JPS61183408A - Treatment of molten steel - Google Patents

Treatment of molten steel

Info

Publication number
JPS61183408A
JPS61183408A JP2417785A JP2417785A JPS61183408A JP S61183408 A JPS61183408 A JP S61183408A JP 2417785 A JP2417785 A JP 2417785A JP 2417785 A JP2417785 A JP 2417785A JP S61183408 A JPS61183408 A JP S61183408A
Authority
JP
Japan
Prior art keywords
molten steel
inert gas
earth metal
tundish
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2417785A
Other languages
Japanese (ja)
Inventor
Itaru Matsubara
松原 格
Kiyoshi Takano
清 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2417785A priority Critical patent/JPS61183408A/en
Publication of JPS61183408A publication Critical patent/JPS61183408A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • B22D11/118Refining the metal by circulating the metal under, over or around weirs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent

Abstract

PURPOSE:To accelerate the uniform dispersion of an additive metal into a molten steel and to improve the yield thereof by blowing an alkaline earth metal or rare earth metal together with an inert gas into a molten steel which passes through the space part in a submerged gate provided in a molten steel flow passage. CONSTITUTION:The submerged gate 5 constituted by disposing refractory walls 3a, 3b having many molten steel passage holes P on the down stream side of a pouring pipe 2 is erected in contact with the base of the molten steel flow passage in a tundish 1 in the stage of casting the molten steel M accepted into said tundish 1 from a molten steel pan 7 through the pipe 2 via an overflow gate 8 into a casting mold 10 through a pouring port 9 provided with a stopper 11. The powder of an alkaline earth metal or rare earth metal element alone or the alloy thereof is blown together with the inert gas such as Ar through a tuyere 6 provided in the bottom surface position of the space part 4 into the molten steel M passing through the space part 4, by which the molten steel M is efficiently cleaned and the non-metallic inclusions therein are decreased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、タンディツシュや溶鋼樋等を通過中の溶鋼中
に、アルゴン等の不活性ガスによってアルカリ土類金属
若しくは希土類元素の単体又は合金を吹込み、鋼の清浄
化と非金属介在物の低減及び形態制御を図る方法の改良
技術に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is directed to the use of an inert gas such as argon to inject alkaline earth metals or rare earth elements or their alloys into molten steel passing through a tundish or molten steel trough. This invention relates to improved techniques for blowing, cleaning steel, reducing non-metallic inclusions, and controlling their morphology.

〔従来の技術〕[Conventional technology]

鋼中に含まれる燐や硫黄等の不純物及び非金属介在物は
各種欠陥の原因となる為、その低減は製鋼分野に詔ける
重要な課題の一つとなっている。
Impurities such as phosphorus and sulfur and nonmetallic inclusions contained in steel cause various defects, so reducing them is one of the important issues in the steel manufacturing field.

こうした状況のもとで鋼中の不純物及び非金属介在物を
低減し鋼の清浄化をはかる方法としては、次に示す様に
色々の手段が講じられている。
Under these circumstances, various measures have been taken to reduce impurities and nonmetallic inclusions in steel and purify the steel, as shown below.

(1)溶銑予備処理による脱燐、脱硫の強化、製鋼炉や
取鍋内における精錬の強化、或は真空脱ガス等による溶
鋼中の不純物、非金属介在物及びガス成分の低減。
(1) Reduction of impurities, nonmetallic inclusions, and gas components in molten steel by strengthening dephosphorization and desulfurization through hot metal pretreatment, strengthening refining in steelmaking furnaces and ladles, or vacuum degassing, etc.

(2)溶鋼の空気酸化或は窒化を防止する為の、不活性
ガスによる完全シール。
(2) Complete sealing with inert gas to prevent air oxidation or nitridation of molten steel.

(3)耐火物の溶損による不純介在物の混入を防止する
為の、耐溶鋼性に優れた高級耐火物の使用。
(3) Use of high-grade refractories with excellent resistance to molten steel to prevent impurity inclusions from being mixed in due to erosion of the refractories.

また溶鋼処理の後連続鋳造を行なう場合に詔いては、溶
鋼を鋳型に注入する前に溶鋼樋を経てタンディツシュに
受けるのが普通であるが、鋳造直前の段階で鋼中不純物
の凝集分離をはかることを目的として、タンディツシュ
を構造面から改善するということも種々行なわれて詔り
1例えば1段堰や2段堰の設置等が提案されている。即
ちこれら堰の設置によって、タンディツシュ底部耐火物
からのA1ρ、やSin、等の巻込み防止と、溶鋼の滞
留時間延長及び整流化による非金属介在物の浮上分離促
進をはかることができる。
In addition, when continuous casting is performed after processing molten steel, it is normal for the molten steel to pass through a tundish and receive it in a tundish before injecting it into the mold, but impurities in the steel are agglomerated and separated immediately before casting. For this purpose, various efforts have been made to improve the structure of tanditshu, and proposals have been made, such as the installation of a one-stage weir or a two-stage weir. That is, by installing these weirs, it is possible to prevent A1ρ, Sin, etc. from being drawn in from the refractories at the bottom of the tundish, and to promote floating separation of nonmetallic inclusions by extending the residence time of molten steel and rectifying the flow.

またタンディツシュの底部から不活性ガスを吹込み、微
少介在物の凝集・浮上分離を促進させる方法も一部で実
用化されている。この他鋼質改善措置の一つとして、溶
鋼の仕上げ脱酸・脱硫及び非金属介在物の低減並びに形
態制御を推進するため、溶鋼にCa等のアルカリ土類金
属やLa、Ce等の希土類金属元素を添加する方法も知
られている。これら改質金属の添加法としては(a)取
鍋添加法、(b)タンディツシュ添加法、(C)取鍋及
びタンディツシュへの複合添加法があり、改質金属は金
属単体又は合金の粉末として、或は軟鉄被覆材や合金ワ
イヤの形態で添加されるが、取鍋添加の場合は殆んどが
不活性ガスをキャリヤガスとするインジェクション法で
あり、タンディツシュ添加の場合はタンディツシュ内へ
直接添加する方法と注入管へ添加する方法が主である。
In addition, a method of blowing inert gas from the bottom of the tundish to promote agglomeration and flotation separation of minute inclusions has been put into practical use in some cases. In addition, as one of the measures to improve steel quality, in order to promote finish deoxidation and desulfurization of molten steel, reduction of nonmetallic inclusions, and shape control, molten steel is made with alkaline earth metals such as Ca and rare earth metals such as La and Ce. Methods of adding elements are also known. These methods of adding modified metals include (a) ladle addition method, (b) tundish addition method, and (C) composite addition method to ladle and tundish. Modified metals are added as single metals or alloy powders. Alternatively, it is added in the form of soft iron coating or alloy wire, but in the case of ladle addition, most of the time it is an injection method using an inert gas as a carrier gas, and in the case of tundish addition, it is added directly into the tundish. The main methods are adding it to the injection tube and adding it to the injection tube.

こうした改質用金属を添加する目的は、アルカリ土類金
属及び希土類金属元素の有する作用、即ち■酸素や硫黄
との親和力が極めて強く強力な脱酸及び脱硫剤として作
用する。■MnSやAlρ1等の様に鋼材の品質に悪影
響を及ぼす非金属介在物を低減したりCλ−AI−0系
組成を持つ微細な複合介在物に変え、或は塑性変形しゃ
すくする、といった作用を発揮させる為であり、それな
りの効果が得られている。
The purpose of adding these reforming metals is to fulfill the functions of alkaline earth metals and rare earth metal elements, namely: 1) They have an extremely strong affinity with oxygen and sulfur and act as powerful deoxidizing and desulfurizing agents. ■Effects such as reducing nonmetallic inclusions such as MnS and Alρ1 that adversely affect the quality of steel materials, converting them to fine composite inclusions with a Cλ-AI-0 system composition, or reducing plastic deformation. The purpose is to demonstrate this, and a certain degree of effect has been obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし上記の方法にしても夫々未解決の問題があり、期
待通りの作用が十分に発揮されているとは言えない。例
えばCa等のアルカリ土類金属を改質材として添加する
方法では、これら金属の酸素との反応性が高くまた蒸気
圧も非常に高い為、添加時のロスが多く歩留りを十分に
高めることができない。また酸化物や硫化物等の生成物
は溶鋼中に固溶しないで分散するので、大粒径のものは
凝集させて浮上分離する他、溶鋼中に残される生成物は
偏析を生じさせない様微細且つ均一な粒径で分散させる
ことが重要であるが、Ci等の添加量が多過ぎると上記
生成物が巨大な介在物となって偏析し、かえって鋼質を
悪化させることもある。
However, each of the above methods has unresolved problems, and it cannot be said that the expected effects are fully exhibited. For example, in the method of adding alkaline earth metals such as Ca as modifiers, these metals have high reactivity with oxygen and have very high vapor pressure, so there is a lot of loss during addition, making it difficult to sufficiently increase the yield. Can not. In addition, products such as oxides and sulfides do not form a solid solution in molten steel but are dispersed, so large grains are agglomerated and floated, and the products left in molten steel are finely divided to prevent segregation. It is important to disperse the particles with a uniform particle size, but if the amount of added Ci or the like is too large, the above-mentioned products may become huge inclusions and segregate, which may even worsen the steel quality.

またタンディツシュ添加法を採用する場合は、注入管へ
合金ワイヤとして定量添加することによって添加元素の
均一分散と歩留り向上を図る方法も採用されているが、
+FI述の改質用添加元素は概して蒸気圧が高い為、高
々10%の歩留りが得られるにすぎない。また取鍋添加
法や不活性ガス撹拌法にしても、不活性ガス吹込み量が
多過ぎると溶鋼温度の異常降下を招き、且つ不活性ガス
中の不純物が溶鋼を汚染するという問題も生じてくる。
In addition, when using the tundish addition method, a method is also adopted in which the added elements are uniformly dispersed and the yield is improved by adding a fixed amount as an alloy wire to the injection tube.
Since the additive elements for reforming described in +FI generally have high vapor pressure, a yield of only 10% can be obtained at most. Furthermore, even when using the ladle addition method or the inert gas stirring method, if the amount of inert gas injected is too large, the temperature of the molten steel will drop abnormally, and impurities in the inert gas will contaminate the molten steel. come.

本発明はこうした状況のもとで、溶鋼9番こアルカリ土
類金属元素又は希土類金属元素を歩留り良く添加し得る
と共に均一に分散させることができ、しかも溶鋼中の不
純物を効率良く除去して清浄度を高めることのできる技
術を確立しようとするものである。
Under these circumstances, the present invention makes it possible to add alkaline earth metal elements or rare earth metal elements to molten steel with a high yield and to disperse them uniformly, as well as to efficiently remove impurities in molten steel and clean it. The aim is to establish a technology that can improve the level of performance.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明に係る溶鋼の処理方法とは、多数の溶鋼通過孔を
有する一対の耐火壁の間に空間部を形成してなる潜り堰
を、溶鋼流路の底面に接して設け。
In the molten steel processing method according to the present invention, a submerged weir is provided in contact with the bottom surface of a molten steel channel, with a space formed between a pair of fireproof walls having a large number of molten steel passage holes.

該潜り堰の空間部を通過する溶鋼に、アルカリ土類金属
若しくは希土類金属元素の単体又は合金を不活性ガスと
共に吹込むところに要旨を有するものである。
The gist is that an alkaline earth metal or a rare earth metal element or an alloy is blown into the molten steel passing through the space of the submerged weir together with an inert gas.

〔作用〕[Effect]

本発明では、例えば第1図に示す様な設備を用いて溶鋼
の連続処理を行なう。即ち本例では、タンディツシュ1
の注入管2装入位置よりも下流側に、潜り堰5〔多数の
溶鋼通過孔Pを有する耐火壁3a 、3bを、それらの
間に空間部4が形成される様に配設したもの〕が、タン
ディツシュ1の底面に接して設けられており、且つ該空
間部4の下面位置には改質金属粉を不活性ガスと共に吹
込む為の羽口6が設けられ−Cいる。溶鋼鍋7から注入
管2を経てタンディツシュ1内へ注入された溶鋼Mは、
実線矢印で示す如く耐火壁3a、3b及び空間部4を通
過した後、越流堰8から注出口9を経て鋳型10へ順次
鋳込まれて行く。図中11はストッパーを示す。12は
溶融フラックスである。
In the present invention, continuous treatment of molten steel is carried out using equipment as shown in FIG. 1, for example. That is, in this example, Tanditsh 1
A submerged weir 5 [fireproof walls 3a and 3b having a large number of molten steel passage holes P are arranged so that a space 4 is formed between them] downstream of the charging position of the injection pipe 2. is provided in contact with the bottom surface of the tundish 1, and a tuyere 6 is provided at the lower surface of the space 4 for blowing the modified metal powder together with an inert gas. The molten steel M injected into the tundish 1 from the molten steel ladle 7 via the injection pipe 2 is
After passing through the fireproof walls 3a, 3b and the space 4 as shown by the solid arrows, it is successively cast into the mold 10 from the overflow weir 8 through the spout 9. In the figure, 11 indicates a stopper. 12 is a molten flux.

ここで本発明では、を間部4を通過中の溶鋼Mに1羽口
6から粉粒状のアルカリ土類金属又は希土類金f11(
以下添加金属又は改質金属ということがある)を不活性
ガス気流に乗せて吹込み、添加金属を溶鋼中の不純物と
効率良く反応させると共に、溶鋼中に均一に分散させる
。即ち空間部4内へ吹込まれた上記添加金属は、該空間
部4に僅かの時間で通過する溶鋼MIllPjこ均一に
分散された後、下流側耐火g3bの溶鋼通過孔Pを通っ
て溶鋼Mと共に下流側へ流れて行く。尚羽口6から吹込
まれた不活性ガスは、空間部4内でバブリングによる撹
拌効果を発揮して溶鋼Mへの前記金属粉粒体の分散を促
進することによって溶鋼Mと金属粉粒体との接触効率を
高め鋼中不純物及び非金属介在物の凝集を促進する。こ
うして形成された不純物は耐火壁3a及び3bの通過孔
Pを通過し更に湯面方向へ浮上していく。浮上した不純
物は、湯面 ゛をカバーしている溶融フラックスに吸収
される。
Here, in the present invention, granular alkaline earth metal or rare earth gold f11 (
(hereinafter sometimes referred to as added metals or modified metals) is blown into an inert gas stream to cause the added metals to efficiently react with impurities in the molten steel and to uniformly disperse them in the molten steel. That is, the added metal injected into the space 4 is uniformly dispersed in the molten steel MIllPj passing through the space 4 in a short time, and then passes through the molten steel passage hole P of the downstream refractory g3b together with the molten steel M. It flows downstream. The inert gas blown from the tuyere 6 exerts a stirring effect by bubbling in the space 4 and promotes the dispersion of the metal powder into the molten steel M, so that the molten steel M and the metal powder are separated. This increases the contact efficiency of steel and promotes the agglomeration of impurities and nonmetallic inclusions in the steel. The impurities thus formed pass through the passage holes P of the refractory walls 3a and 3b and float further toward the surface of the hot water. The impurities that float to the surface are absorbed by the molten flux covering the molten metal surface.

この様な吹込み法を採用することによって次の様な作用
効果を発揮することができる。
By employing such a blowing method, the following effects can be achieved.

(1)潜り堰5の空間部4内を通過する溶鋼の量はほぼ
一定であるので、不活性ガス及び添加金属の吹込み速度
をコントロールすることによって添加量を一定の範囲に
収めることができ、しかも均一分散が可能となる。
(1) Since the amount of molten steel passing through the space 4 of the submerged weir 5 is almost constant, the amount added can be kept within a certain range by controlling the injection speed of the inert gas and the added metal. Moreover, uniform dispersion is possible.

(21C1等の添加金属は蒸気圧が高い為、従来の溶鋼
鍋インジェクション法等ではノズル浸漬深さを400g
g以上に保持しながら吹込まなければならず、また湯面
からの不活性ガスの放散に伴って添加金属の蒸散ロスが
相当生じてくるが、本発明ではタンディツシュ底部の羽
口から吹込む方法を採用しているから浸漬深さの調整と
いった燗雑な作業が一切不要であり、しかも添加金属は
耐火壁で囲まれた空間部で溶鋼と効率良く接触するので
蒸発損失が少なく、添加金属の歩留りが向上する。
(Since additive metals such as 21C1 have high vapor pressure, the nozzle immersion depth is 400 g in conventional molten steel ladle injection methods, etc.)
It is necessary to blow the metal while maintaining it at a temperature higher than g, and there is considerable evaporation loss of the added metal due to the dissipation of inert gas from the surface of the hot water.However, in the present invention, the method of blowing from the tuyeres at the bottom of the tundish. This eliminates the need for tedious work such as adjusting the immersion depth, and since the added metal efficiently contacts the molten steel in the space surrounded by the fireproof wall, evaporation loss is small and the added metal is Yield is improved.

(3)不活性ガスと溶鋼の接触も空間部内で効率良く行
なわれるので、鋼中不純物及び非金属介在物の凝集分離
効率も高められろう (4)従来例では、大量の溶鋼中に添加金属を均一に分
散させ、或は全溶鋼中の不純物を除去する為に大量の不
活性ガスを吹込む必要があり、その結果、溶鋼の温度降
下或は不活性ガス中の不純物の再溶解、更には撹拌によ
る添加金属の蒸発損失の加速といった問題を生じていた
が1本発明では不活性ガス吹込み量を大幅に減少するこ
とができるので、上記の様な問題も同時に解消される。
(3) Since the contact between the inert gas and the molten steel is efficiently carried out within the space, the efficiency of coagulation and separation of impurities and non-metallic inclusions in the steel will also be improved. (4) In the conventional example, the added metal It is necessary to blow a large amount of inert gas in order to uniformly disperse the molten steel or to remove impurities from all the molten steel.As a result, the temperature of the molten steel decreases, the impurities in the inert gas are redissolved, and However, in the present invention, since the amount of inert gas blown can be significantly reduced, the above-mentioned problems can be solved at the same time.

第2図は本発明で使用する潜り堰5を拡大して示す一部
切除見取り図であり、多数の溶鋼通過孔Pの穿設された
耐火壁3aと、同じく多数の溶鋼通過孔Pの穿設された
耐火壁3bが、適当な空間部4が形成される様に対峙し
て配置されている。
FIG. 2 is a partially cutaway sketch showing an enlarged submerged weir 5 used in the present invention, showing a fireproof wall 3a in which a large number of molten steel passing holes P are drilled, and a fireproof wall 3a in which a large number of molten steel passing holes P are drilled. The fireproof walls 3b are arranged facing each other so that an appropriate space 4 is formed.

尚第1図の例からも明らかな様に被処理溶鋼は耐火壁3
aの溶鋼通過孔Pがら空間部4へ流入して所定の処理を
受けた後、耐火壁3bの溶鋼通過孔Pから下流側へ流出
して行くものであり、こうした溶鋼流のため1羽口6か
ら吹込まれた添加金属粉及び不活性ガス泡は、耐火壁3
bの溶鋼通過孔Pから短時間のうちに流出して行く傾向
がある。
As is clear from the example in Figure 1, the molten steel to be treated is the fireproof wall 3.
The molten steel flows into the space 4 through the molten steel passage hole P in a, undergoes a predetermined treatment, and then flows out downstream from the molten steel passage hole P in the fireproof wall 3b. The added metal powder and inert gas bubbles blown into the fireproof wall 3
There is a tendency for the molten steel to flow out from the molten steel passage hole P in a short time.

従って空間部4内における添加金属粉及び不活性ガスの
滞留時間を長くして処理効果を高めるうえでは、下流側
に配設される耐火壁3bの流通抵抗を若干大きくしてお
くのが有利である。この為第2図では耐火a3bとして
、2枚の耐火壁を重ね合わせ、しかも第3図の一部断面
図に示す如く夫々の溶鋼通過孔P、Pが互いに交錯し合
う様に千鳥状に配列し、全体としての流通抵抗を高めて
いる。但し流通抵抗を高める手段はこれに限定される訳
ではなく、溶鋼通過孔Pの孔径を小さくしたり或は穿設
数を少なくする等の手段で対処することも勿論可能であ
る。
Therefore, in order to increase the residence time of the added metal powder and inert gas in the space 4 and increase the treatment effect, it is advantageous to slightly increase the flow resistance of the fireproof wall 3b disposed on the downstream side. be. For this reason, in Fig. 2, two fireproof walls are overlapped as fireproof a3b, and as shown in the partial cross-sectional view of Fig. 3, the respective molten steel passing holes P and P are arranged in a staggered manner so that they intersect with each other. This increases overall distribution resistance. However, the means for increasing the flow resistance is not limited to this, and it is of course possible to take measures such as reducing the diameter of the molten steel passage hole P or reducing the number of holes formed.

尚本発明で特徴付けられる潜り堰5の構成、即ち耐火壁
3a 、3bの材質や厚さ、溶鋼通過孔Pの大きさや孔
数、或は空間部4の容積等は、単位時間当たりの溶鋼処
理量、溶鋼中の不純物量及び添加金属の種類や量に応じ
て適宜選択して決定すべきものであり、−律に定めるこ
とはできない。
The configuration of the submerged weir 5 characterized by the present invention, that is, the material and thickness of the fireproof walls 3a and 3b, the size and number of molten steel passing holes P, the volume of the space 4, etc. It should be selected and determined as appropriate depending on the processing amount, the amount of impurities in the molten steel, and the type and amount of added metal, and cannot be determined by law.

実施例ではアルミナ−カーボン系の耐火物を示している
が、その材質は高アルミナ質石灰質、マグネシア質、ジ
ルコニア質あるいはマグネシア−カーボン質であっても
よい。また上記ではタンディツシュ内における処理例を
挙げて説明したが、この他溶鋼樋に同様の潜り堰を設け
て溶鋼処理を行なうことも勿論可能である。
In the examples, an alumina-carbon type refractory is shown, but the material may be high alumina calcareous, magnesia, zirconia, or magnesia-carbon. Moreover, although the above description has been given of an example of processing within the tundish, it is of course possible to provide a similar submerged weir in the molten steel gutter to perform molten steel processing.

〔実施例〕〔Example〕

高周波大気溶解炉で溶製し成分調整された溶鋼を、第1
〜3図に準じて設計した潜り堰を配設した小型タンディ
ツシュに通し、空間部の底部からアルゴンガスと共にC
a−5i粉末を吹き込んだ後鋳型内へ鋳込み、鋳塊中の
非金属介在物量を調べた。
The molten steel melted in a high-frequency atmospheric melting furnace and whose composition has been adjusted is
~C through a small tundish equipped with a submerged weir designed according to Fig. 3, and argon gas from the bottom of the space.
After the a-5i powder was blown into the ingot, it was cast into a mold, and the amount of nonmetallic inclusions in the ingot was examined.

尚処理条件は下記の通りとした。The processing conditions were as follows.

〈処理条件〉 潜り堰の構成 耐火壁材質:Al、O,・・・92〜93チ、Sin、
・・・1〜2%、C・・・4〜5チ 耐火壁寸法:140朋X160IIjE×3011JI
L溶鋼通過孔: 1211jE’X8個×6段耐火壁3
a・・・1枚、耐火壁3b・・・2枚重ね空間部厚さ:
30u+ りW4ツ汐、及び潜り堰予熱温度二800℃溶鋼処理量
=150時 溶鋼成分 :第1表 添加金属 :(:、a−5i粉末、 50〜1509/
−FW)不活性ガス:アルゴン、5〜101/’fi得
られた鋳塊中の非金属介在物量をJIS規格に準じて測
定し、第2表に示す結果を得た。
<Processing conditions> Submerged weir construction fireproof wall material: Al, O,...92-93 Chi, Sin,
...1-2%, C...4-5 inches Fireproof wall dimensions: 140mm x 160IIjE x 3011JI
L molten steel passage hole: 1211jE'X 8 pieces x 6 stages fireproof wall 3
a... 1 piece, fireproof wall 3b... 2 layers stacked space thickness:
30u+ W4 Tsushio and submerged weir preheating temperature 2800℃ Molten steel processing amount = 150 Molten steel composition: Table 1 Added metals: (:, a-5i powder, 50-1509/
-FW) Inert gas: Argon, 5 to 101/'fi The amount of nonmetallic inclusions in the obtained ingot was measured according to JIS standards, and the results shown in Table 2 were obtained.

また第4図は上記で得た各鋳塊に含まれる大型非金属介
在物量を調べた結果を示したものであり、また第5図は
同鋳塊の表層部からの距離と大型非金属介在物の平均個
数の関係を調べた実験結果を示したものであり、不発明
を採用すれば大型非金属介在物量を大幅に低減すること
ができ、殊に鋳塊表層部側の同介在物量を著しく減少さ
せることができる。
In addition, Figure 4 shows the results of investigating the amount of large nonmetallic inclusions contained in each ingot obtained above, and Figure 5 shows the distance from the surface of the same ingot and the amount of large nonmetallic inclusions. This shows the results of an experiment that investigated the relationship between the average number of objects, and if the invention is adopted, the amount of large nonmetallic inclusions can be significantly reduced. can be significantly reduced.

〔発明の効果〕〔Effect of the invention〕

本発明は以上の様に構成されるが、要は溶鋼流路の底面
に接して設けられ且つ溶鋼通過孔を有する耐火壁で囲ま
れた空間部にアルカリ土類金属又は希土類金属を不活性
ガスと共に吹込み、該空間内でこれらを溶鋼と接触させ
る様にしたから、溶鋼内への添加金属の均一分散が促進
されその歩留りを向上し得ると共に、不活性ガスによる
不純介在物の凝集分離効率も向上し清浄度の高い溶鋼が
得られることになった。しかも少量の不活性ガス吹込み
で十分な効果を得ることができるので、不活性ガス消費
量の低減による経済的利益に加えて、溶鋼温度の異常降
下や不活性ガス中不純物による再汚染の問題も大幅に軽
減される等、実用に即した種々の利益を享受することが
できる。
The present invention is constructed as described above, but the key point is that alkaline earth metals or rare earth metals are injected into a space surrounded by a fireproof wall that is provided in contact with the bottom of a molten steel flow path and has molten steel passage holes. Since these metals are blown into the molten steel and brought into contact with the molten steel within the space, the uniform dispersion of the added metals into the molten steel is promoted and the yield is improved, and the efficiency of agglomeration and separation of impurity inclusions by the inert gas is improved. As a result, molten steel with high purity can be obtained. Moreover, sufficient effects can be obtained with a small amount of inert gas injection, which not only provides economic benefits by reducing inert gas consumption, but also reduces the problem of abnormal drop in molten steel temperature and re-contamination due to impurities in the inert gas. It is possible to enjoy various practical benefits, such as a significant reduction in the cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す概略縦断面図。 第2図は本発明で使用される潜り堰を例示する一部破断
見取り図、第3図は該潜り堰を構成する耐火壁を例示す
る一部断面図、第4,5図は実験で得た鋳塊中の大型介
在物数を示すグラフである。 1・・・タンディツシュ 2・・・注入管3a、3b・
・・耐火壁   4・・・空間部5・・・潜り堰   
  6・・・羽口第4図 BC 処理法 鋳塊表層部からの距離(ff)
FIG. 1 is a schematic vertical sectional view showing an embodiment of the present invention. Fig. 2 is a partially cutaway diagram illustrating the submerged weir used in the present invention, Fig. 3 is a partially sectional view illustrating the fireproof wall that constitutes the submerged weir, and Figs. 4 and 5 are diagrams obtained through experiments. It is a graph showing the number of large inclusions in an ingot. 1... Tanditshu 2... Injection pipes 3a, 3b.
... Fireproof wall 4 ... Space 5 ... Submerged weir
6... Tuyere Figure 4 BC Treatment method Distance from the ingot surface layer (ff)

Claims (1)

【特許請求の範囲】[Claims] 多数の溶鋼通過孔を有する一対の耐火壁の間に空間部を
形成してなる潜り堰を、溶鋼流路の底面に接して立設し
、該潜り堰の前記空間部を通過する溶鋼に、アルカリ土
類金属若しくは希土類金属元素の単体又は合金を不活性
ガスと共に吹込むことを特徴とする溶鋼の処理方法。
A submerged weir formed by forming a space between a pair of fireproof walls having a large number of molten steel passing holes is erected in contact with the bottom of the molten steel flow path, and the molten steel passing through the space of the submerged weir is A method for treating molten steel, which comprises blowing an alkaline earth metal or a rare earth metal element or an alloy together with an inert gas.
JP2417785A 1985-02-08 1985-02-08 Treatment of molten steel Pending JPS61183408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2417785A JPS61183408A (en) 1985-02-08 1985-02-08 Treatment of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2417785A JPS61183408A (en) 1985-02-08 1985-02-08 Treatment of molten steel

Publications (1)

Publication Number Publication Date
JPS61183408A true JPS61183408A (en) 1986-08-16

Family

ID=12131065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2417785A Pending JPS61183408A (en) 1985-02-08 1985-02-08 Treatment of molten steel

Country Status (1)

Country Link
JP (1) JPS61183408A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172205A (en) * 2011-02-22 2012-09-10 Sumitomo Metal Ind Ltd Desulfurizing method for molten steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172205A (en) * 2011-02-22 2012-09-10 Sumitomo Metal Ind Ltd Desulfurizing method for molten steel

Similar Documents

Publication Publication Date Title
US4504309A (en) Process and apparatus for continuous converting of copper and non-ferrous mattes
CN101225453A (en) Electric furnace smelting method for low-carbon low-silicon steel
CN112430707A (en) Method for improving castability of molten low-carbon aluminum killed steel
Cramb High purity, low residual, and clean steels
US3819365A (en) Process for the treatment of molten metals
CN1257301C (en) Method for producing continuous casting alloy steel containing S and Al
CA1305862C (en) Method and plant for fully continuous production of steel strip from ore
CN110396637B (en) Process for producing SPHC with low cost, short flow and high efficiency
US3999979A (en) Removal of sulphur from molten metal
CN113817968B (en) Continuous casting production method for square billet of medium-carbon high-aluminum steel
KR100368239B1 (en) A process of refining molten steel for high clean steel
JPS61183408A (en) Treatment of molten steel
Dutta et al. Secondary steelmaking
KR100399220B1 (en) Refining method for steel sheet manufacturing
JPH11279631A (en) Method for refining molten stainless steel
JPS62227025A (en) Pretreatment of molten iron
KR100311803B1 (en) Method for refining aluminium deoxidation steel
JPH0873923A (en) Production of clean steel having excellent hydrogen induced crack resistance
SU734293A1 (en) Method of steel smelting
KR20000042054A (en) Method for scouring high pure steel of aluminum deoxidation
US5868816A (en) Process for adjusting the composition of a liquid metal such as steel, and plant for its implementation
KR100224638B1 (en) Deoxidation material of low carbon steel for high purity steel
RU2201458C1 (en) Method of modification of steel
SU789591A1 (en) Method of producing low-carbon steel
Residual et al. Alan W. Cramb