KR100368239B1 - A process of refining molten steel for high clean steel - Google Patents

A process of refining molten steel for high clean steel Download PDF

Info

Publication number
KR100368239B1
KR100368239B1 KR10-1998-0057625A KR19980057625A KR100368239B1 KR 100368239 B1 KR100368239 B1 KR 100368239B1 KR 19980057625 A KR19980057625 A KR 19980057625A KR 100368239 B1 KR100368239 B1 KR 100368239B1
Authority
KR
South Korea
Prior art keywords
molten steel
steel
powder
refining
inclusions
Prior art date
Application number
KR10-1998-0057625A
Other languages
Korean (ko)
Other versions
KR20000041671A (en
Inventor
안상복
김정식
손호상
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1998-0057625A priority Critical patent/KR100368239B1/en
Publication of KR20000041671A publication Critical patent/KR20000041671A/en
Application granted granted Critical
Publication of KR100368239B1 publication Critical patent/KR100368239B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • F27D2003/166Introducing a fluid jet or current into the charge the fluid being a treatment gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material
    • F27D2027/002Gas stirring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

본 발명은 고청정강의 정련방법에 관한 것으로, 그 목적은 전로에서 미탈산된 용강에 생석회계 분체를 투입하여 알루미늄개재물을 부상이 용이한 칼슘알루미네이트로 형상제어함으로써, 고청정강을 얻을 수 있는 정련방법을 제공함에 있다.The present invention relates to a method for refining high-purity steel, the purpose of which is to put the quicklime powder into molten steel that is not deoxidized in the converter to control the aluminum inclusions with calcium aluminate that is easy to float, thereby obtaining a high-purity steel To provide a refining method.

이와 같은 목적을 갖는 본 발명은, 전로에서 출강된 미탈산 용강에 생석회계 분체(Flux Powder)를 취입하고 알루미늄으로 탈산한 다음, 이때 발생되는 비중이 낮은 칼슘알루미네이트형 개재물을 자력부상시키거나 또는 RH에서 감압정련을 실시할 때 아르곤 기포에 의해 포착하여 부상 제거시킴으로써, 강의 청정도를 개선할 수 있는 고청정강의 정련방법에 관한 것을 그 기술적요지로 한다.The present invention having the above object, by blowing the quick lime powder (Flux Powder) in the oxidized molten steel from the converter and deoxidized with aluminum, and then magnetically injuries the calcium aluminate inclusions having a low specific gravity generated at this time or The technical gist of the refining method of high-clean steel which can improve the cleanliness of steel by capturing and removing floating by argon bubble at the time of pressure reduction refining at RH is made into the technical summary.

이러한 본 발명은, 주편에서의 전산소량이 종래의 20ppm이상 수준에서 8-13ppm을 얻게됨으로써 대폭적인 개재물 저감효과를 실현할 수 있으며, 또한, 본 발명에 따라 정련한 용강중에는 기존의 알루미나개재물 대신 칼슘알루니마네이트 개재물이 존재하므로 연속주조중 노즐막힘을 대폭감소할 수 있는 효과가 있다.The present invention can achieve a significant inclusion reduction effect by obtaining 8-13 ppm at the level of 20 ppm or more of the conventional cast iron, and also, in the molten steel refined according to the present invention, calcium alumina instead of the existing alumina inclusions. Since there is a nitrate inclusion, there is an effect that can greatly reduce the nozzle clogging during continuous casting.

Description

고청정강의 정련방법{A PROCESS OF REFINING MOLTEN STEEL FOR HIGH CLEAN STEEL}A PROCESS OF REFINING MOLTEN STEEL FOR HIGH CLEAN STEEL}

본 발명은 고청정강의 정련방법에 관한 것으로, 보다 상세히는 전로에서 미탈산된 용강에 생석회계 분체를 취입하여 알루미늄개재물을 부상이 용이한 칼슘알루미네이트로 형상제어하여 고청정강을 정련하는 방법에 관한 것이다.The present invention relates to a method for refining high-purity steel, and more particularly, to a method for refining high-purity steel by injecting quicklime powder into molten steel which has not been deoxidized in a converter and controlling the aluminum inclusions with calcium aluminate that is easy to float. It is about.

제강조업의 기본구성은 주로 용선예비처리→전로→이차정련→연속주조공정으로 이루어진다. 전로조업은 용철에 산소를 분사하여 탄소(C), 망간(Mn), 실리콘(Si), 인(P) 등의 불순원소를 제거하는데(이하, '정련'이라 함), 이와 같이 전로정련을 종료한 용강에는 수백 ppm의 용존산소(free oxygen)가 함유된다. 이 용존산소를 제거하기 위하여 전로출강중에 알루미늄, 실리콘, 망간 등을 첨가하게 되고, 그 결과 탈산생성물이 용강에 현탁, 산재하게 된다. 이러한 탈산생성물은 연속주조 주편, 최종제품(압연재)까지 잔류하여 표면결함을 유발하게 되므로 연속주조가 실시되기 이전 단계에서 용강으로부터 철저하게 부상제거시키는 것이 필요하다.The basic construction of the steelmaking industry consists mainly of charter pre-treatment → converter → secondary refining → continuous casting process. In the converter operation, oxygen is injected into molten iron to remove impurities such as carbon (C), manganese (Mn), silicon (Si), and phosphorus (P) (hereinafter referred to as 'refining'). The finished molten steel contains several hundred ppm of free oxygen. In order to remove this dissolved oxygen, aluminum, silicon, manganese, etc. are added to the converter steel, and as a result, the deoxidation product is suspended and dispersed in the molten steel. Since the deoxidation product remains in the continuous casting cast product and the final product (rolling material), it causes surface defects. Therefore, it is necessary to thoroughly remove the floating steel from the molten steel before the continuous casting is performed.

이러한 필요에 의해 고청정강을 제조하기 위한 연구가 다양하게 진행되고 있으며, 그 대표적인 기술로는 전로 출강중 또는 출강후 슬래그개질재를 첨가하여 슬래그 물성을 변화시키거나 재산화를 방지함으로써, 고정정강을 제조하는 방법들이 다수 제안되었다(대한민국 특허등록 제 37363호, 제 93299호, 제 118956호, 제 110322호, 특허출원 제 95-45965호, 제 95-56445호, 제 96-67564호). 이러한 방법들은 고청강을 제조하는데 어느 정도 기여하고 있으나, 슬래그개질재나 슬래그탈산제를 용강 1톤당 1-10kg 첨가함으로써, 슬래그 발생량을 더욱 증가시키는 결점을 지니고 있다. 이렇게 발생된 슬래그는 일종의 폐기물로 분류되며, 환경의 오염원이기도 하다. 따라서, 슬래그 발생량 증가는 곧 폐기물 발생량의 증가를 의미하므로 환경적인 측면에서 불리하고, 또한, 슬래그를 무해한 물질로 재처리해야 하는데, 이를 재처리하기 위해서는 다각적인 설비 투자와 비용이 소요된다.Due to this need, various studies have been conducted to manufacture high-purity steel, and the representative technology is to add slag modifiers during and after the converter's tapping to change slag properties or prevent reoxidation. A number of methods have been proposed (Korean Patent Registration Nos. 37363, 93299, 118956, 110322, Patent Application Nos. 95-45965, 95-56445, 96-67564). Although these methods contribute to the production of high clear steel to some extent, the addition of 1-10 kg of slag modifier or slag oxidizer per ton of molten steel has the drawback of further increasing slag generation. The slag generated is classified as a kind of waste and is also a source of environmental pollution. Therefore, an increase in the amount of slag generated means an increase in the amount of waste generated, which is disadvantageous in terms of the environment, and also requires reprocessing of the slag with a harmless substance, which requires various facility investments and costs.

또 다른 방법으로는, RH진공탈가스 장치(이하 'RH'라 함)에서 용강을 환류시키는 상승관과 하강관의 2개로 구성된 침적관의 길이를 서로 다르게 형성시켜 용강교반력을 향상시켜 개재물의 조대화를 촉진시키는 방법(대한민국 특허등록 제 95381호)이 제안되었다. 이 방법은 길이가 긴 침적관의 내화물 침식이 극심하여 침적관의 유지보수가 매우 어렵고, 유지비용이 가중되는 결점이 있다.In another method, in the RH vacuum degassing apparatus (hereinafter referred to as 'RH'), the length of the deposition pipe consisting of two rising pipes and a down pipe for refluxing molten steel is different from each other to improve the molten steel stirring force. A method of promoting coarsening (Korean Patent Registration No. 95381) has been proposed. This method has a drawback that the refractory erosion of a long length of sedimentation pipe is severe and the maintenance of the sedimentation pipe is very difficult and the maintenance cost is increased.

본 발명자들은 상기와 같은 종래기술의 문제점을 해소하고 제강조업의 경제성을 극대화하면서 고청정용강을 안정적으로 생산하기 위해 계속적인 연구와 실험을 통해 본 발명을 완성하고, 이를 제안하게 이르렀다.The present inventors have completed the present invention through continuous research and experiment to solve the problems of the prior art as described above and maximize the economics of steelmaking industry and stably produce high-clean molten steel, and came to suggest this.

즉, 본발명은 미탈산 용강에 생석회계 분체를 취입하여 종래 알루미나 단독이었던 개재물을 자력부상분리가 용이한 칼슘알루미네이트형 개재물로 형상제어함으로써, 고청정강 바람직하게는 용강중 전산소가 15ppm이하의 강의 정련방법을 제공하는데, 그 목적이 있다.That is, the present invention injects quicklime powder into mithalated molten steel and controls the inclusions, which were conventionally alumina alone, with calcium aluminate inclusions that are easily separated from magnetic injuries, so that the oxygen in the molten steel is preferably 15 ppm or less. To provide a method of refining steel, which has a purpose.

도 1은 본 발명에서 이용한 분체취입장치(PI process)의 개략도1 is a schematic diagram of a powder blowing device (PI process) used in the present invention

도 2는 분체에 의한 개재물의 변천기구를 설명하는 모식도2 is a schematic diagram illustrating a mechanism for transition of inclusions by powder.

도 3은 본 발명에서 이용한 RH정련장치 개략도3 is a schematic view of the RH refining apparatus used in the present invention

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

10...레이들 16...슬래그10 ... ladle 16 ... slag

18...개재물 20...상취랜스18. Inclusions 20.

22...분체 26,36...아르곤기포22 ... Powder 26,36 ... Argon Bubble

30...진공조 39...용강류30.Vacuum control 39 ... Melting

38...형상제어된 개재물(칼슘알루미네이트)38.Shape controlled inclusions (calcium aluminate)

상기 목적을 달성하기 위한 본 발명의 정련방법은, 전로정련한 미탈산 용강을 레이들로 출강하는 단계; 이 레이들에 수강된 용강에 생석회계 분체를 취입하는 단계;Refining method of the present invention for achieving the above object, the step of tapping the oxidized molten molten steel with a ladle; Blowing the quicklime powder into the molten steel received in the ladle;

분체가 취입된 용강에 알루미늄 탈산제를 투입하는 단계; 및 탈산제가 투입된 용강을 RH의 진공조내로 환류하여 정련하는 단계를 포함하여 구성된다.Injecting aluminum deoxidizer into the molten steel powder is blown; And refining the molten steel to which the deoxidizer is injected, by refluxing into a vacuum chamber of RH.

이하, 본 발명을 도면을 참조하여 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the drawings.

본 발명은 용강을 전로정련공정, 분체취입공정, RH정련공정의 일련의 공정을 통하여 고청정강으로 제조하는데, 이러한 본 발명을 각 공정 단계별로 설명한다.The present invention manufactures molten steel as a high clean steel through a series of processes, such as converter refining process, powder blowing process, RH refining process, this invention will be described in each step of the process.

[전로정련공정]Converter refining process

먼저, 전로에서 통상의 방법으로 용강을 정련하고 레이들로 출강하는데, 이때 용강은 탈산하지 않고 미탈산 상태로 출강한다. 필요에 따라서, 합금철(FeSi, FeMn)은 첨가하여도 무방하다.First, in the converter, the molten steel is refined in the usual manner and the ladle is pulled out. In this case, the molten steel is pulled out without deoxidation. As needed, ferroalloy (FeSi, FeMn) may be added.

[분체취입공정][Powder blowing process]

상기 전로정련공정에서 출강하여 레이들에 수강된 용강을 먼저, 분체취입공정으로 이송한다. 분체취입공정은 분체를 레이들 상부로 취입할 수 있는 장치를 갖춘 공정으로, 예를 들어 레이들로(LF, Ladle Furnace), 바프(BAP, Bubbling, Al-wire feeding & Powder Iniection), 피아이(PI, Powder Injection) 등이 있다. 도 1은 PI장치를 일례로 한 분체취입공정이다.The molten steel taken out of the converter refining process and received in the ladle is first transferred to a powder blowing process. The powder blowing process is a process equipped with a device that can blow the powder on the upper ladle, for example, ladle (LF, Ladle Furnace), BAP (BAP, Bubbling, Al-wire feeding & Powder Iniection), PAI ( PI, Powder Injection). 1 is a powder blowing process using the PI device as an example.

본 발명에서는 분체취입공정에서 랜스(20)를 하강하여 용강(12)에 침적시키고, 이랜스(20)를 통해 생석회계 분체(22)를 수송가스(carrier gas)와 함께 취입함으로써, 기존에 알루미나 단독으로 존재하던 개재물을 부상이 용이한 칼슘알루미네이트로 형상제어(shaping control)하여 용강의 청정성을 확보하는 것이다. 이러한 본 발명의 메카니즘을 아래의 반응식(1-3)과 도 3를 통해 설명한다.In the present invention, by lowering the lance 20 in the powder blowing process to be deposited on the molten steel 12, the quicklime powder 22 is blown together with the carrier gas through the lance 20, the existing alumina It is to ensure the cleanliness of molten steel by shaping control of the inclusions that existed alone with calcium aluminate that is easy to float. The mechanism of the present invention will be described with reference to Scheme (1-3) below and FIG. 3.

본 발명에 따라 생석회계 분체(22)를 미탈산 용강(12)중에 취입하게 되면, 취입된 분체(22)는 용강중 산화철(FeO)과 반응하여 하기 식(2)의 반응에 의해 칼슘페라이트(calcium-ferrite, CaO·FeO)가 된다. 이 칼슘페라이트는 후속공정에서 알루미늄으로 용강을 탈산할 때, 식 3의 반응에 의해 칼슘알루미네이트(calcium-aluminates, mCaO·nAl2O3)로 생성된다. 이러한 생성과정을 도 2에 모식적으로 나타낸다. 이 과정에서 용강중 개재물인 산화물은 (FeO)→(CaO·FeO)→mCaO·nAl2O3(액체)로 바뀌어가며, 이때 산화물의 비중은 대략 5.5→4.1→3.3으로 낮아지면서 개재물 자체 크기는 점차 증가한다.When the quicklime powder 22 is blown into the mithalated molten steel 12 according to the present invention, the blown powder 22 reacts with iron oxide (FeO) in the molten steel to produce calcium ferrite (calcium) by reaction of the following formula (2). -ferrite, CaO · FeO). This calcium ferrite is produced as calcium aluminate (calcium-aluminates, mCaO.nAl 2 O 3 ) by the reaction of equation 3 when the molten steel is deoxidized to aluminum in a subsequent step. This generation process is schematically shown in FIG. In this process, the oxide, which is an inclusion in molten steel, changes from (FeO) → (CaO · FeO) → mCaO · nAl 2 O 3 (liquid), and the specific gravity of the oxide decreases to about 5.5 → 4.1 → 3.3, and the size of the inclusion itself gradually increases. Increases.

Fe+[0]=(FeO)Fe + [0] = (FeO)

CaO(고체)+(FeO)=(CaO·FeO)CaO (solid) + (FeO) = (CaOFeO)

m(CaO·FeO)+n[Al]=mCaO·nAl2O3(액체)m (CaOFeO) + n [Al] = mCaOnAl 2 O 3 (Liquid)

상기 반응식에 의해 생성된 칼슘알루미네이트(24)는 제강온도(1570-1600℃)에서 액체로 존재하기 때문에 비중은 3.3보다 훨씬 낮은 2.3-2.7로 낮아서 용강중으로부터 부상분리가 매우 용이한 상태로 바뀐다.Since the calcium aluminate 24 produced by the above reaction exists as a liquid at the steelmaking temperature (1570-1600 ° C.), the specific gravity is lowered to 2.3-2.7, which is much lower than 3.3, so that the floating separation from the molten steel becomes very easy.

본 발명에서 부상이 용이한 칼슘알루미네이트를 생성하기 위해 취입되는 생석회계 분체는, 생석회가 다량 함유된 것이로, 그 예로는 Ca:68-87%, CaF2:10-30%를 함유하는 분말이 있다. 이러한 분체는 취입하기에 적정한 크기를 가지면 되며, 바람직하게는 0.5mm이하의 입도를 가지는 것이다. 0.5mm이상의 경우 분체취입시 용강내 침입은 용이하나, 용강과의 계면적이 적어 개재물과의 반응 효율과 충돌 확률이 낮아 이용효율이 낮다. 특히 분체취입시 주의해야하는 것은 수송가스만 취입되고 분체가 취입되지 않는 경향이 높고, 취입랜스의 막힘현상을 유발할 가능성이 있다.In the present invention, the quicklime-based powder blown to produce calcium aluminate, which is easy to injure, contains a large amount of quicklime, for example, a powder containing Ca: 68-87% and CaF 2 : 10-30%. There is this. Such powder may have a size suitable for blowing, and preferably has a particle size of 0.5 mm or less. In case of more than 0.5mm, it is easy to penetrate into molten steel when blowing powder, but it has low interface efficiency with molten steel, so it has low utilization efficiency due to low reaction efficiency and collision probability with inclusions. In particular, care should be taken when injecting only the transport gas and the powder is not likely to be blown, which may cause clogging of the blown lance.

용강중에 취입하는 분체의 양은 목표로 하는 용강의 청정도에 따라 관리하는데, 주편에서의 용강중 전산소가 15ppm이하를 목표로 한다면, 용강 1톤당 0.5-2.0kg으로 취입한다. 분체 취입량이 용강 1톤당 0.5kg 이하의 경우, 용강중 현탁되어 있는 개재물양에 대비하여 절대량이 부족하여 목표로 하는 청정도를 확보하기 어렵고, 2.0kg이상이 되면 분체취입량이 많아서 용강온도 강하에 영향을 주므로 용강 제조원가가 상승할 뿐만 아니라, 부상 분리된 분체는 용강상부에 남아 슬래그 양을 증가시켜 폐기물 발생량을 늘이게 된다.The amount of powder blown into the molten steel is controlled according to the cleanliness of the target molten steel. If the total oxygen in the molten steel is less than 15 ppm, it is blown at 0.5-2.0 kg per tonne of molten steel. If the amount of powder blown is less than 0.5kg per ton of molten steel, it is difficult to secure the target cleanliness due to insufficient absolute amount compared to the amount of suspended inclusions in the molten steel.When it is more than 2.0kg, the amount of powder blown is large, which affects the temperature drop of molten steel. In addition to the rising cost of molten steel, the flocculated powder remains on the molten steel to increase the amount of slag, thereby increasing the amount of waste generated.

상기와 같은 취입량은 일정속도로 취입하는데, 바람직하게는 50-100kg/min의 속도로 취입하는 것이다. 분체취입속도가 50kg/min이하의 경우, 목표로 하는 분말을 취입하는데 너무 많은 시간이 걸려 용강의 온도가 떨어지게 된다. 또한, 100kg/min이상으로 하는 경우에는 동일 유량에서의 용강중에 분체를 침입, 분산시키는데 압력손실이 크므로 설비개조를 통한 수송가스의 압력을 높여야 하는 문제가 생길 뿐만 아니라 취입량 대비 실수율이 개재물과 충돌, 응집, 합체시키는 데에 이용되는 효율이 낮아지므로 불리하다.The blowing amount as described above is blown at a constant speed, preferably blown at a rate of 50-100kg / min. If the powder blowing rate is 50kg / min or less, it takes too much time to blow the target powder and the temperature of molten steel drops. In addition, if the pressure is 100kg / min or more, the pressure loss is great in invading and dispersing the powder in the molten steel at the same flow rate. Therefore, there is a problem of increasing the pressure of the transport gas through the remodeling of the equipment. It is disadvantageous because the efficiency used to impinge, flocculate and coalesce becomes low.

이러한 분체의 수송가스로는 고청정강 제조시에 사용되는 것이므로 불활성 성질을 지닌 것이 좋으며, 예를 들면 아르곤 가스가 있다. 이때, 수송가스는 압력 5.0-10.0kg/cm2, 유량 1.0-2.0Nm3/min범위로 제어하는 것이 바람직하다. 압력 5.0kg/cm2이하의 경우 랜스의 막힘현상이 유발될 가능성이 있으므로 분체 취입이 곤란하고, 10.0kg/cm2이상에서는 너무 고압이 되어 용강이 레이들 밖으로 튀어나갈 가능성이 높기 때문에 작업성을 극도로 악화시킨다. 수송가스 유량이 1.0Nm3/min 이하일 때, 랜스 선단부의 선속도가 느려서 분체의 용강내 침입성이 나쁘거나 노즐막힘 유발 가능성이 높고, 2.0Nm3/min 이상에서는 용강이 비산되어 작업성을 극도로악화시킨다.As the transport gas of such powder, it is preferable to have an inert property since it is used in the manufacture of high clean steel, for example, argon gas. At this time, the transport gas is preferably controlled in the range of pressure 5.0-10.0kg / cm 2 , flow rate 1.0-2.0Nm 3 / min. When the pressure is 5.0kg / cm 2 or less, clogging of the lance may occur, so it is difficult to blow the powder, and when it is 10.0kg / cm 2 or more, it is too high and the molten steel is likely to jump out of the ladle. Exacerbate extremely. When transporting gas flow 1.0Nm 3 / min or less, the linear velocity of the lance tip end of my slow invasiveness of the steel powder is poor or are likely to cause nozzle clogging, 2.0Nm 3 / min or more is molten steel scattering workability extremely Worsen.

상기와 같이 목표로 하는 용강의 청정도를 얻기 위한 일정량의 분체를 취입하고 난 후, 알루미늄탈산제를 투입하는데, 그 투입량은 통상의 조업조건에 따라 취입하면 된다.After blowing a certain amount of powder for obtaining the cleanliness of the target molten steel as mentioned above, aluminum deoxidizer is thrown in, but the injection amount may be blown in accordance with normal operating conditions.

[RH정련공정][RH Refining Process]

분체를 취입한 용강이 수강된 레이들(10)을 도 2와 같이 진공조(30), 상승관(32a), 하강관(32b), 환류가스 공급장치(34)를 포함하여 구성된 RH로 이송하여, 용강환류를 실시한다. 상승환류관(32a)과 하강환류관(32b)을 레이들(10)내 용강(12)에 침적시키면서 진공조(30)내부압력을 일정기압까지 낮추고, 상승관에 아르곤가스를 불어 넣으면서 용강을 강제 환류시킨다.The ladle 10 in which the molten steel is blown with powder is transferred to RH including a vacuum tank 30, a rising pipe 32a, a falling pipe 32b, and a reflux gas supply device 34 as shown in FIG. And reflux the molten steel. The internal pressure of the vacuum vessel 30 is lowered to a certain atmospheric pressure while the rising reflux pipe 32a and the down reflux pipe 32b are deposited on the molten steel 12 in the ladle 10, and the molten steel is blown while blowing argon gas into the rising pipe. Force reflux.

용강의 환류를 원활하게 하기 위하여 용강환류용 가스는 유량을 용강 1톤당 0.35-0.85Nm3/hr, 압력을 5.0-10.0kg/cm2범위로 제어한다. 환류가스유량이 0.35Nm3/hr 이하의 경우, 용강환류에 필요한 부상능력이 부족하여 용강을 효과적으로 환류시키기 어렵고, 0.85Nm3/hr 이상의 경우, 용강환류는 용이하나 진공조 내부에 다량의 지금이 부착되고 노즐부의 용손이 심하여 조업시 장애요인이 된다. 압력 5.0kg/cm2이하의 경우, 환류가스의 취입이 곤란하고, 10.0kg/cm2이상에서는 환류가스가 목표유량보다 지나치게 많이 분사되어 진공조 내부에 다량의 지금이 부착되거나 노즐부의 내화물 용손이 심하다는 결점이 있다.In order to facilitate the reflux of molten steel, the molten steel reflux gas controls the flow rate of 0.35-0.85 Nm 3 / hr per ton of molten steel and the pressure of 5.0-10.0 kg / cm 2 . If the reflux gas flow rate is less than 0.35Nm 3 / hr, it is difficult to reflux the molten steel effectively due to the lack of floating capacity necessary for reflux of the molten steel.If the flow rate is more than 0.85Nm 3 / hr, the molten steel reflux is easy but a large amount of It is attached and the loss of nozzle part is severe and it becomes an obstacle during operation. Pressure 5.0kg / cm 2 or less, injection is difficult and, 10.0kg / cm 2 or more in the reflux gas is injected too much greater than the target flow rate of a large amount of the attachment or the nozzle refractory material melting portion now inside the vacuum chamber of the reflux gas is There is a drawback of being severe.

상기와 같이 RH에서 용강을 환류시킴으로써, 용강(12)에서 개재물(18)의 부상분리는 용강과 개재물의 비중차에 의한 분리되는데, 이는 아래의 Stokes 방정식(4)에 의해 설명할 수 있다. 즉, 개재물의 입자가 클수록, 개재물의 밀도가 작을수록 부상속도가 빨라진다는 것을 알 수 있다.By refluxing molten steel in RH as described above, the floating separation of inclusions 18 in molten steel 12 is separated by the difference in specific gravity of the molten steel and the inclusions, which can be explained by Stokes equation (4) below. That is, it can be seen that the larger the particles of the inclusions and the smaller the density of the inclusions, the faster the floating speed.

[방정식 4][Equation 4]

V=(2/9)*{g*r2*(ρFeinclu)}/ηV = (2/9) * {g * r 2 * (ρ Feinclu )} / η

V는 비금속개재물의 부상속도, g는 중력가속도(=9.8m/sec2), r은 개재물반경(m), ρFe와 ρinclu는 각각 용강 및 개재물의 밀도(ton/m3), η는 용강의 점성계수(=0.005kg/m-sec)를 의미한다.V is the floating speed of nonmetallic inclusions, g is the acceleration of gravity (= 9.8 m / sec 2 ), r is the inclusion radius (m), ρ Fe and ρ inclu are the density of molten steel and inclusions (ton / m 3 ), and η is It means the viscosity coefficient of molten steel (= 0.005kg / m-sec).

상기 레이들내 용강(12)내부에서 발생된 아르곤기포(36)는 주변의 개재물(18)과 충돌하여 포착하게 되며, 포착된 개재물의 부상속도는 아르곤기포(36)의 부상속도와 유사한 값을 갖게 된다. 즉, 아르곤기포에 포착된 개재물(38)은 부피가 크게 증가하고, 밀도는 크게 감소하게 되므로 상기식(4)에 따라 개재물의 부상속도는 크게 증가한다.The argon bubble 36 generated in the molten steel 12 in the ladle collides with the surrounding inclusions 18 and is captured, and the floating speed of the captured inclusions has a value similar to that of the argon bubble 36. Will have That is, since the inclusions 38 trapped in the argon bubble are greatly increased in volume, and the density is greatly reduced, the floating speed of the inclusions is greatly increased according to Equation (4).

본 발명은 상기의 방법으로 용강중 개재물의 부상속도를 크게 증가시킴으로써, 고청정강을 효과적으로 제조할 수 있게 되는 것이다.The present invention is to increase the floating speed of the inclusions in the molten steel by the above method, it is possible to effectively produce high clean steel.

이하, 본 발명을 실시예를 통해 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

탄소 0.02-0.20중량%, 실리콘 0.30중량%이하, 망간 0.10-1.00중량%, 알루미늄 0.02-0.08중량%의 용강을 대상으로, 300톤 전로에서 송산정련을 종료하고, 출강시는 용강을 탈산하지 않고, 약간의 합금철(FeSi, FeMn등)만을 첨가하며, 용강을 담은 레이들을 PI정련장치로 이송하고, 상부로부터 랜스을 내려 용강에 침적시키고 생석회계 분체를 취입하였다. 이때 취입한 분체의 조성 및 입도별 분포의 대표적인 예를 표 1에 나타내었다(실제로 CaO:68-87%, CaF2:10-30%를 함유하는 생석회계 분체를 각 조성별로 투입하였는데, 생석회계 분체의 조성에 따른 차이가 크지 않아 그 대표적인 예만 표 1에 기재하였다.)For the molten steel of 0.02-0.20% by weight of carbon, 0.30% by weight of silicon, 0.10-1.00% by weight of manganese, and 0.02-0.08% by weight of aluminum, Songsan refinement is completed in 300 ton converter, and the steel is not deoxidized at the time of tapping. Only a few ferroalloys (FeSi, FeMn, etc.) were added, and the ladle containing the molten steel was transferred to a PI refining apparatus, and the lance was lowered from the top to be deposited on the molten steel and the quicklime powder was blown. At this time, a representative example of the composition and particle size distribution of the blown powder is shown in Table 1 (actually, limestone powder containing CaO: 68-87% and CaF 2 : 10-30% was added for each composition. The difference according to the composition of the powder is not large, only a representative example thereof is shown in Table 1.

분체조성(중량%)Powder composition (% by weight) CaOCaO CaF2 CaF 2 SiO2 SiO 2 H2OH 2 O 84.5884.58 14.8714.87 0.540.54 0.010.01 분체입도(%)Powder Particle Size (%) 0.01mm이하0.01mm or less 0.01-0.03mm0.01-0.03mm 0.03-0.05mm0.03-0.05mm 0.05mm이상0.05mm or more 27%27% 53%53% 11%11% 10%10%

분체 취입량은 용강 1톤당 각각 표 2와 같이 0내지 2. 5kg 이었으며, 분체 취입속도는 분당 50-100kg으로 제어하였다. 이때, 아르곤을 수송가스로 사용하고, 수송가스 압력은 8.0kg/cm2, 유량은 0.75Nm3/min로 조절하였다. 이어서 바로 용강에 알미늄 300-500kg을 투입하여 탈산하고, 합금철을 첨가하여 용강성분을 조정하였다.The powder blowing amount was 0 to 2.5 kg per ton of molten steel as shown in Table 2, and the powder blowing rate was controlled to 50-100 kg per minute. At this time, argon was used as the transport gas, the transport gas pressure was 8.0kg / cm 2 , the flow rate was adjusted to 0.75Nm 3 / min. Subsequently, 300-500 kg of aluminum was directly added to molten steel to deoxidize the molten steel, and iron alloy was added to adjust the molten steel component.

그 다음, 상기 용강을 담은 레이들을 RH 진공탈가스 장치로 이송하고, 용강환류를 실시하였다. 용강을 환류시킬 때, 진공조의 내부압력을 0.005기압 이하로 낮추면서, 상승관에 아르곤가스를 유량 용강 1톤당 0.40Nm3/min, 압력 8.0kg/cm2범위로 제어하였다. RH에서 처리된 용강은 연속주조 공정을 거쳐 주편을 제조하였으며, 이때 본 발명의 효과를 확인하기 위해 주편에서 시편을 채취하고 분석한 결과를 표 2에 정리하였다.Then, the ladle containing the molten steel was transferred to the RH vacuum degassing apparatus, and the molten steel was refluxed. When refluxing the molten steel, argon gas was controlled to 0.40 Nm 3 / min per ton of flow rate molten steel at a pressure of 8.0 kg / cm 2 while lowering the internal pressure of the vacuum chamber to 0.005 atm or less. The molten steel treated in RH was manufactured through a continuous casting process, in which the specimens were collected and analyzed in Table 2 to confirm the effects of the present invention.

구분division 종래예Conventional example 발명예 1Inventive Example 1 발명예 2Inventive Example 2 발명예 3Inventive Example 3 발명예 4Inventive Example 4 발명예 5Inventive Example 5 분체취입량 (kg/t)Powder blowing amount (kg / t) 00 0.30.3 0.50.5 1.21.2 2.02.0 2.52.5 취입시간 (분)Blowing time (minutes) -- 33 33 33 55 55 분체취입속도(kg/min)Powder Blowing Speed (kg / min) -- 3030 5050 120120 120120 250250 주편에서의 전산소량 (ppm)Oxygen content in cast steel (ppm) 2323 1818 1313 1010 88 1212

표 2에 나타난 바와 같이, 생석회계 분체를 취입하지 않은 종래예의 경우에는 전산소가 23ppm으로 매우 높은 값을 나타내므로 고청정강의 15ppm의 강을 제조하는데는 적합하지 않은 것으로 확인되었다.As shown in Table 2, in the case of the conventional example in which the quicklime powder is not blown, the total oxygen is 23 ppm, which is very high, and thus it is not suitable for manufacturing 15 ppm steel of high clean steel.

반면, 생석회계 분체를 용강 1톤당 0.3kg부터 2.5kg까지 취입한 경우에는, 전산소량이 종래예 보다는 모두 개선됨을 알 수 있으며, 특히, 분체를 용강 1톤당 0.5-2.0kg으로 3-5분동안 취입한 발명예(2)(3)이 경우가 주편에서의 전산소량이 8-10ppm으로 현저하게 낮음을 알 수 있었다. 이는 PI정련장치에서 분체 취입에 의해용강중 칼슘페라이트를 존재시키고, 이후 알미늄 탈산에 의해 생성된 칼슘알루미네이트 개재물이 비중이 낮고, 부상분리가 용이하게 바뀐 효과가 그대로 반영되다가 차기 공정인 RH에서 용강환류중 취입한 아르곤 기포가 철정압을 해소하면서 용강중 저비중의 개재물과 충돌하여 개재물을 포집하여 부상분리되었기 때문에 얻어진 결과로 생각된다.On the other hand, when the quicklime powder is blown from 0.3kg to 2.5kg per tonne of molten steel, the total oxygen content can be seen to be improved compared to the conventional example, in particular, the powder is 0.5-2.0kg per tonne of molten steel for 3-5 minutes. Invented Example (2) (3) was found to have a significantly low oxygen content of 8-10 ppm in the cast steel. This resulted in the presence of calcium ferrite in the molten steel by blowing the powder in the PI refining device, after which the calcium aluminate inclusions produced by aluminum deoxidation had a low specific gravity and the effect of easily changing the floating separation was reflected as it was. The argon bubbles blown by the heavy metals collide with the low specific gravity inclusions in the molten steel to collect the inclusions and separate them.

한편, 분체를 용강 1톤당 0.3kg취입한 경우, 전산소량을 저감시키는 측면에서 비교적 양호한 개재물 저감효과를 나타내고 있으나, 전산소가 15ppm에는 미치지 못하였다. 그리고, 분체를 용강 1톤당 2.5kg 취입한 경우에는 전산소가 12ppm으로 양호한 결과를 얻었으나, 분체취입시 간헐적인 용강비산과 용강온도 강하로 조업에 그대로 적용하기에는 작업성이 열악한 문제가 있었다. 또한 분체취입량이 증가된 만큼의 효과를 충분히 나타내지는 못하는 것으로 나타났다. 이와 같이 분체를 과량 취입하면, 주어진 제강온도에서 용강온도가 강하되어 조업전체를 불안하게 되는 요인이 된다.On the other hand, when 0.3 kg of powder was injected per tonne of molten steel, it showed a relatively good inclusion reduction effect in terms of reducing the amount of oxygen, but the total oxygen was less than 15 ppm. In addition, when the powder was blown at 2.5 kg per ton of molten steel, the total oxygen was 12 ppm, and a good result was obtained. However, when the powder was blown, there was a problem of poor workability due to the intermittent molten steel scattering and the temperature drop of the molten steel. In addition, the powder blowing amount did not appear to be effective enough. In this way, when the powder is excessively blown, the molten steel temperature is lowered at a given steelmaking temperature, which causes the entire operation to become unstable.

상술한 바와 같이, 본 발명은 생석회계 분체를 미탈산 용강에 취입함으로써 처리후 주편에서의 전산소량의 저감효과는 종래의 20ppm이상 수준에서 8-13ppm을 얻게됨으로써, 대폭적인 개재물 저감효과를 실현할 수 있게 되었다. 또한, 주편내 잔존하는 개재물은 종래는 알루미나 단독으로 존재하였으나, 본발명은 칼슘알루미나네이트 개재물로 존재하므로 연속주조중 노즐막힘을 대폭 감소할 수 있는 효과를 실현할 수 있다.As described above, in the present invention, the effect of reducing the total oxygen content in the cast steel after the treatment by injecting the quicklime powder into the mithalated molten steel is 8-13 ppm at the level of 20 ppm or more, thereby achieving a significant inclusion reduction effect. It became. In addition, although the inclusions remaining in the cast steel are conventionally present as alumina alone, the present invention exists as calcium aluminate inclusions, thereby realizing the effect of greatly reducing the nozzle clogging during continuous casting.

Claims (3)

전로정련공정과 RH정련공정을 포함한 고청정강의 정련방법에 있어서,In the refining method of high clean steel including converter refining process and RH refining process, 상기 전로정련한 미탈산 용강을 레이들로 출강하는 단계;Tapping the converter mithalated molten steel into ladles; 이 레이들에 수강된 미탈산 용강에 생석회계 분체를 수송가스로 취입하여 용강중에 칼슘 페라이트(CaO·FeO)를 형성시키는 단계;Blowing calcium oxide powder as a transport gas into mithal acid molten steel received by the ladle to form calcium ferrite (CaO · FeO) in the molten steel; 상기와 같이 칼슘 페라이트(CaO·FeO)가 형성된 용강에 알루미늄 탈산제를 투입하여 탈산하고 알루미늄과 칼슘 페라이트(CaO·FeO)의 반응에 의하여 칼슘 알루미네이트( mCaO·nAl2O3)를 형성시키는 단계; 및Deoxidizing by adding an aluminum deoxidizer to the molten steel on which calcium ferrite (CaO · FeO) is formed as described above, and forming calcium aluminate (mCaO · nAl 2 O 3 ) by the reaction of aluminum and calcium ferrite (CaO · FeO); And 상기와 같이 칼슘 알루미네이트( mCaO·nAl2O3)가 형성된 용강을 상기 RH의 진공조내로 환류하여 정련하는 단계를 포함하여 이루어짐을 특징으로 하는 고청정강의 정련방법.Refining the molten steel in which calcium aluminate (mCaO.nAl 2 O 3 ) formed as described above is refluxed into a vacuum chamber of the RH to refine the high clean steel. 제 1항에 있어서, 상기 생석회계 분체는 입도가 0.5mm이하이고, CaO:68-87% 및 CaF2:10-30%를 함유하여 이루어지는 것을 특징으로 하는 고청정강의 정련방법The method of claim 1, wherein the quicklime powder has a particle size of 0.5 mm or less, and contains CaO: 68-87% and CaF 2 : 10-30%. 제 1항에 있어서, 상기 생석회계 분체는 용강 톤당 0.5-2.0kg을 50-100kg/min의 속도로 취입함을 특징으로 하는 고청정강의 정련방법The method according to claim 1, wherein the quicklime powder is blown at 0.5-2.0kg / tonne molten steel at a rate of 50-100kg / min.
KR10-1998-0057625A 1998-12-23 1998-12-23 A process of refining molten steel for high clean steel KR100368239B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0057625A KR100368239B1 (en) 1998-12-23 1998-12-23 A process of refining molten steel for high clean steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0057625A KR100368239B1 (en) 1998-12-23 1998-12-23 A process of refining molten steel for high clean steel

Publications (2)

Publication Number Publication Date
KR20000041671A KR20000041671A (en) 2000-07-15
KR100368239B1 true KR100368239B1 (en) 2003-04-21

Family

ID=19564913

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0057625A KR100368239B1 (en) 1998-12-23 1998-12-23 A process of refining molten steel for high clean steel

Country Status (1)

Country Link
KR (1) KR100368239B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100554739B1 (en) * 2001-12-14 2006-02-24 주식회사 포스코 Method for Producing Molten steel with High Calcium Content
KR100885117B1 (en) * 2002-11-14 2009-02-20 주식회사 포스코 A method for manufacturing of low carbon steel having high cleaness and low phosphorous

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100916561B1 (en) * 2002-11-06 2009-09-08 주식회사 포스코 Water model equipment of porous refractory for continuous casting
KR101122127B1 (en) * 2009-12-23 2012-03-16 주식회사 포스코 Method of refining and oriented electrcal steel sheet
WO2013172613A1 (en) 2012-05-14 2013-11-21 주식회사 포스코 High cleanliness molten steel production method and refining device
KR102095398B1 (en) * 2017-12-26 2020-03-31 주식회사 포스코 Method for Manufacturing Steel with Low Sulfur

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551624A (en) * 1991-08-21 1993-03-02 Kawasaki Steel Corp Production of low carbon al killed steel having high cleanliness

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551624A (en) * 1991-08-21 1993-03-02 Kawasaki Steel Corp Production of low carbon al killed steel having high cleanliness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100554739B1 (en) * 2001-12-14 2006-02-24 주식회사 포스코 Method for Producing Molten steel with High Calcium Content
KR100885117B1 (en) * 2002-11-14 2009-02-20 주식회사 포스코 A method for manufacturing of low carbon steel having high cleaness and low phosphorous

Also Published As

Publication number Publication date
KR20000041671A (en) 2000-07-15

Similar Documents

Publication Publication Date Title
JP5262075B2 (en) Method for producing steel for pipes with excellent sour resistance
CN111575446B (en) RH vacuum furnace calcium treatment process method
CN103469050A (en) Aluminum-containing cold forging steel smelting process
CN111910045B (en) Smelting method of high-purity austenitic stainless steel
JP6202776B2 (en) Manufacturing method of high cleanliness steel
KR100368239B1 (en) A process of refining molten steel for high clean steel
JP5891826B2 (en) Desulfurization method for molten steel
CN113005261A (en) Comprehensive deoxidation and desulfurization process for smelting stainless steel by using small-capacity AOD furnace
JP2018100427A (en) Method for producing low sulfur steel
WO2018216660A1 (en) Method for manufacturing high manganese steel ingot
JP6547638B2 (en) Method of manufacturing high purity steel
KR20000042054A (en) Method for scouring high pure steel of aluminum deoxidation
JPH05239534A (en) Method for melting non-oriented electric steel sheet
CN112981250A (en) Control method for corner crack of low-carbon low-titanium niobium-containing steel sheet billet with low molten iron unit consumption
KR100368724B1 (en) How to prevent reoxidation of ultra low carbon steel
JP2007092159A (en) Method for producing extremely low carbon steel excellent in cleanliness
JP5387045B2 (en) Manufacturing method of bearing steel
KR100311803B1 (en) Method for refining aluminium deoxidation steel
CN116574965B (en) Method for improving inclusion level of wind power steel
KR20050060816A (en) Refining method of ultra low carbon steel used in manufacturing two piece can
CN114891946B (en) Smelting method of ultralow-carbon aluminum killed steel
JP3736159B2 (en) Steel manufacturing method with excellent cleanliness
JPS5816006A (en) Dephosphorizing method for molten iron
KR950010171B1 (en) Making method of high purity steel
KR100224638B1 (en) Deoxidation material of low carbon steel for high purity steel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130104

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140106

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20150106

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20151210

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20170103

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20180103

Year of fee payment: 16

EXPY Expiration of term