JP2012170350A - 節水型灌水制御システム及び灌水制御方法 - Google Patents

節水型灌水制御システム及び灌水制御方法 Download PDF

Info

Publication number
JP2012170350A
JP2012170350A JP2011033100A JP2011033100A JP2012170350A JP 2012170350 A JP2012170350 A JP 2012170350A JP 2011033100 A JP2011033100 A JP 2011033100A JP 2011033100 A JP2011033100 A JP 2011033100A JP 2012170350 A JP2012170350 A JP 2012170350A
Authority
JP
Japan
Prior art keywords
water level
water
irrigation
storage container
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011033100A
Other languages
English (en)
Inventor
Mitsuhiro Ejiri
充宏 江尻
Osamu Nakamura
修 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
O N ENGINEERING Inc
O-N ENGINEERING Inc
RAN TECHNO KK
Original Assignee
O N ENGINEERING Inc
O-N ENGINEERING Inc
RAN TECHNO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by O N ENGINEERING Inc, O-N ENGINEERING Inc, RAN TECHNO KK filed Critical O N ENGINEERING Inc
Priority to JP2011033100A priority Critical patent/JP2012170350A/ja
Publication of JP2012170350A publication Critical patent/JP2012170350A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Abstract

【課題】植物の効果的な生育を維持し、植物に与える灌水の量が過剰にならず、より効果的な節水が可能な灌水制御装置及び方法を提供すること。
【解決手段】
植物4が育成される培地5に、吸液材3を用いて底面給水により供給される水Wの供給量を制御する灌水制御システム1において、吸液材3により吸水される水Wを貯留する貯留容器11と、貯留容器11の水位を測定する水位測定部12と、貯留容器11に供給する水Wを滞留させる滞留容器13と、水Wを貯留容器11へ導く導管14と、導管14を開閉する電磁弁15と、所定時間経過毎に貯留容器11の水位を演算して測定水位を算出し、基準水位と測定水位との水位差を演算し、水位差から植物4の吸水量を演算し、測定水位が基準水位になるまでバルブ部材15を開放して、滞留容器13から貯留容器11に水Wを供給するように制御する制御部16とを備えたことを特徴とする。
【選択図】図1

Description

本発明は、培地で栽培される植物に対する灌水を制御する節水型灌水制御システム及び灌水制御方法に関する。
地球温暖化に伴って深刻な水不足や渇水化が進行し、様々な植物の栽培に大きな悪影響が出ることや、農作物の生産に悪影響が及ぶことが懸念されている。そこで、少ない水を効果的に使用して植物を栽培することが可能な技術の確立が要請されている。このような技術としては、点滴灌漑法や多孔管灌漑法等を用いて植物を栽培する技術がすでに提案されており、さらに水分を植物の根の部分に直接供給するように構成した地中灌水法等を組み合わせて、水の使用を極力低減させて節水を可能にしたものが従来から知られている。しかし、従来から知られている技術では、単に植物に与える水の量を減らすことはできるものの、植物の効率的な栽培に望ましい量の水が植物に与えられているか否かが分からず、栽培者の経験に頼らなければならず、植物の効果的な生育の点で十分であるとはいえなかった。
そこで、本発明者らは、栽培しようとする植物の生育状態や生育環境に対応させて水を給水手段から供給する灌漑制御システムを提案した(特許文献1)。この灌漑制御システムでは、植物の効果的な生育を維持しつつ、植物に与える水の量が過剰になるおそれを低減することができ、より効果的な節水が可能になる。
ところで、水不足や渇水化は地球規模で進行しており、それに伴い厳しい気候条件であるような地域やインフラ事情の悪い地域などにも節水を可能にした装置が必要とされている。このため、灌漑制御システムは、できるだけ容易に構築可能なものであることが要請される。この点において、特許文献1で提案された栽培システムでは、負圧差灌漑法を適用することで、給水手段の作動を制御する機構をより容易に構築可能なものとすることが試みられている。
特開2009−296940号公報
特許文献1でも示されるような負圧差灌漑法は、培地に埋設される多孔質管に送られる吸水量を負圧差で制御するように構成されている。しかし、この方法は多孔質管の孔の閉塞の問題を抱えており、更なる改良が期待されるものである。したがって、効果的な節水が可能であって容易に構築可能な栽培システムは、その確立を待ち望まれている状況にある。
本発明は、
(1)植物が育成される培地に、吸液材を用いて底面給水により供給される灌水を制御する節水型灌水制御装置において、前記吸液材の一部が内部に配置され、この吸液材により吸水される灌水用の水を貯留する貯留容器と、少なくとも一対の電極、前記電極を支持する支持部材、前記電極の周囲を覆うように設けられる絶縁部材、並びに前記支持部材及び前記絶縁部材で覆われた電極を覆うように設けられた防水部材からなり、前記電極間における静電容量を測定して水位検出信号を出力するセンサ部と、前記センサ部と電気的に接続されており、前記水位検出信号をデジタル信号に変換し、このデジタル信号に変換された水位検出信号を出力するA/D変換部と、前記センサ部及びA/D変換部を収容可能に形成されるとともに、前記灌水用の水が内部に出入りできるように構成されており、電気的に接地されている遮蔽部材と、を有し、前記貯留容器内に貯留された前記灌水用の水の水位を測定する水位センサと、前記貯留容器に供給する水を滞留させる滞留容器と、前記滞留容器内に貯留される水を前記貯留容器へ導く導管と、前記導管を開閉するバルブ部材と、前記水位センサ及びバルブ部材と電気的に接続されており、所定時間が経過する毎に前記デジタル信号に変換された水位検出信号から前記貯留容器に貯留された水の水位を演算して測定水位を算出し、予め定められた基準水位と前記測定水位との水位差を演算するとともに、この水位差から植物の吸水量を演算し、前記測定水位が前記基準水位に到達するまで前記バルブ部材を開放して、前記滞留容器から前記貯留容器に水を供給するように制御する制御手段と、を備えたことを特徴とする灌水制御装置、
(2)外部条件を測定し、外部条件検知信号を出力する外部条件測定手段を備え、制御手段は、前記外部条件測定手段と電気的に接続されており、外部条件と植物の吸水量とを対応させたデータベースを有し、前記外部条件検知信号から外部条件を演算し、この演算した外部条件に対応する植物の吸水量を前記データベースから読み込み、この吸水量に相当する水を供給するための水位を演算して、この演算した水位を基準水位として設定する上記(1)記載の灌水制御装置、
(3)植物が育成される培地に、吸液材を用いて底面給水により供給される灌水を制御するための灌水制御方法において、水位センサを用いて貯留容器に貯留された灌水用の水の水位を測定し、その水位を基準水位として設定する工程と、前回の水位の測定から所定時間経過した時に、前記水位センサを用いて前記貯留容器に貯留された前記灌水用の水の水位を演算して測定水位を算出する工程と、この測定した測定水位と前記基準水位との水位差を演算するとともに、この水位差から植物の吸水量を演算する工程と、前記測定水位が前記基準水位に到達するまで前記バルブ部材を開放して、前記滞留容器から前記貯留容器に前記灌水用の水を供給する工程と、を有することを特徴とする灌水供給制御方法、
(4)外部条件測定手段から入力した外部条件検知信号から外部条件を判定する工程と、この判定した外部条件に対応する植物の吸水量をデータベースから読み込む工程と、この吸水量に相当する水を供給するための水位を演算して、この演算した水位を基準水位として設定する工程と、を含む上記(3)記載の灌水供給制御方法、
を要旨とする。
本発明によれば、制御手段が、所定時間が経過する毎にデジタル信号に変換された水位検出信号から貯留容器に貯留された灌水用の水の水位を演算して測定水位を算出し、予め定められた基準水位と測定水位との水位差を演算するとともに、この水位差から植物の吸水量を演算し、測定水位が基準水位に到達するまでバルブ部材を開放して、滞留容器から貯留容器に灌水用の水を供給するように制御するので、植物に与える水の量が過剰になるおそれを低減しながら、植物の育成に必要な量の水を常時供給することができ、植物の効果的な育成を維持すること、及びより効果的な節水が可能になる。
また、本発明によれば、ノイズ信号が乗りやすいセンサ部及びA/D変換部を遮蔽部材内に収容可能な構成にしたので、外部での静電容量の変化による影響を受けないようにすることができ、水位の測定データの信頼性をより向上させることが可能になる。また、これにより、水位検出の精度を飛躍的に向上させることが可能になる。
本発明の実施の形態に係る灌水制御システムの構成を表したブロック図である。 水位センサの構成を表す斜視図である。 本実施の形態に係る灌水制御システムの処理の流れを表すフローチャートである。 本実施の形態に係る灌水制御システムにおいて、貯留容器内における水位の変化を表したタイムチャートである。 本発明の第2の実施の形態に係る灌水制御システムの構成を表したブロック図である。 本形態に係る灌水制御システムの処理の流れを表すフローチャートである。 本形態に係る灌水制御システムにおいて、貯留容器内における水位の変化を表したタイムチャートである。
本発明に係る灌水制御システム1の第1の実施の形態について、図1〜図3に基づいて説明する。まず、本実施の形態に係る灌水制御システム1が適用される栽培装置2について説明する。栽培装置2は、内部に吸液材3が配設されるとともに、その吸液材3の上に植物4が育成される培地5を敷設する栽培領域6を有している。栽培領域6は、植物4を栽培可能な領域部分を示しており、栽培容器7の栽培用の領域部分でもよいし、本灌水制御システムが適用可能な領域であれば農園や露地などというような、植物4を栽培可能な領域部分であってもよい。
栽培領域6は、植物4を栽培可能であれば、形状、深さ、大きさなどを特に限定されるものではなく、栽培容器7を用いる場合、陶器製や樹脂製の鉢や箱などを適宜用いてよい。
培地5としては、植物4の生育が可能なものであれば適宜採用することができる。例えば、培地5には、木材の皮を粉砕した人工土、自然土などのほか、プランター用の土などの市販のものや、これらに任意に肥料などを調合したものであってもよい。
吸液材3は、植物4に対して底面給水により灌水するためのものであり、水Wを吸収可能な材料からなるものであれば特に限定されずに使用することが可能であり、織布、不織布などの吸液布などを適宜使用することができ、市販のものを適宜使用可能である。織布、不織布としては、綿、絹、麻などの各種天然繊維や、ポリエステルなどの各種の合成繊維からなるものを用いることができる。そのほかにも、吸液材3は、ウレタン、紙、セラミックスなどを適宜使用してもよい。
栽培装置2には、栽培領域6内に、植物4の根が吸液材3に達することを抑制する防根透液シート8が吸液材3の上に敷設されてもよい。防根透液シート8が敷設されていることで、植物4の根が吸液材3よりも下方に伸長しないようにすることが可能となりつつ、吸液材3から培地5への水Wの拡散を維持することができる。防根透液シート8には、市販の防根透液布などを適宜用いることができる。また、例えば、防根透液シート8としては、スパンボンド不織布などを使用することができる。
水Wは、水又は水を含む液である。水Wは、液肥などのミネラル成分を含む養液であることが好ましい。水Wは、水道水、雨水、井戸水など、植物4の生育に使用可能であれば、特に限定されるものではない。
灌水制御システム1は、貯留容器11、水位測定部12、滞留容器13、導管14、バルブ部材としての電磁弁15及び制御手段としての制御部16を備えている。貯留容器11は、吸液材3により吸水される灌水用の水Wを一時的に貯留するためのもので、吸液材3の一部が内部に配置され、少なくとも一部が貯留された水Wに浸った状態を維持することができるように構成されている。貯留容器11としては、水Wが一時的に貯留することができるとともに、吸液材3の一部が水Wに浸った状態を維持することができればよく、その構成は限定されない。例えば、本実施の形態の貯留容器11は、上面が全面的に開口した容器を用いているが、上面が部分的に開口したものでもよいし、又は吸液材3の一部が容器内に配置可能であれば、蓋等をしてもよい。また、本実施の形態では、貯留容器11が栽培装置2の下方に位置するように配置されているが、吸液材3が水Wを吸水することができれば、配置される位置は限定されない。
水位測定部12は、貯留容器11に貯留されている水Wの水位を測定するためのもので、貯留容器11よりも上流側であって、かつ滞留容器13の下流側に位置するように設置されており、滞留容器13から水Wが水位測定部12内に流入し、水位測定部12内から流出した水Wが貯留容器11内に流入するように構成されている。
水位測定部12は、水位センサ17、及び該水位センサ17を内部に収容可能な大きさに形成されている水位計測容器18から構成されている。水位センサ17は、貯留容器11に貯留されている水Wの水位を測定するためのもので、センサ部21、A/D変換部22、及び遮蔽部材23を備えている。図2に示すように、センサ部21は、電極24の間における静電容量を測定して水位検出信号(アナログ信号)をA/D変換部22に出力するためのもので、一対の電極24、支持部材25、絶縁部材26及び防水部材27を有している。図2(a)に示すように、電極24は、導電性を有する棒状の部材からなり、この棒状の部材から延出する引出線34を備えている。電極24は、例えば銅、鉄などのような金属、ステンレス(SUS)などのような合金から形成されているが、これらの材料に限定されるものではなく、従来から公知の導電性を有するものを任意に選択して、適宜使用することができる。また、電極24は、少なくとも一対であればよく、一対に限定されるものではない。絶縁部材26は、電極24の周囲を覆うように設けられている絶縁性を有する部材である。絶縁部材26には、例えばポリオレフィン樹脂等を用いることができるが、これに限定されるものではなく、絶縁性を有する材料であれば従来から公知のものを適宜使用することができる。
支持部材25は、電極24を支持するためのもので、支持本体29と、基板取付板30とを備えており、これら支持本体29と基板取付板30とが組み合わされて構成されている。支持本体29は、棒状に形成された支持部31と、この支持部31よりも大径のフランジ部32とを備えている。支持部31は円形の棒状に形成されており、外周面に一対の電極24が対向配置されるように形成されている。なお、この支持部31は、電極24を対向配置することができればよく、その形状は円形に限定されるものではない。例えば四角形や六角形等のような多角形状であってもよい。また、支持部31には、電極24が対向配置しやすいように溝を形成してもよい。
フランジ部32は、外径が、後述する遮蔽部材23の内径と同じか、又は若干小さくなるように形成されている。また、フランジ部32には、支持本体29が形成されている側と基板取付板30が取付固定される側との間を貫通する貫通孔33が2つ開口形成されている。これらの貫通孔33は、電極24から延出する引出線34を基板取付板30が取付固定される側へ案内するためのものである。
基板取付板30は、後述するA/D変換部22としての機能を有する回路基板を取り付けるためのものである。これら支持本体29及び基板取付板30としては、例えばアクリル樹脂を用いることができるが、これ以外のものを任意に選択して用いてもよい。なお、本実施の形態では、支持本体29と基板取付板30とを別部材で形成しているが、これらは一体成型してもよい。
図2(b)に示すように、防水部材27は、電極24及び支持本体29を防水するためのもので、これら電極24及び支持部材29を覆うように設けられている。この防水部材27は、電極24及び支持部材29を防水できるものであれば、従来から公知のものを任意に選択して使用することができる。
A/D変換部22は、センサ部21と電気的に接続されており、該センサ部21から出力された水位検出信号(アナログ信号)をデジタル信号に変換し、このデジタル信号に変換された水位検出信号を後述する制御部16に出力するためのものである。このA/D変換部22を構成する回路基板は、基板取付板30に取付固定されている。なお、A/D変換するための回路は、従来から公知のものを任意に選択して使用してよい。なお、本実施の形態では、A/D変換部22において水位検出信号をデジタル信号に変換するようにしているが、水位検出信号から貯留容器11内における水Wの水位を算出し、この算出した水位をデジタル信号に変換するように構成してもよい。
図2(c)及び図2(d)に示すように、遮蔽部材23は、センサ部21及びA/D変換部22を内部に収容することができる大きさに形成されるとともに、電気的に接地されるように構成されている部材であり、遮蔽部材本体35、第1蓋部36及び第2蓋部37を備えている。遮蔽部材本体35は、外部での誘電率の変化やノイズ等の影響を受けにくくするためのものである。この遮蔽部材本体35は、円筒状に形成された筒状の部材であり、第1蓋部36が取り付けられる一方の端部には雄ネジのネジ山(図示せず)が形成され、第2蓋部37が取り付けられる他方の端部には雌ネジのネジ山(図示せず)が形成されている。また、遮蔽部材本体35は、電極24を取り付けた支持本体を覆うことができるように形成されており、その内径は、支持本体29のフランジ部32の外径と略同じか、又は若干大きくなるように形成されており、支持部材25を遮蔽部材本体35内に挿入した時に、フランジ部32を遮蔽部材本体35に嵌合させることで、支持部材25の支持本体29に取り付けられた電極24の位置決めができるように構成されている。また、遮蔽部材本体35には、一端部側面の4箇所に円孔38aが開口形成されており、他端部側面の4箇所に円孔38bが開口形成されている。円孔38aは、遮蔽部材本体35の内部に水Wを流入又は流出させるために設けられており、円孔38bは、遮蔽部材本体35の内部において水Wの水位が変動した場合に空気を流入若しくは流出させたり、又は水Wの水位が上昇した時に該水Wをオーバーフローさせたりすることができるように設けられている。なお、円孔38a,38bの数は4箇所に限定されるものではなく、任意の数を設けてもよい。
第1蓋部36は、遮蔽部材本体35の一方側に取付固定することができるように構成されており、遮蔽部材本体35と取り付けられる側の端部には雌ネジのネジ山(図示せず)が形成されている。この第1蓋部36は、遮蔽部材本体35と同一径の筒状部材により形成されており、遮蔽部材本体35に取り付けられた場合には、A/D変換部22の周囲を覆う位置に配置される。また、第1蓋部36には、アース線を接続するための端子39が設けられており、電気的に設置することができるように構成されている。
第2蓋部37は、遮蔽部材本体35の他方側に取付固定することができるように構成されており、遮蔽部材本体35の径と略同一径の大径部37aと、大径部37aよりも小径の小径部37bとを有する階段状に形成されている。小径部37bには外周に雄ネジのネジ山(図示せず)が形成されるとともに、支持部材25の他端部が挿入することが可能な大きさの穴部37cが設けられている。この穴部37cは第2蓋部37を遮蔽部材本体35に取り付けて支持部材25が挿入された時に、該支持部材25が遮蔽部材23内の中心部に位置するように位置決めできるようにするためのものである。なお、上記において、遮蔽部材本体35、第1蓋部36及び第2蓋部37を組み立てるためにネジ山を形成しているが、遮蔽部材本体35、第1蓋部36及び第2蓋部37を組み立てることができれば、他の方法であってもよい。また、ネジ山を形成する場合には、雄ネジと雌ネジとの関係が上記したものと逆の関係であってもよい。
このように構成された水位センサ17は、遮蔽部材23の内部にセンサ部21及びA/D変換部22が配置される。そして、図1に示すように、貯留容器11と水位計測容器18とは導管14で接続されており、水Wが貯留容器11と水位計測容器18との間で行き来することができるので、貯留容器11の水位L1と水位計測容器18の水位L2とが同じになる。また、水Wが栽培装置2に供給される等して水位L1が変化すると、それに伴って水位L2も変化し、L1とL2は常に同じ水位を維持するように変動する。このとき、水位計測容器18の内部の水Wは、遮蔽部材23の円孔38aから該遮蔽部材23の内部に流入又は流出する。そのため、一対の電極24では、水Wの水位が変動することにより、これら電極24間における誘電率が変化するとともに静電容量も変化する。センサ部21は、この静電容量を水位検出信号としてA/D変換部22に出力する。A/D変換部22では、水位検出信号の入力を受けると、デジタル信号に変換して、後述する制御部16に出力する。
なお、本実施の形態では、貯留容器11と水位計測容器18とを導管14で連通させておき、水Wが貯留容器11と水位計測容器18との間を行き来できるようにすることで、
水位計測容器18内の水位を水位センサ17で測定することにより、貯留容器11内における水Wの水位を測定することができるように構成しているが、本実施の形態に係る水位センサ17を用いて貯留容器11内における水Wの水位を測定できれば、この構成に限定されるものではない。例えば貯留容器11内に水位センサ17を配置してもよいし、他の構成によって、貯留容器11内における水Wの水位を測定できるように構成してもよい。
水位計測容器18は、水位センサ17を内部に収容することができるように形成された円筒状の部材であり、上流側では滞留容器13と接続している導管14と接続し、下流側では貯留容器11と接続している導管14と接続するように構成されている。この水位計測容器18は、内部に配置した水位センサ17が、該水位計測容器18内における水位を測定することができればよく、その材料や大きさ、形状などは限定されない。
図1に示すように、滞留容器13は、貯留容器11に供給される水Wを貯留しておくためのものである。この滞留容器13は、貯留容器11に供給可能な水Wを貯留しておくことができればよく、容器の構成は従来から公知のものを種々適用してよい。また、滞留容器13に対して水Wを供給する手段を設けてもよいし、この滞留容器13の水位等を測定して、常に一定量の水Wが滞留容器13内に貯留されているようにしてもよい。また、これら以外の構成を有していてもよい。
導管14は、滞留容器13内に貯留される水Wを貯留容器11まで導くためのものであり、滞留容器13と水位計測容器18との間、及び水位計測容器18と貯留容器11との間を連通するように構成されている。この導管14は、水Wを移送させることができれば、従来から公知のものを任意に選択して用いてよい。また、本実施の形態では、滞留容器13と貯留容器11の間に水位測定部12を配置しているが、滞留容器13と貯留容器11との間を導管14にて連通させて、この導管14から枝管を分岐させて水位測定部12を配置させるように構成してもよい。また、他の構成であってもよい。
本実施の形態では、導管14に電磁弁15が設けられている。この電磁弁15は、後述する制御部16からの開信号又は閉信号に基づいて、導管14内における水Wの流れを許容する開位置と該水Wの流れを遮断する閉位置との間で動作し、導管14を開閉するように構成されている。なお、本実施の形態では、バルブ部材の一例として電磁弁15を用いているが、導管14内における水の流れを遮断又は許容することができれば、電磁弁15以外の他のバルブ部材を任意に選択して用いてもよい。また、バルブ部材としては、開閉動作のみを行うもののほかに、導管14内を流れる水Wの流量を調節する流量調節弁を用いてもよい。
制御部16は、本実施の形態に係る灌水制御システム1において灌水を制御するためのもので、図示しないCPU、ROM及びRAMを有しているほかに、IC時計等のような内部時計を有している。また、制御部16は、水位センサ17のA/D変換部22及び電磁弁15と電気的に接続されており、A/D変換部22からはデジタル信号に変換された水位検出信号が入力し、電磁弁15に対しては、該電磁弁15に開動作を行わせる開信号又は該電磁弁15に閉動作を行わせる閉信号を出力できるように構成されている。この制御部16は、起動時に水位検出信号が入力すると、その水位検出信号から、貯留容器11における水Wの水位を演算し、この演算した水位を基準水位として設定してRAMに一時的に記憶させる。また、制御部16は、前回の水位の測定から所定時間(本実施の形態では40分)経過する毎に、水位検出信号の入力を受けて、その水位検出信号から、貯留容器11内における水Wの水位を演算して測定水位を算出し、基準水位と測定水位との水位差を演算するように構成されている。また、制御部16は、この水位差から植物4の吸水量も演算し、測定水位が基準水位に到達するまで、すなわち、植物4の吸水量に相当する量の水Wを貯留容器11へ供給するために、該電磁弁15に対して開信号を出力するようにも構成されている。
なお、制御部16は、水位センサ17のA/D変換部22から水位検出信号の入力を受け、入力信号に基づいて上記した演算を行い、電磁弁15に開信号又は閉信号を出力することができればよく、その設置場所や構成などは限定されない。また、制御部は、水位センサ等が設置されている現場に配置して現場での操作をすることができるように構成してもよいし、現場から離れた場所に設置して遠隔操作を行えるように構成してもよい。さらに、現場での操作と遠隔操作のいずれをもできるようにし、現場で操作する場合と遠隔操作をする場合とで切り替えられるように構成してもよい。また、この制御部に使用されるコンピュータは、汎用のパソコン等を用いてもよいし、他のコンピュータを任意に選択して使用してもよい。
次に、本実施の形態に係る灌水制御システム1における一連の処理の流れを図3に基づいて説明する。
まず、灌水制御システム1を起動させる。制御部16は、灌水制御システム1が起動すると、貯留容器11に貯留された水Wの水位を測定する(ステップS1)。水位測定部12は、センサ部21の電極24によって現在の水位に対応する静電容量を測定し、水位検出信号を出力する。A/D変換部22では、水位検出信号が入力すると、この水位検出信号をデジタル信号に変換して出力する。
制御部16は、A/D変換部22からデジタル信号に変換された水位検出信号の入力を受けると、この水位検出信号から貯留容器11内における水Wの水位を演算する。そして、この演算した水位を基準水位として設定し、RAMに記憶させる。(ステップ2)。
次に、制御部16は、前回の水位の測定から40分経過したか否かを所定の周期で判定する(ステップS3)。ここで、前回の水位測定からまだ40分経過していない場合には、ステップS3の処理を所定の周期で繰り返し行う。
制御部16は、ステップS3において、前回の水位の測定から40分経過したと判定した場合には、水位検出信号の入力を受けて、貯留容器11内における水Wの水位(測定水位)を測定する(ステップS4)。
次に、制御部16は、RAMから基準水位を読み込んで、基準水位と測定水位との差を演算して、水位差を算出する(ステップS5)。また、制御部16は、この水位差から、植物4の吸水量を演算して算出する(ステップS6)。
次に、制御部16は、電磁弁15に開信号を出力し、電磁弁15を開く(ステップS7)。電磁弁15を開くと、滞留容器13と貯留容器11との間が連通し、滞留容器13内の水Wが導管14を通じて貯留容器11に流入する。そして、貯留容器11内では、流入した水Wによって、該水Wの水位が上昇する。制御部16は、この水Wの水位が基準水位に到達するまで電磁弁15を開いた状態を維持し、水Wの水位が基準水位に到達した場合、言い換えればステップS5で算出した水位差に対応する量の水が貯留容器11に供給された場合には、電磁弁15に閉信号を出力して、電磁弁15を閉じる(ステップS8,S9)。なお、ここで水Wの水位が基準水位に到達したか否かの判定は、従来から公知の制御方法を任意に選択して用いることができる。例えば、フィードバック制御で制御してもよいし、他の方法で制御してもよい。
制御部16は、ステップS9までの処理が終了すると、次の処理となるステップS3へ処理を移行させ、再度前回の水位の測定から40分経過したか否かを所定の周期で判定する。
図4は、横軸に時間tを、縦軸に水位Hをとって、貯留容器11内における水位の時間的な変化を表したものである。t=0のところで灌水制御システム1を起動させると、この時の水位が基準水位として設定される。図中の点線は基準水位を表す。貯留容器11に貯留された水Wは、吸液材3を介して土壌に供給され、さらに植物4が吸水する。そのため、貯留容器11内における水Wの水位は、時間の経過に伴って低くなる。そして、水位を測定してから40分経過後には、図中のA点に到達する。
上記の通り、制御部16は、A点の測定水位を算出するとともに基準水位との水位差を演算する。そして、電磁弁15を開けるように制御して、滞留容器13から貯留容器11に水Wが供給される。そのため、貯留容器11の水位は、滞留容器13から供給される水WによってA点から上昇してB点に到達する。B点は、測定水位が基準水位まで到達した点である。
制御部16は、測定水位がB点に到達すると、電磁弁15を閉じるように制御して、滞留容器13から貯留容器11への水Wの供給を停止させる。そして、先と同様に、水位が低くなっていき、A点における水位を算出してから40分経過するとC点に到達する。このような水位の変化を繰り返し行わせながら、植物4の育成に適切な量の水Wを栽培装置2に常時提供する。
このように、本実施の形態に係る灌水制御システム1は、所定時間(本実施の形態では40分)における植物4の吸水量を容易に測定し、リアルタイムで把握することができる。また、この植物4の吸水量を把握することができることで、植物4の吸水量に応じた量の水Wを常時供給することができる。そのため、本実施の形態に係る灌水制御システム1によれば、植物4に対して過剰な量の水Wを供給して根腐れを発生させたり、又は、植物4に提供する水Wの量が少なすぎて、植物4がいわゆる昼寝現象を起こすというような事態を防止することができ、従来よりもはるかによく植物4を育成することが可能になる。
また、本実施の形態に係る灌水制御システム1は、植物4の吸水量に応じた量の水Wを提供するので、植物4の栽培に要する水の量を大幅に低減することができ、より効果的に節水をすることが可能になる。
また、本実施の形態に係る灌水制御システム1を構成する水位センサ17が遮蔽部材23を備えた構成になっており、この遮蔽部材23が電気的に接地されているので、内部に配置されるセンサ部21及びA/D変換部22は、遮蔽部材23によって静電遮蔽された状態になる。そのため、外部において誘電率や静電容量が変化する事態が生じたとしても、その遮蔽部材23が電気的に接地されていることによってこれらの影響を受けなくすることができ、水位センサ17における静電容量の検出精度をより向上させることが可能になる。特に、本実施の形態における水位センサ17は、遮蔽部材23内にA/D変換部22を配置しており、水位センサ17の外部に出力する信号はすべてデジタル変換されたものであるから、この点でもノイズ信号の影響を受けにくくし、検出精度を向上させることが可能になっている。
さらに、水位センサ17のセンサ部21は、支持部材25を構成するフランジ部32を遮蔽部材本体35の内部に嵌合させ、さらに支持本体29の他端部を第2蓋部37の穴部37cに挿入させることで、遮蔽部材23内における支持部材25の位置決めを確実に行うことができ、遮蔽部材本体35の内周面と電極24の外周面との間の隙間を一定にすることができる。そのため、静電容量の測定精度をさらにより向上させることが可能になる。
また、水位センサ17の遮蔽部材23を遮蔽部材本体35、第1蓋部36及び第2蓋部37から構成することにより、水位センサ17のメンテナンス性を向上させることも可能になる。
なお、本実施の形態では、40分毎に貯留容器11内における水Wの水位等の演算を行うようにしているが、この水Wの水位等の演算は40分以外の任意の時間ごとに行ってもよい。
次に、本発明の第2の実施の形態に係る灌水制御装置51について、図5〜7に基づいて説明する。なお、本実施の形態に係る灌水制御装置51の構成が先に説明したものと同一のものである場合には、その説明を省略し、符号も同一のものを使用する。
本実施の形態に係る灌水制御装置51は、外部条件測定手段としての温度センサ52、湿度センサ53、日射センサ54及び風速センサ55を備えており、制御部56がデータベース57を有している。これら各種センサは、灌水制御装置51の外部条件として設定されている温度、湿度、日射量及び風速を測定するためのものである。これら各種センサは、従来から公知のものを適宜使用することができる。また、これら各種センサは、制御部56と電気的に接続されており、これらセンサによる測定結果は、制御部56に対して外部条件検知信号としての検知信号を出力するように構成されている。なお、上記した温度、湿度、日射量及び風速は、本発明に係る外部条件を意味するものであるが、これらは外部条件の一例であり、これらに限定されるものではなく、他の条件も外部条件としてもよい。
制御部56は、温度、湿度、日射量及び風速のそれぞれに対して植物4の吸水量を対応付けたデータベース57を有している。この植物4の吸水量との対応付けは、上記した温度、湿度、日射量及び風速のそれぞれに対して別個に行ってもよいし、温度、湿度、日射量及び風速の少なくとも2つ以上を関連させながら行ってもよい。なお、このデータベース57は、温度のみならず、湿度、日射量及び風速についてデータベース化するだけではなく、外部条件として捉えられる他の条件をデータベース化しておいてもよい。
制御部56は、図示しないCPU、ROM及びRAMを有しているほかに、IC時計等のような内部時計を有している。また、制御部56は、水位センサ17のA/D変換部22、電磁弁15、温度センサ52、湿度センサ53、日射センサ54及び風速センサ55と電気的に接続されている。制御部56には、A/D変換部22からはデジタル信号に変換された水位検出信号が入力し、電磁弁15に対しては、該電磁弁15に開閉駆動を行わせる駆動信号を出力できるように構成されている。また、制御部56には、温度センサ52からは温度検出信号が入力し、湿度センサ53からは湿度検出信号が入力し、日射センサ54からは日射量検出信号が入力し、風速センサ55からは風速検出信号が入力されるようにも構成されている。
制御部56は、起動時に水位検出信号が入力すると、その水位検出信号から、貯留容器11における水Wの水位を演算し、この演算した水位を基準水位として設定してRAMに一時的に記憶させる。また、制御部56は、前回の水位の測定から所定時間(本実施の形態では40分)経過する毎に、水位検出信号の入力を受けて、その水位検出信号から、貯留容器11内における水Wの水位を演算して測定水位を算出する。また、制御部56は、温度検出信号、湿度検出信号、日射量検出信号及び風速検出信号の入力を受けると、これら各種検出信号から、温度、湿度、日射量、及び風速を演算し、この演算結果をデータベース57に格納されている各種データと照合し、植物4の吸水量に関するデータをデータベース57から読み込む。そして、データベース57から読み出した植物4の吸水量と基準水位から算出される植物4の吸水量との間に差異がある場合には、データベース57から読み出した植物4の吸水量に相当する水Wを供給するための水位を演算して求め、この演算した水位を基準水位として設定するように構成されている。
なお、本実施の形態では、データベース57を制御部56の内部に配置するように構成しているが、データベース57は制御部56の外部に設置するように構成してもよい。また、制御部56は、水位センサ17のA/D変換部22から水位検出信号の入力を受け、入力信号に基づいて上記した演算を行い、電磁弁15に開信号又は閉信号を出力することができればよく、その設置場所や構成などは限定されない。また、制御部56は、水位センサ等が設置されている現場に配置して現場での操作をすることができるように構成してもよいし、現場から離れた場所に設置して遠隔操作を行えるように構成してもよい。さらに、現場での操作と遠隔操作のいずれをもできるようにし、現場で操作する場合と遠隔操作をする場合とで切り替えられるように構成してもよい。また、この制御部56に使用されるコンピュータは、汎用のパソコン等を用いてもよいし、他のコンピュータを任意に選択して使用してもよい。
次に、本実施の形態に係る灌水制御装置51の一連の処理の流れを図6に基づいて説明する。
まず、灌水制御装置51を起動させる。制御部56は、灌水制御装置51が起動すると、貯留容器11内における水Wの水位を測定する(ステップS11)。水位センサ17は、センサ部21の電極24によって現在の水位に対応する静電容量を測定し、水位検出信号を出力する。A/D変換部22では、水位検出信号が入力すると、この水位検出信号をデジタル信号に変換して出力する。
制御部56は、A/D変換部22からデジタル信号に変換された水位検出信号の入力を受けると、この水位検出信号から貯留容器11内における水Wの水位を演算する。そして、この演算した水位を基準水位として設定し、RAMに記憶させる(ステップS12)
次に、制御部56は、前回の水位の測定から40分経過したか否かを所定の周期で判定する(ステップS13)。ここで、前回の水位の測定からまだ40分を経過していない場合には、ステップS13の処理を所定の周期で繰り返し行う。
制御部56は、ステップS13において、前回の水位の測定から40分経過したと判定した場合には、水位検出信号の入力を受けて、貯留容器11内における水Wの水位(測定水位)を測定する(ステップS14)。
次に、制御部56は、温度センサ52から温度検出信号の入力を、湿度センサ53から湿度検出信号の入力を、日射センサ54から日射量検出信号の入力を、そして風速センサ55から風速検出信号の入力を受ける。そして、これら検出信号から、外部条件としての温度、湿度、日射量及び風速を演算する(ステップS15)。
次に、制御部56は、データベース57からこれら温度、湿度、日射量及び風速に関するデータと照合し、各センサにて測定された外部条件に対して植物4の育成に適正な吸水量を判定する(ステップS16)。
次に、制御部56は、基準水位における吸水量を演算によって算出し、データベース57から読みだした植物4の吸水量と、基準水位における吸水量との間に差異があるか否かを判定する(ステップS17)。そして、この差異がないと判定した場合には、ステップS19に処理を移行させる。
一方、制御部56は、この差異があると判定した場合には、このデータベース57から読み出した植物4の吸水量に相当する水Wを供給するための水位を演算して求め、この演算した水位を基準水位として設定し、RAMに記録する(ステップS18)。
次に、制御部56は、基準水位と測定水位との差を演算して、水位差を算出し(ステップS19)、この水位差から、植物4の吸水量を演算して算出する(ステップS20)。そして、制御部56は、電磁弁15に開信号を出力し、電磁弁15を開く(ステップS21)。電磁弁15を開くと、滞留容器13と貯留容器11との間が連通し、滞留容器13内の水Wが導管14を通じて貯留容器11に流入する。そして、貯留容器11内では、流入した水Wによって、該水Wの水位が上昇する。制御部56は、この水Wの水位が基準水位に到達するまで電磁弁15を開いた状態を維持し、水Wの水位が基準水位に到達した場合、言い換えればステップS5で算出した水位差に対応する量の水が貯留容器11に供給された場合には、電磁弁15に閉信号を出力して、電磁弁15を閉じる(ステップS22,S23)。なお、ここで水Wの水位が基準水位に到達したか否かの判定は、従来から公知の制御方法を任意に選択して用いることができる。例えば、フィードバック制御で制御してもよいし、他の方法で制御してもよい。
制御部56は、ステップS22までの処理が終了すると、次の処理となるステップS13へ移行し、再度前回の水位の測定から40分経過したか否かを所定の周期で判定する。
図7は、横軸に時間tを、縦軸に水位Hをとって、貯留容器11内における水位の時間的な変化及び基準水位の変化の一例を表したものである。t=0のところで灌水制御装置51を起動させると、この時の水位が基準水位として設定される。図中の点線は基準水位を表す。貯留容器11の水Wは、吸液材3を介して土壌に供給され、さらに植物4によって吸水される。そのため、貯留容器11内における水Wの水位は、時間の経過に伴って低くなる。そして、水位の測定から40分経過後には、図中のG点に到達する。
上記の通り、制御部56は、G点の測定水位を算出するとともに、温度検出信号、湿度検出信号、日射量検出信号及び風速検出信号(以下、温度検出信号等という。)に基づいて温度、湿度、日射量及び風速(以下、温度等という。)を演算して、これら演算結果をデータベース57の温度等に関するデータと照合し、各センサにて測定された外部条件に対して植物4の育成に適正な吸水量を判定する。ここで、制御部56は、G点では基準水位における吸水量とデータベース57から読み出した植物4の吸水量との間に差異がないと判定したため、基準水位は変動させず、水位差を算出した後に電磁弁15を開けるように制御して、滞留容器13から貯留容器11に水Wが供給されるようになる。そのため、貯留容器11の水位は、供給される水WによってG点から上昇してH点に到達する。H点は、測定水位が基準水位まで到達した点である。制御部56は、測定水位がH点に到達すると、電磁弁15を閉じるように制御して、滞留容器13から貯留容器11への水Wの供給を停止させる。その後、貯留容器11内における水Wの水位は、時間の経過に伴って低くなり、G点での水位の測定から40分経過後には、水位は図中のI点に到達する。
制御部56は、G点での水位の測定から40分経過して、I点の水位を測定した場合には、データベース57から読み出した吸水量と基準水位における吸水量との間に差異があると判定したため、データベース57から読み出した吸水量に対応する水位を演算し、この水位をRAMに記憶させて基準水位とする。図7においては、新たに設定された基準水位は、その前の基準水位によりもΔH1高くなるように設定されている。そのため、制御部56は、この新たに設定された基準水位と測定水位との水位差を演算し、電磁弁15の開閉制御をして、貯留容器11内における水Wの水位がJ点に到達するように制御する。
このような方法により、制御部56は、K点では基準水位をΔH2だけ高くなるように設定して、貯留容器11内における水Wの水位が基準水位であるL点に到達するように制御する。また、M点では、制御部56は、基準水位をΔH2だけ低くするように設定して、貯留容器11内における水Wの水位がN点に到達するように制御する。同様に、O点では、制御部56は、基準水位をΔH1だけ低くするように設定して、貯留容器11内における水Wの水位がP点に到達するように制御する。
本実施の形態に係る灌水制御装置51によれば、植物4に対して、より適切な量の水を提供することができる。また、季節の変動が激しい地域や、年間を通して気温が高い地域等のように、地域によって外部条件が大きく異なる場合であっても、適切な量の水を植物4に提供することができ、さらにより良く植物4を育成することが可能になる。
なお、本実施の形態では、基準水位の変化をΔH1とΔH2として表しているが、この変化量は任意に設定できる値である。また、設定される変化量は2つに限定されるものではなく、任意の数を選択して適宜設定してよい。また、本実施の形態では、40分毎に貯留容器11内における水Wの水位等の演算を行うようにしているが、この水Wの水位等の演算は40分以外の任意の時間ごとに行ってもよい。
また、本発明に係る灌水制御装置は、制御部において演算した植物の吸水量などの各種データを表示する表示手段を設けてもよい。
1,51 灌水制御装置
2 栽培装置
3 吸液材
4 植物
5 培地
6 栽培領域
7 栽培容器
8 防根透液シート
11 貯留容器
12 水位測定部
13 滞留容器
14 導管
15 電磁弁
16,56 制御部
17 水位センサ
18 水位計測容器
21 センサ部
22 A/D変換部
23 遮蔽部材
24 電極
25 支持部材
26 絶縁部材
27 防水部材
29 支持本体
30 基板取付板
31 支持部
32 フランジ部
33 貫通孔
34 引出線
35 遮蔽部材本体
36 第1蓋部
37 第2蓋部
38 円孔
39 端子
52 温度センサ
53 湿度センサ
54 日射センサ
55 風速センサ
57 データベース
W 水

Claims (4)

  1. 植物が育成される培地に、吸液材を用いて底面給水により供給される灌水を制御する節水型灌水制御装置において、
    前記吸液材の一部が内部に配置され、この吸液材により吸水される灌水用の水を貯留する貯留容器と、
    少なくとも一対の電極、前記電極を支持する支持部材、前記電極の周囲を覆うように設けられる絶縁部材、並びに前記支持部材及び前記絶縁部材で覆われた電極を覆うように設けられた防水部材からなり、前記電極間における静電容量を測定して水位検出信号を出力するセンサ部と、前記センサ部と電気的に接続されており、前記水位検出信号をデジタル信号に変換し、このデジタル信号に変換された水位検出信号を出力するA/D変換部と、前記センサ部及びA/D変換部を収容可能に形成されるとともに、前記灌水用の水が内部に出入りできるように構成されており、電気的に接地されている遮蔽部材と、を有し、前記貯留容器内に貯留された前記灌水用の水の水位を測定する水位センサと、
    前記貯留容器に供給する水を滞留させる滞留容器と、
    前記滞留容器内に貯留される水を前記貯留容器へ導く導管と、
    前記導管を開閉するバルブ部材と、
    前記水位センサ及びバルブ部材と電気的に接続されており、所定時間が経過する毎に前記デジタル信号に変換された水位検出信号から前記貯留容器に貯留された水の水位を演算して測定水位を算出し、予め定められた基準水位と前記測定水位との水位差を演算するとともに、この水位差から植物の吸水量を演算し、前記測定水位が前記基準水位に到達するまで前記バルブ部材を開放して、前記滞留容器から前記貯留容器に水を供給するように制御する制御手段と、を備えたことを特徴とする灌水制御装置。
  2. 外部条件を測定し、外部条件検知信号を出力する外部条件測定手段を備え、
    制御手段は、
    前記外部条件測定手段と電気的に接続されており、
    外部条件と植物の吸水量とを対応させたデータベースを有し、
    前記外部条件検知信号から外部条件を演算し、この演算した外部条件に対応する植物の吸水量を前記データベースから読み込み、この吸水量に相当する水を供給するための水位を演算して、この演算した水位を基準水位として設定する請求項1記載の灌水制御装置。
  3. 植物が育成される培地に、吸液材を用いて底面給水により供給される灌水を制御するための灌水制御方法において、
    水位センサを用いて貯留容器に貯留された灌水用の水の水位を測定し、その水位を基準水位として設定する工程と、
    前回の水位の測定から所定時間経過した時に、前記水位センサを用いて前記貯留容器に貯留された前記灌水用の水の水位を演算して測定水位を算出する工程と、
    この測定した測定水位と前記基準水位との水位差を演算するとともに、この水位差から植物の吸水量を演算する工程と、
    前記測定水位が前記基準水位に到達するまで前記バルブ部材を開放して、前記滞留容器から前記貯留容器に前記灌水用の水を供給する工程と、
    を有することを特徴とする灌水供給制御方法。
  4. 外部条件測定手段から入力した外部条件検知信号から外部条件を判定する工程と、
    この判定した外部条件に対応する植物の吸水量をデータベースから読み込む工程と、
    この吸水量に相当する水を供給するための水位を演算して、この演算した水位を基準水位として設定する工程と、
    を含む請求項3記載の灌水供給制御方法。
JP2011033100A 2011-02-18 2011-02-18 節水型灌水制御システム及び灌水制御方法 Pending JP2012170350A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011033100A JP2012170350A (ja) 2011-02-18 2011-02-18 節水型灌水制御システム及び灌水制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011033100A JP2012170350A (ja) 2011-02-18 2011-02-18 節水型灌水制御システム及び灌水制御方法

Publications (1)

Publication Number Publication Date
JP2012170350A true JP2012170350A (ja) 2012-09-10

Family

ID=46973861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011033100A Pending JP2012170350A (ja) 2011-02-18 2011-02-18 節水型灌水制御システム及び灌水制御方法

Country Status (1)

Country Link
JP (1) JP2012170350A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105210818A (zh) * 2015-07-21 2016-01-06 国网天津市电力公司 一种自动浇花控制系统
CN105493962A (zh) * 2015-12-11 2016-04-20 卢志文 一种自动化植物墙灌溉系统
JP2019062813A (ja) * 2017-09-29 2019-04-25 住友電気工業株式会社 栽培装置
KR20190133810A (ko) * 2018-05-23 2019-12-04 주식회사 톨트리디자인 기압차를 이용한 흡인량조절장치
KR20190133811A (ko) * 2018-05-23 2019-12-04 주식회사 톨트리디자인 압력제어를 이용하는 관수시스템
JP2022506924A (ja) * 2018-11-05 2022-01-17 深▲せん▼恒興視光科技有限公司 自動水やり器
CN114793854A (zh) * 2022-05-13 2022-07-29 中国农业科学院农田灌溉研究所 一种流量自适应智能灌溉系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444425U (ja) * 1987-09-10 1989-03-16
US4934096A (en) * 1987-09-24 1990-06-19 Innocom (Electro) B.V. Apparatus for automatically watering plants
JPH04370045A (ja) * 1991-06-14 1992-12-22 Japan Tobacco Inc 養液栽培装置
JPH08219080A (ja) * 1995-02-17 1996-08-27 Shin Meiwa Ind Co Ltd 水中ポンプ
JP2001204279A (ja) * 2000-01-27 2001-07-31 Central Green Kk 庭園装置
JP2003219741A (ja) * 2002-01-31 2003-08-05 National Agricultural Research Organization 養液栽培における自動給液方法と自動給液装置、並びにこれを用いた養液栽培方法と養液栽培装置
JP2004000146A (ja) * 2002-04-24 2004-01-08 Kitaokagumi:Kk 植物の栽培方法および植物の栽培装置
JP2005147780A (ja) * 2003-11-13 2005-06-09 Alps Electric Co Ltd 液面レベルセンサ
JP2010124766A (ja) * 2008-11-28 2010-06-10 Ueno Engei:Kk 植物の給水制御方法、及び植物の給水制御システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444425U (ja) * 1987-09-10 1989-03-16
US4934096A (en) * 1987-09-24 1990-06-19 Innocom (Electro) B.V. Apparatus for automatically watering plants
JPH04370045A (ja) * 1991-06-14 1992-12-22 Japan Tobacco Inc 養液栽培装置
JPH08219080A (ja) * 1995-02-17 1996-08-27 Shin Meiwa Ind Co Ltd 水中ポンプ
JP2001204279A (ja) * 2000-01-27 2001-07-31 Central Green Kk 庭園装置
JP2003219741A (ja) * 2002-01-31 2003-08-05 National Agricultural Research Organization 養液栽培における自動給液方法と自動給液装置、並びにこれを用いた養液栽培方法と養液栽培装置
JP2004000146A (ja) * 2002-04-24 2004-01-08 Kitaokagumi:Kk 植物の栽培方法および植物の栽培装置
JP2005147780A (ja) * 2003-11-13 2005-06-09 Alps Electric Co Ltd 液面レベルセンサ
JP2010124766A (ja) * 2008-11-28 2010-06-10 Ueno Engei:Kk 植物の給水制御方法、及び植物の給水制御システム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105210818A (zh) * 2015-07-21 2016-01-06 国网天津市电力公司 一种自动浇花控制系统
CN105493962A (zh) * 2015-12-11 2016-04-20 卢志文 一种自动化植物墙灌溉系统
JP2019062813A (ja) * 2017-09-29 2019-04-25 住友電気工業株式会社 栽培装置
KR20190133810A (ko) * 2018-05-23 2019-12-04 주식회사 톨트리디자인 기압차를 이용한 흡인량조절장치
KR20190133811A (ko) * 2018-05-23 2019-12-04 주식회사 톨트리디자인 압력제어를 이용하는 관수시스템
KR102070500B1 (ko) * 2018-05-23 2020-01-30 주식회사 톨트리디자인 압력제어를 이용하는 관수시스템
KR102079443B1 (ko) * 2018-05-23 2020-02-20 주식회사 톨트리디자인 기압차를 이용한 흡인량조절장치
JP2022506924A (ja) * 2018-11-05 2022-01-17 深▲せん▼恒興視光科技有限公司 自動水やり器
JP7138310B2 (ja) 2018-11-05 2022-09-16 深▲せん▼恒興視光科技有限公司 自動水やり器
CN114793854A (zh) * 2022-05-13 2022-07-29 中国农业科学院农田灌溉研究所 一种流量自适应智能灌溉系统及方法

Similar Documents

Publication Publication Date Title
JP2012170350A (ja) 節水型灌水制御システム及び灌水制御方法
CN104381044B (zh) 一种自动翻土智能花盆
EP1954119B1 (de) Bewässerungssystem zur bewässerung von pflanzen
CN102539642B (zh) 一种人类活动扰动条件下的水循环过程模拟试验系统
CN204350778U (zh) 一种多模式自动浇花装置
KR20110087543A (ko) 빗물저장 자동관수시스템
CN107372050B (zh) 一种渐进式定点精准远程控制浇灌装置及方法
CN103518590A (zh) 一种基于作物需水量测量的自动灌溉控制方法及控制系统
KR20130051044A (ko) 화분식물용 급수장치
US20090038221A1 (en) Outdoor garden apparatus and related methods
CN103392567B (zh) 立体绿化墙灌溉系统
CN203775808U (zh) 用于大棚内的智能浇灌装置
CN203167741U (zh) 带远程控制功能的自动浇花器
WO2017070994A1 (zh) 物联网智能浇灌花盆及其制造方法
CN204317122U (zh) 一种自动翻土智能花盆
WO2016059628A1 (en) System and method for determining watering needs for field or landscape irrigation
RU148569U1 (ru) Фитомодуль для выращивания растений и озеленения вертикальных поверхностей
CN109566161A (zh) 一种智能浇水花盆
CN109122223A (zh) 一种立体绿化智能节水灌溉系统
KR100895339B1 (ko) 건축물 옥상 화단 자동 물공급장치
RU156341U1 (ru) Устройство автоматического полива растений
RU78033U1 (ru) Система автоматического полива растений для приусадебного хозяйства
CN209498013U (zh) 一种智能浇水花盆
CN204157359U (zh) 一种苗木培养装置
KR102070500B1 (ko) 압력제어를 이용하는 관수시스템

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20140218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150401