JP2012171068A - 電動工具 - Google Patents

電動工具 Download PDF

Info

Publication number
JP2012171068A
JP2012171068A JP2011037365A JP2011037365A JP2012171068A JP 2012171068 A JP2012171068 A JP 2012171068A JP 2011037365 A JP2011037365 A JP 2011037365A JP 2011037365 A JP2011037365 A JP 2011037365A JP 2012171068 A JP2012171068 A JP 2012171068A
Authority
JP
Japan
Prior art keywords
inclination
state
detection
determination threshold
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011037365A
Other languages
English (en)
Inventor
Kazutaka Iwata
和隆 岩田
Takahiro Okubo
貴啓 大久保
Satoshi Abe
智志 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP2011037365A priority Critical patent/JP2012171068A/ja
Publication of JP2012171068A publication Critical patent/JP2012171068A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B49/00Measuring or gauging equipment on boring machines for positioning or guiding the drill; Devices for indicating failure of drills during boring; Centering devices for holes to be bored

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Drilling And Boring (AREA)
  • Portable Power Tools In General (AREA)

Abstract

【課題】簡易な構成で高精度に傾きを検出し、かつ煩わしさも低減した電動工具の提供。
【解決手段】超音波センサにより、被加工部材までの距離を測定し、制御部で超音波センサから出力される検出結果を演算する電動工具において、制御部は、検出信号によって超音波を検出する超音波検出手段と、超音波検出手段による検出結果に基づいて先端工具の軸が被加工部材表面に対して垂直な垂直状態から被加工部材の法線に対して傾いた傾斜状態になったことを判断する傾斜判断手段と、を有し、傾斜判断手段は、超音波検出手段による検出結果に対して傾斜状態を判断する複数の閾値を有する電動工具を提供する。
【選択図】図12

Description

本発明は電動工具に関し、特に先端工具により被加工部材を加工する電動工具に関する。
従来からドリルビット等の先端工具を回転させ被加工部材に穿孔するドリル等の電動工具が知られている。これらの電動工具では、先端工具による穿孔距離を規定するために、例えば特許文献1に示されるように、ゲージを用いた電動工具が提案されている。特許文献1では、ゲージが被加工部材に当接することにより、穿孔距離を規定している。
穿孔距離を規定するにあたっては、その前提として、先端工具の軸が、被加工部材の表面と直交する、すなわち電動工具が被加工部材に対して傾いていない状態(垂直状態)を保つことが必要である。この傾きを検出するために例えば特許文献2に示されるように、複数のセンサを用いて、傾斜角度を検出する電動工具が提案されている。
特開2009−241229号公報 特開2007−229888号公報
特許文献2に示されるように、複数のセンサを用いた場合には、それぞれのセンサを設置するスペースが必要になるため、電動工具が大きくなる傾向があった。また複数のセンサを用いるため、個々のセンサの設置寸法のばらつきや、距離検出精度のばらつきにより、傾斜検出の精度が悪くなる場合があった。またセンサを用いた場合には、そのセンサによる検出結果を報知する手段を備えるが、センサが高精度になると僅かな傾斜角度の違いで報知する出力結果(具体的には傾斜状態、垂直状態)が切り変わることになり、煩わしい場合があり、作業性が低下する場合があった。よって本発明は、簡易な構成で、傾きを検出可能であると共に煩わしさを低減して作業性を確保した電動工具を提供することを目的とする。
上記課題を解決するために本発明は、モータと、該モータを内蔵するハウジングと、該モータで駆動され被加工部材を加工する先端工具を装着可能な装着部と、該非加工部材の表面に超音波を発射すると共に該表面で反射された該超音波を検出し検出信号を出力し、該超音波の指向軸が該装着部に装着された該先端工具の軸と平行になるように該ハウジングに装着された一個の超音波センサと、該検出信号を処理する制御部と、を備え、該超音波センサは、該超音波の指向軸の方向と該表面の法線の方向とが平行な場合に最も高強度の該検出信号を出力するように構成され、該制御部は、該検出信号によって該超音波を検出する超音波検出手段と、該超音波検出手段による検出結果に基づいて該先端工具の軸が該表面に対して垂直な垂直状態から該法線に対して傾いた傾斜状態になったことを判断する傾斜判断手段と、を有し、該傾斜判断手段は、該超音波検出手段による検出結果に対して該傾斜状態を判断する複数の閾値を有する電動工具を提供する。
上記構成の電動工具において、該複数の閾値は、該先端工具の軸が該垂直状態から該傾斜状態へと変化したことを検出する傾斜判断閾値と、該先端工具の軸が該傾斜状態から該垂直状態へと変化したことを検出する垂直復帰判断閾値とを含み、該垂直復帰判断閾値は、該傾斜判断閾値より高強度の該検出信号に基づき定められていることが好ましい。
また該傾斜判断手段は、該傾斜状態から更に大きく傾斜した大傾斜状態を検出可能であり、該複数の閾値は、該先端工具の軸が該傾斜状態から該大傾斜状態へと変化したことを検出する大傾斜判断閾値と、該先端工具の軸が該大傾斜状態から該傾斜状態へと変化したことを検出する傾斜復帰判断閾値とを含み、該傾斜復帰判断閾値は、該傾斜判断閾値より高強度の検出信号に基づき定められていることが好ましい。
これらのような構成によると、例えば傾斜判断閾値に基づき傾斜状態と判断した後に、超音波検出手段からの出力結果に多少の出力変動が有ったとしても、垂直状態と判断することが抑制される。即ち、多少の出力変動が有ったとしても、判断結果が変わることは抑制され、判断結果が不意に変化することを抑制することができる。
本発明の電動工具によれば、簡易な構成で、高精度に傾きを検出し、かつ煩わしさも低減して作業性を良くすることができる。
本発明の実施の形態による穿孔工具を示す断面図。 本発明の実施の形態による穿孔工具の表示部を示す図。 本実施の形態による穿孔工具の距離センサでの距離測定を説明するグラフ。 本実施の形態による穿孔工具の距離センサの感度を示すグラフ。 本実施の形態による穿孔工具の距離センサの傾斜角度と受信波の振幅に係る電圧との関係を示すグラフ。 本発明の実施の形態による穿孔工具の制御回路部、インバータ回路部、及びモータ等を示す回路図。 本発明の実施の形態による穿孔工具における傾斜検出に係るフローチャート。 本発明の実施の形態による穿孔工具における穿孔深さ設定に係るフローチャート。 本発明の実施の形態による穿孔工具における傾斜検出の第一の変形例に係るフローチャート。 本発明の実施の形態による穿孔工具における傾斜検出の第二の変形例に係るフローチャート。 本発明の実施の形態による穿孔工具における傾斜検出時の振幅と基準振幅との関係を示すグラフ。 発明の実施の形態による穿孔工具における傾斜検出時の振幅と閾値との関係を示すグラフ。 本発明の実施の形態による穿孔工具における傾斜検出の第三の変形例に係るフローチャート。
本発明による穿孔工具の実施の形態について図1乃至図8を参照しながら説明する。図1に示すように、穿孔工具1は穿孔ビット2によって被穿孔材Wに穿孔するロータリーハンマドリルであり、ハンドル部10と、モータハウジング20と、ギヤハウジング60とによりハウジングが構成されている。以下においては、穿孔ビット2の中心軸の軸方向であって穿孔ビット2の先端側を穿孔工具1の前端側として前後方向を定義し、前後方向と直交する方向であってハンドル部10がモータハウジング20から延出される方向を下方として上下方向を定義し、前後方向及び上下方向と直交する方向を左右方向として定義して説明する。また被穿孔材Wは、穿孔工具1の前端側に位置する。ハウジングの先後方向におけるハウジングの長さは30cm〜40cm程度である。
ハンドル部10は、プラスチックで一体成型されて略U字状をなしており、その上部には、モータハウジング20の一部であって後述のモータ21を収容しているモータ収容部20Aが規定され、モータハウジング20の一部をなしている。ハンドル部10の後部10A下部には、電源ケーブル11が取付けられていると共に、後述のモータ21等に接続されるスイッチ機構12が内蔵されている。スイッチ機構12には、作業者によって操作可能なトリガ13が機械的に接続されている。トリガ13を操作することにより、後述のインバータ回路部102への電源供給又は停止が切り替えられる。また、ハンドル部10の後部10Aであってトリガ13よりもすぐ下の部分は、後部10Aを穿孔工具1のユーザが把持したときに、中指と薬指によって把持される部分たる把持部10Cをなす。
ハンドル部10の前部10Bにおいて、その上部には前側方向に指向する距離センサ14が設けられている。距離センサ14は、ハンドル部10の前部10Bの上部に固定されている。距離センサ14は後述のマイコン110(図6)に電気的に接続されている。また、距離センサ14は後述の入力部23の穴深さ設定ボタン117(図6)に電気的に接続されており、穴深さ設定ボタン117においては後述のように所望の穿孔深さを入力可能である。入力される穿孔深さの値は、より具体的には、3cm〜6cm程度である。
距離センサ14は、超音波を発射すると共に発射した超音波が物体(本実施例では被穿孔材W)によって反射された反射波を受信可能な公知の超音波センサ一個から構成されており、超音波を照射する指向方向の軸(以下指向軸Gとする)が穿孔ビット2の軸と平行になるように、前部10Bに設けられている。この距離センサ14に用いられる超音波センサは、発信周波数が180kHz、測定距離が5cm〜100cm、上下方向、左右方向における指向角度が約12deg程度の分解能を備えている。この距離センサ14により、先後方向における距離センサ14から被穿孔材Wまでの間の距離Dを測定する。具体的には、距離センサ14は、図3に示されるように、送信波を被穿孔材Wに向けて照射してから被穿孔材Wで反射された反射波である受信波を受信開始するまでの検出時間が、(2×D)/音速、という式から求められることに基づき、距離Dを測定している。
また図4に示されるように、距離センサ14は、約6degを境に急激に受信する受信波の減衰量が大きくなり、受信波の振幅に係る電圧が小さくなる。故に穿孔工具1が被穿孔材Wに対して6deg以上傾くと(穿孔ビット2の軸が被穿孔材W表面と直交している状態から6deg以上傾くと)、図5に示されるように受信波の電圧が小さくなり、ほぼ0Vになるため、距離センサ14での検出が難しくなる。また、距離Dが大きくなると、受信波の出力も弱くなって受信波の振幅に係る電圧も小さくなる。
前部10Bにおいて、距離センサ14の下側には、穿孔箇所を照射するLEDライト10Dが前方を指向して設けられている。また前部10Bにおいて、後側には、後述の傾斜状態、大傾斜状態を示すLED表示部10Eが設けられている。このLED表示部10Eは、後述のマイコン110を介してスイッチ機構12と連動しており、トリガ13が僅かに引かれた状態をスイッチ機構12が感知した時に点灯するように構成されている。
モータハウジング20には、その外表面であって上方位置に入力端末(入力手段)である入力部23(図4)が設けられ、その内部にモータ21が収納されている。入力部23は、図2に示されるように、デジタル表示される表示部23Aと、深さ制御機能オン・オフボタン116と、穴深さ設定ボタン117と、原点位置設定ボタン118と傾き検知オン・オフボタン23Bとを備えている。深さ制御機能オン・オフボタン116は、後述する穴深さ設定ボタン117により設定された穴の深さで穿孔を行うか(深さ制御機能オン)、当該設定された穴の深さに係らず穿孔を行うか(深さ制御機能オフ)、の切換を行っている。
穴深さ設定ボタン117は、穿孔しようとする穴の深さの設定を行っており、UPボタン117AとDOWNボタン117Bとを有している。原点位置設定ボタン118は、穿孔しようとする穴に対する原点位置に穿孔工具1をセットしたときに押圧することで原点位置の設定を行っている。傾き検知オン・オフボタン23Bは、穿孔工具1の被穿孔材Wに対する傾きを検出するか否かの切換、及びLED表示部10Eの点灯の可否の切換を行っている。これらボタンは、それぞれ後述のマイコン110に接続されている。
図1に示されるモータ21は三相直流ブラシレスモータにより構成されており、後述のマイコン110により回転の制御が行われる。モータ21は前端側へ延出されて前後方向を軸方向とする出力軸22を備えており出力軸22は回転駆動力を出力する。出力軸22の基部には軸流ファン22Aが出力軸22と同軸的に一体回転可能に設けられている。
ギヤハウジング60は樹脂成型されて構成されており、モータハウジング20の前端側に設けられている。ギヤハウジング60内には、第一中間シャフト61が、出力軸22を延ばすように同軸的に配置され、軸受63により回転可能に支承されている。第一中間シャフト61の後端は出力軸22と連結している。第一中間シャフト61の先端には第四ギヤ61Aが設けられている。また、ギヤハウジング60内には、出力軸22と平行に第二中間シャフト72が、軸受72Bによってその軸心を中心に回転可能に支承されている。
第二中間シャフト72の後端部には、第四ギヤ61Aと噛合する第五ギヤ71が同軸固定されている。第二中間シャフト72の前端側にはギヤ部72Aが形成され、後述する第六ギヤ73と噛合している。ギヤハウジング60内であって第二中間シャフト72の上方の位置には、シリンダ74が設けられている。シリンダ74は第二中間シャフト72と平行に延びて回転可能に支承されている。第六ギヤ73はシリンダ74の外周に固定され、上述したギヤ部72Aとの噛合により、シリンダ74はその軸心を中心として回転可能である。
シリンダ74の前端側には工具保持部15が設けられており、後述の穿孔ビット2が着脱自在に取付けられる。第二中間シャフト72の中間部分には、バネによって後端側へ付勢されるクラッチ76がスプライン係合されており、クラッチ76は、ギヤハウジング60に設けられた図示せぬチェンジレバによってハンマドリル・モードとドリルモードとを切換え可能である。クラッチ76のモータ21側には、回転運動を往復運動に変換する運動変換部80が第二中間シャフト72に回転可能に外装されている。運動変換部80の腕部80Aは、第二中間シャフト72の回転により穿孔工具1の前後方向に往復動作可能に設けられている。
シリンダ74内にはピストン82が設けられている。ピストン82は、第二中間シャフト72と平行な方向に往復運動可能且つシリンダ74内で摺動可能に装着されている。ピストン82内には打撃子83が内装されており、シリンダ74内であってピストン82と打撃子83の間には空気室84が画成される。打撃子83の空気室側の反対位置には、中間子85がシリンダ74内にピストン82の運動方向に摺動可能に支承されている。中間子85の打撃子側反対位置には、先端工具である穿孔ビット2が位置している。よって打撃子83は中間子85を介して穿孔ビット2を打撃可能である。
クラッチ76がハンマドリル・モードに切換えられているときには、クラッチ76により第二中間シャフト72と運動変換部80とが結合している。運動変換部80は、ピストンピン81を介して、シリンダ74内に設けられたピストン82と連動するように接続されるように構成されている。
穿孔ビット2はドリルビットであり、図1に示されるように、丸棒状を成し螺旋状の溝が切られた胴部2Aと、その胴部の先端に位置する先細り形状の先端部2Bを備えており、工具保持部15に対して着脱可能であり、交換可能である。
次に、図6を用いて、演算部(制御部)であるマイコン110を含む制御回路部と、インバータ回路部102及びモータ21の回路構成について説明する。制御回路部は、スイッチ操作検出回路111と、印加電圧設定回路112と、距離深さ設定回路113と、原点位置設定回路114と、回転子位置検出回路115と、制御信号出力回路119と、送信回路Aと、受信回路Bと、LED表示部10Eを備えている。
スイッチ操作検出回路111は、トリガ13の押込の有無を検出し、その検出結果をマイコン110へ出力する。印加電圧設定回路112は、トリガ13から出力された目標値信号に応じて、インバータ回路部102のスイッチング素子Q1〜Q6を駆動するためのPWM駆動信号のPWMデューティを設定し、マイコン110へ出力する。
距離深さ設定回路113には穴深さ設定ボタン117が接続されており、深さ制御機能オンの状態で孔深さ設定ボタン117より入力された値まで穿孔ビット2で穿孔した時に、モータ21への電力供給を停止する信号をマイコン110に出力するように構成されている。原点位置設定回路114には、原点位置設定ボタン118が接続されており、原点位置設定ボタン118が押された時に、穿孔ビット2で穿孔する孔の原点設定に係る信号をマイコン110に出力している。回転子位置検出回路115は、ホールIC21Aから出力された回転位置検出信号に基づいてモータ21のロータの回転位置を検出し、マイコン110へ出力する。送信回路Aは距離センサ14に接続され、マイコン110からの出力に基づき距離センサ14にパルス信号を送信する。受信回路Bは距離センサ14に接続され、距離センサ14で受信したパルス信号をマイコン110に出力する。
マイコン110は、印加電圧設定回路112からの出力に基づいてPWMデューティの目標値を算出する。また、回転子位置検出回路115からの出力に基づいて、適切に通電するステータ巻線を決定し、出力切替信号H1〜H3およびPWM駆動信号H4〜H6を生成する。PWM駆動信号H4〜H6はPWMデューティの目標値の大きさに基づいてデューティ幅が決定されて出力される。制御信号出力回路119は、マイコン110で生成された出力切替信号H1〜H3及びPWM駆動信号H4〜H6をインバータ回路部102に出力する。
またマイコン110は、送信回路Aに対して、所定の周波数、パルス幅及び周期の信号を出力し、距離センサ14から、信号に基づく超音波を発射可能にしている。またマイコン110は、受信回路Bから送信される信号に基づき距離センサ14で発信された超音波の反射波である受信波を検出し、距離センサ14から被穿孔材Wまでの距離Dを算出する(距離算出手段)と共に、この受信波の検出結果から、穿孔工具1が被穿孔材Wに対して傾いたか否かを検出・判断している(傾斜判断手段)。この傾斜の検出・判断は、図5に示されるように、被穿孔材Wの表面に対して距離センサ14の指向軸Gが平面の法線から、上下左右のいずれかの方向に傾くと受信波の振幅に係る電圧が低下すること、及び距離センサ14の指向軸Gが平面の法線から上下左右のいずれかの方向に6deg以上傾くと受信波の振幅に係る電圧が約0Vになり距離センサ14で受信波を受信できないこと、に基づいている。即ち、指向軸Gの傾きが6deg以内ならば距離センサ14で受信波を受信して距離を検出すると共に傾きを検出し、上下左右のいずれかの方向に6deg以上傾くとマイコン110から所定の信号を送信回路Aに出力しているのに対して受信回路Bからマイコン110には信号が出力されなくなるため、この状態を検出不能と判断する。距離センサ14で受信波を検出しつつ(距離を検出しつつ)傾きを検出した状態(指向軸Gの傾きが6deg以下)を傾斜状態と定義し、距離センサ14で受信波を検出不能な状態及び指向軸Gの傾きが6deg以上となる状態を大傾斜状態と定義する。
インバータ回路部102には、商用電源からの交流電力が整流回路101を介して給電される。インバータ回路部102では、出力切替信号H1〜H3およびPWM駆動信号H4〜H6に基づきスイッチング素子が駆動されて、通電されるステータ巻線が決定される。さらにPWM駆動信号はPWMデューティの目標値でスイッチングされている。これにより、モータ21の三相のステータ巻線(U、V、W)に電気角120°の三相交流電圧が順に印加されることとなる。またインバータ回路部102では、制御信号出力回路119を介してマイコン110からの信号に基づき、出力軸22の回転を停止するようにスイッチング素子を駆動することが可能である。
また、マイコン110には、ROM等の記憶手段である記憶装置120が備えられており、記憶装置120は、後述する各々のフローチャートにおいて、各種値を記憶する記憶手段として機能している。
以上の構成の穿孔工具1のモータ21の駆動時には、モータ21の回転出力が第一中間シャフト61、第四ギヤ61A、及び第五ギヤ71を介して第二中間シャフト72に伝わる。第二中間シャフト72の回転は、ギヤ部72Aと第六ギヤ73との噛合によりシリンダ74に伝わり、穿孔ビット2に回転力が伝えられる。クラッチ76をハンマドリル・モードに移動させると、クラッチ76が運動変換部80と結合し、第二中間シャフト72の回転駆動力が運動変換部80に伝わる。運動変換部80では回転駆動力がピストンピン81を介してピストン82の往復運動に変換される。ピストン82の往復運動により打撃子83とピストン82との間に画成された空気室84中の空気の圧力は上昇及び低下を繰り返し、打撃子83に打撃力を付与する。打撃子83が前進して中間子85の後端面に衝突し、中間子85を介して打撃力が図示せぬ穿孔ビット2に伝達される。このようにしてハンマドリル・モードでは図示せぬ穿孔ビット2に回転力と打撃力が同時に付与される。
クラッチ76がドリルモードにあるときは、クラッチ76は第二中間シャフト72と運動変換部80との接続を断ち、第二中間シャフト72の回転駆動力のみがギヤ部72A、第六ギヤ73を介してシリンダ74に伝達される。よって、穿孔ビット2には回転力のみが付与される。
上述の、ハンマドリル・モード若しくはドリルモードにおいては、穿孔ビット2の中心軸と被穿孔材Wの平面とが直交するよう、即ち穿孔ビット2の中心軸と被穿孔材Wの平面の法線とが平行になるように穿孔工具1を保持する必要がある。よって傾き検知オン・オフボタン23Bをオンにし、傾斜状態・大傾斜状態を検知可能にする。その後に深さ制御機能オン・オフボタン116を押してマイコン110を深さ制御機能オン状態にする。この状態で、UPボタン117AとDOWNボタン117Bとを操作して穿孔深さを設定し、原点位置設定ボタン118を操作して原点位置を設定し、LED表示部10Eを視認して穿孔工具1が被穿孔材Wに対して傾いていないことを確信した後にトリガ13を引いて穿孔を行う。穿孔中においては、距離センサ14によって穿孔深さを常に検出しており、その穿孔深さが設定値に達したところでマイコン110により、自動的にモータ21への電源供給が停止される。
上述の大傾斜状態の判断について、図7のフローチャートに基づき説明する。先ずS01で距離検出開始として所定信号をマイコン110から送信回路Aを介して距離センサ14に出力し、距離センサ14より、距離検出に係る超音波の発射を行う。次にS02へと進んで距離検出が可能か否かを判断する。検出可能(S02:YES)と判断した場合には、S03へと進み、穿孔工具1が大傾斜状態ではないと判断し、S04に進んでLED表示部10Eでその旨報知し、S01へと戻る。またS02で検出不能(S02:NO)と判断した場合には、S05へと進み、穿孔工具1が大傾斜状態であると判断し、S06に進んでLED表示部10Eでその旨報知し、S01へと戻る。
図7のフローチャートにより、穿孔工具1が被穿孔材Wの表面に対して大傾斜状態になっていないのを確認した上で、図8に示されるフローチャートに基づき、穿孔作業を行う。具体的には、先ずS101において、深さ制御機能オン・オフボタン116が押された否かを判断する。S101において深さ制御機能オン・オフボタン116が押されたと判断された場合(S101:YES)には、S102へ進んで初期位置(L0)を設定し、次にS103へ進んでUPボタン117AとDOWNボタン117Bとにより穿孔深さの設定値(Ld)を設定し、S104へと進む。またS101において深さ制御機能オン・オフボタン116が押されていないと判断された場合(S101:NO)には、S105へ進んで、深さ制御機能を使用せずに、トリガ13の操作に基づく手動の穿孔深さ調整を行う。S105の後は、S101へとループする。
S104において初期位置(L0)、設定値(Ld)の設定を完了していなければ(S104:NO)、S102へとループする。S104において初期位置(L0)、設定値(Ld)の設定を完了していれば(S104:YES)、S106へと進み、トリガ13を操作して、モータ21に電力を供給し穿孔ビット2を回転させる。そしてS107へと進み、穿孔深さが設定値に到達したか(L0−L1=Ldになったか)を検出する。ここでL1は、距離センサ14で検出される現在位置を示す値である。S107では所定深さに到達した場合のみ(S107:YES)、S108に進み、モータ21への電源供給を停止し、S101へとループして、次の作業に備える。
図7に示されるフローチャートでは、穿孔工具1の距離センサ14で受信波を検出することができない状態である大傾斜状態のみに着目して制御を行っている。これに対して第一の変形例として、傾斜状態を加味して制御を行ってもよい。具体的には図9のフローチャートに示されるように、S201、S202で距離検出開始として所定信号をマイコン110から送信回路Aを介して距離センサ14に出力し、距離センサ14より、距離検出に係る超音波の発射を行い、受信回路Bで距離センサ14が受信した信号から距離(D)、受信波の振幅(A)を検出しマイコン110へと出力する。次にS203へと進んで、距離検出が可能か否かを判断する。検出可能(S203:YES)と判断した場合には、S204へと進み、予め記憶装置120に記憶されている、指向軸Gと法線との間の角度が0degを成す垂直状態の受信波の振幅(Amax)から、基準値となる基準振幅(B)を、Amax−F=Bの式より導き出す。ここで(F)は、上述の穿孔工具1が0degの状態における振幅(Amax)と±3deg傾いた状態における振幅との間の差に該当する値である。
次にS205へと進んで、受信した振幅(A)が基準振幅(B)より大きいか否かを判断する。ここで大きいと判断されれば(S205:YES)、S206へと進んで穿孔工具1が垂直であると判断し、S207へ進んでLED表示部10Eでその旨報知し、S201へと戻る。またS205で大きくないと判断されれば(S205:NO)、S208へ進んで穿孔工具1が傾斜状態と判断し、S209へ進んでLED表示部10Eでその旨報知し、S201へと戻る。
またS203で、検出不能(S203:NO)と判断した場合には、S210へと進んで大傾斜状態と判断し、S211へ進んでLED表示部10Eでその旨報知し、S201へと戻る。
また上述した指向軸Gと法線との間の角度が0degを成す時の受信波の振幅(Amax)は、元々距離測定のために用いられる距離センサ14で検出するが、距離センサ14に用いられる超音波センサの感度が小さく振幅値が小さい場合に基準値Bを算出すると、その基準値Bは必然的に小さくなる。但し超音波センサの受信感度にはバラツキがあり、逆に感度が大きく振幅値が大きい場合に、先ほど計算された基準値Bを適用すると、検出された振幅値Aに対して基準値Bは非常に大きい値となる場合がある。
よってこのようなばらつきを考慮した第二の変形例として、図10のフローチャートに示されるような制御を行ってもよい。具体的には、先ずS301で記憶装置120に予め記憶されている前回の最大値の振幅(Amax)と前回の検出距離距離(C)をリセットする。S301のステップでは、最大値の振幅(Amax)と検出距離距離(C)を十分に小さな値、例えば、最大値の振幅(Amax)=0、検出距離距離(C)=0に設定する。
次にS302、S303で距離検出開始として所定信号をマイコン110から送信回路Aを介して距離センサ14に出力し、距離センサ14より、距離検出に係る超音波の発射を行い、受信回路Bで距離センサ14が受信した信号から距離(D)、受信波の振幅(A)を検出しマイコン110へと出力する。
次にS304へと進んで、距離検出が可能か否かを判断する。検出可能(S304:YES)と判断した場合には、S305へ進み、前回の検出距離(C)と現在の検出距離(D)とを比較する。S301でリセットした後に、新たな前回の検出距離(C)が検出されて記憶装置120に記憶されていない場合は、リセットした値を前回の検出距離(C)として用いる。S305で前回の検出距離(C)に対して現在の検出距離(D)が(E)mm以上変化している(S305:NO)と判断している場合には、S306へと進み、前回の最大値の振幅(Amax)と前回の検出距離(C)をリセットしてS302へと戻る。
またS305で(E)mm以上変化していない(S305:YES)と判断している場合にはS307へと進む。S307では、現在の振幅(A)と記憶している最大値の振幅(Amax)とを比較する。S301でリセットした後に、新たな前回の最大値の振幅(Amax)が検出されて記憶装置120に記憶されていない場合は、リセットした値を前回の最大値の振幅(Amax)として用いる。S307で現在の振幅(A)が前回の最大値(Amax)より大きいと判断した場合(S307:YES)には、S308へ進んで現在の振幅(A)を最大値(Amax)として更新し、S309へと進む。S307で現在の振幅(A)が前回の最大値(Amax)より大きくないと判断した場合(S307:NO)には、S308へは進まずに、S309へと進む。
S309では、最大値(Amax)が(F)より大きいか否かを判断する。この(F)は、振幅(Amax)と±3deg傾いた状態における振幅との間の差に該当する値である。本実施例においては、(F)は定数を用いるほか、最大値(Amax)、検出距離(C)あるいは最大値(Amax)及び検出距離(C)の両者に応じて定まる変数とすることができる。より具体的には、S306もしくはS308で最大値(Amax)、検出距離(C)をリセットすると同時に、これらの関数もしくはテーブル情報として与えられる(F)の値を、記憶装置120に与える。S309で最大値(Amax)が(F)より大きくないと判断した場合(S309:NO)は、S313へ進んで穿孔工具1が少し傾いていると判断し、S314へ進んでLED表示部10Eでその旨報知し、S302へと戻る。S309で最大値(Amax)が(F)より大きいと判断した場合(S309:YES)は、S310へと進む。
尚、S309では、最大値(Amax)と(F)を比較しているが、これは、穿孔工具1が傾きかつ振幅値が非常に小さい場合に最大値(Amax)が(F)以下の値になる現象に基づいている。この最大値(Amax)が(F)以下の場合には、穿孔工具1が傾いているのにもかかわらず後述のS310の処理でAmaxからF以上は変化していないと判断されてしまうため、本来ならば穿孔工具1は傾いているのに後述のS310で垂直であると判断することになる。よって上記誤判断を除外するために、S309で上記比較を行っている。
S310では、今回の振幅(A)が基準振幅(B)より大きいか否か、即ち、今回の振幅(A)が最大値(Amax)から(F)以上変化しているか否かを判断する。変化していると判断されれば(S310:YES)、S311へと進んで穿孔工具1が垂直であると判断し、S312へ進んでLED表示部10Eでその旨報知し、S302へと戻る。またS310で変化していないと判断されれば(S310:NO)、S313へ進んで穿孔工具1が少し傾いていると判断し、S314へ進んでLED表示部10Eでその旨報知し、S302へと戻る。
またS304で、検出不能(S304:NO)と判断した場合には、S315へと進んで大きく傾いていると判断し、S316へ進んでLED表示部10Eでその旨報知し、S302へと戻る。
このように、距離センサ14から被穿孔材Wまでの距離が変化した場合に最大値の振幅(Amax)と検出距離距離(C)をすることで、より正確に穿孔工具1の傾きを検出することができる。
図7、図9、図10に示されるフローチャートでは、いずれも、受信波を検出不能であるか否か、即ち受信波の振幅に係る電圧において、距離センサ14で検出可能な最低電圧を閾値として大傾斜状態と、大傾斜状態以外の状態とを区別している。また図9、図10に示されるフローチャートでは、基準振幅(B)を閾値として傾斜状態と垂直状態とを区別している。これらのような閾値の設定では、例えば基準振幅(B)においては、受信波の振幅に係る電圧が、基準振幅(B)に係る電圧より高くなれば垂直状態と判断し、低くなれば傾斜状態と判断する。しかし、受信波の振幅が基準振幅(B)とほぼ同じになるように穿孔工具1が傾いた場合には、図11に示されるように、判断結果が、垂直状態と傾斜状態とで度々変化する。この判断結果に基づきLED表示部10Eで穿孔工具1の傾きを報知するが、作業者はLED表示部10Eで穿孔工具1の傾きを判断するため、度々LED表示部10Eでの報知が変化すると作業者にとって使い勝手が悪くなる。
よって第三の変形例として、垂直状態から傾斜状態へ変化したことを判断する閾値と、傾斜状態から垂直状態へ変化したことを判断する閾値と、を別な値にすることにより、度々LED表示部10Eでの報知が変化することを抑制する。同様に傾斜状態から大傾斜状態へと変化したことを判断する閾値と、大傾斜状態から傾斜状態へ変化したことを判断する閾値と、を別な値にすることにより、LED表示部10Eでの報知が度々変化することを抑制する。
具体的には、図12に示されるように、垂直状態から傾斜状態へ変化したことを判断する閾値として傾斜判断閾値Bを定めると共に、傾斜状態から垂直状態へ変化したことを判断する閾値として垂直復帰判断閾値Aを定める。また傾斜状態から大傾斜状態へ変化したことを判断する閾値として大傾斜判断閾値Dを定めると共に、大傾斜状態から傾斜状態へ変化したことを判断する閾値として傾斜復帰判断閾値Cを定める。垂直復帰判断閾値Aと傾斜判断閾値Bとは、それぞれ基準振幅(B)に対応した値であり、垂直復帰判断閾値Aに係る受信波の振幅が、傾斜判断閾値Bに係る受信波の振幅より大きくなるようにそれぞれ値が設定されている。傾斜復帰判断閾値Cと大傾斜判断閾値Dとは、それぞれ距離センサ14で検出可能な最低電圧に対応した値であり、傾斜復帰判断閾値Cに係る受信波の振幅が、大傾斜判断閾値Dに係る受信波の振幅より大きくなるようにそれぞれ値が設定されている。これらの閾値A〜Dは、検出された距離Dに係る受信波の振幅に応じてマイコン110で設定される値である。
図12において、受信波の振幅(A)が時刻t1において傾斜判断閾値B以下になった後は、時間t1−t2において振幅(A)が傾斜判断閾値Bより大きな値になったとしても、振幅(A)が垂直復帰判断閾値Aより小さい値であるならば、穿孔工具1が垂直状態とは判断せず、LED表示部10Eでも傾斜状態であると報知し続ける。時刻t2で振幅(A)が垂直復帰判断閾値A以上になった後は、時間t2−t3において振幅(A)が垂直復帰判断閾値Aより小さい値になったとしても、振幅(A)が傾斜判断閾値Bより大きな値であるならば、穿孔工具1が傾斜状態とは判断せず、LED表示部10Eでも垂直状態であると報知し続ける。
また受信波の振幅(A)が時刻t4において大傾斜判断閾値D以下になった後は、時間t4−t5において振幅(A)が大傾斜判断閾値Dより大きな値になったとしても、振幅(A)が傾斜復帰判断閾値Cより小さい値であるならば、穿孔工具1が傾斜状態とは判断せず、LED表示部10Eでも大傾斜状態であると報知し続ける。時刻t5で振幅(A)が傾斜復帰判断閾値CA以上になった後は、時間t5以降において振幅(A)が傾斜復帰判断閾値Cより小さい値になったとしても、振幅(A)が大傾斜判断閾値Dより大きな値であるならば、穿孔工具1が大傾斜状態とは判断せず、LED表示部10Eでも傾斜状態であると報知し続ける。
上記の制御を図13のフローチャートに基づき説明する。先ずS401で距離検出開始として所定信号をマイコン110から送信回路Aを介して距離センサ14に出力し、距離センサ14より、距離検出に係る超音波の発射を行う。次にS402へと進んで受信波を受信・検出し、S403へ進んで距離検出が行われたか否かを判断する。検出不能(S403:NO)と判断した場合には、S404へと進み、穿孔工具1が大傾斜状態であると判断し、LED表示部10Eでその旨報知し、S401へと戻る。検出可能(S403:YES)と判断した場合には、S405へと進み、検出した距離Dから閾値A〜Dを算出する。次にS406へと進み、現在の傾きの状態が垂直状態であるか否かを確認する。ここで垂直状態の確認は、例えば距離センサ14から被穿孔材Wまでの距離が大きくなるに従って受信波の振幅が小さくなるのに基づき、受信波の信号振幅(A)が、検出した距離Dに応じた振幅であるか否かにより行うことができる。具体的には、記憶装置120に、垂直状態における距離Dに応じた振幅を関数もしくはテーブル情報として記憶しておき、その記憶した振幅と受信した信号振幅(A)が一致するか否かにより垂直状態を確認することができる。
S406で垂直状態と判断した場合には(S406:YES)、S407へと進み、信号振幅(A)が大傾斜判断閾値Dより小さいか否かを判断する。信号振幅(A)が大傾斜判断閾値Dより小さければ(S407:YES)、S408へと進み、穿孔工具1が垂直状態から大傾斜状態へと変化して大傾斜状態であると判断し、LED表示部10Eでその旨報知し、S401へと戻る。
S407で信号振幅(A)が大傾斜判断閾値Dより大きければ(S407:NO)、S409へと進み、信号振幅(A)が傾斜判断閾値Bより小さいか否かを判断する。信号振幅(A)が傾斜判断閾値Bより小さければ(S409:YES)、S410へと進み、穿孔工具1が垂直状態から傾斜状態へと変化して傾斜状態であると判断し、LED表示部10Eでその旨報知し、S401へと戻る。S409で信号振幅(A)が傾斜判断閾値Bより大きければ(S409:NO)、穿孔工具1は垂直状態から変化していないのでLED表示部10Eでその旨報知し、S401へと戻る。
S406で垂直状態ではない、即ち傾斜状態若しくは大傾斜状態のいずれかと判断した場合には(S406:YES)、S411へと進み、現在の傾きの状態が傾斜状態であるか否かを確認する。この傾斜状態は、上述の垂直状態と同様に、予め記憶装置120に所定の距離Dに応じた傾斜状態の振幅を記憶しておき、この記憶した値と、受信した信号振幅(A)とを比較することにより判断することができる。
S411で傾斜状態と判断した場合には(S411:YES)、S412へと進み、信号振幅(A)が大傾斜判断閾値Dより小さいか否かを判断する。信号振幅(A)が大傾斜判断閾値Dより小さければ(S412:YES)、S413へと進み、穿孔工具1が傾斜状態から大傾斜状態へと変化して大傾斜状態であると判断し、LED表示部10Eでその旨報知し、S401へと戻る。
S412で信号振幅(A)が大傾斜判断閾値Dより大きければ(S412:NO)、S414へと進み、信号振幅(A)が垂直復帰閾値Aより大きいか否かを判断する。信号振幅(A)が垂直復帰判断閾値Aより大きければ(S414:YES)、S415へと進み、穿孔工具1が傾斜状態から垂直状態へと変化して垂直状態であると判断し、LED表示部10Eでその旨報知し、S401へと戻る。S414で信号振幅(A)が垂直復帰判断閾値Aより小さければ(S414:NO)、穿孔工具1は傾斜状態から変化していないのでLED表示部10Eでその旨報知し、S401へと戻る。
S411で傾斜状態ではない、即ち大傾斜状態と判断した場合には(S411:NO)、S416へと進み、信号振幅(A)が垂直復帰閾値Aより大きいか否かを判断する。信号振幅(A)が垂直復帰判断閾値Aより大きければ(S416:YES)、S417へと進み、穿孔工具1が大傾斜状態から垂直状態へと変化して垂直状態であると判断し、LED表示部10Eでその旨報知し、S401へと戻る。尚、S411における大傾斜状態は、距離センサ14で受信波を検出することはできるが、穿孔工具1が傾斜状態より更に傾斜している状態である。
S416で信号振幅(A)が垂直復帰判断閾値Aより小さければ(S416:NO)、S418へと進み、信号振幅(A)が傾斜復帰判断閾値Cより大きいか否かを判断する。S418で大きいと判断した場合には(S418:YES)、S419へと進み、大傾斜状態から傾斜状態へ変化して傾斜状態であると判断し、LED表示部10Eでその旨報知し、S401へと戻る。S418で小さいと判断した場合には(S418:NO)、穿孔工具1は大傾斜状態から変化していないのでLED表示部10Eでその旨報知し、S401へと戻る。
このように制御を行うことにより、距離センサ14からの出力結果に多少の出力変動が有ったとしても、垂直状態、傾斜状態、大傾斜状態の判断結果が切り変わることが抑制されるので、表示部10Eで報知する判断結果が不意に変化することが抑制される。これにより、作業者が戸惑うことが抑制され、穿孔工具1の使い勝手がよくなり、作業性を良くすることができる。尚、図7、図9、図10、図13に示されるフローチャートは、図8のフローチャートに係る制御に対し独立した制御であるので、図8のフローチャートに係る制御を行っている最中に、図7、図9、図10、図13のそれぞれのフローチャートに係る制御を行うことができる。即ち、所定の穿孔深さまで穿孔ビット2で穿孔している際にも、都度穿孔工具1が垂直を保っているかどうかを確認することができる。
尚、本実施の形態では、垂直状態、傾斜状態、大傾斜状態の三態で傾き状態を区分したが、これに限らず、更に傾き状態を細分した場合であっても、本発明を適用することは可能である。
本実施の形態では、上述のように上下方向、左右方向に分解能を有する超音波センサを距離センサ14に用いることにより、一個の距離センサ14のみで、穿孔工具1の被穿孔材Wに対する上下方向、左右方向のいずれかへの傾きを検出している。よって複数のセンサを設ける必要が無く穿孔工具1の構成部品点数を減じることができ、大型化を抑制することができる。また一個の超音波センサで距離センサ14が構成されているため、センサ特性等のばらつきを考慮する必要はなく、簡単な構成を得ることができる。
本発明の電動工具は、上述した穿孔工具に限らず、ドリルやドライバー、セイバーソー等の、壁面を有する被加工部材に対して作業を行う電動工具に広く利用することができる。
1:穿孔工具 2:穿孔ビット 2A:胴部 2B:先端部 10:ハンドル部
10A:後部 10B:前部 10C:把持部 10D:ライト 10E:表示部
11:電源ケーブル 12:スイッチ機構 13:トリガ 14:距離センサ
15:工具保持部 20:モータハウジング 20A:モータ収容部 21:モータ
22:出力軸 22A:軸流ファン 23:入力部 23A:表示部
23B:傾き検知オン・オフボタン 60:ギヤハウジング 61:第一中間シャフト
61A:第四ギヤ 63:軸受 71:第五ギヤ 72:第二中間シャフト
72A:ギヤ部 72B:軸受 73:第六ギヤ 74:シリンダ 76:クラッチ
80:運動変換部 80A:腕部 81:ピストンピン 82:ピストン
83:打撃子 84:空気室 85:中間子 101:整流回路
102:インバータ回路部 110:マイコン 111:スイッチ操作検出回路
112:印加電圧設定回路 113:距離深さ設定回路 14:原点位置設定回路
115:回転子位置検出回路 116:制御機能オン・オフボタン
117:設定ボタン 117A:UPボタン 117B:DOWNボタン
118:原点位置設定ボタン 119:制御信号出力回路 120:記憶装置

Claims (3)

  1. モータと、
    該モータを内蔵するハウジングと、
    該モータで駆動され被加工部材を加工する先端工具を装着可能な装着部と、
    該非加工部材の表面に超音波を発射すると共に該表面で反射された該超音波を検出し検出信号を出力し、該超音波の指向軸が該装着部に装着された該先端工具の軸と平行になるように該ハウジングに装着された一個の超音波センサと、
    該検出信号を処理する制御部と、を備え、
    該超音波センサは、該超音波の指向軸の方向と該表面の法線の方向とが平行な場合に最も高強度の該検出信号を出力するように構成され、
    該制御部は、該検出信号によって該超音波を検出する超音波検出手段と、該超音波検出手段による検出結果に基づいて該先端工具の軸が該表面に対して垂直な垂直状態から該法線に対して傾いた傾斜状態になったことを判断する傾斜判断手段と、を有し、
    該傾斜判断手段は、該超音波検出手段による検出結果に対して該傾斜状態を判断する複数の閾値を有することを特徴とする電動工具。
  2. 該複数の閾値は、該先端工具の軸が該垂直状態から該傾斜状態へと変化したことを検出する傾斜判断閾値と、該先端工具の軸が該傾斜状態から該垂直状態へと変化したことを検出する垂直復帰判断閾値とを含み、
    該垂直復帰判断閾値は、該傾斜判断閾値より高強度の該検出信号に基づき定められていることを特徴とする請求項1に記載の電動工具。
  3. 該傾斜判断手段は、該傾斜状態から更に大きく傾斜した大傾斜状態を検出可能であり、
    該複数の閾値は、該先端工具の軸が該傾斜状態から該大傾斜状態へと変化したことを検出する大傾斜判断閾値と、該先端工具の軸が該大傾斜状態から該傾斜状態へと変化したことを検出する傾斜復帰判断閾値とを含み、
    該傾斜復帰判断閾値は、該傾斜判断閾値より高強度の検出信号に基づき定められていることを特徴とする請求項2に記載の電動工具。
JP2011037365A 2011-02-23 2011-02-23 電動工具 Withdrawn JP2012171068A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011037365A JP2012171068A (ja) 2011-02-23 2011-02-23 電動工具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011037365A JP2012171068A (ja) 2011-02-23 2011-02-23 電動工具

Publications (1)

Publication Number Publication Date
JP2012171068A true JP2012171068A (ja) 2012-09-10

Family

ID=46974446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011037365A Withdrawn JP2012171068A (ja) 2011-02-23 2011-02-23 電動工具

Country Status (1)

Country Link
JP (1) JP2012171068A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018108619A (ja) * 2016-12-28 2018-07-12 パナソニックIpマネジメント株式会社 電動工具
TWI635934B (zh) * 2016-09-07 2018-09-21 米沃奇電子工具公司 動力工具及控制動力工具之方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI635934B (zh) * 2016-09-07 2018-09-21 米沃奇電子工具公司 動力工具及控制動力工具之方法
EP3296064B1 (en) * 2016-09-07 2020-08-26 Milwaukee Electric Tool Corporation Depth and angle sensor attachment for a power tool
US10807219B2 (en) 2016-09-07 2020-10-20 Milwaukee Electric Tool Corporation Depth and angle sensor attachment for a power tool
US11845163B2 (en) 2016-09-07 2023-12-19 Milwaukee Electric Tool Corporation Depth and angle sensor attachment for a power tool
JP2018108619A (ja) * 2016-12-28 2018-07-12 パナソニックIpマネジメント株式会社 電動工具

Similar Documents

Publication Publication Date Title
JP5796816B2 (ja) 動力工具
JP6380560B2 (ja) 打撃工具
EP2085755A1 (en) Power Tool having Motor Speed Monitor
JP5618257B2 (ja) 電動工具
JP2011104736A (ja) 手持ち工具
US10836008B2 (en) Locating device for use with power tools
JP6331082B2 (ja) 電動工具
CN112203802B (zh) 穿孔工具
JP2012171068A (ja) 電動工具
JP2012071409A (ja) 電動工具
JP2012125902A (ja) 電動工具
JP5376208B2 (ja) 電動穿孔工具
JP2014104541A (ja) 手持ち式電動工具
JP6489346B2 (ja) 電動工具
CN210436392U (zh) 一种可识别刀具的刀库装置
JP5716949B2 (ja) 穿孔工具
JP5489079B2 (ja) 穿孔工具
EP2773491B1 (en) Electric power tool
JP6885455B2 (ja) 電動工具
JP6641607B2 (ja) 電動工具
JP5696522B2 (ja) 穿孔工具
JP5831741B2 (ja) 電動工具
JP2022042351A (ja) 電動工具
JP2012139766A (ja) 締付工具及び所定作業検出ユニット
JP5495059B2 (ja) 穿孔工具

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513