten steel after desulfurizing treatment to a total concentration of the rare earth metals [REM] (mass%) in the molten steel is 1.2 or more and 20 or less.

Description

本発明は、鉄鋼精錬における溶鋼処理において、溶鋼とスラグを収容した取鍋内に不活性ガスを吹き込んで脱硫処理を施すに際し、従来よりもスラグとAlの添加量を低減すると当時に脱硫効率を高位安定させる高効率低排出型の溶鋼の脱硫方法に関する。   The present invention provides a desulfurization efficiency at the time when the addition amount of slag and Al is reduced compared with the conventional method when desulfurization treatment is performed by blowing an inert gas into a ladle containing molten steel and slag in molten steel treatment in steel refining. The present invention relates to a desulfurization method for high-efficiency, low-emission molten steel that stabilizes at a high level.

鋼中Sは鋼材の耐食性、溶接性など多数の特性に影響を与える。造船や鋼管などに用いられる鋼では鋼中S濃度をより低下することが求められており、近年では10ppm以下まで鋼中S濃度を低減する脱硫技術が確立されており、さらにその精錬効率を高める技術や生産効率を高める方法も多数開発されている。例えば、特許文献1には酸化鉄、CaOおよびAlを含有し高い脱硫力を発揮する脱硫剤が開示され、特許文献2には転炉で脱炭精錬した溶鋼を取鍋に収容して脱硫する技術が開示されている。 S in steel affects many properties such as corrosion resistance and weldability of steel. Steel used in shipbuilding and steel pipes is required to further reduce the S concentration in steel, and in recent years, a desulfurization technique for reducing the S concentration in steel to 10 ppm or less has been established, and further increases its refining efficiency. Many techniques and methods for increasing production efficiency have been developed. For example, Patent Document 1 discloses a desulfurization agent that contains iron oxide, CaO, and Al 2 O 3 and exhibits high desulfurization power, and Patent Document 2 stores molten steel decarburized and refined in a converter in a ladle. A technique for desulfurization is disclosed.

さらに、効率を高めるにはRH真空脱ガス装置による脱硫を可能とすればよいため、例えば特許文献3、4には、RH真空脱ガス装置で脱硫する技術が開示されている。さらに、本発明者らは、特許文献5により、RH真空脱ガス装置において、CaOを主体とするフラックスを溶鋼表面に吹き付けて脱硫処理する際に、フラックス吹き付け前の溶鋼にLa、CeおよびNdからなる群から選ばれる一種または二種以上を添加し、CaOを主体としたフラックスの脱硫能力と希土類元素(以下、「REM」という)の能力を適正に組み合わせることによって、脱硫のみならずOやNなどの元素もSと同時に低減する技術を開示した。   Furthermore, since it is only necessary to enable desulfurization using an RH vacuum degassing apparatus in order to increase efficiency, for example, Patent Documents 3 and 4 disclose techniques for desulfurization using an RH vacuum degassing apparatus. Furthermore, according to Patent Document 5, the inventors of the RH vacuum degassing apparatus use La, Ce, and Nd for the molten steel before the flux is sprayed when the flux mainly composed of CaO is sprayed on the surface of the molten steel for desulfurization treatment. By adding one or two or more selected from the group consisting of the above and appropriately combining the desulfurization ability of CaO-based flux with the ability of rare earth elements (hereinafter referred to as “REM”), not only desulfurization but also O and N Disclosed a technique for reducing elements such as S at the same time as S.

これまでの脱硫技術は、Alにより十分に脱酸された溶鋼にCaOを主体としたスラグを用いることを前提としており、溶鋼中Al濃度の高濃度化とスラグ中CaO濃度の高濃度化、さらにCaO多配合によるスラグ量増加とを必然的に伴っていた。   The conventional desulfurization technology is based on the premise that slag mainly composed of CaO is used for molten steel that has been sufficiently deoxidized with Al, and the concentration of Al in the molten steel is increased and the concentration of CaO in the slag is increased. This was accompanied by an increase in the amount of slag due to the incorporation of a large amount of CaO.

特開2004−204307号公報JP 2004-204307 A 特開2002−339014号公報JP 2002-339014 A 特開平5−171253号公報JP-A-5-171253 特開2000−297318号公報JP 2000-297318 A 特開2009−144221号公報JP 2009-144221 A

近年の鋼材に対する要求性能の高まりにより、鋼中Al濃度の低減や鋼中H濃度の上昇抑制やスラグ排出量の削減等の目的を図るために、CaO配合量を低減する必要性が高まっている。しかし、十分なAl脱酸およびCaO多配合を前提とする従来の脱硫方法では、近年のこのような要求に応えることができなくなりつつある。このため、Alによる強脱酸と高CaO濃度スラグに依存しない脱硫方法が求められている。   Due to the recent increase in performance requirements for steel materials, there is an increasing need to reduce the CaO blending amount in order to reduce the Al concentration in the steel, suppress the increase in the H concentration in the steel, and reduce the slag discharge amount. . However, the conventional desulfurization method premised on sufficient Al deoxidation and a large amount of CaO is becoming unable to meet such recent demands. Therefore, a desulfurization method that does not depend on strong deoxidation with Al and high CaO concentration slag is required.

ところで、脱硫方法としては、上述したようにスラグ中のCaOと溶鋼中Sとを反応させることによって、溶鋼中SをCaSとしてスラグ中に吸収させる方法(以下、この方法を「スラグ脱硫法」という)が一般的である。スラグ脱硫法と異なる脱硫法として、Sと反応性の強いCaやMgを溶鋼に添加することによって溶鋼中にCaSやMgSを生成させ、これら化合物を溶鋼から浮上分離させることによって脱硫する方法(以下、この方法を「金属添加脱硫法」という)がある。もちろん、スラグ脱硫法および金属添加脱硫法を組み合わせて用いる方法や、CaOフラックスを溶鋼に吹き込む方法や、CaOフラックスおよび脱硫金属を混合して溶鋼に吹き込むかあるいは吹き付ける方法等も用いられている。これらは、原理的にはスラグ脱硫法または金属添加脱硫法に大別される。   By the way, as a desulfurization method, as mentioned above, by reacting CaO in slag and S in molten steel, S in molten steel is absorbed in slag as CaS (hereinafter, this method is referred to as “slag desulfurization method”). ) Is common. As a desulfurization method different from the slag desulfurization method, Ca or Mg, which is highly reactive with S, is added to the molten steel to produce CaS and MgS in the molten steel, and these compounds are desulfurized by floating and separating from the molten steel (hereinafter referred to as “sulfur desulfurization”). This method is called “metal addition desulfurization method”. Of course, a method using a combination of a slag desulfurization method and a metal addition desulfurization method, a method of blowing CaO flux into molten steel, a method of mixing CaO flux and desulfurized metal and blowing or blowing the molten steel into the molten steel, and the like are also used. In principle, these are roughly classified into a slag desulfurization method and a metal addition desulfurization method.

スラグ脱硫法および金属添加脱硫法のいずれも、利点と欠点を有するが、スラグ脱硫法の欠点は反応速度が遅いため、その速度を補償するために溶鋼中Al濃度やスラグ中CaO濃度を高める必要があることである。一方、金属添加脱硫法では、Mg等の脱硫用金属自体が脱酸力を有するため、Al等の脱酸剤を必須としないが、Mg濃度が低下するとMgSが解離して溶鋼中S濃度が再び増加する復硫現象が起こり易く、特に、蒸気圧が高いCaやMgを用いた場合はこれらの濃度低下速度が速いため復硫が顕著になり易い。これを避けるために、脱硫用金属を大量に添加する必要がある。   Both the slag desulfurization method and the metal addition desulfurization method have advantages and disadvantages, but the disadvantage of the slag desulfurization method is that the reaction rate is slow, so it is necessary to increase the Al concentration in the molten steel and the CaO concentration in the slag to compensate for the rate. Is that there is. On the other hand, in the metal addition desulfurization method, since the desulfurization metal such as Mg itself has a deoxidizing power, a deoxidizer such as Al is not essential. However, when the Mg concentration decreases, the MgS dissociates and the S concentration in the molten steel increases. The resulfurization phenomenon which increases again tends to occur. Particularly, when Ca or Mg having a high vapor pressure is used, the concentration decreasing rate is fast, so that the resulfurization tends to be remarkable. In order to avoid this, it is necessary to add a large amount of desulfurization metal.

このように、従来のスラグ脱硫法では金属添加脱硫法を併用しても、低CaO濃度スラグにより低Al濃度の溶鋼を脱硫することは容易ではなかった。
本発明は、従来の技術が有するこのような課題に鑑みてなされたものであり、溶鋼中Al濃度が低い場合やスラグ中CaO濃度が低い場合にも、高Al濃度かつ高CaO濃度スラグを用いた脱硫と同等の脱硫力を得ることができ、かつ、溶鋼中Al濃度やスラグ中CaO濃度が従来と同等の場合は従来以上に高い脱硫率を得られる溶鋼の脱硫方法を提供することである。
As described above, in the conventional slag desulfurization method, even when the metal addition desulfurization method is used in combination, it is not easy to desulfurize molten steel having a low Al concentration by using a low CaO concentration slag.
The present invention has been made in view of such problems of the prior art, and even when the Al concentration in molten steel is low or when the CaO concentration in slag is low, a high Al concentration and high CaO concentration slag is used. It is to provide a desulfurization method for molten steel that can obtain a desulfurization power equivalent to conventional desulfurization and that can obtain a higher desulfurization rate than conventional when the Al concentration in the molten steel and the CaO concentration in the slag are equal to the conventional one. .

溶鋼中Al濃度を高めない場合はAlに替わる脱酸剤が必要であり、スラグ中CaO濃度を高めない場合はCaOに替わるS捕捉剤が必要となる。前述したように脱酸剤としてもS捕捉剤としても機能する代表的な元素としてCaやMgが良く知られている。しかし、CaやMgは溶銑脱硫剤として用いられているが、これらの沸点が溶鋼処理温度より低いために溶鋼中のCaやMgの濃度を十分に高めることができない。よって、溶鋼の脱硫にはあまり使用されておらず、さらにCaやMgの蒸発が加速するVODなどの減圧精錬では使用できない。   If the Al concentration in the molten steel is not increased, a deoxidizing agent that replaces Al is necessary. If the CaO concentration in the slag is not increased, an S scavenger that replaces CaO is necessary. As described above, Ca and Mg are well known as typical elements that function both as a deoxidizer and as an S scavenger. However, although Ca and Mg are used as hot metal desulfurization agents, since their boiling points are lower than the molten steel processing temperature, the concentrations of Ca and Mg in the molten steel cannot be sufficiently increased. Therefore, it is not used much for desulfurization of molten steel, and it cannot be used in reduced pressure refining such as VOD in which evaporation of Ca and Mg is accelerated.

CaやMgの他にはLa,Ce,NdなどのランタノイドなどのREMが知られている。REMはCaやMgと異なり蒸気圧が低いため、溶鋼温度や減圧下でも高い濃度が得られやすい利点はあるが、脱硫剤として用いる場合、以下の二つの課題があった。   In addition to Ca and Mg, REMs such as lanthanoids such as La, Ce, and Nd are known. Since REM has a low vapor pressure unlike Ca and Mg, there is an advantage that a high concentration can be easily obtained even under molten steel temperature or reduced pressure. However, when it is used as a desulfurizing agent, there are the following two problems.

第一の課題は介在物である。溶鋼に添加されたREMは溶鋼中でOやSと反応し、酸化物や硫化物あるいは酸硫化物といった非金属介在物(以下、「介在物」という)が生成する。CaやMgの場合は介在物が溶鋼から浮上分離することで溶鋼の脱硫が進行するが、REMの介在物の比重が溶鋼に近いため、介在物の浮上が速やかに行われない。従って、REM添加によって脱硫はあまり進行しない上に鋼中にREM介在物が多数残留してしまう。   The first problem is inclusions. The REM added to the molten steel reacts with O and S in the molten steel to generate non-metallic inclusions (hereinafter referred to as “inclusions”) such as oxides, sulfides, and oxysulfides. In the case of Ca or Mg, the desulfurization of the molten steel proceeds as the inclusion floats and separates from the molten steel, but the inclusion does not rise rapidly because the specific gravity of the inclusion in the REM is close to that of the molten steel. Therefore, desulfurization does not progress so much by the addition of REM, and many REM inclusions remain in the steel.

第二の課題は効果の安定性である。REMはその反応性の強さからスラグや耐火物あるいは雰囲気中酸素と反応し、その濃度が徐々に低下する場合がある。このREM濃度の低下に伴って脱酸や脱硫といった反応は逆方向に進行し、REMの介在物から溶鋼にOやSが供給される。この逆反応の原因となるREM濃度の低下は様々な要因によって発生するため、再現性に乏しく、従って制御や経験に基づく予測が困難である。従って、REMを用いて脱硫を行った場合、脱硫処理後の状態が鋳造まで持続できずに復硫する場合があった。   The second issue is the stability of the effect. REM may react with slag, refractories or oxygen in the atmosphere due to its high reactivity, and its concentration may gradually decrease. As the REM concentration decreases, reactions such as deoxidation and desulfurization proceed in the reverse direction, and O and S are supplied from the REM inclusions to the molten steel. The decrease in the REM concentration that causes the reverse reaction occurs due to various factors, and therefore, the reproducibility is poor, and therefore, prediction based on control and experience is difficult. Therefore, when desulfurization is performed using REM, the state after the desulfurization treatment may not be continued until casting, and may be resulfurized.

また、介在物が残留しなければ復硫が発生し、復硫が起こらなければ介在物残留が発生する、というように第一の課題と第二の課題は相反する関係にあり、これらを同時に改善することが困難である。このため、REMを溶鋼に添加する脱硫方法は容易ではなかった。   In addition, the first problem and the second problem are contradictory, such that if there is no inclusion remaining, re-sulfurization will occur, and if re-sulfurization will not occur, inclusion inclusion will occur. It is difficult to improve. For this reason, the desulfurization method which adds REM to molten steel was not easy.

金属添加脱硫法の技術思想に従ってREMを使用すると、課題が発生してしまう。そこで、REM添加による脱硫を起こさずにスラグ脱硫法の欠点である反応速度の低下のみをREM添加で補助することが可能で有れば、スラグ脱硫法と金属添加脱硫法の欠点を相殺できると考察した。この考察の妥当性が不明であることに加え、REM添加量が過小であれば効果は得られず、REM添加量が過大であればREMの金属脱硫添加法と同じ問題を生ずることが予想される。   When REM is used in accordance with the technical idea of the metal addition desulfurization method, a problem occurs. Therefore, if it is possible to supplement only the decrease in reaction rate, which is a disadvantage of the slag desulfurization method, without causing desulfurization by the addition of REM, the disadvantages of the slag desulfurization method and the metal addition desulfurization method can be offset. Considered. In addition to the fact that the validity of this consideration is unknown, if the amount of REM added is too small, the effect cannot be obtained, and if the amount of REM added is too large, it is expected to cause the same problem as the metal desulfurization addition method of REM. The

そこで、スラグ脱硫法とREMを用いた金属添加脱硫法を適正に組み合わせることで低Al濃度低CaO濃度化が図れるという考察の妥当性と適正条件を実験的に検討した。
実験は以下の方法で行った。予めS濃度を0.002〜0.003%(本明細書では濃度または化学組成に関する「%」は「質量%」を意味する)に調整した溶鋼10kgを1873Kに保持し、金属Alを添加することで溶鋼中Al濃度を0.08%または0.008%に調整した。その後、CaO:Al:SiO=54:36:10または40:50:10に調整したフラックス200gを添加し、溶鋼表面にスラグを形成させた。スラグ形成を目視観察で確認した後、所定量のREMを添加した。添加したREMは金属La、金属Ce、金属Ndを質量比で40:40:20に混合したものを添加した。REM添加後溶鋼を保持し、保持中2.5分間隔で溶鋼からサンプルを採取して溶鋼組成を定量した。フラックス添加前の溶鋼中S濃度[S]と15分間保持後の溶鋼中S濃度[S]から(1)式に従い脱硫率を算出した。
脱硫率(%)=([S]−[S])/[S]×100 ・・・・・・・(1)
なお、脱硫率はREM添加5分後以降でほぼ一定となったが、ここではREM添加後に20分間保持して採取したサンプルの分析結果を用いて説明する。
Therefore, the validity and appropriate conditions of the consideration that the low Al concentration and the low CaO concentration can be achieved by appropriately combining the slag desulfurization method and the metal addition desulfurization method using REM were experimentally examined.
The experiment was performed as follows. 10 kg of molten steel adjusted in advance to an S concentration of 0.002 to 0.003% (in this specification, “%” relating to the concentration or chemical composition means “mass%”) is maintained at 1873 K, and metal Al is added. Thus, the Al concentration in the molten steel was adjusted to 0.08% or 0.008%. Thereafter, 200 g of flux adjusted to CaO: Al 2 O 3 : SiO 2 = 54: 36: 10 or 40:50:10 was added to form slag on the surface of the molten steel. After confirming slag formation by visual observation, a predetermined amount of REM was added. The added REM was a mixture of metal La, metal Ce, and metal Nd in a mass ratio of 40:40:20. The molten steel was held after REM addition, and samples were taken from the molten steel at intervals of 2.5 minutes during holding to quantify the molten steel composition. The desulfurization rate was calculated according to the formula (1) from the S concentration [S] i in the molten steel before addition of the flux and the S concentration [S] f in the molten steel after being held for 15 minutes.
Desulfurization rate (%) = ([S] i − [S] f ) / [S] i × 100 (1)
The desulfurization rate became substantially constant after 5 minutes from the addition of REM, but here, the desulfurization rate will be described using the analysis result of a sample collected by holding for 20 minutes after the addition of REM.

図1に溶鋼中Al濃度を0.08%として測定したREM添加量とスラグ中CaO/Al濃度比(以下、C/A)と脱硫率との関係をグラフで示す。溶鋼中Al濃度0.08%かつC/A=1.5は一般的な高Al濃度高CaOスラグを用いた一般的なスラグ脱硫条件に相当する。実験結果から、スラグ中C/AによらずREM添加により脱硫率は増加する傾向となった。図1のグラフのy切片であるREM未添加ではC/Aを1.5から0.8に減ずると脱硫率も低下するが、REM添加により脱硫率は向上し、REM添加量を0.2kg/ton以上とすることでC/Aが0.8でも高Al濃度高CaOスラグと同等の脱硫率を確保できることが分かった。 FIG. 1 is a graph showing the relationship between the amount of REM added when the Al concentration in molten steel is 0.08%, the CaO / Al 2 O 3 concentration ratio in the slag (hereinafter C / A), and the desulfurization rate. The Al concentration in molten steel of 0.08% and C / A = 1.5 correspond to general slag desulfurization conditions using a general high Al concentration and high CaO slag. From the experimental results, the desulfurization rate tended to increase by the addition of REM regardless of C / A in the slag. In the graph of FIG. 1, when REM is not added, the desulfurization rate decreases when C / A is reduced from 1.5 to 0.8. However, the addition of REM improves the desulfurization rate, and the amount of REM added is 0.2 kg. It was found that a desulfurization rate equivalent to that of a high Al concentration high CaO slag can be ensured even when C / A is 0.8 by setting it to / ton or more.

一方、REM添加量が0.9kg/tonを超えて大きいと脱硫率がやや低下する傾向が認められる。この現象はREM添加量の増加に伴って溶鋼中に生成したREMの硫化物もしくは酸硫化物介在物の生成によるスラグ脱硫阻害とREM濃度低下に伴う復硫によって生じていると考えられる。よって、REM添加量は0.9kg/ton以下とすることで高い脱硫率を安定して確保できる。   On the other hand, when the amount of REM added is larger than 0.9 kg / ton, a tendency for the desulfurization rate to slightly decrease is recognized. This phenomenon is considered to be caused by slag desulfurization inhibition due to the formation of sulfide or oxysulfide inclusions of REM generated in molten steel with an increase in the amount of REM added and sulfurization accompanying a decrease in REM concentration. Therefore, a high desulfurization rate can be stably secured by setting the REM addition amount to 0.9 kg / ton or less.

図2に溶鋼中Al濃度とスラグ中C/Aを同時に変化させて測定した結果をグラフで示す。REM添加量の増加に伴って脱硫率が増加し、添加量が0.9kg/tonを超えて多くなると脱硫率がやや低下する傾向は図1と同じである。しかし、REM添加量を0.2kg/ton以上0.9kg/ton以下とすることで、CaOを減じたC/A=0.8のスラグを用い、かつ、溶鋼中Al濃度が0.008%である低Al濃度でも、一般的な高Al濃度高CaOスラグ脱硫と同等の脱硫率が得られることが確認された。   FIG. 2 is a graph showing the measurement results obtained by simultaneously changing the Al concentration in the molten steel and the C / A in the slag. The desulfurization rate increases with an increase in the REM addition amount, and when the addition amount exceeds 0.9 kg / ton, the desulfurization rate tends to decrease slightly as in FIG. However, by setting the REM addition amount to 0.2 kg / ton or more and 0.9 kg / ton or less, C / A = 0.8 slag with reduced CaO is used, and the Al concentration in the molten steel is 0.008%. It was confirmed that a desulfurization rate equivalent to general high Al concentration and high CaO slag desulfurization can be obtained even at a low Al concentration.

本発明は、REM添加量の調整で脱硫率を向上させることができる。一方、本発明の原理はREMによって直接脱硫を行うのではなく、CaO系スラグと溶鋼中AlとSとの反応を加速するものであるから、厳密には溶鋼中Al濃度とREM添加量、より正確には溶鋼中Al濃度と溶鋼中REM濃度との関係により脱硫率は若干変化する。   The present invention can improve the desulfurization rate by adjusting the amount of REM added. On the other hand, the principle of the present invention is not to directly desulfurize by REM, but to accelerate the reaction between CaO-based slag and Al and S in the molten steel. Strictly speaking, the Al concentration in the molten steel and the REM addition amount, Precisely, the desulfurization rate slightly changes depending on the relationship between the Al concentration in the molten steel and the REM concentration in the molten steel.

そこで、C/A=0.8、REM添加量0.7kg/tonなる条件でAl添加量を制御することで溶鋼中Al濃度を変化させて脱硫率を測定した。実験結果は脱硫反応が終了している保持時間20分後の溶鋼中Al濃度とREM濃度の比(以下、R)を用いて整理した。結果を図3にグラフで示す。   Therefore, the desulfurization rate was measured by changing the Al concentration in the molten steel by controlling the Al addition amount under the conditions of C / A = 0.8 and REM addition amount 0.7 kg / ton. The experimental results were arranged using the ratio of the Al concentration in the molten steel and the REM concentration (hereinafter, R) in the molten steel 20 minutes after the completion of the desulfurization reaction. The results are shown graphically in FIG.

図3から、REM添加量が0.7kg/tonと本発明の適正範囲を満足していることからC/A=0.8でも脱硫率は80%以上を確保できているが、Rが1.2以上20以下の場合に特に高い脱硫率が得られており、REM添加量に加えてAl濃度を調整することでさらに高い脱硫率が得られることが分かる。   From FIG. 3, the amount of REM added is 0.7 kg / ton, which satisfies the appropriate range of the present invention, so that the desulfurization rate can be secured at 80% or more even when C / A = 0.8. It can be seen that a particularly high desulfurization rate is obtained in the case of 2 or more and 20 or less, and that a higher desulfurization rate can be obtained by adjusting the Al concentration in addition to the REM addition amount.

Rが1.2未満の条件ではAlに対してREMが相対的に多いため、スラグ中AlがREMと反応するため、溶鋼中Alとスラグとの反応が不安定化するためさらなる脱硫率向上が生じない。一方、Rが20を超えて大きいと、Alに対してREMが相対的に少なくなるため、REMの効果が適正Rより小さくなる。Rが1.2以上20以下の場合はスラグ中AlとREMの反応を抑制すると同時にAlに対してREMが適正な反応促進効果を発揮できることから、REM添加量制御のみ時に比較して一段と脱硫率を向上させることができる。 Under conditions where R is less than 1.2, since REM is relatively large with respect to Al, Al 2 O 3 in the slag reacts with REM, so the reaction between Al and slag in the molten steel becomes unstable, so further desulfurization There is no increase in rate. On the other hand, when R exceeds 20 and REM is relatively less than Al, the effect of REM is smaller than the appropriate R. When R is 1.2 or more and 20 or less, the reaction between Al 2 O 3 and REM in the slag is suppressed, and at the same time, REM can exert an appropriate reaction promoting effect on Al. The desulfurization rate can be further improved.

以上のように本発明において、適正なREM添加量とREM濃度とAl濃度の比を用いることで溶鋼中Al濃度やスラグ中CaO濃度を低めても脱硫が可能となった。溶鋼からの蒸発性の高い物質を用いないため、本発明は大気圧下での不活性ガス吹き込み精錬やVODなどの減圧精錬においても利用できる。本発明による脱硫反応機構は以下の通りである。   As described above, in the present invention, desulfurization is possible even when the Al concentration in molten steel and the CaO concentration in slag are lowered by using an appropriate REM addition amount and a ratio of the REM concentration to the Al concentration. Since a highly evaporable substance from molten steel is not used, the present invention can also be used in vacuum gas refining such as inert gas blowing refining under atmospheric pressure or VOD. The desulfurization reaction mechanism according to the present invention is as follows.

REM添加量が少ない場合に脱硫率が高くならないのはREMによる脱酸効果が不足するためである。
REM添加量が適正の場合はREMが溶鋼中で酸素と反応することによってスラグーメタル界面の酸素活量が急速に低下し、これに伴ってスラグによる脱硫も急速に進行する。これは、脱硫反応はCaO+S=CaS+Oで記述されることから理解できる。この脱硫進行の後、溶鋼中REM濃度は徐々に低下するが、復硫が起こらずに脱硫率が維持されるのは次の理由による。CaO−Al系スラグを用いた反応では、スラグーメタル界面酸素活量はスラグ中のAl活量と溶鋼中Al濃度との脱酸平衡によって規定されるが、スラグ中Al活量が低いため界面酸素活量は溶鋼中酸素活量よりも十分低くなる。しかし、スラグ中Alと溶鋼中Alとの反応が平衡に達しないため、通常は界面平衡酸素活量よりも高い酸素活量となっている。平衡酸素活量よりも高い酸素活量であることからS濃度も平衡値より高く、従って脱硫率は平衡値よりも低い。つまり、界面酸素活量を短時間で平衡酸素活量まで低減できれば高い平衡脱硫率を確保することが可能となり、かつ、本来Alによってもたらされるスラグ−メタル間反応平衡脱硫値とするのであるから、REMが低下しても脱硫率が変化することもない。つまり、REMはREMが存在しないスラグ−メタル間反応において、反応を加速させる剤として用いる。
The reason why the desulfurization rate does not increase when the amount of REM added is small is that the deoxidation effect by REM is insufficient.
When the amount of REM added is appropriate, the REM reacts with oxygen in the molten steel, so that the oxygen activity at the slag metal interface decreases rapidly, and along with this, desulfurization with slag also proceeds rapidly. This can be understood from the fact that the desulfurization reaction is described as CaO + S = CaS + O. After this desulfurization progress, the REM concentration in the molten steel gradually decreases, but the desulfurization rate is maintained without causing sulfurization for the following reason. CaO-Al in the reaction with 2 O 3 slag, but slag Metal surface oxygen activity is defined by the deoxidation equilibrium with Al 2 O 3 activity of the molten steel in the Al concentration in the slag, the slag Al 2 O 3 Since the activity is low, the interfacial oxygen activity is sufficiently lower than the oxygen activity in the molten steel. However, since the reaction between Al 2 O 3 in the slag and Al in the molten steel does not reach an equilibrium, the oxygen activity is usually higher than the interface equilibrium oxygen activity. Since the oxygen activity is higher than the equilibrium oxygen activity, the S concentration is also higher than the equilibrium value, and therefore the desulfurization rate is lower than the equilibrium value. In other words, if the interfacial oxygen activity can be reduced to the equilibrium oxygen activity in a short time, it becomes possible to ensure a high equilibrium desulfurization rate, and the slag-metal reaction equilibrium desulfurization value originally brought by Al, Even if REM is lowered, the desulfurization rate does not change. That is, REM is used as an agent for accelerating the reaction in the slag-metal reaction in which REM does not exist.

ただし、REM添加量が過剰になると、Alによって得られる筈の本来の平衡値よりも低い酸素活量となるため、一時的にスラグ脱硫による脱硫値が高まるが、REM低下と共に脱硫率は本来の脱硫率まで低下する。従って、一時的に高い脱硫率を示すためのREMは無意味となる。また、本来の平衡値よりも低い酸素活量となることは、REMの酸硫化物や硫化物といった介在物の生成を促すため、脱硫率を結果的に低下させる。   However, if the amount of REM added becomes excessive, the oxygen activity becomes lower than the original equilibrium value of soot obtained by Al, so that the desulfurization value by slag desulfurization temporarily increases, but the desulfurization rate increases with the decrease in REM. Decrease to desulfurization rate. Therefore, REM for temporarily showing a high desulfurization rate becomes meaningless. Moreover, since the oxygen activity lower than the original equilibrium value promotes the formation of inclusions such as REM oxysulfides and sulfides, the desulfurization rate is consequently reduced.

このような生産設備での精錬では本発明による脱硫の他に溶鋼温度調整が行われる場合が多い。そこで、この溶鋼温度調整処理と本発明との関係を説明する。
溶鋼の温度調整は溶鋼にAlあるいはSiもしくは両方を添加し、酸素ガスなどの酸化性ガスを溶鋼に吹き付けもしくは吹き込むことで発生するAlやSiの酸化熱により行われる。この処理で生成するAlやSiOによってスラグ組成が変化する。このスラグ組成変化はスラグの脱硫能力を低下させるため復硫が起こる。
In such refining at a production facility, in addition to desulfurization according to the present invention, the temperature of molten steel is often adjusted. Then, the relationship between this molten steel temperature adjustment process and this invention is demonstrated.
The temperature adjustment of the molten steel is performed by the oxidation heat of Al or Si generated by adding Al or Si or both to the molten steel and blowing or blowing an oxidizing gas such as oxygen gas on the molten steel. The slag composition changes depending on Al 2 O 3 and SiO 2 generated by this treatment. This slag composition change lowers the desulfurization ability of slag, so that sulfation occurs.

本発明ではREMによって平衡脱硫値まで脱硫率を高めているため、スラグ組成が変化すると一般的なスラグ脱硫よりも復硫が起こりやすい。従って、本発明と溶鋼温度調整を行う場合は、酸化性ガスを溶鋼に吹き込みまたは吹き付けて溶鋼中のSiまたはAlとを反応させる溶鋼温度上昇処理を行った後に引き続いて溶鋼にLa,Ce,Ndなどの希土類金属を1種類以上添加することが有効である。また、先行して実施した溶鋼温度上昇処理によって生成するAl等をスラグに十分吸収させてスラグを混合することが有効であるため、撹拌ガスによる混合を5分間以上行うことが好ましい。一方、15分間超の撹拌を行っても効果が飽和するため15分間以下とすることが好ましい。 In the present invention, since the desulfurization rate is increased to the equilibrium desulfurization value by REM, if the slag composition changes, resulfurization occurs more easily than general slag desulfurization. Therefore, when the present invention and molten steel temperature adjustment are performed, an oxidizing gas is blown into or blown into the molten steel, and after the molten steel temperature increasing treatment is performed to react with Si or Al in the molten steel, La, Ce, Nd are subsequently applied to the molten steel. It is effective to add one or more rare earth metals such as. In addition, it is effective to sufficiently absorb Al 2 O 3 or the like generated by the molten steel temperature increase process performed in advance and mix the slag with the slag, and therefore, it is preferable to perform the mixing with the stirring gas for 5 minutes or more. On the other hand, even if stirring is performed for more than 15 minutes, the effect is saturated, so it is preferable to set the stirring time to 15 minutes or less.

従来の脱硫条件とは異なる条件、すなわち多量のAlあるいはCaOを用いることなく溶鋼の脱硫が可能となる。これにより、既存鋼とは異なる新たな性質を有する鋼材の製造と環境負荷の低減とを図ることができる。   It is possible to desulfurize molten steel without using different conditions from conventional desulfurization conditions, that is, without using a large amount of Al or CaO. Thereby, manufacture of the steel material which has a new property different from the existing steel, and reduction of an environmental load can be aimed at.

図1は、溶鋼中Al濃度を0.08%として測定したREM添加量とスラグ中CaO/Al濃度比(以下、C/A)と脱硫率との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the REM addition amount measured when the Al concentration in molten steel is 0.08%, the CaO / Al 2 O 3 concentration ratio in the slag (hereinafter C / A), and the desulfurization rate. 図2は、溶鋼中Al濃度とスラグ中C/Aを同時に変化させて測定した結果を示すグラフである。FIG. 2 is a graph showing the results of measurement by simultaneously changing the Al concentration in molten steel and C / A in slag. 図3は、脱硫後の溶鋼中Al濃度と溶鋼中REM濃度との比と脱硫率との関係を示すグラフである。(C/A=0.8,REM添加量0.7kg/ton)FIG. 3 is a graph showing the relationship between the desulfurization rate and the ratio between the Al concentration in molten steel and the REM concentration in molten steel after desulfurization. (C / A = 0.8, REM addition amount 0.7kg / ton)

本発明を実施するための形態を説明する。以降の説明では、転炉と大気圧下不活性ガス吹き込み精錬装置を用いて実施する場合を例にとる。なお、本発明は減圧精錬でも実施可能であり、形態は大気圧精錬と同じであるが減圧精錬特有の条件が存在する場合は適宜説明する。   A mode for carrying out the present invention will be described. In the following description, the case of carrying out using a converter and an inert gas blowing refining apparatus under atmospheric pressure is taken as an example. It should be noted that the present invention can also be implemented by reduced pressure refining, and the form is the same as that of atmospheric pressure refining, but will be described as appropriate when conditions specific to reduced pressure refining exist.

転炉で脱炭した溶鋼を取鍋内へ出鋼し、大気圧下不活性ガス吹き込み精錬装置へ取鍋を移送する。出鋼時に取鍋内へ生石灰やけい砂などの媒溶剤を添加し、スラグを形成させる。また、必要に応じてAlやSiなどの脱酸剤を添加してよいが、脱酸で生成するAlやSiOの量を考慮して媒溶剤添加量を調整することで、スラグ組成とスラグ量を調整できる。なお、大気圧不活性ガス吹き込み精錬の前にRHなどの真空脱ガス精錬を行ってもよい。 Take the molten steel decarburized in the converter into the ladle, and transfer the ladle to an inert gas blowing refining device under atmospheric pressure. A medium solvent such as quick lime and silica sand is added to the ladle at the time of steeling to form slag. In addition, a deoxidizer such as Al or Si may be added as necessary, but the slag can be adjusted by adjusting the amount of solvent added in consideration of the amount of Al 2 O 3 or SiO 2 produced by deoxidation. The composition and slag amount can be adjusted. In addition, you may perform vacuum degas refining, such as RH, before atmospheric pressure inert gas blowing refining.

これまでに説明した通り、本発明はCaO濃度の低いスラグを対象にスラグ−メタル間界面反応とその平衡および平衡までの反応速度をREMとAlとを適正に併用することで制御する技術であるため、界面反応に影響を与えるスラグ主成分と撹拌条件をさらに制御することでより安定した効果を得ることができる。以下、詳細を説明する。   As described so far, the present invention is a technique for controlling the slag-metal interface reaction and its equilibrium and the reaction rate until equilibrium by appropriately using REM and Al for slag with low CaO concentration. Therefore, a more stable effect can be obtained by further controlling the slag main component and the stirring conditions that affect the interface reaction. Details will be described below.

本発明はCaO−Al−SiO系スラグを対象になされた技術であり、また、スラグ中CaO濃度が低い場合に効果が顕著となるため、スラグ中のAl、SiO、CaOの濃度が合計で75%以上であり、スラグ中のCaOとAlとの重量比CaO/Alが0.6以上1.0以下といった、従来の脱硫処理条件よりも厳しいスラグ組成でも高い効果を得ることができる。ただし、スラグ組成は以下の条件を満足することが好ましい。 The present invention is a technique intended for CaO—Al 2 O 3 —SiO 2 -based slag, and since the effect becomes remarkable when the CaO concentration in the slag is low, Al 2 O 3 , SiO 2 in the slag. The total concentration of CaO is 75% or more, and the weight ratio of CaO to Al 2 O 3 in the slag CaO / Al 2 O 3 is 0.6 or more and 1.0 or less than the conventional desulfurization treatment conditions. Even with a severe slag composition, a high effect can be obtained. However, the slag composition preferably satisfies the following conditions.

スラグ組成はCaO、AlならびにSiOの合計濃度が75%以上でC/Aが0.6以上1.5以下であることが好ましい。C/Aが0.6未満もしくは1.5を超えて大きい場合は、スラグの液相率が低くなり、処理時間が長くなる場合がある。なお、本発明はC/Aが1以下において既存技術に対して高い優位性を示すため、C/A≦1で使用することが好ましい。さらに好ましいスラグ組成はスラグ中SiO濃度10%以下、MgO濃度10%以下、FeOとMnOの合計濃度が5%以下である。スラグ中SiO濃度が10%を超えて高いとSiO活量が高くなり、溶鋼中のAlや添加されたREMと反応することで効果を低下させる場合がある。また、MgO濃度が10%を超えて高いとスラグの流動性が低下し、スラグーメタル界面反応速度を低下させる場合がある。FeOとMnO濃度が合計で5%を超えて高いとSiO同様にAlやREMと反応し効果を低下させる場合がある。 The slag composition preferably has a total concentration of CaO, Al 2 O 3 and SiO 2 of 75% or more and C / A of 0.6 or more and 1.5 or less. When C / A is less than 0.6 or greater than 1.5, the liquid phase rate of the slag is lowered and the treatment time may be increased. In addition, since this invention shows a high predominance with respect to the existing technology when C / A is 1 or less, it is preferable to use it by C / A <= 1. A more preferable slag composition is that the SiO 2 concentration in the slag is 10% or less, the MgO concentration is 10% or less, and the total concentration of FeO and MnO is 5% or less. When the SiO 2 concentration in the slag is higher than 10%, the SiO 2 activity is increased, and the effect may be lowered by reacting with Al in the molten steel or added REM. Moreover, when MgO density | concentration exceeds 10% and the fluidity | liquidity of slag falls, the slag metal interface reaction rate may be reduced. If the total concentration of FeO and MnO exceeds 5%, it may react with Al or REM in the same manner as SiO 2 to reduce the effect.

スラグ量は15kg/ton以上25kg/ton以下であることが好ましい。スラグ量が15kg/ton未満の場合、スラグのS吸収量が少なくなるため処理前S濃度が20ppm以上の場合は物質収支的にスラグ量が不足する。一方、スラグ量が25kg/tonを超えて多いとスラグ撹拌が十分行えない場合がある。ただし、本発明をVODなどの減圧精錬装置を用いて実施する場合、スラグ量は40kg/tonまで許容される。これは減圧精錬ではガス膨張により大気圧精錬よりもガス撹拌が強くなるので、大気圧精錬処理よりもスラグ量を増加できる。   The slag amount is preferably 15 kg / ton or more and 25 kg / ton or less. When the amount of slag is less than 15 kg / ton, the amount of S absorbed in the slag decreases, so when the pre-treatment S concentration is 20 ppm or more, the amount of slag is insufficient in terms of material balance. On the other hand, if the amount of slag exceeds 25 kg / ton, slag stirring may not be sufficiently performed. However, when the present invention is carried out using a vacuum refining apparatus such as VOD, the slag amount is allowed up to 40 kg / ton. This is because, in vacuum refining, gas agitation becomes stronger than in atmospheric refining due to gas expansion, so the amount of slag can be increased as compared with atmospheric refining treatment.

溶鋼温度上昇処理が必要な場合は、REMを添加する前に実施する。溶鋼を不活性ガスで撹拌しつつ、溶鋼にAlまたはSiあるいは両方を添加した後に上吹きランスを介して溶鋼もしくはスラグ上に酸素ガスを吹き付ける。このときの不活性ガス流量は、溶鋼1トン当たり8Nl/min以上12Nl/min以下が好ましい。8Nl/min未満では溶鋼の撹拌が不充分となり、混合に長時間を要する。12Nl/minを超えて多いとスラグの溶鋼中への巻き込みが発生する場合がある。なお、この処理によりスラグ中のAl濃度やSiO濃度が増加するが、この増加にともなってスラグ組成、特にC/Aが変化しないように生石灰などを添加することが好ましい。また、生石灰などの添加時期は酸化性ガス供給前が好ましい。酸化性ガス供給後に生石灰添加を行うとREM添加前にスラグ組成を均一化させるための撹拌時間を要するため、酸化性ガス供給前に添加することで処理時間を短縮できる。 When the molten steel temperature rise process is required, it is carried out before adding REM. While stirring the molten steel with an inert gas, after adding Al or Si or both to the molten steel, oxygen gas is sprayed onto the molten steel or slag through an upper blowing lance. The inert gas flow rate at this time is preferably 8 Nl / min or more and 12 Nl / min or less per ton of molten steel. If it is less than 8 Nl / min, stirring of the molten steel becomes insufficient and mixing takes a long time. If the amount exceeds 12 Nl / min, the slag may be entrained in the molten steel. Although the concentration of Al 2 O 3 and SiO 2 concentration in the slag by the process increases, the slag composition along with this increase, it is particularly preferable to be added and quicklime such that C / A does not change. Moreover, the addition time of quicklime etc. is preferable before oxidizing gas supply. When quick lime is added after supplying the oxidizing gas, it takes a stirring time to make the slag composition uniform before adding REM. Therefore, the processing time can be shortened by adding it before supplying the oxidizing gas.

溶鋼温度の調整が完了した後、引き続き溶鋼を不活性ガスで撹拌しながら溶鋼にREMを添加する。本発明ではAl濃度とREM濃度を調整する必要があるため、REM添加前にAl濃度を測定しておくことで、より[Al]/[REM]の制御精度を高めることができる。Al濃度を測定する方法としては溶鋼サンプルを採取して発光分析に供する方法が知られている。また、固体電解質酸素センサを溶鋼に浸漬して溶鋼中酸素活量を測定し、得られた酸素活量からAl濃度を算出する方法でもよい。本発明は、脱酸が重要であることからREM添加前に固体電解質酸素センサで測定を行うことが望ましい。   After the adjustment of the molten steel temperature is completed, REM is added to the molten steel while stirring the molten steel with an inert gas. In the present invention, since it is necessary to adjust the Al concentration and the REM concentration, the control accuracy of [Al] / [REM] can be further increased by measuring the Al concentration before adding the REM. As a method for measuring the Al concentration, a method in which a molten steel sample is collected and subjected to an emission analysis is known. Alternatively, a method may be used in which the solid electrolyte oxygen sensor is immersed in molten steel, the oxygen activity in the molten steel is measured, and the Al concentration is calculated from the obtained oxygen activity. In the present invention, since deoxidation is important, it is desirable to perform measurement with a solid electrolyte oxygen sensor before adding REM.

なお、本発明は前述したように溶鋼中Al濃度を高めることなく低Al濃度で高い脱硫率が得られるが、ここでは低Al濃度とは0.01%未満を意味する。先に図2にてAl濃度0.008%で効果を説明したように、Al濃度が0.01%未満でも効果が得られる。よって、本発明ではAl濃度を0.01%未満としてREM添加を行うことでAl添加量削減や低Al鋼製造時のAl濃度低減処理を省略できる。また、Al濃度は0.003%以上であることが望ましく、さらに望ましくは0.005%以上である。Al濃度が0.003%未満ではスラグ中のFeOやMnOを十分低減することが困難となり、0.005%未満ではFeOとMnOの低減に要する処理時間が長くなる。   In the present invention, as described above, a high desulfurization rate can be obtained at a low Al concentration without increasing the Al concentration in the molten steel. Here, the low Al concentration means less than 0.01%. As described above with reference to FIG. 2 when the Al concentration is 0.008%, the effect can be obtained even when the Al concentration is less than 0.01%. Therefore, in the present invention, by performing REM addition with an Al concentration of less than 0.01%, it is possible to omit the Al addition amount reduction or the Al concentration reduction process during the production of low Al steel. Further, the Al concentration is desirably 0.003% or more, and more desirably 0.005% or more. If the Al concentration is less than 0.003%, it is difficult to sufficiently reduce FeO and MnO in the slag, and if it is less than 0.005%, the processing time required for reducing FeO and MnO becomes long.

添加するREMは金属Laや金属Ceといった希土類金属の単体金属の他、これらの混合物あるいは合金でもよい。ただし、本発明はこれらの総添加量を用いて制御を行うため、原子量が比較的近い原子番号57から原子番号60までのランタノイド(La,Ce,Pr,Nd)が合計で90%以上であることが好ましい。   The REM to be added may be a single metal of rare earth metal such as metal La or metal Ce, or a mixture or alloy thereof. However, since the present invention performs control using these total addition amounts, the total number of lanthanoids (La, Ce, Pr, Nd) from atomic number 57 to atomic number 60 that are relatively close in atomic weight is 90% or more. It is preferable.

添加するREMの形態は大きさ5mmから15cmまでの塊状であることが好ましい。これは、溶鋼へ確実に投入され溶鋼内へ沈降させるためである。5mmより細かい粉状の場合、排気系へ散逸したり、スラグ表面上で速やかに酸化されてしまう場合がある。15cmを超えて大きいとREM自体の溶解に時間を要するため処理時間を長くする必要がある。   The REM to be added is preferably in the form of a lump having a size of 5 mm to 15 cm. This is because the molten steel is reliably charged and settled into the molten steel. When the powder is finer than 5 mm, it may be dissipated into the exhaust system or oxidized quickly on the slag surface. If it is larger than 15 cm, it takes time to dissolve the REM itself, so that it is necessary to lengthen the processing time.

添加するREM量は、請求項1記載の通りの0.2kg/ton以上0.9kg/ton以下であるが、好ましくは0.3kg/ton以上0.7kg/ton以下である。0.3kg/ton未満ではREM添加時の酸化ロスなどの影響を受ける場合があり、0.7kg/tonを超えて多いとスラグ中REM酸化物濃度が増加してスラグ流動性が低下する場合がある。同様の理由により更に好ましくは0.5kg/ton以上0.7kg/ton以下である。   The amount of REM to be added is 0.2 kg / ton or more and 0.9 kg / ton or less as described in claim 1, but preferably 0.3 kg / ton or more and 0.7 kg / ton or less. If it is less than 0.3 kg / ton, it may be affected by oxidation loss at the time of REM addition, and if it exceeds 0.7 kg / ton, the REM oxide concentration in the slag may increase and the slag fluidity may decrease. is there. More preferably, it is 0.5 kg / ton or more and 0.7 kg / ton or less for the same reason.

REM添加後、溶鋼を不活性ガスで撹拌する。既に述べたように撹拌時間は5分間以上15分間以下であるが、さらに好ましくは撹拌時間は7分間以上である。7分間以上とすると脱硫率がより安定する。   After REM addition, the molten steel is stirred with an inert gas. As already described, the stirring time is 5 minutes or more and 15 minutes or less, more preferably the stirring time is 7 minutes or more. If it is 7 minutes or more, the desulfurization rate becomes more stable.

また、スラグーメタル間反応速度に影響する撹拌条件として溶鋼に吹き込む不活性ガス流量が溶鋼1ton当たり10Nl/min以上20Nl/min以下とすることが好ましい。10Nl/min未満では溶鋼とスラグとの撹拌が不充分となり、添加されたREMがスラグーメタル界面に迅速に供給されない場合がある。また、20Nl/minを超えて大きくするとREMとスラグとの反応速度が過剰に加速されて溶鋼中REM濃度が短時間で低下してしまう場合があり、この場合はREMの効果が小さくなる場合がある。   Moreover, it is preferable that the flow rate of the inert gas blown into the molten steel is 10 Nl / min or more and 20 Nl / min or less per 1 ton of molten steel as a stirring condition affecting the reaction rate between slag-metals. If it is less than 10 Nl / min, stirring of molten steel and slag becomes insufficient, and the added REM may not be rapidly supplied to the slag metal interface. Moreover, if it exceeds 20 Nl / min, the reaction rate of REM and slag may be excessively accelerated, and the REM concentration in molten steel may be reduced in a short time. In this case, the effect of REM may be reduced. is there.

一般的なREM添加鋼の溶製では固溶REM濃度の確保あるいは溶鋼中にREM系介在物を残留させることを目的とするため、REM添加後の溶鋼撹拌時間を3〜5分間と短くしたり、REM添加後はその他の処理を行わず鋳造される。これに対し、本発明は脱硫を目的としているため、REM添加後にスラグーメタル間脱硫反応に必要な撹拌力と時間が必要となる。よって、上記条件での撹拌を行うことが好ましい。   In general melting of REM-added steel, the purpose is to ensure solid solution REM concentration or to leave REM inclusions in the molten steel, so the molten steel stirring time after REM addition can be shortened to 3-5 minutes. After addition of REM, casting is performed without any other treatment. On the other hand, since the present invention aims at desulfurization, the stirring force and time required for the desulfurization reaction between slag metals are required after REM addition. Therefore, it is preferable to perform stirring under the above conditions.

なお、REM添加後から行う不活性ガス吹き込み中は、溶鋼にその他の合金を添加しないことが好ましい。これは、添加される合金が微量に含有するSやOによる脱硫阻害を回避するためである。さらに好ましくはREM添加前に必要な合金元素を添加しておくことである。   In addition, it is preferable not to add another alloy to molten steel during the inert gas blowing performed after REM addition. This is to avoid desulfurization inhibition due to S or O contained in a trace amount in the added alloy. More preferably, a necessary alloy element is added before REM addition.

REM添加時の溶鋼中Al濃度は、固体電解質センサによって測定することも可能であるが、操業実績を基に決定することができる。REM添加直後のREM濃度を知る必要はないが、添加するREMがランタノイドを主体とする場合の歩留まりは45〜55%である。脱硫処理後、すなわちREM添加後から不活性ガス撹拌終了までのREM濃度低下速度とAl濃度低下速度は安定した再現性を示すので、REM添加量およびAl添加量と不活性ガス吹き込み撹拌時間との関係から、脱硫処理後の各濃度は容易に推定できる。この関係から、請求項1を満足するようにREM添加前のAl濃度を決定し、これに応じてAl添加量を決定して添加すればよい。   Although the Al concentration in molten steel at the time of REM addition can be measured by a solid electrolyte sensor, it can be determined based on operational results. Although it is not necessary to know the REM concentration immediately after REM addition, the yield when the REM to be added is mainly lanthanoid is 45 to 55%. Since the REM concentration reduction rate and the Al concentration reduction rate after desulfurization treatment, that is, from the addition of REM to the end of stirring of the inert gas, show stable reproducibility, the REM addition amount, the Al addition amount, and the inert gas blowing stirring time From the relationship, each concentration after the desulfurization treatment can be easily estimated. From this relationship, the Al concentration before REM addition may be determined so as to satisfy claim 1, and the Al addition amount may be determined and added accordingly.

また、脱硫処理後の溶鋼中REM濃度は0.002%以上であることが好ましく、さらに好ましくは0.002%以上0.02%以下である。0.002%未満では僅かな大気と溶鋼との接触でもREMが消失する恐れがあるため、大気と接触の可能性がある大気圧下精錬では0.002%以上が好ましい。一方、0.02%を超えて高くなると、介在物がREM−Al−O系もしくはREM−Si−O系あるいはAl−Si−REM−O系となり、介在物が変化する場合がある。ただし、REM濃度に対する製品成分規格やREM系介在物残留に対する制約がない場合は、REM濃度の上限は特に規定されない。   Further, the REM concentration in the molten steel after the desulfurization treatment is preferably 0.002% or more, and more preferably 0.002% or more and 0.02% or less. If it is less than 0.002%, there is a possibility that REM may be lost even if a slight contact between the atmosphere and the molten steel, so 0.002% or more is preferable in refining under atmospheric pressure where there is a possibility of contact with the atmosphere. On the other hand, if the content exceeds 0.02%, the inclusions may be REM-Al-O, REM-Si-O, or Al-Si-REM-O, and the inclusions may change. However, the upper limit of the REM concentration is not particularly specified when there are no restrictions on the product component standard for the REM concentration and the REM inclusion inclusion residue.

なお、REM添加によりOとSが低下するため、REM添加後の不活性ガス撹拌中の吸窒が起こりやすくなる。このため、雰囲気を大気から遮断して内部雰囲気を調整できる装置を用いることが好ましい。   In addition, since O and S fall by REM addition, nitrogen absorption during the inert gas stirring after REM addition becomes easy to occur. For this reason, it is preferable to use an apparatus capable of adjusting the internal atmosphere by blocking the atmosphere from the atmosphere.

以上が転炉と大気圧下不活性ガス吹き込み精錬装置を用いた例であるが、転炉と部分減圧精錬装置もしくは電気炉とVODを用いる場合も同様である。つまり、本発明はVODや直胴式減圧精錬装置などスラグ−メタル間反応が進行する減圧精錬装置で実施することができる。なお、VOD処理後に大気圧不活性ガス吹き込み精錬装置に取鍋を移送し、本発明を実施してもよい。   The above is an example using a converter and an inert gas blowing refining apparatus under atmospheric pressure, but the same applies to the case of using a converter and a partial vacuum refining apparatus or an electric furnace and a VOD. That is, the present invention can be implemented in a vacuum refining apparatus in which a slag-metal reaction proceeds, such as a VOD or a straight barrel type vacuum refining apparatus. In addition, the ladle may be transferred to an atmospheric pressure inert gas blowing refining apparatus after the VOD treatment to carry out the present invention.

本脱硫処理後に取鍋を速やかに連続鋳造装置等に移送して鋳造してもよいし、RHにて真空脱ガス精錬を行い、その後に鋳造してもよい。RHは取鍋スラグと溶鋼との反応速度が非常に小さいため、復硫が発生しにくいため、本発明実施後にRH処理を実施できる。また、RH処理中あるいはRH処理後、取鍋さらにはタンディッシュなどにて介在物形態制御等を目的としたCa処理を施してもよい。   After the desulfurization treatment, the ladle may be quickly transferred to a continuous casting apparatus or the like for casting, or vacuum degassing refining may be performed with RH and then cast. Since RH has a very low reaction rate between ladle slag and molten steel, sulfurization is unlikely to occur, and therefore RH treatment can be performed after the present invention is implemented. Further, during or after the RH treatment, a Ca treatment for the purpose of inclusion form control or the like may be performed using a ladle or a tundish.

溶鋼250tonを転炉で脱炭処理を行い、取鍋内に出鋼した。出鋼時に取鍋内に生石灰およびAl,Si,Mnを添加した。その後、取鍋を大気圧下不活性ガス吹き込み精錬装置に移送し、直ちにArガスの吹き込み処理を開始した。Arガスは溶鋼に浸漬した吹き込みランスを用い、吹き込み深さは溶鋼表面から溶鋼深さの70〜85%(平均80%)の深さとし、ガス流量は3800Nl/minとした。   250 ton of molten steel was decarburized in a converter and put out into a ladle. Quick lime and Al, Si, and Mn were added to the ladle at the time of steeling. Thereafter, the ladle was transferred to an inert gas blowing and refining apparatus under atmospheric pressure, and Ar gas blowing treatment was started immediately. The Ar gas used was a blow lance immersed in molten steel, the blow depth was 70 to 85% (average 80%) of the molten steel depth from the molten steel surface, and the gas flow rate was 3800 Nl / min.

処理開始後、溶鋼温度の調整が必要な場合は溶鋼にAlを、スラグにCaOを添加した後に上吹きランスを介して酸素ガスを吹き付けた。酸素ガス量は50〜150Nl/minである。   When it was necessary to adjust the molten steel temperature after the treatment started, Al was added to the molten steel, and CaO was added to the slag, and then oxygen gas was sprayed through the top blowing lance. The amount of oxygen gas is 50 to 150 Nl / min.

必要に応じて酸素上吹きを行った後に、REMを添加して引き続きArガス吹き込み撹拌を行った。REM添加量、撹拌時間、温度上昇処理の有無、C/Aを表1に示す。
試験番号1は少量のREMを添加した比較例、試験番号2は請求項1を満足する本発明例、試験番号3〜8は請求項1および2を満足する本発明例、試験番号9〜12はREMを添加しなかった比較例である。
After blowing over oxygen as necessary, REM was added and Ar gas was blown and stirred. Table 1 shows the amount of REM added, stirring time, presence / absence of temperature increase treatment, and C / A.
Test No. 1 is a comparative example in which a small amount of REM is added, Test No. 2 is an example of the present invention that satisfies claim 1, Test Nos. 3 to 8 are examples of the present invention that satisfy claims 1 and 2, and Test Nos. 9 to 12 Is a comparative example in which REM was not added.

脱硫率に着目すると本発明例は比較例に対し高い脱硫率が得られており、本発明に従い低Al濃度でも低C/Aでも高い脱硫率が得られることが分かる。また、請求項2の条件を満足することでさらに高い脱硫率が得られることが分かる。   Focusing on the desulfurization rate, it can be seen that the present invention example has a higher desulfurization rate than the comparative example, and according to the present invention, a high desulfurization rate can be obtained even at low Al concentration and low C / A. It can also be seen that a higher desulfurization rate can be obtained by satisfying the conditions of claim 2.

また、処理前S濃度が6ppmと低い本発明例である試験番号8と、処理前S濃度が7ppmと低い比較例である試験番号10とに着目すると、REMを添加しない試験番号10では全く脱硫しないのに対し、試験番号8では処理前S濃度が低いことから脱硫率自体は低いものの、極低硫域での脱硫も可能であることが分かる。これにより、本発明により極低硫鋼の製造も可能であることが分かる。   Further, when attention is paid to test number 8 which is an example of the present invention having an S concentration before treatment as low as 6 ppm and test number 10 which is a comparative example where the S concentration before treatment is as low as 7 ppm, the test number 10 where REM is not added is completely desulfurized. On the other hand, in Test No. 8, since the S concentration before treatment is low, the desulfurization rate itself is low, but it is understood that desulfurization in an extremely low sulfur region is possible. Thereby, it turns out that manufacture of an ultra-low-sulfur steel is also possible by this invention.

Figure 2012172205
Figure 2012172205

Claims (2)

取鍋内の溶鋼および溶鋼表面上のスラグを不活性ガスで撹拌する精錬処理に際し、溶鋼に希土類金属を1種類以上添加した後にガス撹拌を行う脱硫方法であって、添加する希土類金属の合計質量が前記溶鋼の質量(ton)当り0.2kg以上0.9kg以下であって、かつ、溶鋼脱硫処理後の溶鋼中Alの濃度[Al](質量%)と該溶鋼中の希土類元素の合計濃度[REM](質量%)との比[Al]/[REM]が1.2以上20以下となるように、REM添加前のAl添加量を調整することを特徴とする溶鋼の脱硫方法。   A desulfurization method in which at least one kind of rare earth metal is added to molten steel in the refining treatment in which the molten steel in the ladle and the slag on the surface of the molten steel are stirred with an inert gas, and the total mass of rare earth metals to be added. Is 0.2 kg or more and 0.9 kg or less per mass (ton) of the molten steel, and the concentration [Al] (mass%) of Al in the molten steel after the molten steel desulfurization treatment and the total concentration of rare earth elements in the molten steel A desulfurization method for molten steel, wherein the amount of Al added before REM addition is adjusted so that the ratio [Al] / [REM] to [REM] (% by mass) is 1.2 or more and 20 or less. 酸化性ガスを溶鋼に吹き込みまたは吹き付けて溶鋼中のSiおよびAlのいずれか一方または両方と反応させる溶鋼温度上昇処理を行った後、引き続き溶鋼に前記希土類金属を1種類以上添加し、さらにガス撹拌を5分間以上15分間以下行うことを特徴とする請求項1記載の溶鋼の脱硫方法。   After carrying out a molten steel temperature rise treatment in which oxidizing gas is blown or blown into molten steel to react with one or both of Si and Al in the molten steel, one or more of the rare earth metals are subsequently added to the molten steel, and gas stirring is further performed. The molten steel desulfurization method according to claim 1, wherein the desulfurization is performed for 5 minutes to 15 minutes.
JP2011035944A 2011-02-22 2011-02-22 Desulfurization method for molten steel Active JP5293759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011035944A JP5293759B2 (en) 2011-02-22 2011-02-22 Desulfurization method for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011035944A JP5293759B2 (en) 2011-02-22 2011-02-22 Desulfurization method for molten steel

Publications (2)

Publication Number Publication Date
JP2012172205A true JP2012172205A (en) 2012-09-10
JP5293759B2 JP5293759B2 (en) 2013-09-18

Family

ID=46975400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011035944A Active JP5293759B2 (en) 2011-02-22 2011-02-22 Desulfurization method for molten steel

Country Status (1)

Country Link
JP (1) JP5293759B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014099813A1 (en) * 2012-12-20 2014-06-26 United Technologies Corporation Gaseous based desulfurization alloys

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49117324A (en) * 1973-03-14 1974-11-09
JPS5256011A (en) * 1975-11-04 1977-05-09 Nisshin Steel Co Ltd Addition rare earth elements or alkaline earth elements to molten steel
JPS58167712A (en) * 1982-03-30 1983-10-04 Mitsubishi Heavy Ind Ltd Desulfurization of steel melt
JPS61183408A (en) * 1985-02-08 1986-08-16 Kobe Steel Ltd Treatment of molten steel
JP2001192723A (en) * 2000-01-06 2001-07-17 Nippon Yakin Kogyo Co Ltd Method of manufacturing for stainless steel containing rare earth element
JP2004052077A (en) * 2002-07-23 2004-02-19 Nippon Steel Corp Method for producing steel material having little alumina cluster
JP2009144221A (en) * 2007-12-17 2009-07-02 Sumitomo Metal Ind Ltd Method for refining extra-low nitrogen steel, and extra-low sulfur, extra-low oxygen and extra-low nitrogen steel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49117324A (en) * 1973-03-14 1974-11-09
JPS5256011A (en) * 1975-11-04 1977-05-09 Nisshin Steel Co Ltd Addition rare earth elements or alkaline earth elements to molten steel
JPS58167712A (en) * 1982-03-30 1983-10-04 Mitsubishi Heavy Ind Ltd Desulfurization of steel melt
JPS61183408A (en) * 1985-02-08 1986-08-16 Kobe Steel Ltd Treatment of molten steel
JP2001192723A (en) * 2000-01-06 2001-07-17 Nippon Yakin Kogyo Co Ltd Method of manufacturing for stainless steel containing rare earth element
JP2004052077A (en) * 2002-07-23 2004-02-19 Nippon Steel Corp Method for producing steel material having little alumina cluster
JP2009144221A (en) * 2007-12-17 2009-07-02 Sumitomo Metal Ind Ltd Method for refining extra-low nitrogen steel, and extra-low sulfur, extra-low oxygen and extra-low nitrogen steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014099813A1 (en) * 2012-12-20 2014-06-26 United Technologies Corporation Gaseous based desulfurization alloys
US9481917B2 (en) 2012-12-20 2016-11-01 United Technologies Corporation Gaseous based desulfurization of alloys

Also Published As

Publication number Publication date
JP5293759B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
RU2433189C2 (en) Method for obtaining steel for steel pipes with excellent resistance in acid medium
JP6743915B2 (en) Method for desulfurizing molten steel and desulfurizing agent
JP5343308B2 (en) Desulfurization method for molten steel
JP2013234379A (en) Method for melting extra-low phosphor and extra-low sulfur steel
JP5457945B2 (en) Hot metal desulfurization method
JP5333542B2 (en) Desulfurization method for molten steel and molten iron alloy
JP5891826B2 (en) Desulfurization method for molten steel
KR20220008897A (en) Ca Addition Method to Molten Steel
JP5293759B2 (en) Desulfurization method for molten steel
JP5888194B2 (en) Desulfurization method for molten steel
JP4453532B2 (en) Hot metal desulfurization method
JP6555068B2 (en) Flux for refining molten steel and method for refining molten steel
JP5509913B2 (en) Method of melting high Si steel with low S and Ti content
JP2012158789A (en) Method for desulfurizing molten metal using vacuum degassing apparatus
JP4984928B2 (en) Hot metal desulfurization method
JP5712945B2 (en) Method for melting low-sulfur steel
JP2000129328A (en) Method for desulfurizing molten iron
JP6273947B2 (en) Desulfurization treatment method for molten steel
JP7211454B2 (en) Method for denitrifying molten steel, method for simultaneous denitrification and desulfurization, and method for manufacturing steel
JP7255639B2 (en) Molten steel desulfurization method and desulfurization flux
JP5481899B2 (en) Hot metal desulfurization agent and desulfurization treatment method
JP5387045B2 (en) Manufacturing method of bearing steel
JP2003041311A (en) Method for desulfurizing molten pig iron
JP6828498B2 (en) Desulfurization method of molten steel
JP2976849B2 (en) Method for producing HIC-resistant steel

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R151 Written notification of patent or utility model registration

Ref document number: 5293759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350